Quasicrystals in Wonderland

Peter Stollmann

Chemnitz University of Technology

AIMS conference May 2008
Outline

- Quasicrystals?
 - Mathematical models of aperiodic order
 - Hamiltonians
- Dynamical systems
- Spectral properties: The Wonderland theorem.
Outline

- Quasicrystals?
 - Mathematical models of aperiodic order
 - Hamiltonians
- Dynamical systems
- Spectral properties: The Wonderland theorem.
Outline

▶ Quasicrystals?
 ▶ Mathematical models of aperiodic order
 ▶ Hamiltonians
▶ Dynamical systems
▶ Spectral properties: The Wonderland theorem.
Quasicrystals in Wonderland

Peter Stollmann

Outline

▶ Quasicrystals?
 ▶ Mathematical models of aperiodic order
 ▶ Hamiltonians

▶ Dynamical systems

▶ Spectral properties: The Wonderland theorem.
Outline

- Quasicrystals?
 - Mathematical models of aperiodic order
 - Hamiltonians
- Dynamical systems
- Spectral properties: The Wonderland theorem.
Outlines

- Quasicrystals?
 - Mathematical models of aperiodic order
 - Hamiltonians
- Dynamical systems
- Spectral properties: The Wonderland theorem.
Outline

- Quasicrystals?
 - Mathematical models of aperiodic order
 - Hamiltonians
- Dynamical systems
- Spectral properties: The Wonderland theorem.
Quasicrystals in Wonderland

Peter Stollmann

Outline

- Quasicrystals?
 - Mathematical models of aperiodic order
 - Hamiltonians
- Dynamical systems
- Spectral properties: The Wonderland theorem.

Based on collaboration with D. Lenz.
What these creatures really are is not yet negotiated. However there's enough evidence to speculate about the question ...
... as was done in the September 2005 issue of the Notices.
Quasicrystals?

What these creatures really are is not yet negotiated. However there’s enough evidence to speculate about the question ...

... as was done in the September 2005 issue of the Notices.
Quasicrystals?

What these creatures really are is not yet negotiated. However there’s enough evidence to speculate about the question ...

... as was done in the September 2005 issue of the Notices.
Quasicrystals?

What these creatures really are is not yet negotiated. However there’s enough evidence to speculate about the question ...

... as was done in the September 2005 issue of the Notices.

WHAT IS...

a Quasicrystal?

Marjorie Senechal
As a rule of thumb quasicrystals exhibit:

▶ Sharp diffraction peaks - usually coming with long range order.
▶ Forbidden symmetries - excluding translation invariance.
Quasicrystals?

As a rule of thumb quasicrystals exhibit:

▶ Sharp diffraction peaks - usually coming with long range order.
▶ Forbidden symmetries - excluding translation invariance.
As a rule of thumb quasicrystals exhibit:

- **Sharp diffraction peaks** - usually coming with long range order.
- **Forbidden symmetries** - excluding translation invariance.
As a rule of thumb quasicrystals exhibit:

- Sharp diffraction peaks - usually coming with long range order.
- Forbidden symmetries - excluding translation invariance.
As a rule of thumb quasicrystals exhibit:

- Sharp diffraction peaks - usually coming with long range order.
- Forbidden symmetries - excluding translation invariance.
As a rule of thumb quasicrystals exhibit:

- Sharp diffraction peaks - usually coming with long range order.
- Forbidden symmetries - excluding translation invariance.
Mathematical models for aperiodic order

Aperiodic order can mathematically be described by tilings:
Aperiodic order can mathematically be described by tilings:
Mathematical models for aperiodic order

Aperiodic order can mathematically be described by tilings:

Figure: A real quasicrystal and the Penrose tiling
An alternative to tilings are Delone sets. \(\omega \subset \mathbb{R}^d \) is called a Delone set, if there exist \(r, R \in \mathbb{R} \) such that

- \(\forall x, y \in \omega, x \neq y : U_r(x) \cap U_r(y) = \emptyset \),
- \(\bigcup_{x \in \omega} B_R(x) = \mathbb{R}^d \).
Delone (Delaunay) sets

An alternative to tilings are Delone sets. \(\omega \subset \mathbb{R}^d \) is called a Delone set, if there exist \(r, R \in \mathbb{R} \) such that

- \(\forall x, y \in \omega, x \neq y : U_r(x) \cap U_r(y) = \emptyset \),
- \(\bigcup_{x \in \omega} B_R(x) = \mathbb{R}^d \).
Delone (Delaunay) sets

An alternative to tilings are Delone sets.

\(\omega \subset \mathbb{R}^d \) is called a Delone set, if there exist \(r, R \in \mathbb{R} \) such that

1. \(\forall x, y \in \omega, x \neq y : U_r(x) \cap U_r(y) = \emptyset \),
2. \(\bigcup_{x \in \omega} B_R(x) = \mathbb{R}^d \).
An alternative to tilings are Delone sets.

$\omega \subset \mathbb{R}^d$ is called a Delone set, if there exist $r, R \in \mathbb{R}$ such that

- $\forall x, y \in \omega, x \neq y : U_r(x) \cap U_r(y) = \emptyset$,
- $\bigcup_{x \in \omega} B_R(x) = \mathbb{R}^d$.
Delone (Delaunay) sets

An alternative to tilings are Delone sets.

ω ⊂ R^d is called a Delone set, if there exist r, R ∈ R such that

1. ∀x, y ∈ ω, x ≠ y : U_r(x) ∩ U_r(y) = ∅,
2. ∪_{x ∈ ω} B_R(x) = R^d.
By \(\mathcal{D}_{r,R}(\mathbb{R}^d) = \mathcal{D}_{r,R} \) we denote the set of all \((r, R)\)-sets; it is a compact metric space in the natural topology. \(\mathcal{D}(\mathbb{R}^d) = \bigcup_{0 < r \leq R} \mathcal{D}_{r,R}(\mathbb{R}^d) \) is the set of all Delone sets.
By $\mathcal{D}_{r,R}(\mathbb{R}^d) = \mathcal{D}_{r,R}$ we denote the set of all (r, R)-sets; it is a compact metric space in the natural topology. $\mathcal{D}(\mathbb{R}^d) = \bigcup_{0 < r \leq R} \mathcal{D}_{r,R}(\mathbb{R}^d)$ is the set of all Delone sets.
By $\mathcal{D}_{r,R}(\mathbb{R}^d) = \mathcal{D}_{r,R}$ we denote the set of all (r, R)-sets; it is a compact metric space in the natural topology.

