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0.1.1 Introduction

The effect of disorder (i.e. deviation from periodicity) in solid state models is of fundamental
importance. It has stimulated an enormous effort that has led to quite a number of results
since the late 1950’s. From mathematical point of view, there is still a lot to be done until
basic questions can be considered as rigorously settled. Quasicrystals provide an interesting
and very challenging type of disorder.

In our research project we contribute to the rigorous study of the underlying mathematical
models.

The characteristic properties of quasicrystals suggest a form of aperiodicity which is very
close to periodicity. Thus, the relevant models exhibit a behaviour between order and disorder
which is very close to the ordered case. To describe this phenomenon the term long range
aperiodic order has been introduced. This leads to a number of conjectures concerning the
spectral properties of the hamiltonians of quasicrystals.

But let us set the stage and review how order as well as disorder can be cast in a common
mathematical framework. The main idea is to pass from single models to whole families
whose parametrization encodes the internal symmetries.

Let us start by discussing a periodic solid. It can naturally be represented by a periodic
hamiltonianHper onL2(Rd). Here,L2(Rd) is the set of all square-integrable functions on the
d-dimensional euclidean spaceRd. Typically,Hper = ∆+Vper with a periodic potentialVper
that is invariant under shifts from a periodicity latticeΓ. Thus, periodicity ofVper is reflected
in invariance properties of the function

H̃ : Rd → S(L2(Rd)), t 7→ −∆ + Vper(·+ t),

whereVper(· + t) is the functionVper translated. Here,S(L2(Rd)) denotes the self ad-
joint operators onL2(Rd). By invariance, the mapping̃H above reduces to a mapping
H : Rd/Γ → S(L2(Rd)), if one factors out the periodicity lattice. Although this manip-
ulation to go fromHper to a whole family may seem to be quite innocent, there are deep
consequences on the level of spectral theory. In fact, this altered point of view is at the basis
of the insight that the associated operator will exhibit purely absolutely continuous spectrum.
This latter mathematical statement can be recast by saying that there are no localized but only
extended states. Thus, we have seen that expressing order, periodicity namely, in terms of
passing to a family of operators can be fruitful.

For the strongly disordered case this is in fact the starting point of the whole study. There
one adopts the point of view that disorder is better not modeled by a single deterministic
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hamiltonian. Instead one consideres a collection (family) of possible hamiltonians along with
the probabilities with which these realization are supposed to occur. Typical examples are the
Anderson models, in which case the hamiltonian reads

H(ω) = −∆ + Vω on `2(Zd),

whereΩ = IZ
d

, I ⊂ R some interval,Vω(k) = ω(k) for k ∈ Zd, ω = (ω(k))k∈Zd ∈ Ω and
theω is picked with a product probabilityP. Now, we face a situation in which the function
H is much more complicated than in the first case. The different hamiltoniansH(ω1) and
H(ω2) need no longer be translates of each other nor are they similar, in general. Therefore,
we really face a nontrivial operator function. Nevertheless, everyω ∈ Ω can be thought of as
one specific realisation of a disordered model, whose statistical properties are entirely encoded
in the probability measureP.

The first step in our program was to identify the right parameter spacesΩ. In order to
decide what consequences order - disorder aspect is going to have, the properties of this space
are to be studied. In the periodic case, we found a compact parameter space and a smooth
operator valued function.

In the Anderson model, independence is the fundamental property and leads to rigorous
proofs of localization in certain energy regions (see [1, 2, 3]).

Both cases have one important aspect in common: ergodicity with respect to the natural
translations. Thus we are seeking, in fact, an ergodic dynamical system encoding the proper-
ties of a quasicrystal.

A natural first approach is to consider the setω ⊂ R
d of sites occupied by atoms/ions

of a quasicrystal. This setω should at least share the properties of aDeloneset. Moreover,
together withω, also its translatesω + t =: Ttω have the same right to be considered. The
relevant notion here is that of Delone sets andDelone dynamical systems(DDS). We discuss
this point in Section 0.1.2 below. Most of the basic issues here had already been studied either
in the Delone dynamical or in the more or less equivalent tiling dynamical framework, at least
under the assumption of finite local complexity (FLC, see below), [4, 5]. However, it turned
out that in the non-FLC case important questions concerning the topology had not been settled
completely before. Our contribution in [6] was to define a suitable topology called the natural
topology on the set of closed subsets ofRd that has the desired properties when restricted
to Delone sets. It is worthwhile to point out that our topology works without assumptions of
finite local complexity. The third section is devoted to the study of ergodic and combinatorical
features of Delone dynamical systems. After what we said above it is not too astonishing that
suitable parameter spaces are Delone dynamical systems(Ω, T ). By this we simply mean that
a setΩ of Delone sets is given such thatΩ is invariant under translationsT = (Tt)t∈Rd and
closed in the natural topology. By the results from Section 0.1.2 this will imply thatΩ is a
compact set.

