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0.1.1 Introduction

The effect of disorder (i.e. deviation from periodicity) in solid state models is of fundamental
importance. It has stimulated an enormous effort that has led to quite a number of results
since the late 1950’s. From mathematical point of view, there is still a lot to be done until
basic questions can be considered as rigorously settled. Quasicrystals provide an interesting
and very challenging type of disorder.

In our research project we contribute to the rigorous study of the underlying mathematical
models.

The characteristic properties of quasicrystals suggest a form of aperiodicity which is very
close to periodicity. Thus, the relevant models exhibit a behaviour between order and disorder
which is very close to the ordered case. To describe this phenomenon the term long range
aperiodic order has been introduced. This leads to a number of conjectures concerning the
spectral properties of the hamiltonians of quasicrystals.

But let us set the stage and review how order as well as disorder can be cast in a common
mathematical framework. The main idea is to pass from single models to whole families
whose parametrization encodes the internal symmetries.

Let us start by discussing a periodic solid. It can naturally be represented by a periodic
hamiltonianH,,.,- on L2(R?). Here,L?(R?) is the set of all square-integrable functions on the
d-dimensional euclidean spaié¢. Typically, Hpe, = A+ V., With a periodic potentiaV...
that is invariant under shifts from a periodicity lattice Thus, periodicity ofl/,... is reflected
in invariance properties of the function

H:R? = S(L2(RY), t— —A+ Vper(- 4+ 1),

whereV,...(- + t) is the functionV,.,. translated. HereS(L?(R¢)) denotes the self ad-
joint operators onZ?(R¢). By invariance, the mappin@ above reduces to a mapping
H : RYT — S(L%*(R%)), if one factors out the periodicity lattice. Although this manip-
ulation to go fromH,., to a whole family may seem to be quite innocent, there are deep
consequences on the level of spectral theory. In fact, this altered point of view is at the basis
of the insight that the associated operator will exhibit purely absolutely continuous spectrum.
This latter mathematical statement can be recast by saying that there are no localized but only
extended states. Thus, we have seen that expressing order, periodicity namely, in terms of
passing to a family of operators can be fruitful.

For the strongly disordered case this is in fact the starting point of the whole study. There
one adopts the point of view that disorder is better not modeled by a single deterministic



hamiltonian. Instead one consideres a collection (family) of possible hamiltonians along with
the probabilities with which these realization are supposed to occur. Typical examples are the
Anderson models, in which case the hamiltonian reads

H(w) = —A+V, on 3(Z%),

whereQ = IZ°, I ¢ R some interval},, (k) = w(k) for k € Z¢, w = (w(k))peze € Q and

thew is picked with a product probabilitf. Now, we face a situation in which the function

H is much more complicated than in the first case. The different hamiltodigns ) and

H(w>) need no longer be translates of each other nor are they similar, in general. Therefore,
we really face a nontrivial operator function. Nevertheless, ewegy() can be thought of as

one specific realisation of a disordered model, whose statistical properties are entirely encoded
in the probability measuri.

The first step in our program was to identify the right parameter spacds order to
decide what consequences order - disorder aspect is going to have, the properties of this space
are to be studied. In the periodic case, we found a compact parameter space and a smooth
operator valued function.

In the Anderson model, independence is the fundamental property and leads to rigorous
proofs of localization in certain energy regions (see]1] 2, 3]).

Both cases have one important aspect in common: ergodicity with respect to the natural
translations. Thus we are seeking, in fact, an ergodic dynamical system encoding the proper-
ties of a quasicrystal.

A natural first approach is to consider the setc R¢ of sites occupied by atoms/ions
of a quasicrystal. This set should at least share the properties @e&oneset. Moreover,
together withw, also its translates + ¢t =: Tiw have the same right to be considered. The
relevant notion here is that of Delone sets &wlone dynamical systeni®DS). We discuss
this point in Sectiof U.1].2 below. Most of the basic issues here had already been studied either
in the Delone dynamical or in the more or less equivalent tiling dynamical framework, at least
under the assumption of finite local complexity (FLC, see below);1[4, 5]. However, it turned
out that in the non-FLC case important questions concerning the topology had not been settled
completely before. Our contribution ifl [6] was to define a suitable topology called the natural
topology on the set of closed subsetsRsf that has the desired properties when restricted
to Delone sets. It is worthwhile to point out that our topology works without assumptions of
finite local complexity. The third section is devoted to the study of ergodic and combinatorical
features of Delone dynamical systems. After what we said above it is hot too astonishing that
suitable parameter spaces are Delone dynamical systerfiy. By this we simply mean that
a set(2 of Delone sets is given such th@tis invariant under translatior8 = (7}),cr« and
closed in the natural topology. By the results from Secfion0.1.2 this will imply(hist a
compact set.