$\mathcal{D}(\mathbb{R}^d) = \bigcup_{0 < r \leq R} \mathcal{D}_{r,R}(\mathbb{R}^d)$ is the set of all Delone sets.
By $\mathcal{D}_{r,R}(\mathbb{R}^d) = \mathcal{D}_{r,R}$ we denote the set of all (r, R)-sets; it is a compact metric space in the natural topology. $\mathcal{D}(\mathbb{R}^d) = \bigcup_{0 < r \leq R} \mathcal{D}_{r,R}(\mathbb{R}^d)$ is the set of all Delone sets.
Hamiltonians: continuum models

The basic idea is very simple: at each point of a Delone set ω an ion is sitting, whose potential is given by v. This leads to the Hamiltonian

$$H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x)$$

The potential

$$V_\omega = \sum_{x \in \omega} v(\cdot - x)$$

is depicted below.
The basic idea is very simple: at each point of a Delone set ω an ion is sitting, whose potential is given by v. This leads to the Hamiltonian

$$ H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x) $$

The potential

$$ V_\omega = \sum_{x \in \omega} v(\cdot - x) $$

is depicted below
Hamiltonians: continuum models

The basic idea is very simple: at each point of a Delone set ω an ion is sitting, whose potential is given by v. This leads to the Hamiltonian

$$H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x)$$

The potential

$$V_\omega = \sum_{x \in \omega} v(\cdot - x)$$

is depicted below.
Hamiltonians: continuum models

The basic idea is very simple: at each point of a Delone set ω an ion is sitting, whose potential is given by v. This leads to the Hamiltonian

$$H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x)$$

The potential

$$V_\omega = \sum_{x \in \omega} v(\cdot - x)$$

is depicted below
The basic idea is very simple: at each point of a Delone set ω an ion is sitting, whose potential is given by v. This leads to the Hamiltonian

$$H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x)$$

The potential

$$V_\omega = \sum_{x \in \omega} v(\cdot - x)$$

is depicted below
The basic idea is very simple: at each point of a Delone set ω an ion is sitting, whose potential is given by v. This leads to the Hamiltonian

$$H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x)$$

The potential

$$V_\omega = \sum_{x \in \omega} v(\cdot - x)$$

is depicted below
Hamiltonians: continuum models

The basic idea is very simple: at each point of a Delone set \(\omega \) an ion is sitting, whose potential is given by \(v \). This leads to the Hamiltonian

\[
H(\omega) := -\Delta + \sum_{x \in \omega} v(\cdot - x)
\]

The potential

\[
V_\omega = \sum_{x \in \omega} v(\cdot - x)
\]

is depicted below
If the Delone set ω is periodic, then $H(\omega)$ describes a crystal. If we choose the point set ω as the points of a Poisson process (typically no Delone set) then $H(\omega)$ describes a disordered solid. If ω is aperiodically ordered, then $H(\omega)$ can be used to describe electronic properties of a quasicrystal.
If the Delone set \(\omega \) is periodic, then \(H(\omega) \) describes a crystal. If we choose the point set \(\omega \) as the points of a Poisson process (typically no Delone set) then \(H(\omega) \) describes a disordered solid. If \(\omega \) is aperiodically ordered, then \(H(\omega) \) can be used to describe electronic properties of a quasicrystal.
If the Delone set ω is periodic, then $H(\omega)$ describes a crystal. If we choose the point set ω as the points of a Poisson process (typically no Delone set) then $H(\omega)$ describes a disordered solid. If ω is aperiodically ordered, then $H(\omega)$ can be used to describe electronic properties of a quasicrystal.
If the Delone set ω is periodic, then $H(\omega)$ describes a crystal. If we choose the point set ω as the points of a Poisson process (typically no Delone set) then $H(\omega)$ describes a disordered solid. If ω is aperiodically ordered, then $H(\omega)$ can be used to describe electronic properties of a quasicrystal.
If the Delone set ω is periodic, then $H(\omega)$ describes a crystal. If we choose the point set ω as the points of a Poisson process (typically no Delone set) then $H(\omega)$ describes a disordered solid. If ω is aperiodically ordered, then $H(\omega)$ can be used to describe electronic properties of a quasicrystal.
We are interested in the Schrödinger equation

$$\psi'(t) = -iH(\omega)\psi(t) \quad (SE)$$

it describes the time evolution of a wave function $\psi(t)$. Spectral properties of $H(\omega)$ can be translated into qualitative properties of solutions of (SE). The specific form of (dis-)order is encoded in $H(\omega)$. It will be very useful to consider a whole collection $(H(\omega), \omega \in \Omega)$ at the same time, for physical reasons and for analytical reasons.
Hamiltonians

We are interested in the Schrödinger equation

$$\psi'(t) = -iH(\omega)\psi(t) \quad (SE)$$

it describes the time evolution of a wave function $\psi(t)$. Spectral properties of $H(\omega)$ can be translated into qualitative properties of solutions of (SE).

The specific form of (dis-)order is encoded in $H(\omega)$. It will be very useful to consider a whole collection $(H(\omega), \omega \in \Omega)$ at the same time, for physical reasons and for analytical reasons.
We are interested in the Schrödinger equation
\[\psi'(t) = -iH(\omega)\psi(t) \quad (SE) \]

it describes the time evolution of a wave function \(\psi(t) \). Spectral properties of \(H(\omega) \) can be translated into qualitative properties of solutions of (SE). The specific form of (dis-)order is encoded in \(H(\omega) \). It will be very useful to consider a whole collection \((H(\omega), \omega \in \Omega) \) at the same time, for physical reasons and for analytical reasons.
We are interested in the Schrödinger equation

$$\psi'(t) = -iH(\omega)\psi(t) \quad (SE)$$

it describes the time evolution of a wave function $\psi(t)$. Spectral properties of $H(\omega)$ can be translated into qualitative properties of solutions of (SE). The specific form of (dis-)order is encoded in $H(\omega)$. It will be very useful to consider a whole collection $(H(\omega), \omega \in \Omega)$ at the same time, for physical reasons and for analytical reasons.
We are interested in the Schrödinger equation

$$\psi'(t) = -iH(\omega)\psi(t) \quad (SE)$$

it describes the time evolution of a wave function $\psi(t)$. Spectral properties of $H(\omega)$ can be translated into qualitative properties of solutions of (SE). The specific form of (dis-)order is encoded in $H(\omega)$. It will be very useful to consider a whole collection $(H(\omega), \omega \in \Omega)$ at the same time, for physical reasons and for analytical reasons.
Hamiltonians

We are interested in the Schrödinger equation

\[\psi'(t) = -iH(\omega)\psi(t) \quad (SE) \]

it describes the time evolution of a wave function \(\psi(t) \). Spectral properties of \(H(\omega) \) can be translated into qualitative properties of solutions of (SE). The specific form of (dis-)order is encoded in \(H(\omega) \). It will be very useful to consider a whole collection \((H(\omega), \omega \in \Omega) \) at the same time, for physical reasons and for analytical reasons.
Hamiltonians

We are interested in the Schrödinger equation

\[\psi'(t) = -iH(\omega)\psi(t) \quad (SE) \]

it describes the time evolution of a wave function \(\psi(t) \). Spectral properties of \(H(\omega) \) can be translated into qualitative properties of solutions of (SE). The specific form of (dis-)order is encoded in \(H(\omega) \). It will be very useful to consider a whole collection \((H(\omega), \omega \in \Omega) \) at the same time, for physical reasons and for analytical reasons.
Delone dynamical systems