Now there are two different levels of combinatorical properties that are intimately linked.
On the one hand, every Delone setω ∈ Ω has its intrinsic complexity. In many interesting
cases, only finitely many different (up to translation) patterns occur in balls of finite radii. This
situation is described by the notion of finite local complextiy (FLC). It is now natural to ask
for frequencies of patterns, whenever such frequencies exists, and so on. On the other hand
there are the ergodic properties of the DDS. It turns out that the latter are often determined by
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combinatorical properties of the individual Delone setsω that build the DDS(Ω, T ). More-
over, these ergodic properties can be phrased in terms of the validity of certain forms of the
ergodic theorem. Another aspect concerns the consequences for the naturally associated op-
erator algebras as well as for the individual operators (rather operator families) that constitute
these algebras.

This leads us to Section 0.1.4 in which the relevant operators are introduced. Looking
back to what we said above, it still remains to specify the operator functionH on Ω. Here
we meet a fundamental difference when compared to the cases above. The natural tight bind-
ing approach leads to a family(`2(ω))ω∈Ω of different Hilbert spaces. The natural candidate
from the point of view of parametrising the order - disorder aspect present in a DDSΩ is now
a family (H(ω))ω∈Ω in whichH(ω) acts in`2(ω) for eachω ∈ Ω. The natural requirement
that this family should respect translations leads to the notion of covariant operator families.
We define an associated algebraN (Ω, T, µ) given any invariant measureµ on (Ω, T ). Using
noncommutative integration theory, one can prove that these algebras are von Neumann alge-
bras. We discuss almost sure constancy of spectral features of selfadjoint families of random
operators. Here, almost sure means that these features hold for allω ∈ Ω not belonging to
a certain set ofµ-measure zero. AC?- subalgebra is the algebra generated by finite range
operators. Here we rely on topological properties to define a suitabe bundle overΩ. Some
important properties concern almost sure constancy of the spectrum. The existence of the in-
tegrated density of states (IDOS) for operators of finite range is discussed in Section 0.1.5. It
is the strong ergodic theorem that allows one to realize that the IDOS is given by a uniform
limit. This has a striking application: it has been known since quite some time that the nearest
neighbor laplacian of the Penrose tiling allows for eigenfunctions of finite support. Of course
this leads to a jump in the integrated density of states. Using the uniform convergence, we can
see that finitely supported eigenfunctions are the only possible means to get a discontinuity of
the IDOS. Moreover, we proved a Shubin’s trace formula that relates the integrated density of
states with a trace on the corresponding von Neumann algebra.

0.1.2 Delone sets and Delone dynamical systems

We start with defining a suitable mathematical model to describe quasicristals. We use the
language of Delone sets to describe these kind of models. Roughly speaking, a Delone setΩ
is a discrete point set inRd whose points are not too close and not too far apart.

More precisely, ledd ≥ 1 be fixed. All Delone sets, patterns etc. will be subsets ofR
d.

The Euclidean norm onRd will be denoted by‖ · ‖. Forr ∈ R+ andp ∈ Rd, we letB(p, r)
be the closed ball inRd centered atp with radiusr.

A subsetω of Rd is called Delone set if there existr(ω) andR(ω) > 0 such that2r(ω) ≤
‖x− y‖ wheneverx, y ∈ ω with x 6= y, andB(x,R(ω)) ∩ ω 6= ∅ for all x ∈ Rd.

Note that this definition includes sets with global translation symmetries. In this point of
view a perfect crystal is a special kind of a quasicrystal. In the general case we have only local
symmetries.

Therefore we have to deal with local structures of Delone sets and the restrictions ofω
to bounded subsets ofRd are of particular interest. In order to treat these restrictions, we
introduce the following definition.
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Definition 0.1.1 (a) A pair (Λ, Q) consisting of a bounded subsetQ ofRd andΛ ⊂ Q finite
is calledpattern. The setQ is called thesupport of the pattern.
(b) A pattern(Λ, Q) is called aball patternif Q = B(x, r) with x ∈ Λ for suitablex ∈ Rd
andr ∈ (0,∞).

The pattern(Λ1, Q1) is contained in the pattern(Λ2, Q2) written as(Λ1, Q1) ⊂ (Λ2, Q2)
if Q1 ⊂ Q2 and Λ1 = Q1 ∩ Λ2. Diameter, volume etc. of a pattern are defined to be
the diameter, volume etc of its support. For patternsX1 = (Λ1, Q1) andX2 = (Λ2, Q2),
we define]X1X2, the number of occurences ofX1 in X2, to be the number of elements in
{t ∈ Rd : Λ1 + t ⊂ Λ2, Q1 + t ⊂ Q2}. Note the relation of ball patterns withs-patches as
considered in [7]. We will identify patterns wich are equal up to translations. The notions of
diameter, volume etc. can easily be carried over to pattern classes. The class of a patternP
will be denoted by[P ].

