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Abstract. We present spectral theoretic results for Hamiltonians associated

with Delone sets. For a family of discrete models we characterize the appear-
ance of jumps in the integrated density of states. For a family of continuum

models on the set of all Delone sets with suitable parameters we prove that

generically purely singular continuous spectrum occurs.

Introduction

In this paper we continue our study of aperiodic order and quasicrystals with
results concerning the nature of the spectrum of the associated Hamiltonians. It is
a sequel to [21, 22, 23, 24].

We use the framework of Delone (Delaunay) [5] sets to describe the aperiodic
order of positions of ions in a quasicrystal or a more general aperiodic solid. This
approach is quite common, [1, 15, 16, 17, 28] with an equivalent alternative de-
scription available via tilings, [6, 7, 9, 10, 11, 18, 27]. We elaborate on this issue
and introduce Delone danamical systems in the next section. We also provide some
necessary background concerning the natural topology on the set of all Delone sets.
Moreover, we mention the von Neumann algebra of observables that can naturally
be associated with a Delone dynamical system and an invariant measure on the
latter.

With these preparations the stage is set for the study of spectral properties we
are aiming at. In Section 2 we are concerned with discrete models. We investigate
the possibility of jumps in the integrated density of states of the Hamiltonians in
question. This latter quantity is a function N(E) of the energy E that measures
the number of eigenstates with eigenvalue lying below E. Since this quantity is self
averaging and typically rather smooth it is at first sight very strange that it can
exhibit jumps. For the Penrose tiling this effect had already been discovered and
studied earlier [13, 14]. It turns out that it is based on the fact that the tilings in
question allow for compactly supported eigenfunctions of the associated laplacian.
Our results from [12] show two facts: firstly, the Penrose tiling is not exceptional
in the sense that with a “local modification” any Delone set can be turned into one
that shows compactly supported eigenfunctions. Secondly, discontinuities of the
integrated density of states can only appear in that way, provided the Delone sets
one starts with satisfies certain quite natural complexity conditions. As the main
input, we use a particularly strong ergodic theorem from [24].

In the last section we announce a new result on spectral properties, this time
for continuum models. In fact we are able to prove that a certain family of models
exhibits the spectral behaviour that is conjectured to be typical for quasicrystal
Hamiltonians: purely singular continuous spectrum. To this end we consider a
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complete metric space consisting of all Delone sets with suitable parameters and
associate a Hamiltonian with each of the sets. Our result then tells us that a certain
energy region consists of purely singular continuous spectrum for a dense subset
of the metric space in question. To our knowledge this is the first result estab-
lishing a particular spectral type for multidimensional Hamiltonians associated to
Delone sets. The proof we sketch is based on Barry Simon’s “Alice in Wonderland”
technique from [26].

Acknowledgment: The second author gratefully acknowledges invitations to the
University Paris 7 Denis Diderot where part of this work was done and support by
the DFG in the priority program “Interacting stochastic systems of high complex-
ity”. Moreover, both authors profited from financial support by the DFG in the
priority program “Quasicrystals”.

1. Delone sets and Delone dynamical systems: topology and algebra

We now sketch how to define a suitable topology on the set of all Delone sets
following [22] to which the reader is referred for details. Let us start with F(Rd),
the set of closed subsets of Rd and recall that there is a natural action T of Rd

on F(Rd) given by TtG = G + t. We aim at a topology on F(Rd) that fulfills two
requirements: the action T should be continuous and two sets that are close to each
other with respect to the topology are supposed to be such that their finite parts
have small Hausdorff distance. The latter can be defined by

dH(K1,K2) := inf({ε > 0 : K1 ⊂ Uε(K2) ∧K2 ⊂ Uε(K1)} ∪ {1}),

where K1,K2 are compact subsets of a metric space (X, d) and Uε(K) denotes the
open ε-neighborhood around K. The extra 1 is to deal with the empty set that is
included in K(X) := {K ⊂ X : K compact}. It is well known that (K(X), dH) is
complete if (X, d) is complete and compact if (X, d) is compact.

We use the stereographic projection to identify points x ∈ Rd ∪ {∞} in the one-
point-compactification of Rd with the corresponding points x̃ ∈ Sd. Clearly, the
latter denotes the d-dimensional unit sphere Sd = {ξ ∈ Rd+1 : ‖ξ‖ = 1}. Now S

d

carries the euclidian metric ρ. Since the unit sphere is compact and complete, we
can associate a complete metric ρH on K(Sd) by what we said above.

For F ∈ F(Rd) write F̃ for the corresponding subset of Sd and define

ρ(F,G) := ρH( ˜F ∪ {∞}, ˜G ∪ {∞}) for F,G ∈ F(Rd).

Although this constitutes a slight abuse of notation it makes sense since
˜F ∪ {∞}, ˜G ∪ {∞} are compact in Sd provided F,G are closed in Rd.
We have the following result:

Proposition 1.1. The metric ρ above induces the natural topology on F(Rd).