... simply consist of a translation invariant, compact set $\Omega \subset D(\mathbb{R}^d)$, on which the group $T_t : \mathbb{R}^d \to \mathbb{R}^d (t \in \mathbb{R}^d)$ of translations acts; we denote such a system by (Ω, T). We interpret such a DDS (Ω, T) as a model for a certain type of (dis-)order. Ergodic properties of (Ω, T) reflect combinatorial properties of the elements $\omega \in \Omega$ and vice versa. Moreover, spectral properties of the $H(\omega)$ are sometimes related to ergodic properties of the DDS. E.g.

$$(\Omega, T) \text{ minimal} \quad \Downarrow$$

$$\sigma(H(\omega)) = \sigma(H(\omega')) \text{ for all } \omega, \omega' \in \Omega.$$

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the ω's.
Delone dynamical systems

... simply consist of a translation invariant, compact set $\Omega \subset \mathbb{D}(\mathbb{R}^d)$, on which the group $T_t : \mathbb{R}^d \to \mathbb{R}^d (t \in \mathbb{R}^d)$ of translations acts; we denote such a system by (Ω, T). We interpret such a DDS (Ω, T) as a model for a certain type of (dis-)order. Ergodic properties of (Ω, T) reflect combinatorial properties of the elements $\omega \in \Omega$ and vice versa. Moreover, spectral properties of the $H(\omega)$ are sometimes related to ergodic properties of the DDS. E.g.

(Ω, T) minimal

\Downarrow

$\sigma(H(\omega)) = \sigma(H(\omega'))$ for all $\omega, \omega' \in \Omega$.

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the ω’s.
Delone dynamical systems

... simply consist of a translation invariant, compact set \(\Omega \subset \mathbb{D}(\mathbb{R}^d) \), on which the group \(T_t : \mathbb{R}^d \rightarrow \mathbb{R}^d (t \in \mathbb{R}^d) \) of translations acts; we denote such a system by \((\Omega, T)\). We interpret such a DDS \((\Omega, T)\) as a model for a certain type of (dis-)order. Ergodic properties of \((\Omega, T)\) reflect combinatorial properties of the elements \(\omega \in \Omega\) and vice versa. Moreover, spectral properties of the \(H(\omega)\) are sometimes related to ergodic properties of the DDS. E.g.

\[
(\Omega, T) \text{ minimal} \quad \Downarrow \\
\sigma(H(\omega)) = \sigma(H(\omega')) \text{ for all } \omega, \omega' \in \Omega.
\]

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the \(\omega\)'s.
Delone dynamical systems

... simply consist of a translation invariant, compact set \(\Omega \subset \mathbb{D}^{(\mathbb{R}^d)} \), on which the group \(T_t : \mathbb{R}^d \rightarrow \mathbb{R}^d (t \in \mathbb{R}^d) \) of translations acts; we denote such a system by \((\Omega, T) \). We interpret such a DDS \((\Omega, T) \) as a model for a certain type of (dis-)order. Ergodic properties of \((\Omega, T) \) reflect combinatorial properties of the elements \(\omega \in \Omega \) and vice versa. Moreover, spectral properties of the \(H(\omega) \) are sometimes related to ergodic properties of the DDS. E.g.

\[
(\Omega, T) \text{ minimal} \quad \Downarrow \quad \sigma(H(\omega)) = \sigma(H(\omega')) \quad \text{for all } \omega, \omega' \in \Omega.
\]

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the \(\omega \)'s.
Delone dynamical systems

... simply consist of a translation invariant, compact set \(\Omega \subset \mathbb{D}(\mathbb{R}^d) \), on which the group \(T_t : \mathbb{R}^d \to \mathbb{R}^d (t \in \mathbb{R}^d) \) of translations acts; we denote such a system by \((\Omega, T) \).

We interpret such a DDS \((\Omega, T) \) as a model for a certain type of (dis-)order. Ergodic properties of \((\Omega, T) \) reflect combinatorial properties of the elements \(\omega \in \Omega \) and vice versa. Moreover, spectral properties of the \(H(\omega) \) are sometimes related to ergodic properties of the DDS. E.g.

\[
(\Omega, T) \text{ minimal} \quad \Downarrow \quad \sigma(H(\omega)) = \sigma(H(\omega')) \text{ for all } \omega, \omega' \in \Omega.
\]

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the \(\omega \)'s.
Delone dynamical systems

... simply consist of a translation invariant, compact set \(\Omega \subset \mathbb{D}(\mathbb{R}^d) \), on which the group \(T_t : \mathbb{R}^d \to \mathbb{R}^d (t \in \mathbb{R}^d) \) of translations acts; we denote such a system by \((\Omega, T)\).

We interpret such a DDS \((\Omega, T)\) as a model for a certain type of (dis-)order. Ergodic properties of \((\Omega, T)\) reflect combinatorial properties of the elements \(\omega \in \Omega \) and vice versa. Moreover, spectral properties of the \(H(\omega) \) are sometimes related to ergodic properties of the DDS. E.g.

\[
(\Omega, T) \text{ minimal} \quad \Downarrow \\
\sigma(H(\omega)) = \sigma(H(\omega')) \text{ for all } \omega, \omega' \in \Omega.
\]

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the \(\omega \)'s.
Delone dynamical systems

... simply consist of a translation invariant, compact set $\Omega \subset \mathbb{D}(\mathbb{R}^d)$, on which the group $T_t : \mathbb{R}^d \rightarrow \mathbb{R}^d (t \in \mathbb{R}^d)$ of translations acts; we denote such a system by (Ω, T). We interpret such a DDS (Ω, T) as a model for a certain type of (dis-)order. Ergodic properties of (Ω, T) reflect combinatorial properties of the elements $\omega \in \Omega$ and vice versa. Moreover, spectral properties of the $H(\omega)$ are sometimes related to ergodic properties of the DDS. E.g.

$$(\Omega, T) \text{ minimal}$$

$$\downarrow$$

$$\sigma(H(\omega)) = \sigma(H(\omega')) \text{ for all } \omega, \omega' \in \Omega.$$

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the ω's.
Delone dynamical systems

... simply consist of a translation invariant, compact set \(\Omega \subset \mathbb{D}(\mathbb{R}^d) \), on which the group \(T_t : \mathbb{R}^d \to \mathbb{R}^d (t \in \mathbb{R}^d) \) of translations acts; we denote such a system by \((\Omega, T)\). We interpret such a DDS \((\Omega, T)\) as a model for a certain type of (dis-)order. Ergodic properties of \((\Omega, T)\) reflect combinatorial properties of the elements \(\omega \in \Omega \) and vice versa. Moreover, spectral properties of the \(H(\omega) \) are sometimes related to ergodic properties of the DDS. E.g.

\[
(\Omega, T) \text{ minimal} \quad \Downarrow \quad \sigma(H(\omega)) = \sigma(H(\omega')) \text{ for all } \omega, \omega' \in \Omega.
\]

Minimality and unique ergodicity are equivalent to certain combinatorial properties of the \(\omega \)'s.
For a DDS \((\Omega, T)\) that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
For a DDS $(Ω, T)$ that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
For a DDS (Ω, T) that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
Spectral properties

For a DDS \((\Omega, T)\) that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
Spectral properties

For a DDS $\left(\Omega, T \right)$ that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
For a DDS \((\Omega, T)\) that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
Spectral properties

For a DDS (Ω, T) that describes aperiodic order one is tempted to expect purely singular continuous spectrum and this has been verified in some classes of discrete examples in one dimension (quasiperiodic Hamiltonians, substitution potentials) as well as continuum models in one dimension, see the talk of D. Lenz. However in higher dimensions there are only very few rigorous results :-(.
Spectral properties: continuum models

A very modest step has been taken in showing that generically in the topological sense singular continuous spectrum occurs.