Now there are two different levels of combinatorical properties that are intimately linked.
On the one hand, every Delone sete €2 has its intrinsic complexity. In many interesting
cases, only finitely many different (up to translation) patterns occur in balls of finite radii. This
situation is described by the notion of finite local complextiy (FLC). It is now natural to ask
for frequencies of patterns, whenever such frequencies exists, and so on. On the other hand
there are the ergodic properties of the DDS. It turns out that the latter are often determined by
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combinatorical properties of the individual Delone setthat build the DDS2,7"). More-
over, these ergodic properties can be phrased in terms of the validity of certain forms of the
ergodic theorem. Another aspect concerns the consequences for the naturally associated op-
erator algebras as well as for the individual operators (rather operator families) that constitute
these algebras.

This leads us to Sectign U.11.4 in which the relevant operators are introduced. Looking
back to what we said above, it still remains to specify the operator funéfimm 2. Here
we meet a fundamental difference when compared to the cases above. The natural tight bind-
ing approach leads to a family?(w)).cq of different Hilbert spaces. The natural candidate
from the point of view of parametrising the order - disorder aspect present in &DBD8ow
a family (H (w))w.eq in which H(w) acts inf?(w) for eachw € . The natural requirement
that this family should respect translations leads to the notion of covariant operator families.
We define an associated algevdQ2, T', 1) given any invariant measugeon (2, T'). Using
noncommutative integration theory, one can prove that these algebras are von Neumann alge-
bras. We discuss almost sure constancy of spectral features of selfadjoint families of random
operators. Here, almost sure means that these features hold for=all not belonging to
a certain set ofi-measure zero. AC*- subalgebra is the algebra generated by finite range
operators. Here we rely on topological properties to define a suitabe bundl€ owosme
important properties concern almost sure constancy of the spectrum. The existence of the in-
tegrated density of states (IDOS) for operators of finite range is discussed in ectipn 0.1.5. It
is the strong ergodic theorem that allows one to realize that the IDOS is given by a uniform
limit. This has a striking application: it has been known since quite some time that the nearest
neighbor laplacian of the Penrose tiling allows for eigenfunctions of finite support. Of course
this leads to a jump in the integrated density of states. Using the uniform convergence, we can
see that finitely supported eigenfunctions are the only possible means to get a discontinuity of
the IDOS. Moreover, we proved a Shubin’s trace formula that relates the integrated density of
states with a trace on the corresponding von Neumann algebra.

0.1.2 Delone sets and Delone dynamical systems

We start with defining a suitable mathematical model to describe quasicristals. We use the
language of Delone sets to describe these kind of models. Roughly speaking, a Delone set
is a discrete point set iR? whose points are not too close and not too far apart.

More precisely, ledl > 1 be fixed. All Delone sets, patterns etc. will be subset®af
The Euclidean norm oR“ will be denoted by|| - ||. Forr € R* andp € R?, we let B(p, )
be the closed ball ilR? centered ap with radiusr.

A subsetv of R is called Delone set if there existw) and R(w) > 0 such thalr(w) <
|z — || whenever, y € w with z # y, andB(x, R(w)) Nw # () for all z € R%.

Note that this definition includes sets with global translation symmetries. In this point of
view a perfect crystal is a special kind of a quasicrystal. In the general case we have only local
symmetries.

Therefore we have to deal with local structures of Delone sets and the restrictions of
to bounded subsets @? are of particular interest. In order to treat these restrictions, we
introduce the following definition.



Definition 0.1.1 (a) A pair (A, Q) consisting of a bounded subsgtof R? and A C Q finite
is calledpattern The set) is called thesupport of the pattern

(b) A pattern(A, Q) is called aball patternif @ = B(x,r) with 2z € A for suitabler € R?
andr € (0, 00).

The pattern(A1, Q1) is contained in the patteri\z, Q2) written as(A1, Q1) C (A2, Q)
if Q1 C Q2 andA; = @1 N Ap. Diameter, volume etc. of a pattern are defined to be
the diameter, volume etc of its support. For pattefis= (A1, Q1) and Xy = (Ag, Q2),
we definefx, X2, the number of occurences &f;, in X5, to be the number of elements in
{teRY: Ay +tC Ay,Qi+1t C Qo). Note the relation of ball patterns withpatches as
considered in[f7]. We will identify patterns wich are equal up to translations. The notions of
diameter, volume etc. can easily be carried over to pattern classes. The class of alpattern
will be denoted by P].