Every Delone setω gives rise to a set of pattern classes,P(ω) = {[Q ∧ ω] : Q ⊂
R
d bounded and measurable}, and to a set of ball pattern classesPB(ω) = {[B(p, r) ∧ ω] :

p ∈ ω, r ∈ R+}. Here we setQ ∧ ω = (ω ∩ Q,Q). We define the radiuss = s(P ) of an
arbitrary ball patternP to be the radius of the underlying ball. Fors ∈ (0,∞), we denote by
PsB(ω) the set of ball patterns with radiuss. A Delone set is said to be offinite typeor of finite
local complexityif for every radiuss > 0 the setPsB(ω) is finite.

Examples

• The simplest example of a Delone set is the latticeZ
d in Rd.

• The set of vertices of the Penrose tiling is a Delone set.

Next we introduce a suitable topology on the setF(Rd) of closed subsets ofRd. The
method we are going to outline now has most definitely been pointed out to us by someone
else. Unfortunately, we were not able to find out by whom.

We use the stereographic projection to identify pointsx ∈ Rd ∪ {∞} in the one-point-
compactification ofRd with the corresponding points̃x ∈ Sd. Clearly, the latter denotes the
d-dimensional unit sphereSd = {ξ ∈ Rd+1 : ‖ξ‖ = 1}. Now Sd carries the euclidean metric
ρ. Since the unit sphere is compact and complete, the Hausdorff metricρH makes the set
K(Sd) of compact subsets of it into a complete and compact metric space.

ForF ∈ F(Rd) write F̃ for the corresponding subset ofSd and define

ρ(F,G) := ρH( ˜F ∪ {∞}, ˜G ∪ {∞}) for F,G ∈ F(Rd).

Although this constitutes a slight abuse of notation it makes sense since˜F ∪ {∞}, ˜G ∪ {∞}
are compact inSd providedF,G are closed inRd.

We have the following result:

Theorem 1 F(Rd) endowed with the natural topologyτnat is compact.

Note that, interestingly, no additional properties are needed for compactness. Of course,
this result immediately gives compactness of certain subsets of the set of all Delone sets, e.g.
compactness of the union overR of the(r,R)-sets for any fixed value ofr.
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Let us note in passing that the metricρ proposed in [5] as well as the metric in [8] do not
satisfy the triangle inequality. See, however, [9], in which a metric on the set of Delone sets is
constructed. A discussion in a more general framework can be found in [4], where the author
constructs a topology on the set of closed discrete subsets of a locally compactσ-compact
space. In the case ofRd this topology coincides with the restriction of the above given natural
topology.

For a quite different approach to the topology on the set of Delone sets we refer to [10],
where Delone sets are identified with the sum of delta measures sitting at the points of the
Delone set. Then one has the w∗-topology on the set of measures at ones disposal, providing
good compactness properties. The approach presented here has the advantage that a topology
is induced on the set of closed sets.

Next, we define Delone dynamical systems, following the study of repetitive Delone sets
in [11] and single out some important properties:

Definition 0.1.2 (a)LetΩ be a set of Delone sets. The pair(Ω, T ) is called aDelone dynam-
ical system(DDS) ifΩ is invariant under the shiftT and closed in the natural topology.
(b) A DDS(Ω, T ) is said to be offinite type(DDSF) if∪ω∈ΩP

s
B(ω) is finite for everys > 0.

(c) Let 0 < r,R < ∞ be given. A DDS(Ω, T ) is said to be an(r,R)-systemif everyω ∈ Ω
is an(r,R)-set.
(d) The setP(Ω) of pattern classes associated to a DDSΩ is defined byP(Ω) = ∪ω∈ΩP(ω).

Remark 0.1.3 (a) Whenever(Ω, T ) is a Delone dynamical system, there exists anR > 0
with BR(x) ∩ ω 6= ∅ for everyω ∈ Ω and everyx ∈ Rd. This follows easily asΩ is closed
and invariant under the action ofT .
(b) Every DDSF is an(r,R)-system for suitable0 < r,R <∞.
(c) For a thorough study of Delone sets of finite local complexity we refer the reader to [7] (d)
Let ω be an(r,R)-set and letΩω be the closure of{Ttω : t ∈ Rd} in F(Rd) with respect to
the natural topology. Then(Ωω, T ) is an(r,R)-system.

For a DDSF, there is a simple way to describe convergence in the natural topology. This
is shown in the following lemma taken from [6].

Lemma 0.1.4 If (Ω, T ) is a DDSF then a sequence(ωn) converges toω in the natural topol-
ogy if and only if there exists a sequence(tn) converging to0 such that for everyL > 0 there
is ann0 ∈ N with (ωn + tn) ∩B(0, L) = ω ∩B(0, L) for n ≥ n0.