Let \(r, R > 0 \) with \(2r < R \) and \(v \geq 0, v \neq 0 \). Then there exists an open \(\emptyset \neq U \subset \mathbb{R} \) and a dense \(G_\delta \)-set \(\Omega_{sc} \subset D_{r,R} \) such that for every \(\omega \in \Omega_{sc} \) the spectrum of \(H(\omega) \) contains \(U \) and is purely singular continuous in \(U \).

This follows from a variant of Barry Simon’s Wonderland Theorem and uses heavily the spectral properties of periodic operators.
Spectral properties: continuum models

A very modest step has been taken in showing that generically in the topological sense singular continuous spectrum occurs.

Let \(r, R > 0 \) with \(2r < R \) and \(v \geq 0, v \neq 0 \). Then there exists an open \(\emptyset \neq U \subset \mathbb{R} \) and a dense \(G_\delta \)-set \(\Omega_{sc} \subset \mathbb{D}_{r,R} \) such that for every \(\omega \in \Omega_{sc} \) the spectrum of \(H(\omega) \) contains \(U \) and is purely singular continuous in \(U \).

This follows from a variant of Barry Simon’s Wonderland Theorem and uses heavily the spectral properties of periodic operators.
Spectral properties: continuum models

A very modest step has been taken in showing that generically, in the topological sense, singular continuous spectrum occurs.

Let \(r, R > 0 \) with \(2r < R \) and \(v \geq 0, v \neq 0 \). Then there exists an open \(\emptyset \neq U \subset \mathbb{R} \) and a dense \(G_\delta \)-set \(\Omega_{sc} \subset D_{r,R} \) such that for every \(\omega \in \Omega_{sc} \) the spectrum of \(H(\omega) \) contains \(U \) and is purely singular continuous in \(U \).

This follows from a variant of Barry Simon’s Wonderland Theorem and uses heavily the spectral properties of periodic operators.
A very modest step has been taken in showing that generically in the topological sense singular continuous spectrum occurs.

Let \(r, R > 0 \) with \(2r < R \) and \(v \geq 0, v \neq 0 \). Then there exists an open \(\emptyset \neq U \subset \mathbb{R} \) and a dense \(G_\delta \)-set \(\Omega_{sc} \subset \mathbb{D}_{r,R} \) such that for every \(\omega \in \Omega_{sc} \) the spectrum of \(H(\omega) \) contains \(U \) and is purely singular continuous in \(U \).

This follows from a variant of Barry Simon’s Wonderland Theorem and uses heavily the spectral properties of periodic operators.
Spectral properties: continuum models

A very modest step has been taken in showing that generically in the topological sense singular continuous spectrum occurs.

Let $r, R > 0$ with $2r < R$ and $v \geq 0$, $v \neq 0$. Then there exists an open $\emptyset \neq U \subset \mathbb{R}$ and a dense G_δ-set $\Omega_{sc} \subset \mathbb{D}_{r,R}$ such that for every $\omega \in \Omega_{sc}$ the spectrum of $H(\omega)$ contains U and is purely singular continuous in U.

This follows from a variant of Barry Simon’s Wonderland Theorem and uses heavily the spectral properties of periodic operators.
Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{G} = \mathcal{G}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{G}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,
(1) the set $X_1 = \{x \in X \mid \sigma_{pp}(H(x)) \cap U = \emptyset\}$ is dense in X,
(2) the set $X_2 = \{x \in X \mid \sigma_{ac}(H(x)) \cap U = \emptyset\}$ is dense in X,
(3) the set $X_3 = \{x \in X \mid U \subset \sigma(H(x))\}$ is dense in X.
Then, their intersection
\[
\{x \in X \mid U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset\}
\]
is a dense G_δ-set in X.
Back to Wonderland

Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{S} = \mathcal{S}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{ x \in X | \sigma_{pp}(H(x)) \cap U = \emptyset \}$ is dense in X,
2. the set $X_2 = \{ x \in X | \sigma_{ac}(H(x)) \cap U = \emptyset \}$ is dense in X,
3. the set $X_3 = \{ x \in X | U \subset \sigma(H(x)) \}$ is dense in X.

Then, their intersection

$$\{ x \in X | U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset \}$$

is a dense G_δ-set in X.

Back to Wonderland

Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{S} = \mathcal{S}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{x \in X| \sigma_{pp}(H(x)) \cap U = \emptyset\}$ is dense in X,
2. the set $X_2 = \{x \in X| \sigma_{ac}(H(x)) \cap U = \emptyset\}$ is dense in X,
3. the set $X_3 = \{x \in X| U \subset \sigma(H(x))\}$ is dense in X.

Then, their intersection

$$\{x \in X| U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset\}$$

is a dense G_δ-set in X.
Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{S} = \mathcal{S}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{x \in X | \sigma_{pp}(H(x)) \cap U = \emptyset\}$ is dense in X,
2. the set $X_2 = \{x \in X | \sigma_{ac}(H(x)) \cap U = \emptyset\}$ is dense in X,
3. the set $X_3 = \{x \in X | U \subset \sigma(H(x))\}$ is dense in X.

Then, their intersection

$$\{x \in X | U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset\}$$

is a dense G_δ-set in X.
Fix a separable Hilbert space \mathcal{H}, consider the space \(\mathcal{S} = \mathcal{S}(\mathcal{H}) \) of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{ x \in X | \sigma_{pp}(H(x)) \cap U = \emptyset \}$ is dense in X,
2. the set $X_2 = \{ x \in X | \sigma_{ac}(H(x)) \cap U = \emptyset \}$ is dense in X,
3. the set $X_3 = \{ x \in X | U \subset \sigma(H(x)) \}$ is dense in X.

Then, their intersection

\[\{ x \in X | U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset \} \]

is a dense G_δ-set in X.
Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{S} = \mathcal{S}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{ x \in X | \sigma_{pp}(H(x)) \cap U = \emptyset \}$ is dense in X,
2. the set $X_2 = \{ x \in X | \sigma_{ac}(H(x)) \cap U = \emptyset \}$ is dense in X,
3. the set $X_3 = \{ x \in X | U \subset \sigma(H(x)) \}$ is dense in X.

Then, their intersection

$$\{ x \in X | U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset \}$$

is a dense G_δ-set in X.
Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{G} = \mathcal{G}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{G}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{ x \in X \mid \sigma_{pp}(H(x)) \cap U = \emptyset \}$ is dense in X,
2. the set $X_2 = \{ x \in X \mid \sigma_{ac}(H(x)) \cap U = \emptyset \}$ is dense in X,
3. the set $X_3 = \{ x \in X \mid U \subset \sigma(H(x)) \}$ is dense in X.