Every Delone setv gives rise to a set of pattern class@w) = {[Q Aw] : Q@ C
R? bounded and measurableand to a set of ball pattern classeg (w) = {[B(p,7) A w] :
p € w,r € RT}. Here we seQ Aw = (wN Q, Q). We define the radius = s(P) of an
arbitrary ball patterr to be the radius of the underlying ball. Foe (0, c0), we denote by
Pi(w) the set of ball patterns with radigs A Delone set is said to be fifhite typeor of finite
local complexityif for every radiuss > 0 the setPg (w) is finite.

Examples

e The simplest example of a Delone set is the latfiéén R<.

e The set of vertices of the Penrose tiling is a Delone set.

Next we introduce a suitable topology on the $&R?) of closed subsets dk?. The
method we are going to outline now has most definitely been pointed out to us by someone
else. Unfortunately, we were not able to find out by whom.

We use the stereographic projection to identify points R? U {cc} in the one-point-
compactification ofR? with the corresponding points ¢ S?. Clearly, the latter denotes the
d-dimensional unit sphei® = {¢ € R : ||¢|| = 1}. Now S carries the euclidean metric
p. Since the unit sphere is compact and complete, the Hausdorff metridakes the set
K(S?) of compact subsets of it into a complete and compact metric space.

For F' ¢ F(R?) write F' for the corresponding subset®f and define

p(F,G) = prr(F U {oc}, G U [o0}) for F,G € F(RY).
Although this constitutes a slight abuse of notation it makes senseEﬂcE;o}, Gj{go}
are compact i8? providedF, G are closed irR?.
We have the following result:

Theorem 1 F(R?) endowed with the natural topology,,; is compact.

Note that, interestingly, no additional properties are needed for compactness. Of course,
this result immediately gives compactness of certain subsets of the set of all Delone sets, e.g.
compactness of the union ovArof the (r, R)-sets for any fixed value of.
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Let us note in passing that the metriproposed in([5] as well as the metric in [8] do not
satisfy the triangle inequality. See, howevér, [9], in which a metric on the set of Delone sets is
constructed. A discussion in a more general framework can be found in [4], where the author
constructs a topology on the set of closed discrete subsets of a locally compantpact
space. In the case & this topology coincides with the restriction of the above given natural
topology.

For a quite different approach to the topology on the set of Delone sets we refer to [10],
where Delone sets are identified with the sum of delta measures sitting at the points of the
Delone set. Then one has thé-topology on the set of measures at ones disposal, providing
good compactness properties. The approach presented here has the advantage that a topology
is induced on the set of closed sets.

Next, we define Delone dynamical systems, following the study of repetitive Delone sets
in [C1] and single out some important properties:

Definition 0.1.2 (a) Let(2 be a set of Delone sets. The péit, T') is called aDelone dynam-
ical system(DDS) if Q2 is invariant under the shiff” and closed in the natural topology.

(b) ADDS(2,T) is said to be ofinite type(DDSF) if U, cq Py (w) is finite for everys > 0.
(c)Let0 < r, R < oo be given. ADDS,T) is said to be ar(r, R)-systemif everyw € Q
is an(r, R)-set.

(d) The setP(Q2) of pattern classes associated to a DD defined byP(Q) = U, coP(w).

Remark 0.1.3 (a) Whenever(§2, T') is a Delone dynamical system, there existsian> 0

with Br(z) Nw # ) for everyw € Q and everyr € R?. This follows easily as? is closed

and invariant under the action &%

(b) Every DDSF is arjr, R)-system for suitablé < r, R < oo.

(c) For a thorough study of Delone sets of finite local complexity we refer the reader to [7] (d)
Letw be an(r, R)-set and lef,, be the closure of Tyw : t € R} in F(R?) with respect to

the natural topology. Theff2,,,T') is an(r, R)-system.

For a DDSF, there is a simple way to describe convergence in the natural topology. This
is shown in the following lemma taken frorfi [6].

Lemma 0.1.4 If (©2,T) is a DDSF then a sequenée,,) converges ta in the natural topol-
ogy if and only if there exists a sequeri{¢g) converging td such that for every, > 0 there
is anng € Nwith (w,, +¢,) N B(0, L) = w N B(0, L) for n > ny.