0.1.3 Ergodic and combinatorial features of DDS

We start with a result that characterizes unique ergodicity of a Delone dynamical system in
terms of the validity of a Banach space valued ergodic theorem. First, let us record the fol-
lowing notions of ergodic theory along with an equivalent “combinatorial” characterization
available for Delone dynamical systems:(Ω, T ) is callednon-periodicif Ttω 6= Ω whenever
ω ∈ Ω andt ∈ Rd with t 6= 0. Is is calledminimal if every orbit is dense. This is equivalent
to P(Ω) = P(ω) for everyω ∈ Ω. This latter property is calledlocal isomorphism property
in the tiling framework [12]. It is also referred to as repetitivity. Namely, it is equivalent to
there existing anR(P ) > 0 for everyP ∈ P(Ω) such thatB(p,R(P ))∧ω contains a copy of
P for everyp ∈ Rd and everyω ∈ Ω. Note also that every minimal DDS is an(r,R)-system.
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We are interested in ergodic averages. More precisely, we will take means of suitable
functions along suitable sequences of patterns and pattern classes. These functions and se-
quences will be introduced next. Here and in the sequel we will use the following notation:
ForQ ⊂ Rdands > 0 we define

Qs ≡ {x ∈ Q : dist(x, ∂Q) ≥ s}, Qs ≡ {x ∈ Rd : dist(x,Q) ≤ s},

where, of course, dist denotes the usual distance and∂Q is the boundary ofQ. Moreover, we
denote the Lebesgue measure of a measurable subsetQ ⊂ Rd by |Q|. Then, a sequence(Qn)
of subsets inRd is called a van Hove sequence if the sequence(|Qn|−1|Qsn \Qn,s|) tends to
zero for everys ∈ (0,∞). Similarly, a sequence(Pn) of pattern classes, (i.e.Pn = [(Λn, Qn)]
with suitableQn,Λn) is called a van Hove sequence ifQn is a van Hove sequence. (This is
obviously well defined.) We can now discuss unique ergodicity. A dynamical system(Ω, T )
is calleduniquely ergodicif it admits only oneT -invariant measure (up to normalization). For
a Delone dynamical system, this is equivalent to the fact that for every pattern classP the
frequency

f(P ) ≡ lim
n→∞

|Qn|−1]P (ω ∧Qn), (1)

exists uniformly inω ∈ Ω for every van Hove sequence(Qn). This equivalence was shown
in Theorem 1.6 in [6] (see [9] as well). It goes back to [12], Theorem 3.3, in the tiling setting.

For patternsXi = (Λi, Qi), i = 1, . . . , k, andX = (Λ, Q), we writeX = ⊕ki=1Xi if
Λ = ∪Λi,Q = ∪Qi and theQi are disjoint up to their boundaries with the obvious extension
to pattern classes.

Definition 0.1.5 Let Ω be a DDS andB be a vector space with seminorm‖ · ‖). A function
F : P(Ω) :−→ B is called almost additive (with respect to‖ · ‖) if there exists a function
b : P(Ω) −→ (0,∞) with limn→∞ |Pn|−1b(Pn) = 0 for every van Hove sequence(Pn) and
a constantD > 0 such that

(A1) ‖F (⊕ki=1Pi)−
∑k
i=1 F (Pi)‖ ≤

∑k
i=1 b(Pi),

(A2) ‖F (P )‖ ≤ D|P |+ b(P ).

(A3) b(P1) ≤ b(P ) + b(P2) wheneverP = P1 ⊕ P2.

Now, our first result reads as follows.

Theorem 2 For a minimal, aperiodic DDSF(Ω, T ) the following are equivalent:
(i) (Ω, T ) is uniquely ergodic.
(ii) The limit limn→∞|Pn|−1F (Pn) exists for every van Hove sequence(Pn) and every almost
additiveF on (Ω, T ) with values in a Banach space.

Remark 0.1.6 (a) The proof uses methods of Geerse/Hof [13] and ideas from Priebe [14]. In
fact, Geerse/Hof established a similar result for a tiling associated to a primitive substitution.
(b) In the one dimensional case related results have been shown by one of the authors in [15].
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The proof of the theorem makes use of completeness of the Banach space in crucial man-
ner. However, it does not use the nondegeneracy of the norm. Thus, we get the following
corollary (of its proof).

Corollary 0.1.7 Let (Ω, T ) be aperiodic and strictly ergodic. Let the vector spaceB be
complete with respect to the topology induced by the seminorms‖ · ‖ι, ι ∈ I. If F : P −→ B
is almost additive with respect to every‖ · ‖ι. ι ∈ I , thenlimn→∞ |Pn|−1F (Pn) exists for
every van Hove sequence(Pn) in P(Ω).

The theorem and the corollary underline the strong averaging features of strictly ergodic
DDS. Of course, quite some work has been devoted to studying local conditions ensuring
unique ergodicity and minimality of a DDS. Two such conditions arelinear repetitiveityand
dense repetitivity. These conditions have recently been discussed and shown to imply strict
ergodicity by Lagarias and Pleasants in [11] (for one-dimensional linearly repetitive systems
see the work of Durand [16] as well). A DDSF is said to be linearly repetitive if there exists
a constantC such that, forr > 0 given, every ball pattern of radiusCr contains every ball
pattern of radiusCr. A DDSF is said to be densely repetitive if there exist a constantD sucht
that every ball pattern of radiusr is contained in every ball pattern of radiusCN(r)1/d, where
N(r) denotes the number of different ball patterns of radiusr. As shown in [11] aperiodic
linearly repetitive systems and aperiodic densely repetitive systems are in some sense closest
to periodic systems among the non-periodic systems. The two concepts are related. In fact,
as conjectured by Lagarias/Pleasants in [11] and recently shown in [17] by one of the authors
the following holds.