Then, their intersection

$$\{ x \in X \mid U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset \}$$

is a dense G_δ-set in X.

Back to Wonderland

Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{S} = \mathcal{S}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \rightarrow (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,

1. the set $X_1 = \{ x \in X | \sigma_{pp}(H(x)) \cap U = \emptyset \}$ is dense in X,
2. the set $X_2 = \{ x \in X | \sigma_{ac}(H(x)) \cap U = \emptyset \}$ is dense in X,
3. the set $X_3 = \{ x \in X | U \subset \sigma(H(x)) \}$ is dense in X.

Then, their intersection

$$\{ x \in X | U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset \}$$

is a dense G_δ-set in X.
Back to Wonderland

Fix a separable Hilbert space \mathcal{H}, consider the space $\mathcal{S} = \mathcal{S}(\mathcal{H})$ of self-adjoint operators in \mathcal{H} with the strong resolvent topology τ_{srs}.

Let (X, ρ) be a complete metric space and $H : (X, \rho) \to (\mathcal{S}, \tau_{srs})$ a continuous mapping. Assume that, for an open set $U \subset \mathbb{R}$,
1. the set $X_1 = \{x \in X \mid \sigma_{pp}(H(x)) \cap U = \emptyset\}$ is dense in X,
2. the set $X_2 = \{x \in X \mid \sigma_{ac}(H(x)) \cap U = \emptyset\}$ is dense in X,
3. the set $X_3 = \{x \in X \mid U \subset \sigma(H(x))\}$ is dense in X.

Then, their intersection

\[\{x \in X \mid U \subset \sigma(H(x)), \sigma_{ac}(H(x)) \cap U = \emptyset, \sigma_{pp}(H(x)) \cap U = \emptyset\} \]

is a dense G_δ-set in X.
Back to Wonderland

By Baire's theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$ X \rightarrow M_+(U) := \{\text{measures on } U\}, x \mapsto \rho_{\xi}^{H(x)}|_U $$

is continuous. For every dense $\{\xi_n| n \in \mathbb{N}\} \subset \mathcal{H}$:

$$ X_1 = \bigcap_{n \in \mathbb{N}} \{x| \rho_{\xi_n}^{H(x)}|_U \in M_c(U)\}. $$

Similarly, for X_2 and X_3 so that “Measure Theorem” \Rightarrow Wonderland Theorem:

By Baire's theorem, it suffices to prove that $X_1 - X_3$ are $G_δ$-sets. By continuity it suffices to prove that the corresponding sets of measures are $G_δ$-sets. In fact, for fixed $ξ ∈ ℳ$, the mapping

$$X → ℳ_+(U) := \{\text{measures on } U\}, \ x → ρ^{H(x)}_ξ|_U$$

is continuous. For every dense $\{ξ_n|n ∈ ℤ\} ⊂ ℳ$:

$$X_1 = \bigcap_{n ∈ ℤ} \{x| ρ^{H(x)}_{ξ_n}|_U ∈ ℳ_c(U)\}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” $⇒$ Wonderland Theorem:

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \to \mathcal{M}_+(U) := \{\text{measures on } U\}, x \mapsto \rho^H(x)|_U$$

is continuous. For every dense $\{\xi_n| n \in \mathbb{N}\} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{x| \rho^H(x)|_U \in \mathcal{M}_c(U)\}.$$
By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \rightarrow M_+(U) := \{\text{measures on } U\}, x \mapsto \rho_{\xi}^{H(x)} | U$$

is continuous. For every dense $\{\xi_n | n \in \mathbb{N}\} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{x | \rho_{\xi_n}^{H(x)} | U \in M_c(U)\}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” \implies Wonderland Theorem:
Back to Wonderland

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \rightarrow \mathcal{M}_+(U) := \{\text{measures on } U\}, x \mapsto \rho_{\xi}^{H(x)}|U$$

is continuous. For every dense $\{\xi_n| n \in \mathbb{N}\} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{x| \rho_{\xi_n}^{H(x)}|U \in \mathcal{M}_c(U)\}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” \Rightarrow Wonderland Theorem:

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \rightarrow \mathcal{M}_+(U) := \{\text{measures on } U\}, \ x \mapsto \rho_{H(x)}^H|_U$$

is continuous. For every dense $\{\xi_n| n \in \mathbb{N}\} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{x| \rho_{H(x)}^H|_U \in \mathcal{M}_c(U)\}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” \implies Wonderland Theorem:
Back to Wonderland

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \to \mathcal{M}_+(U) := \{\text{measures on } U\}, \ x \mapsto \rho_{\xi}^{H(x)}|_U$$

is continuous. For every dense $\{\xi_n | n \in \mathbb{N}\} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{x | \rho_{\xi_n}^{H(x)}|_U \in \mathcal{M}_c(U)\}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” \implies Wonderland Theorem:

By Baire’s theorem, it suffices to prove that \(X_1 - X_3\) are \(G_\delta\)-sets. By continuity it suffices to prove that the corresponding sets of measures are \(G_\delta\)-sets. In fact, for fixed \(\xi \in \mathcal{H}\), the mapping

\[
X \rightarrow \mathcal{M}_+(U) : = \{\text{measures on } U\}, \ x \mapsto \rho_{\xi}^{H(x)}|U
\]

is continuous. For every dense \(\{\xi_n|n \in \mathbb{N}\} \subset \mathcal{H}\):

\[
X_1 = \bigcap_{n \in \mathbb{N}} \{x| \rho_{\xi_n}^{H(x)}|U \in \mathcal{M}_c(U)\}.
\]

Similarly, for \(X_2\) and \(X_3\) so that “Measure Theorem” \(\Rightarrow\) Wonderland Theorem:
Back to Wonderland

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are $G_δ$-sets. By continuity it suffices to prove that the corresponding sets of measures are $G_δ$-sets. In fact, for fixed $ξ ∈ ℋ$, the mapping

$$X \to ℳ_+(U) := \{\text{measures on } U\}, x \mapsto ρ_{ξ}^{H(x)}|U$$

is continuous. For every dense $\{ξ_n|n ∈ ℤ\} ⊂ ℋ$:

$$X_1 = \bigcap_{n∈ℤ}{x| ρ_{ξ_n}^{H(x)}|U ∈ ℳ_c(U)}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” $⇒$ Wonderland Theorem:

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \to \mathcal{M}_+(U) := \{\text{measures on } U\}, x \mapsto \rho_x^{H} \big|_U$$

is continuous. For every dense $\{\xi_n | n \in \mathbb{N}\} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{x | \rho_{\xi_n}^{H} \big|_U \in \mathcal{M}_c(U)\}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” \implies Wonderland Theorem:

By Baire’s theorem, it suffices to prove that $X_1 - X_3$ are G_δ-sets. By continuity it suffices to prove that the corresponding sets of measures are G_δ-sets. In fact, for fixed $\xi \in \mathcal{H}$, the mapping

$$X \rightarrow \mathcal{M}_+(U) := \{ \text{measures on } U \}, \ x \mapsto \rho_{\xi}^{H(x)}|_U$$

is continuous. For every dense $\{ \xi_n | n \in \mathbb{N} \} \subset \mathcal{H}$:

$$X_1 = \bigcap_{n \in \mathbb{N}} \{ x | \rho_{\xi_n}^{H(x)}|_U \in \mathcal{M}_c(U) \}.$$

Similarly, for X_2 and X_3 so that “Measure Theorem” \implies Wonderland Theorem:
Analysis in spaces of measures

Fix \(S \), a locally compact, \(\sigma \)-compact, separable metric space. Consider \(\mathcal{M}_+(S) \), the set of positive, regular Borel measures. \(\mu \in \mathcal{M}_+(S) \) diffusive or continuous if and only if \(\mu(\{x\}) = 0 \) for every \(x \in S \).