0.1.3 Ergodic and combinatorial features of DDS

We start with a result that characterizes unique ergodicity of a Delone dynamical system in
terms of the validity of a Banach space valued ergodic theorem. First, let us record the fol-
lowing notions of ergodic theory along with an equivalent “combinatorial” characterization
available for Delone dynamical systen{$?, T') is callednon-periodicif Tiw # Q2 whenever

w € Qandt € RY with t # 0. Is is calledminimalif every orbit is dense. This is equivalent

to P(Q2) = P(w) for everyw € Q. This latter property is calleibcal isomorphism property

in the tiling framework [12]. It is also referred to as repetitivity. Namely, it is equivalent to
there existing atk(P) > 0 for everyP € P(2) such thatB(p, R(P)) A w contains a copy of

P for everyp € RY and everyw € Q. Note also that every minimal DDS is én R)-system.



We are interested in ergodic averages. More precisely, we will take means of suitable
functions along suitable sequences of patterns and pattern classes. These functions and se-
guences will be introduced next. Here and in the sequel we will use the following notation:
For@ c R%nds > 0 we define

Qs ={z € Q:dist(z,0Q) > s}, Q° ={xcR?:dist(z,Q) < s},

where, of course, dist denotes the usual distance)ghi$ the boundary of). Moreover, we
denote the Lebesgue measure of a measurable sphsek? by |Q|. Then, a sequende),,)

of subsets iR? is called a van Hove sequence if the sequein@g| ~|Q3 \ Q. s|) tends to
zero forevery € (0, o). Similarly, a sequenceP,,) of pattern classes, (.82, = [(An, @n)]
with suitable@,,, A,,) is called a van Hove sequencejf, is a van Hove sequence. (This is
obviously well defined.) We can now discuss unique ergodicity. A dynamical sy$ef)

is calleduniquely ergodidf it admits only onel -invariant measure (up to normalization). For
a Delone dynamical system, this is equivalent to the fact that for every patternftldnes
frequency

f(P) = lim |Qul ™ p(w A Qu), (1)
exists uniformly inw € Q for every van Hove sequenc¢é),,). This equivalence was shown
in Theorem 1.6 inl]6] (seel[9] as well). It goes backiia [12], Theorem 3.3, in the tiling setting.
For patternsX; = (A;,Q;), i = 1,...,k, andX = (A, Q), we write X = @F_, X; if
A = UA;, Q = UQ; and theQ); are disjoint up to their boundaries with the obvious extension
to pattern classes.

Definition 0.1.5 Let ) be a DDS andB be a vector space with seminoim ||). A function
F : P(Q) :— B is called almost additive (with respect o ||) if there exists a function
b:P() — (0,00) with lim,, ., |P,,|~1b(P,) = 0 for every van Hove sequen¢g, ) and
a constantD > 0 such that

(A1) [ F(ef ) = X0, F(R)I| < S, 0(Py),

(A2) |[F(P)|| < D|P|+b(P).

(A3) b(P1) < b(P) + b(P) whenevelP = P, @ Ps.
Now, our first result reads as follows.

Theorem 2 For a minimal, aperiodic DDSKS, T') the following are equivalent:

() (2,T) is uniquely ergodic.

(ii) The limitlim,, .| P,| "' F(P,) exists for every van Hove sequeriét ) and every almost
additive F on (Q, T') with values in a Banach space.

Remark 0.1.6 (a) The proof uses methods of Geerse/Haf [13] and ideas from Priebe [14]. In
fact, Geerse/Hof established a similar result for a tiling associated to a primitive substitution.
(b) In the one dimensional case related results have been shown by one of the authors in [15].
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The proof of the theorem makes use of completeness of the Banach space in crucial man-
ner. However, it does not use the nondegeneracy of the norm. Thus, we get the following
corollary (of its proof).

Corollary 0.1.7 Let (2,T) be aperiodic and strictly ergodic. Let the vector spagebe
complete with respect to the topology induced by the seminbprilsc € Z. If F: P — B
is almost additive with respect to evelty ||,. ¢ € Z, thenlim,, ., |P,|~*F(P,) exists for
every van Hove sequen¢g,) in P((2).

The theorem and the corollary underline the strong averaging features of strictly ergodic
DDS. Of course, quite some work has been devoted to studying local conditions ensuring
unigue ergodicity and minimality of a DDS. Two such conditionslarear repetitiveityand
dense repetitivity These conditions have recently been discussed and shown to imply strict
ergodicity by Lagarias and Pleasantslin [11] (for one-dimensional linearly repetitive systems
see the work of Durand[16] as well). A DDSF is said to be linearly repetitive if there exists
a constantC' such that, for- > 0 given, every ball pattern of radiusSr contains every ball
pattern of radiu€’r. A DDSF is said to be densely repetitive if there exist a constasticht
that every ball pattern of radiusis contained in every ball pattern of radiGsv (r)'/¢, where
N(r) denotes the number of different ball patterns of radiug\s shown in [T1] aperiodic
linearly repetitive systems and aperiodic densely repetitive systems are in some sense closest
to periodic systems among the non-periodic systems. The two concepts are related. In fact,
as conjectured by Lagarias/Pleasantsiin [11] and recently shown in [17] by one of the authors
the following holds.