Theorem 3 Every aperiodic linearly repetitive DDS is densely repetitive.

As far as uniform ergodic theorems go, linearly repetitive systems are rather special. Namely,
they allow for a uniform subadditive ergodic theorem. As shown in [18, 19] the following
holds. LetC(2) be the set of all cubes inRd whose sidelengthsli(C), i = 1, . . . , d satisfy
1/2 ≤ li(C)/lj(C) ≤ 2 for all i, j ∈ 1, . . . , 2.

Theorem 4 Let (Ω, T ) be a linearly repetititive DDS. LetF : P(Ω) −→ R be subadditive
(i.e. F (A⊕B) ≤ F (A) + F (B), wheneverA andB are disjoint up to their boundary), then

lim
n→∞

F (Pn)
|Pn|

exists for every van Hove sequence(Pn) with supports ofPn contained inC(2).

Remark (1) The theorem gives a new proof of the uniquely ergodicity of linearly repetitive
systems.
(2) The theorem holds also for functions which are subadditive up to a boundary term [18].

In d = 1 it is actually possible to characterize the subshifts for which the averages for ar-
bitrary subadditive functions exist. They are those satisfying linear repetitivity on the average.
More precisely, the following holds as shown by one of the authors in [15].



8

Theorem 5 Let (Ω, T ) be a minimal subshift over the finite alphabetA. Then, the following
are equivalent:
(i) lim|v|→∞ F (v)/|v| exists for arbitrary subadditiveF on the associated set of finite words.

(ii) There exists a constantC > 0 with lim inf |x|→∞
]v(x)
|x| |v| ≥ C for arbitrary v in the

associated set of words. Here,]v(x) denotes the number of copies ofv in x and |x| is the
length ofx.

Generalizations of this one-dimensional result to DDS in arbitrary dimensions for an ap-
plication to diffraction theory, are currently under investigation (see [20]). There also applica-
tions to computations of the eigenvalues of the DDS are given.

Let us close this section by emphasizing that the theorems on uniform existence of av-
erages of subadditive functions have proven rather useful in recent works. They allow to
prove Cantor spectrum of measure zero for large classes of one-dimensional quasicrystal
Schr̈odinger operators [21, 22]. Moreover, they can also be used to study uniform existence
of certain averages in lattice gas theory.

0.1.4 The associated algebras and operators

In this Section we introduce aC∗-algebra that had already been encountered in a different
form in [10, 23]. Our presentation here is geared towards using the elements of theC∗-algebra
as tight binding hamiltonians in a quantum mechanical description of disordered solids. We
relate certain spectral properties of the members of such operator families to ergodic features
of the underlying dynamical system. Moreover, we show that the eigenvalue counting func-
tions of these operators are convergent. The limit, known as the integrated density of states,
is an object of fundamental importance from the solid state physics point of view. Apart from
proving its existence, we also relate it to the canonical trace on the von Neumann algebra
N (Ω, T, µ) in case that the Delone dynamical system(Ω, T ) uniquely ergodic. Results of this
genre are known as Shubin’s trace formula due to the celebrated results from [24].

Moreover, we review how noncommutative integration theory is used to construct the von
Neumann algebraN (Ω, T, µ) of observables that reflects certain ergodic properties of the
underlying DDS as well.

The results as well as the proofs can be found in [25]. First we study a C∗-subalgebra of
N (Ω, T, µ) that contains those operators that might be used as hamiltonians for quasicrystals.

We define
X ×Ω X := {(p, ω, q) ∈ Rd × Ω× Rd : p, q ∈ ω},

which is a closed subspace ofRd × Ω× Rd for any DDSΩ.

Definition 0.1.8 A kernel of finite rangeis a functionk ∈ C(X ×Ω X ) that satisfies the
following properties:

(i) k is bounded.

(ii) k has finite range, i.e., there existsRk such thatk(p, ω, q) = 0, whenever|p− q| ≥ Rk.

(iii) k is invariant, i.e.,
k(p+ t, ω + t, q + t) = k(p, ω, q),

for (p, ω, q) ∈ X ×Ω X andt ∈ Rd.
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The set of these kernels is denoted byKfin(Ω, T ).

We record a few quite elementary observations in the following.

Remarks 0.1.9 (1) For any kernelk ∈ Kfin(Ω, T ) denote byπωk := Kω the operator
Kω ∈ B(`2(ω)), induced by

(Kωδq|δp) := k(p, ω, q) for p, q ∈ ω.

Clearly, the familyK := πk, K = (Kω)ω∈Ω, is bounded in the product (equipped with
the supremum norm)Πω∈ΩB(`2(ω)).

(2) Pointwise sum, the convolution (matrix) product

(a · b)(p, ω, q) :=
∑
x∈ω

a(p, ω, x)b(x, ω, q)

and the involutionk∗(p, ω, q) := k(q, ω, p) makeAfin(Ω, T ) into a∗-algebra.