\(\mu \perp \nu \), mutually singular if and only if \(\exists \ C \subset S \) such that \(\mu(C) = 0 = \nu(S \setminus C) \).

Let \(S \) be as above. Then

1. The set \(\mathcal{M}_c(S) := \{ \mu \in \mathcal{M}_+(S) | \mu \) is diffusive\} is a \(G_\delta \)-set in \(\mathcal{M}_+(S) \).
2. For any \(\lambda \in \mathcal{M}_+(S) \), the set \(\{ \mu \in \mathcal{M}_+(S) | \mu \perp \lambda \} \) is a \(G_\delta \)-set in \(\mathcal{M}_+(S) \).
3. For any closed \(F \subset S \) the set \(\{ \mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu) \} \) is a \(G_\delta \)-set in \(\mathcal{M}_+(S) \).
Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures.

\[\mu \in \mathcal{M}_+(S) \text{ diffusive or continuous} \iff \mu(\{x\}) = 0 \text{ for every } x \in S. \]

\[\mu \perp \nu, \text{ mutually singular} \iff \exists C \subset S \text{ such that } \mu(C) = 0 = \nu(S \setminus C). \]

Let S be as above. Then

1. The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
2. For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
3. For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures.

$\mu \in \mathcal{M}_+(S)$ diffusive or continuous: $\iff \mu(\{x\}) = 0$ for every $x \in S$.

$\mu \perp \nu$, mutually singular: $\iff \exists C \subset S$ such that $\mu(C) = 0 = \nu(S \setminus C)$.

Let S be as above. Then

1. The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
2. For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
3. For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures. $\mu \in \mathcal{M}_+(S)$ diffusive or continuous: $\iff \mu(\{x\}) = 0$ for every $x \in S$.

$\mu \perp \nu$, mutually singular: $\iff \exists C \subset S$ such that $\mu(C) = 0 = \nu(S \setminus C)$.

Let S be as above. Then

1. The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.

2. For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.

3. For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures. $
\mu \in \mathcal{M}_+(S)$ diffusive or continuous: $\iff \mu(\{x\}) = 0$ for every $x \in S$.

$\mu \perp \nu$, mutually singular: $\iff \exists C \subset S$ such that $
\mu(C) = 0 = \nu(S \setminus C)$.

Let S be as above. Then

(1) The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
(2) For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
(3) For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.

Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures. $\mu \in \mathcal{M}_+(S)$ diffusive or continuous: $\iff \mu(\{x\}) = 0$ for every $x \in S$.

$\mu \perp \nu$, mutually singular: $\iff \exists C \subset S$ such that $\mu(C) = 0 = \nu(S \setminus C)$.

Let S be as above. Then

1. The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
2. For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
3. For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures. $\mu \in \mathcal{M}_+(S)$ diffusive or continuous $\iff \mu(\{x\}) = 0$ for every $x \in S$.

$\mu \perp \nu$, mutually singular $\iff \exists C \subset S$ such that $\mu(C) = 0 = \nu(S \setminus C)$.

Let S be as above. Then

1. The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
2. For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
3. For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
Analysis in spaces of measures

Fix S, a locally compact, σ-compact, separable metric space. Consider $\mathcal{M}_+(S)$, the set of positive, regular Borel measures. $\mu \in \mathcal{M}_+(S)$ diffusive or continuous $\iff \mu(\{x\}) = 0$ for every $x \in S$.

$\mu \perp \nu$, mutually singular $\iff \exists \ C \subset S$ such that $\mu(C) = 0 = \nu(S \setminus C)$.

Let S be as above. Then

(1) The set $\mathcal{M}_c(S) := \{\mu \in \mathcal{M}_+(S) | \mu \text{ is diffusive}\}$ is a G_δ-set in $\mathcal{M}_+(S)$.

(2) For any $\lambda \in \mathcal{M}_+(S)$, the set $\{\mu \in \mathcal{M}_+(S) | \mu \perp \lambda\}$ is a G_δ-set in $\mathcal{M}_+(S)$.

(3) For any closed $F \subset S$ the set $\{\mu \in \mathcal{M}_+(S) | F \subset \text{supp}(\mu)\}$ is a G_δ-set in $\mathcal{M}_+(S)$.
Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If \(\rho \in \mathbb{D}_{r,R} \) is crystallographic, i.e.,
\[
\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}
\]
is a lattice, then \(H(\rho) \) is periodic. Consequently, \(H(\rho) \) has purely absolutely continuous spectrum. Since \(2r < R \), there exist crystallographic \(\gamma, \tilde{\gamma} \) such that
\[
U := \sigma(H(\gamma))^\circ \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset.
\]
Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If $\rho \in \mathbb{D}_{r,R}$ is *crystallographic*, i.e.,

$$\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}$$

is a lattice, then $H(\rho)$ is periodic. Consequently, $H(\rho)$ has purely absolutely continuous spectrum. Since $2r < R$, there exist crystallographic $\gamma, \tilde{\gamma}$ such that

$$U := \sigma(H(\gamma))^{\circ} \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset.$$
Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If $\rho \in \mathbb{D}_{r,R}$ is crystallographic, i.e.,

$$\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}$$

is a lattice, then $H(\rho)$ is periodic. Consequently, $H(\rho)$ has purely absolutely continuous spectrum. Since $2r < R$, there exist crystallographic $\gamma, \tilde{\gamma}$ such that $U := \sigma(H(\gamma)) \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset$.
Application of the Wonderland theorem

Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If \(\rho \in \mathbb{D}_{r,R} \) is *crystallographic*, i.e.,

\[
\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}
\]

is a lattice, then \(H(\rho) \) is periodic. Consequently, \(H(\rho) \) has purely absolutely continuous spectrum. Since \(2r < R \), there exist crystallographic \(\gamma, \tilde{\gamma} \) such that \(U := \sigma(H(\gamma))^\circ \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset \).
Application of the Wonderland theorem

Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If $\rho \in \mathbb{D}_{r,R}$ is *crystallographic*, i.e.,

$$\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}$$

is a lattice, then $H(\rho)$ is periodic. Consequently, $H(\rho)$ has purely absolutely continuous spectrum. Since $2r < R$, there exist crystallographic $\gamma, \tilde{\gamma}$ such that

$$U := \sigma(H(\gamma)) \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset.$$
Application of the Wonderland theorem

Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If $\rho \in \mathbb{D}_r, R$ is *crystallographic*, i.e.,

$$\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}$$

is a lattice, then $H(\rho)$ is periodic. Consequently, $H(\rho)$ has purely absolutely continuous spectrum.