Theorem 3 Every aperiodic linearly repetitive DDS is densely repetitive.

As far as uniform ergodic theorems go, linearly repetitive systems are rather special. Namely,
they allow for a uniform subadditive ergodic theorem. As showrrin [18, 19] the following
holds. LetC(2) be the set of all cubes iR whose sidelengths(C), i = 1,...,d satisfy

1/2 < ,(C)/;(C) < 2foralli,j €1,...,2.

Theorem 4 Let (2, T') be a linearly repetititive DDS. LeF : P(©2) — R be subadditive
(i.,e. F(A® B) < F(A) + F(B), wheneverd and B are disjoint up to their boundary), then

F(P,
lim (Pn)

exists for every van Hove sequerié®, ) with supports of?, contained inC(2).

Remark (1) The theorem gives a new proof of the uniquely ergodicity of linearly repetitive
systems.
(2) The theorem holds also for functions which are subadditive up to a boundaryferm [18].

In d = 1 itis actually possible to characterize the subshifts for which the averages for ar-
bitrary subadditive functions exist. They are those satisfying linear repetitivity on the average.
More precisely, the following holds as shown by one of the authors’in [15].



Theorem 5 Let (2, 7") be a minimal subshift over the finite alphabet Then, the following
are equivalent:
(i) limyy oo F'(v)/|v| exists for arbitrary subadditivé” on the associated set of finite words.

(i) There exists a constar’ > 0 with lim inf|,|_ ﬂ“li,“l‘/’) |v] > C for arbitrary v in the

associated set of words. Herg,(z) denotes the number of copieswfn z and |z| is the
length ofz.

Generalizations of this one-dimensional result to DDS in arbitrary dimensions for an ap-
plication to diffraction theory, are currently under investigation (e [20]). There also applica-
tions to computations of the eigenvalues of the DDS are given.

Let us close this section by emphasizing that the theorems on uniform existence of av-
erages of subadditive functions have proven rather useful in recent works. They allow to
prove Cantor spectrum of measure zero for large classes of one-dimensional quasicrystal
Schibdinger operatord 21, 22]. Moreover, they can also be used to study uniform existence
of certain averages in lattice gas theory.

0.1.4 The associated algebras and operators

In this Section we introduce @*-algebra that had already been encountered in a different
form in [10,23]. Our presentation here is geared towards using the elementg Gf-tdgebra

as tight binding hamiltonians in a quantum mechanical description of disordered solids. We
relate certain spectral properties of the members of such operator families to ergodic features
of the underlying dynamical system. Moreover, we show that the eigenvalue counting func-
tions of these operators are convergent. The limit, known as the integrated density of states,
is an object of fundamental importance from the solid state physics point of view. Apart from
proving its existence, we also relate it to the canonical trace on the von Neumann algebra
N(Q,T, i) in case that the Delone dynamical syst&MT') uniquely ergodic. Results of this
genre are known as Shubin’s trace formula due to the celebrated resultéfrom [24].

Moreover, we review how noncommutative integration theory is used to construct the von
Neumann algebraV'(Q, T, 1) of observables that reflects certain ergodic properties of the
underlying DDS as well.

The results as well as the proofs can be foundiin [25]. First we studysuBalgebra of
N(Q,T, i) that contains those operators that might be used as hamiltonians for quasicrystals.

We define

X xqX :={(p,w,q) eRIx AxRL: p,qewl,

which is a closed subspaceRf x 2 x R¢ for any DDS).

Definition 0.1.8 A kernel of finite rangés a functionk € C(X xq X) that satisfies the
following properties:

(i) % is bounded.
(i) % has finite range, i.e., there exisks, such that:(p,w, ¢) = 0, whenevetp — ¢| > Ry.

(iii) kisinvariant, i.e.,
k(p+tw+t g+t)=kpwq),
for (p,w,q) € X xq X andt € R?,
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The set of these kernels is denoted®y" (2, T).

We record a few quite elementary observations in the following.
Remarks 0.1.9 (1) For any kernek € K/""(Q,T) denote byr,k := K, the operator
K, € B({*(w)), induced by
(K04]6p) = k(p,w,q) forp,q € w.

Clearly, the familyK := 7k, K = (K, )wcq, is bounded in the product (equipped with
the supremum normi),cqB(¢?(w)).