(3) The mappingπ : Kfin(Ω, T ) → Πω∈ΩB(`2(ω)) defined in (1) is a faithful∗-
representation. We denoteAfin(Ω, T ) := π(Kfin(Ω, T )) and call it theoperators of
finite range.

(4) We denote the completion ofAfin(Ω, T ) with respect to the norm‖A‖ := supω∈Ω ‖Aω‖
byA(Ω, T ).

(5) The mappingπω : Afin(Ω, T )→ B(`2(ω)),K 7→ Kω withKω as in (1) is a representa-
tion that extends by continuity to a representation ofA(Ω, T ) that we denote by the same
symbol.

We get the following result that relates ergodicity properties of(Ω, T ), spectral properties of
the operator families fromA(Ω, T ) and properties of the representationsπω.

Theorem 6 The following conditions on a DDS(Ω, T ) are equivalent:

(i) (Ω, T ) is minimal.

(ii) For any selfadjointA ∈ A(Ω, T ) the spectrumσ(Aω) is independent ofω ∈ Ω.

(iii) πω is faithful for everyω ∈ Ω.

Now we introduce algebras of observables that extend the C∗-algebra considered above.

Definition 0.1.10 Let(Ω, T ) be an(r,R)-system and letµ be an invariant measure onΩ. De-
note byV1 the set of allf : X −→ C which are measurable and satisfyf(ω, ·) ∈ `2(Xω, αω)
for everyω ∈ Ω.

A family (Aω)ω∈Ω of bounded operatorsAω : `2(ω, αω) −→ `2(ω, αω) is called mea-
surable ifω 7→ 〈f(ω), (Aωg)(ω)〉ω is measurablefor all f, g ∈ V1. It is calledboundedif
the norms of theAω are uniformly bounded. It is calledcovariantif it satisfies the covariance
condition

Hω+t = UtHωU
∗
t , ω ∈ Ω, t ∈ Rd,
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whereUt : `2(ω) −→ `2(ω + t) is the unitary operator induced by translation. Now, we can
define

N (Ω, T, µ) := {A = (Aω)ω∈Ω|A covariant, measurable and bounded}/ ∼,

where∼means that we identify families which agreeµ almost everywhere.

As is clear from the definition, the elements ofN (Ω, T, µ) are classes of families of oper-
ators. However, we will not distinguish too pedantically between classes and their representa-
tives in the sequel.

Remark 0.1.11 It is possible to defineN (Ω, T, µ) by requiring seemingly weaker condi-
tions. Namely, one can consider families(Aω) that are essentially bounded and satisfy the
covariance condition almost everywhere. However, by standard procedures (see [26, 27]), it is
possible to show that each of these families agrees almost everywhere with a family satisfying
the stronger conditions discussed above.

Obviously,N (Ω, T, µ) depends on the measure class ofµ only. Hence, for uniquely
ergodic(Ω, T ), N (Ω, T, µ) =: N (Ω, T ) gives a canonical algebra. This case has been con-
sidered in [28, 6].

Apparently,N (Ω, T, µ) is an involutive algebra under the obvious operations. To see that
it has a predual, i.e., that it is a weak-*-algebra is not obvious. We prove this in [25] by
identifyingN (Ω, T, µ) with the algebra of random operators for a suitable random Hilbert
space, as will be outlined now. For details we refer to [6, 25] where we use the following
concepts from Connes non-commutative integration theory [26]: We introduced

• a suitablegroupoidG(Ω, T ),

• a transversal measureΛ = Λµ for a given invariant measureµ on (Ω, T )

• and aΛ-random Hilbert spaceH = (Hω)ω∈Ω

leading to the von Neumann algebra

N (Ω, T, µ) := EndΛ(H)

of random operators, all in the terminology of [26]. When everything is put together, this
gives:

Theorem 7 Let (Ω, T ) be an(r,R)-system and letµ be an invariant measure onΩ. Then
N (Ω, T, µ) is a weak-*-algebra. More precisely,

N (Ω, T, µ) = EndΛ(H),

whereΛ = Λν andH = (`2(Xω, αω))ω∈Ω are defined as above.

We can use the measurable structure to identifyL2(X ,m), wherem =
∫

Ω
αωµ(ω) with∫ ⊕

Ω
`2(Xω, αω) dµ(ω). This gives the faithful representation

π : N (Ω, T, µ) −→ B(L2(X ,m)), π(A)f((ω, x)) = (Aωfω)((ω, x))

and the following immediate consequence.



0.1 Delone dynamical systems: ergodic features and applications 11

Corollary 0.1.12 π(N (Ω, T, µ)) ⊂ B(L2(X ,m)) is a von Neumann algebra.

Next we want to identify conditions under whichπ(N (Ω, T, µ)) is a factor. Recall that a
Delone setω is said to benon-periodicif ω + t = ω implies thatt = 0.

Theorem 8 Let (Ω, T ) be an(r,R)-system and letµ be an ergodic invariant measure onΩ.
If ω is non-periodic forµ-a.e.ω ∈ Ω thenN (Ω, T, µ) is a factor.