Since $2r < R$, there exist crystallographic $\gamma, \tilde{\gamma}$ such that $U := \sigma(H(\gamma))^\circ \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset$.
Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If $\rho \in \mathbb{D}_{r,R}$ is crystallographic, i.e.,

$$\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}$$

is a lattice, then $H(\rho)$ is periodic. Consequently, $H(\rho)$ has purely absolutely continuous spectrum. Since $2r < R$, there exist crystallographic $\gamma, \tilde{\gamma}$ such that $U := \sigma(H(\gamma))^\circ \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset$.
Application of the Wonderland theorem

Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If \(\rho \in \mathbb{D}_{r,R} \) is crystallographic, i.e.,

\[
\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}
\]

is a lattice, then \(H(\rho) \) is periodic. Consequently, \(H(\rho) \) has purely absolutely continuous spectrum. Since \(2r < R \), there exist crystallographic \(\gamma, \tilde{\gamma} \) such that

\[
U := \sigma(H(\gamma)) \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset.
\]
Application of the Wonderland theorem

Proof of generic appearance of singular continuous spectrum using the Wonderland theorem. If $\rho \in \mathcal{D}_{r,R}$ is crystallographic, i.e.,

$$\text{Per}(\rho) := \{ t \in \mathbb{R}^d : \rho = t + \rho \}$$

is a lattice, then $H(\rho)$ is periodic. Consequently, $H(\rho)$ has purely absolutely continuous spectrum. Since $2r < R$, there exist crystallographic $\gamma, \tilde{\gamma}$ such that $U := \sigma(H(\gamma))^\circ \setminus \sigma(H(\tilde{\gamma})) \neq \emptyset$.

Figure: crystallographic γ (green) and $\tilde{\gamma}$ (green+blue)
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

1. one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.
2. one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.
3. one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$.

Given $\omega \in \mathbb{D}_{r,R}$, consider $\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.

$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.
Application of the Wonderland theorem

This will be the \(U \) whose existence is stated in the theorem. For \(\omega \in \mathcal{D}_{r,R} \) we have to find

- one sequence \((\omega^1_n)_n \) s.t. \(H(\omega^1_n) \) is purely singular in \(U \) and \(\omega^1_n \to \omega \).
- one sequence \((\omega^2_n)_n \) s.t. \(H(\omega^2_n) \) has purely continuous spectrum in \(U \) and \(\omega^2_n \to \omega \).
- one sequence \((\omega^3_n)_n \) s.t. \(U \subset \sigma(H(\omega^3_n)) \)

Given \(\omega \in \mathcal{D}_{r,R} \), consider
\[
\omega^1_n \in \mathcal{D}_{r,R} \text{ s.t. } \\
\omega^1_n \cap [-n, n]^d = \omega \cap [-n, n]^d \quad \text{and} \\
\omega^1_n \cap ([-n - R, n + R]^d)^c = \\
\tilde{\gamma} \cap ([-n - R, n + R]^d)^c.
\]
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.
- one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.
- one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.

$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and

$\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega^1_n)_n$ s.t. $H(\omega^1_n)$ is purely singular in U and $\omega^1_n \to \omega$.
- one sequence $(\omega^2_n)_n$ s.t. $H(\omega^2_n)$ has purely continuous spectrum in U and $\omega^2_n \to \omega$.
- one sequence $(\omega^3_n)_n$ s.t. $U \subset \sigma(H(\omega^3_n))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega^1_n \in \mathbb{D}_{r,R}$ s.t.

$\omega^1_n \cap [-n, n]^d = \omega \cap [-n, n]^d$ and

$\omega^1_n \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c.$
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.
- one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.
- one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.

$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and

$\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

1. one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.
2. one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.
3. one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.

$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.

Quasicrystals in Wonderland
Peter Stollmann

Quasicrystals?
Aperiodic order
Hamiltonians
Dynamical Spectral Wonderland Measures Application Conclusion
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega^1_n)_n$ s.t. $H(\omega^1_n)$ is purely singular in U and $\omega^1_n \to \omega$.

- one sequence $(\omega^2_n)_n$ s.t. $H(\omega^2_n)$ has purely continuous spectrum in U and $\omega^2_n \to \omega$.

- one sequence $(\omega^3_n)_n$ s.t. $U \subset \sigma(H(\omega^3_n))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega^1_n \in \mathbb{D}_{r,R}$ s.t.

$\omega^1_n \cap [-n, n]^d = \omega \cap [-n, n]^d$ and

$\omega^1_n \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega_1^n)_n$ s.t. $H(\omega_1^n)$ is purely singular in U and $\omega_1^n \to \omega$.
- one sequence $(\omega_2^n)_n$ s.t. $H(\omega_2^n)$ has purely continuous spectrum in U and $\omega_2^n \to \omega$.
- one sequence $(\omega_3^n)_n$ s.t. $U \subset \sigma(H(\omega_3^n))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_1^n \in \mathbb{D}_{r,R}$ s.t.

$$\omega_1^n \cap [-n, n]^d = \omega \cap [-n, n]^d$$ and

$$\omega_1^n \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c.$$
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

1. one sequence $(\omega^1_n)_n$ s.t. $H(\omega^1_n)$ is purely singular in U and $\omega^1_n \to \omega$.
2. one sequence $(\omega^2_n)_n$ s.t. $H(\omega^2_n)$ has purely continuous spectrum in U and $\omega^2_n \to \omega$.
3. one sequence $(\omega^3_n)_n$ s.t. $U \subset \sigma(H(\omega^3_n))$.

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega^1_n \in \mathbb{D}_{r,R}$ s.t.

$\omega^1_n \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega^1_n \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.

Quasicrystals in Wonderland
Peter Stollmann
Quasicrystals?
Aperiodic order
Hamiltonians
Dynamical
Spectral
Wonderland
Measures
Application
Conclusion
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.
- one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.
- one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.

$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and

$\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.

Figure: ω_n^1
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.
- one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.
- one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.

$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and

$\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.

Figure: ω_n^1
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega_1^n)_n$ s.t. $H(\omega_1^n)$ is purely singular in U and $\omega_1^n \to \omega$.

- one sequence $(\omega_2^n)_n$ s.t. $H(\omega_2^n)$ has purely continuous spectrum in U and $\omega_2^n \to \omega$.