(2) Pointwise sum, the convolution (matrix) product

(a-b)(p,w,q) =Y a(p,w,z)b(z,w, q)

TEW
and the involutiork* (p, w, q) := k(q,w, p) make Af"(Q, T) into ax-algebra.

(38) The mappingr : K/™(Q,T) — Tl,cqB(f*(w)) defined in (1) is a faithfulx-
representation. We denot¢’™(Q, T) := =(K/"(Q,T)) and call it theoperators of
finite range

(4) We denote the completion gf/" (2, T") with respect to the norfA || := sup,,cq, || Ao ||
by A(Q,T).

(5) The mappingr,, : A7 (Q,T) — B(?(w)), K — K, with K, asin (1) is a representa-
tion that extends by continuity to a representatiopd¢f?, ') that we denote by the same
symbol.

We get the following result that relates ergodicity propertie&nfT"), spectral properties of
the operator families froml (€2, T') and properties of the representations

Theorem 6 The following conditions on a DD, T') are equivalent:
@) (Q,T)is minimal.
(i) For any selfadjointd € A(2, T) the spectruna (A,,) is independent ab € Q.

(iii) =, is faithful for everyw € Q.
Now we introduce algebras of observables that extend thal@=bra considered above.

Definition 0.1.10 Let (2, T") be an(r, R)-system and let be an invariant measure dn. De-
note byV; the set of allf : X — C which are measurable and satisfyw, -) € £2(X“, a*)
for everyw € Q.

A family (A,,).eq of bounded operatorsl,, : /?(w,a”) — £%(w,av) is called mea-
surable ifw — (f(w), (A,9)(w)). is measurabldor all f,g € V;. Itis calledboundedf
the norms of thed,, are uniformly bounded. It is callecbvariantif it satisfies the covariance
condition

H,i = UHU;, weQ,teRY,



10

whereU, : (?(w) — %(w + t) is the unitary operator induced by translation. Now, we can
define

N(Q,T,u) :={A = (A,)wea|A covariant, measurable and boundgd~,

where~ means that we identify families which agge@almost everywhere.

As is clear from the definition, the elements/d{(2, T', 1) are classes of families of oper-
ators. However, we will not distinguish too pedantically between classes and their representa-
tives in the sequel.

Remark 0.1.11 It is possible to defineV(Q2, T, 1) by requiring seemingly weaker condi-
tions. Namely, one can consider familied,,) that are essentially bounded and satisfy the
covariance condition almost everywhere. However, by standard procedures{see [26, 27]), itis
possible to show that each of these families agrees almost everywhere with a family satisfying
the stronger conditions discussed above.

Obviously, N (Q, T, 1) depends on the measure classuobnly. Hence, for uniquely
ergodic(Q,T), N (Q, T, u) =: N(Q,T) gives a canonical algebra. This case has been con-
sidered in [ZB[16].

Apparently, N'(Q, T, 1) is an involutive algebra under the obvious operations. To see that
it has a predual, i.e., that it is a weak-*-algebra is not obvious. We prove thislin [25] by
identifying V' (Q, T, 1) with the algebra of random operators for a suitable random Hilbert
space, as will be outlined now. For details we refero{6, 25] where we use the following
concepts from Connes non-commutative integration theory [26]: We introduced

e a suitablegroupoidG(Q, T'),
e atransversal measurd = A, for a given invariant measugeon (€2, T)
e and aA-random Hilbert spacét = (H,)wen
leading to the von Neumann algebra
N(Q,T,p) := Endy (H)

of random operatorsall in the terminology of [26]. When everything is put together, this
gives:

Theorem 7 Let (Q2,T) be an(r, R)-system and let: be an invariant measure oft. Then
N(Q,T, u) is a weak-*-algebra. More precisely,

N(Q,T, 1) = Endy (H),

whereA = A, and’H = (F2(X¥,a*)).eq are defined as above.

We can use the measurable structure to identityX’, m), wherem = [, a®u(w) with
fée 2(x% o) du(w). This gives the faithful representation

T N(Q,T, 1) — B(L*(X,m)), m(A) f((w, 7)) = (Aufo) (w, 7))

and the following immediate consequence.
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Corollary 0.1.12 7(N(Q, T, 1)) C B(L?*(X,m)) is a von Neumann algebra.

Next we want to identify conditions under whiat{\ (2, T, 1)) is a factor. Recall that a
Delone setv is said to benon-periodicif w + ¢t = w implies thatt = 0.

Theorem 8 Let (2, T') be an(r, R)-system and let: be an ergodic invariant measure 6h
If w is non-periodic foru-a.e.w € Q thenN (2, T, 1) is a factor.