Remark 0.1.13 Sinceµ is ergodic, the assumption of non-periodicity in the Theorem can be
replaced by assuming that there is a set of positive measure consisting of non-periodicω.

The following theorem is a consequence of [29]. It deals with almost sure constancy of
spectral features of random operators.

Theorem 9 Let (Ω, T ) be an (r,R)-system andµ be T -invariant. Letµ be ergodic and
(Aω) ∈ N (Ω, T, µ) be selfadjoint. Then there exist setsΣ,Σac,Σsc,Σpp,Σess ⊂ R and a
subset̃Ω of Ω of full measure such thatΣ = σ(Aω) andσ•(Aω) = Σ• for • = ac, sc, pp, ess

andσdisc(Aω) = ∅ for everyω ∈ Ω̃.

0.1.5 The integrated density of states and Shubins trace formula

We now define a particular trace onN (Ω, T, µ). To this end, choose a nonnegativeu ∈
Cc(Rd) with

∫
Rd
u(x)dx = 1. LetMu be the operator of multiplication byu. It can be shown

that

τ : N (Ω, T, µ) −→ C, τ(A) =
∫

Ω

tr(AωMu) dµ(ω)

does not depend on the choice ofu as long as the integral is one [6, 25]. Important features of
τ are given in the following lemma.

Lemma 0.1.14 Let (Ω, T ) be an (r,R)-system andµ be T -invariant. Then the mapτ :
N (Ω, T, µ) −→ C is continuous, faithful, nonegative onN (Ω, T, µ)+ and satisfiesτ(A) =
τ(U∗AU) for every unitaryU ∈ N (Ω, T, µ) and arbitraryA ∈ N (Ω, T, µ), i.e.,τ is a trace.

Having definedτ , we can now associate a canonical measureρA to every selfadjointA ∈
N (Ω, T, µ).

Definition 0.1.15 For A ∈ N (Ω, T, µ) selfadjoint, andB ⊂ R Borel measurable, we set
ρA(B) ≡ τ(χB(A)), whereχB is the characteristic function ofB.

For the next result we refer to [29].

Lemma 0.1.16 Let (Ω, T ) be an(r,R)-system andµ beT -invariant. LetA ∈ N (Ω, T, µ)
selfadjoint be given. ThenρA is a spectral measure forA. In particular, the support ofρA
agrees with the spectrumΣ ofA and the equalityρA(F ) = τ(F (A)) holds for every bounded
measurableF onR.

We now come to relate the abstract traceτ defined above with the mean trace per unit
volume. The latter object is quite often considered by physicists and bears the nameintegrated
density of states. Its proper definition rests on ergodicity.
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Proposition 0.1.17 Assume that(Ω, T ) is a uniquely ergodic(r,R)-system with invariant
probability measureµ andA ∈ A(Ω, T ). Then, for any van Hove sequence(Qn) it follows
that

lim
n∈N

1
|Qn|

tr(Aω|Qn) = τ(A)

for all ω ∈ Ω.

Clearly,Aω|Q denotes the restriction ofAω to the finite dimensional subspace`2(ω ∩ Q),
wheneverQ ⊂ Rd is bounded.

The following result finally establishes an identity that one might call an abstract Shubin’s
trace formula. It says that the abstractly defined traceτ is determined by the integrated density
of states. The latter is the limit of the following eigenvalue counting measures. Let, for
selfadjointA ∈ A(Ω, T ) andQ ⊂ Rd:

〈ρ[Aω, Q], ϕ〉 :=
1
|Q|

tr(ϕ(Aω|Q)), ϕ ∈ C(R).

Its distribution function is denoted byn[Aω, Q], i.e. n[Aω, Q](E) gives the number of eigen-
values per volume belowE (counting multiplicities).

Theorem 10 Let (Ω, T ) be a uniquely ergodic(r,R)-system andµ its invariant probability
measure. Then for selfadjointA ∈ A(Ω, T ) and any van Hove sequence(Qn) we get that for
everyϕ ∈ C(R) and everyω

〈ρ[Aω, Qn], ϕ〉 → τ(ϕ(A)) asn→∞.

Consequently, the measuresρQnω converge weakly to the measureρA defined above by
〈ρA, ϕ〉 := τ(ϕ(A)).

The above statement has many precursors: [30, 31, 32, 2, 24] in the context of almost
periodic, random or almost random operators on`2(Zd) or L2(Rd). It generalizes results by
Kellendonk [23] on tilings associated with primitive substitutions. Its proof relies on ideas
from [30, 31, 32, 23] and [33]. Nevertheless, it is new in the present context.

The primary object from the physicists point of view is the finite volume limit:

N [A](E) := lim
n→∞

n[Aω, Qn](E)

known as the integrated density of states. It has a striking relevance as the number of energy
levels belowE per unit volume, once its existence and independence ofω are settled.

The last theorem provides the mathematically rigorous version. Namely, the distribution
functionNA(E) := ρA(−∞, E] of ρA is the right choice. It gives a limit of finite volume
counting measures since

ρ[Aω, Qn]→ ρA weakly asn→∞.