- one sequence $(\omega_3^n)_n$ s.t. $U \subset \sigma(H(\omega_3^n))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

\[
\omega_1^n \in \mathbb{D}_{r,R} \text{ s.t. } \\
\omega_1^n \cap [-n, n]^d = \omega \cap [-n, n]^d \quad \text{and} \\
\omega_1^n \cap ([-n - R, n + R]^d) = \tilde{\gamma} \cap ([-n - R, n + R]^d) = \tilde{\gamma} \cap ([-n - R, n + R]^d) = \tilde{\gamma} \cap ([-n - R, n + R]^d).
\]
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

- one sequence $(\omega^1_n)_n$ s.t. $H(\omega^1_n)$ is purely singular in U and $\omega^1_n \to \omega$.
- one sequence $(\omega^2_n)_n$ s.t. $H(\omega^2_n)$ has purely continuous spectrum in U and $\omega^2_n \to \omega$.
- one sequence $(\omega^3_n)_n$ s.t. $U \subset \sigma(H(\omega^3_n))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

- $\omega^1_n \in \mathbb{D}_{r,R}$ s.t.
- $\omega^1_n \cap [−n, n]^d = \omega \cap [−n, n]^d$ and $\omega^1_n \cap ([−n − R, n + R]^d)^c$
- $\tilde{\gamma} \cap ([−n − R, n + R]^d)^c$.

Figure: ω^1_n
Application of the Wonderland theorem

This will be the U whose existence is stated in the theorem. For $\omega \in \mathbb{D}_{r,R}$ we have to find

► one sequence $(\omega_n^1)_n$ s.t. $H(\omega_n^1)$ is purely singular in U and $\omega_n^1 \to \omega$.

► one sequence $(\omega_n^2)_n$ s.t. $H(\omega_n^2)$ has purely continuous spectrum in U and $\omega_n^2 \to \omega$.

► one sequence $(\omega_n^3)_n$ s.t. $U \subset \sigma(H(\omega_n^3))$

Given $\omega \in \mathbb{D}_{r,R}$, consider

$\omega_n^1 \in \mathbb{D}_{r,R}$ s.t.
$\omega_n^1 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^1 \cap ([-n - R, n + R]^d)^c = \tilde{\gamma} \cap ([-n - R, n + R]^d)^c$.

Figure: ω_n^1
Application of the Wonderland theorem

Since $H(\omega^1_n)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega^1_n)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$. To get ω^2_n we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum. Finally, we let $\omega^3_n \in \mathbb{D}_{r,R}$ s.t. $\omega^3_n \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega^3_n \cap ([-n-R, n+R]^d)^c = \gamma \cap ([-n-R, n+R]^d)^c$. Since $H(\omega^3_n)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega^3_n)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_n^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$.

To get ω_n^2 we extend $\omega \cap [-n,n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum.

Finally, we let $\omega_n^3 \in \mathbb{D}_{r,R}$ s.t. $\omega_n^3 \cap [-n,n]^d = \omega \cap [-n,n]^d$ and $\omega_n^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$.

Since $H(\omega_n^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_n^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$. To get ω_n^2 we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum. Finally, we let $\omega_n^3 \in \mathbb{D}_{r, R}$ s.t. $\omega_n^3 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$. Since $H(\omega_n^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_1^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, \(\sigma_{ac}(H(\omega_1^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset \).

To get ω_2^2, we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum.

Finally, we let $\omega_3^3 \in \mathbb{D}_r, R$ s.t. $\omega_3^3 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_3^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$.

Since $H(\omega_3^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_3^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_n^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$. To get ω_n^2 we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum.

Finally, we let $\omega_n^3 \in \mathbb{D}_{r,R}$ s.t. $\omega_n^3 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$. Since $H(\omega_n^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_n^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$. To get ω_n^2 we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum. Finally, we let $\omega_n^3 \in \mathbb{D}_{r,R}$ s.t. $\omega_n^3 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^3 \cap ([-n-R, n+R]^d)^c = \gamma \cap ([-n-R, n+R]^d)^c$. Since $H(\omega_n^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega^1_n)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega^1_n)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$.
To get ω^2_n we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum.
Finally, we let $\omega^3_n \in \mathbb{D}_{r,R}$ s.t. $\omega^3_n \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega^3_n \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$.
Since $H(\omega^3_n)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega^3_n)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_n^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$. To get ω_n^2 we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum. Finally, we let $\omega_n^3 \in \mathbb{D}_{r, R}$ s.t. $\omega_n^3 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$. Since $H(\omega_n^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since \(H(\omega_n^1) \) and \(H(\tilde{\gamma}) \) only differ by a compactly supported potential, \(\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset \).

To get \(\omega_n^2 \) we extend \(\omega \cap [-n, n]^d \) periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum.

Finally, we let \(\omega_n^3 \in D_r, R \) s.t. \(\omega_n^3 \cap [-n, n]^d = \omega \cap [-n, n]^d \) and \(\omega_n^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c \).

Since \(H(\omega_n^3) \) and \(H(\gamma) \) only differ by a compactly supported potential, \(\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U \), by choice of \(U \) and the fact that \(H(\gamma) \) has purely absolutely continuous spectrum. QED
Application of the Wonderland theorem

Since $H(\omega_n^1)$ and $H(\tilde{\gamma})$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^1)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = \emptyset$.

To get ω_n^2 we extend $\omega \cap [-n, n]^d$ periodically. The corresponding operator has purely absolutely continuous spectrum, in particular purely continuous spectrum.

Finally, we let $\omega_n^3 \in \mathbb{D}_{r,R}$ s.t. $\omega_n^3 \cap [-n, n]^d = \omega \cap [-n, n]^d$ and $\omega_n^3 \cap ([-n - R, n + R]^d)^c = \gamma \cap ([-n - R, n + R]^d)^c$.

Since $H(\omega_n^3)$ and $H(\gamma)$ only differ by a compactly supported potential, $\sigma_{ac}(H(\omega_n^3)) \cap U = \sigma_{ac}(H(\tilde{\gamma})) \cap U = U$, by choice of U and the fact that $H(\gamma)$ has purely absolutely continuous spectrum. QED
Conclusion

- $M_c(S)$ and $M_s(S)$ are $G_δ$-sets, for polish S.
- This implies the Wonderland theorem and the fact that generic measures are singular continuous in “nice spaces”.
- A particular example is given by “geometric disorder” (= Delone Hamiltonians) for which we can prove that purely singular continuous components turn up, generically.

Thank You
Conclusion

- $\mathcal{M}_c(S)$ and $\mathcal{M}_s(S)$ are G_δ-sets, for polish S.
- This implies the Wonderland theorem and the fact that generic measures are singular continuous in “nice spaces”.
- A particular example is given by “geometric disorder” (= Delone Hamiltonians) for which we can prove that purely singular continuous components turn up, generically.

Thank You
\(\mathcal{M}_c(S)\) and \(\mathcal{M}_s(S)\) are \(G_δ\)-sets, for polish \(S\).

- This implies the Wonderland theorem and the fact that generic measures are singular continuous in “nice spaces”.

- A particular example is given by “geometric disorder” (= Delone Hamiltonians) for which we can prove that purely singular continuous components turn up, generically.

Thank You
Conclusion

- $\mathcal{M}_c(S)$ and $\mathcal{M}_s(S)$ are G_δ-sets, for polish S.
- This implies the Wonderland theorem and the fact that generic measures are singular continuous in “nice spaces”.
- A particular example is given by “geometric disorder” (= Delone Hamiltonians) for which we can prove that purely singular continuous components turn up, generically.

Thank You