Remark 0.1.13 Sincey is ergodic, the assumption of non-periodicity in the Theorem can be
replaced by assuming that there is a set of positive measure consisting of non-periodic

The following theorem is a consequence [of [29]. It deals with almost sure constancy of
spectral features of random operators.

Theorem 9 Let (2,T) be an(r, R)-system and. be T-invariant. Letx be ergodic and
(Ay) € N(Q,T, 1) be selfadjoint. Then there exist &Y., X, Xpp, Xess C R and a
subsef) of 2 of full measure such that = o(A.,,) ando.(4,) = 5, for e = ac, sc, pp, ess

andogis.(A.) = 0 for everyw € €.

0.1.5 The integrated density of states and Shubins trace formula

We now define a particular trace o¥i(Q2, 7T, 1). To this end, choose a nonnegativec
Ce(R?) with [, u(z)dz = 1. Let M, be the operator of multiplication hy. It can be shown
that
T N(QT,u) — C, 7(A) = / tr(A,M,) dp(w)
Q
does not depend on the choicerods long as the integral is one [6] 25]. Important features of
T are given in the following lemma.

Lemma 0.1.14 Let (2, T) be an(r, R)-system and: be T-invariant. Then the map :
N(Q,T, u) — C is continuous, faithful, nonegative ovi(Q2, T, u)* and satisfies (A) =
7(U*AU) for every unitarylU € N'(Q,T, 1) and arbitrary A € N (Q, T, i), i.e.,7 is a trace.

Having definedr, we can now associate a canonical meagureo every selfadjointd <
N(Q, T, p).

Definition 0.1.15 For A € N(Q,T, ) selfadjoint, andB C R Borel measurable, we set
pa(B) = 71(xB(A)), wherey g is the characteristic function dB.

For the next result we refer ta[29].

Lemma 0.1.16 Let (2, T) be an(r, R)-system and: be T-invariant. LetA € N(Q,T, i)
selfadjoint be given. Then, is a spectral measure fad. In particular, the support op 4
agrees with the spectrubd of A and the equality 4 (F') = 7(F(A)) holds for every bounded
measurable’” onR.

We now come to relate the abstract traceefined above with the mean trace per unit
volume. The latter object is quite often considered by physicists and bears thémegnated
density of statedts proper definition rests on ergodicity.
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Proposition 0.1.17 Assume that2,T") is a uniquely ergodidr, R)-system with invariant
probability measurq: and A € A(2,T). Then, for any van Hove sequen@g, ) it follows
that

lim

1
s mtf(Awk)n) =7(A)

forall w € Q.

Clearly, A, |o denotes the restriction od,, to the finite dimensional subspaé&w N Q),
whenever c R is bounded.

The following result finally establishes an identity that one might call an abstract Shubin’s
trace formula. It says that the abstractly defined traisadetermined by the integrated density
of states. The latter is the limit of the following eigenvalue counting measures. Let, for
selfadjointA € A(Q2, T) and@ C R%:

ﬁtrmm@», o € O(R).

Its distribution function is denoted by A, @], i.e. n[A,,, Q](E) gives the number of eigen-
values per volume below (counting multiplicities).

(p[Au, Q) @) =

Theorem 10 Let (2, T') be a uniquely ergodi¢r, R)-system angk its invariant probability
measure. Then for selfadjoirt € A(Q2, T') and any van Hove sequen(@@,,) we get that for
everypy € C(R) and everyw

(p[Au, Qn], @) = 7(p(A)) @sn — oo.

Consequently, the measurp§~ converge weakly to the measupg defined above by
(pa,p) = T(p(A4)).

The above statement has many precurscdrs: [[30/-3101 37] 2, 24] in the context of almost
periodic, random or almost random operatorg/&(Z?) or L?(R%). It generalizes results by
Kellendonk [23] on tilings associated with primitive substitutions. Its proof relies on ideas
from [30,[31,[32[23] and133]. Nevertheless, it is new in the present context.

The primary object from the physicists point of view is the finite volume limit:

N[A|(E) := lim n[AL, Q,](F)
n—0o0
known as the integrated density of states. It has a striking relevance as the number of energy
levels belowFE per unit volume, once its existence and independenceasé settled.

The last theorem provides the mathematically rigorous version. Namely, the distribution
function N4 (E) := pa(—o0, E] of p4 is the right choice. It gives a limit of finite volume
counting measures since

plAu, Qn] — pa weakly asn — oo.

Therefore, the desired independencesa$ also clear. Moreover, by standard arguments we
get that the distribution functions of the finite volume counting functions convergé;tat
points of continuity of the latter.
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A better convergence result can be deduced from the strong ergodic result THg¢orem 2
presented in the Sectign UJ1.3. To do so we proceed as follows.