Therefore, the desired independence ofω is also clear. Moreover, by standard arguments we
get that the distribution functions of the finite volume counting functions converge toNA at
points of continuity of the latter.
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A better convergence result can be deduced from the strong ergodic result Theorem 2
presented in the Section 0.1.3. To do so we proceed as follows.

The spectral counting functions appearing as approximants of the integrated density of
states are obviously elements of the vector spaceD consisting of all bounded right continuous
functionsf : R −→ R equipped for whichlimx→−∞ f(x) = 0 and limx→∞ f(x) exists.
Equipped withe the supremum norm‖f‖∞ ≡ supx∈R |f(x)| this vector space is a Banach
space. It turns out that the spectral counting function is essentially an almost additive function.
More precisely the following holds [34].

Theorem 11 Let(Ω, T ) be a DDS. LetA be an operator of finite range. ThenFA : P(Ω) −→
D, defined byFA(P ) ≡ n(Aω, QRA) for P = [(ω ∧ Q)] is a well defined almost additive
function.

Remark 0.1.18 The theorem seems to be new even in the one-dimensional case. (There, of
course, it is very easy to prove.)

Now, our results on convergence of the integrated density of states reads as follows.

Theorem 12 Let (Ω, T ) be an aperiodic strictly ergodic DDSF. LetA be a selfadjoint oper-
ator of finite range and(Qn) be an arbitrary van Hove sequence. Then the measuresρAωQn
converge in distribution to the measureρA and this convergence is uniform inω ∈ Ω.

As a consequence of this stronger convergence we can explain the occurrence of discon-
tinuities of the integrated density of states. Namely such discontinuities are always due to
finitely supported eigenfunctions, i.e., to very strongly localized states. This has been worked
out in [35].

Theorem 13 Let (Ω, T ) be a strictly ergodic DDSF. LetA be a selfajoint random operator
of finite range. ThenE is a point of discontinuity ofρA if and only if there exists a locally
supported eigenfunction ofAω toE for one (all)ω ∈ Ω.

It is rather straightforward to see that locally supported eigenfunctions lead to a discon-
tinuity of the IDS. Moreover one can show easily that every DDS can be changed in such a
way that the original and the new system are “more or less the same” and such that the new
system exhibits locally supported eigenfunctions. The idea is to replace points in the original
system by a “small” graph that allows an eigenfunction. The equivalence of the two systems
can be phrased in the notion ofmutually locally derivable(MLD), going back to [36]. For a
thorough discussion, see [35]. Here we only give the result and a picture of the small graph
that one can choose to implement. Here the little squares mark the vertices of the graph and
the straight lines are the edges of the graph. Next to each vertex we indicate the value of a
locally supported eigenfunction of the nearest neighbor laplacian.

Theorem 14 Let (Ω, T ) be a arbitrary DDSF. Then there exists a DDSF(Ωb, T ) and a ran-
dom operator of finite range(Abw) such that(Ω, T ) and(Ωb, T ) are mutually locally derivable
and (Abw) has locally supported eigenfunctions with eigenvalueE for everyω ∈ Ωb. More-
over,(Abw) can be chosen to be the nearest neighbor laplacian of suitable graph.
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Figure 1: The finite graphGfin.

The starting point is a small graphGfin = (Vfin, Efin) and an eigenfunctionufin of the
associated nearest neighbor laplacian. For definiteness sake consider Figure 1. The values of
ufin are indicated near the corresponding vertices. Here the eigenvalue isE = 0.

It is clear that whatever edges reach out of the four corners in a larger graph extending
Gfin, the extension ofufin by 0 to the larger vertex set will still constitute an eigenfunction
of the laplacian on the large graph. It is now easy to implement this picture into a given DDSF.

For those who prefer tiling examples we now indicate how to view the construction above
in this framework. Take a tiling dynamical system (see [6, 5]) and replace one given tileT by
a suitable homeomorphic image ofT b indicated in Figure 2 by the full lines. We also indicated
the next neighbor relations, showing that the resulting graph is justGfin above.

0.1.6 Conclusion

To sum up, using Delone sets one can define natural tight binding hamiltonians for quasicrys-
tals. These hamiltonians have many aspects in common with the hamiltonians of disordered
systems. They can be considered as families indexed by the points of a Delone dynamical
system.

However, the complex geometry of Delone sets can lead to effects like discontinuities of
the integrated density of states. Moreover, these models exhibit a striking uniformity as far
as their ergodic properties are concerned. Thus, despite all analogies, there are important
differences to disordered systems.

ergodic Ergodic properties of the Delone dynamical system in question are of central im-
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Figure 2: The tiling ofGfin.

portance in different aspects as well and they can be deduced to questions concerning the
complexity of the individual Delone sets that belong to the DDS. Certain spectral informa-
tion concerning the hamiltonian for a quasicrystal can be deduced from ergodic information.
Moreover, the hamiltonians can be regarded as elements of certain operator algebras and the
latter reflect ergodic features of the underlying DDS.
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