The spectral counting functions appearing as approximants of the integrated density of
states are obviously elements of the vector sgacensisting of all bounded right continuous
functionsf : R — R equipped for whicHim,_._, f(z) = 0 andlim,_ f(z) exists.
Equipped withe the supremum nofjfif||.c = sup,r |f(z)| this vector space is a Banach
space. Itturns out that the spectral counting function is essentially an almost additive function.
More precisely the following hold$[34].

Theorem 11 Let(52, T) be a DDS. Letd be an operator of finite range. Thén* : P(Q) —
D, defined byF4(P) = n(A,,Qra) for P = [(w A Q)] is a well defined almost additive
function.

Remark 0.1.18 The theorem seems to be new even in the one-dimensional case. (There, of
course, it is very easy to prove.)

Now, our results on convergence of the integrated density of states reads as follows.

Theorem 12 Let (2, T') be an aperiodic strictly ergodic DDSF. Let be a selfadjoint oper-
ator of finite range and@,,) be an arbitrary van Hove sequence. Then the meas@@es

converge in distribution to the measysé and this convergence is uniformdne (.

As a consequence of this stronger convergence we can explain the occurrence of discon-
tinuities of the integrated density of states. Namely such discontinuities are always due to
finitely supported eigenfunctions, i.e., to very strongly localized states. This has been worked
out in [35].

Theorem 13 Let (2, T') be a strictly ergodic DDSF. Lefl be a selfajoint random operator
of finite range. Ther® is a point of discontinuity op* if and only if there exists a locally
supported eigenfunction of,, to £ for one (all)w € Q.

It is rather straightforward to see that locally supported eigenfunctions lead to a discon-
tinuity of the IDS. Moreover one can show easily that every DDS can be changed in such a
way that the original and the new system are “more or less the same” and such that the new
system exhibits locally supported eigenfunctions. The idea is to replace points in the original
system by a “small” graph that allows an eigenfunction. The equivalence of the two systems
can be phrased in the notion wiutually locally derivabléMLD), going back to [36]. For a
thorough discussion, see[35]. Here we only give the result and a picture of the small graph
that one can choose to implement. Here the little squares mark the vertices of the graph and
the straight lines are the edges of the graph. Next to each vertex we indicate the value of a
locally supported eigenfunction of the nearest neighbor laplacian.

Theorem 14 Let (2, T) be a arbitrary DDSF. Then there exists a DDSR’, T') and a ran-
dom operator of finite rangeA®) ) such that 2, T) and (Q°, T') are mutually locally derivable
and (A%) has locally supported eigenfunctions with eigenvalligor everyw € Q°. More-
over,(A%) can be chosen to be the nearest neighbor laplacian of suitable graph.
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Figure 1: The finite graphG f;»,.

The starting point is a small graghy;,, = (Vyin, Erin) and an eigenfunction;,, of the
associated nearest neighbor laplacian. For definiteness sake consider Figure 1. The values of
uyin are indicated near the corresponding vertices. Here the eigenvdiue i8.

It is clear that whatever edges reach out of the four corners in a larger graph extending
G tin, the extension ofiz;, by 0 to the larger vertex set will still constitute an eigenfunction
of the laplacian on the large graph. It is now easy to implement this picture into a given DDSF.

For those who prefer tiling examples we now indicate how to view the construction above
in this framework. Take a tiling dynamical system (se€[6, 5]) and replace one giv&hliite
a suitable homeomorphic imageBf indicated in Figuré]2 by the full lines. We also indicated
the next neighbor relations, showing that the resulting graph igjust above.

0.1.6 Conclusion

To sum up, using Delone sets one can define natural tight binding hamiltonians for quasicrys-
tals. These hamiltonians have many aspects in common with the hamiltonians of disordered
systems. They can be considered as families indexed by the points of a Delone dynamical
system.

However, the complex geometry of Delone sets can lead to effects like discontinuities of
the integrated density of states. Moreover, these models exhibit a striking uniformity as far
as their ergodic properties are concerned. Thus, despite all analogies, there are important
differences to disordered systems.

ergodic Ergodic properties of the Delone dynamical system in question are of central im-
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Figure 2: The tiling of G y;,.

portance in different aspects as well and they can be deduced to questions concerning the
complexity of the individual Delone sets that belong to the DDS. Certain spectral informa-
tion concerning the hamiltonian for a quasicrystal can be deduced from ergodic information.
Moreover, the hamiltonians can be regarded as elements of certain operator algebras and the
latter reflect ergodic features of the underlying DDS.
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