Denote by Br(x) (Ur(x)) the closed (open) ball in Rd arround x with radius r.
A subset ω of Rd is called a Delone set if there exist r(ω) > 0 and R(ω) > 0

such that 2r(ω) ≤ ‖x − y‖ whenever x, y ∈ ω with x 6= y, and BR(ω)(x) ∩ ω 6= ∅
for all x ∈ Rd. If 0 < r ≤ r(ω) ≤ R(ω) ≤ R we speak of an (r,R)-set and denote
the set of all (r,R)-sets by Dr,R. From the basic properties of the metric ρ above
it follows that Dr,R is a compact, complete metric space, a fact that will be useful
in the sequel. The set of all Delone sets is denoted by D.
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The convergence of a sequence of Delone sets with respect to the natural topology
can easily be visualized:

Lemma 1.2. A sequence (ωn) of Delone sets converges to ω ∈ D in the natural
topology if and only if there exists for any l > 0 an L > l such that the ωn ∩ UL(0)
converge to ω ∩ UL(0) with respect to the Hausdorff distance as n→∞.

We call a closed, translation invariant subset Ω ⊂ D a Delone dynamical system,
DDS. Note that compactness and hence completeness of Ω follows, since F(Rd)
is compact. A DDS is said to be an (r,R)-system if, furthermore, Ω ⊂ Dr,R. A
further notion is to be introduced: we say that ω ∈ D is of finite local complexity, if
only finitely many different (up to translation) pattern of bounded diameter occur
in ω, i.e., if the set {UL(0) ∩ (ω − x) : x ∈ ω} is finite for every L > 0.

We speak of a Delone dynamical system of finite type, DDSF, if this latter finite-
ness condition extends to all of Ω, i.e. if the set {UL(0) ∩ (ω − x) : x ∈ ω, ω ∈ Ω}
is finite for every L > 0.

We often keep the translations in our notation and write (Ω, T ) for a DDS. The
next topic will concern a natural von Neumann algebra that contains the Hamilto-
nians we are interested in. For details and proofs see [23]. These Hamiltonians are
in fact families A = (Aω), indexed by the elements ω of a DDS (Ω, T ). Each Aω
acts in the Hilbert space `2(ω, αω), where αω denotes the counting measure on the
discrete subset ω ⊂ Rd. These spaces are “glued” together by the following bundle:

X = {(ω, x) ∈ G : x ∈ ω} ⊂ Ω× Rd.

Here is the definition:

Definition 1.3. Let (Ω, T ) be an (r,R)-system and let µ be an invariant measure
on Ω. Denote by V1 the set of all f : X −→ C which are measurable and satisfy
f(ω, ·) ∈ `2(Xω, αω) for every ω ∈ Ω.

A family (Aω)ω∈Ω of bounded operators Aω : `2(ω, αω) −→ `2(ω, αω) is called
measurable if ω 7→ 〈f(ω), (Aωg)(ω)〉ω is measurable for all f, g ∈ V1. It is called
bounded if the norms of the Aω are uniformly bounded. It is called covariant if it
satisfies the covariance condition

Hω+t = UtHωU
∗
t , ω ∈ Ω, t ∈ Rd,

where Ut : `2(ω) −→ `2(ω + t) is the unitary operator induced by translation. Now,
we can define

N (Ω, T, µ) := {A = (Aω)ω∈Ω|A covariant, measurable and bounded}/ ∼,

where ∼ means that we identify families which agree µ almost everywhere.

Obviously, N (Ω, T, µ) depends on the measure class of µ only. Hence, for
uniquely ergodic (Ω, T ), N (Ω, T, µ) =: N (Ω, T ) gives a canonical algebra. This
special case has been considered in [21, 22]. Apparently, N (Ω, T, µ) is an involutive
algebra under the obvious operations. The following result is taken from [23], where
we prove it using Connes’ noncommutative integration theory, [3].

Theorem 1.4. Let (Ω, T ) be an (r,R)-system and let µ be an invariant measure
on Ω. Then N (Ω, T, µ) is a weak-*-algebra.

This algebra carries a particular trace that is related to the integrated density
of states we will meet later. Now, choose a nonnegative measurable u on Rd with
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compact support and
∫
Rd
u(x)dx = 1. Letting f(ω, p) := u(p), it can be shown that

the map

τ : N (Ω, T, µ) −→ C, τ(A) =
∫

Ω

tr(AωMu) dµ(ω)

does not depend on the choice of f viz u as long as the integral is one. Moreover,
τ is a trace on N (Ω, T, µ); see [23] for details.

Let us now introduce the C∗-subalgebra of N (Ω, T, µ) that contains those oper-
ators that might be used as Hamiltonians for quasicrystals. We define

X ×Ω X := {(p, ω, q) ∈ Rd × Ω× Rd : p, q ∈ ω},
which is a closed subspace of Rd × Ω× Rd for any DDS Ω.
Definition 1.5. A kernel of finite range is a function k ∈ C(X ×ΩX ) that satisfies
the following properties:

(i) k is bounded.
(ii) k has finite range, i.e., there exists Rk > 0 such that k(p, ω, q) = 0, when-

ever |p− q| ≥ Rk.
(iii) k is invariant, i.e.,

k(p+ t, ω + t, q + t) = k(p, ω, q),

for (p, ω, q) ∈ X ×Ω X and t ∈ Rd.
The set of these kernels is denoted by Kfin(Ω, T ).

We record a few quite elementary observations. For any kernel k ∈ Kfin(Ω, T )
denote by πωk := Kω the operator Kω ∈ B(`2(ω)), induced by

(Kωδq|δp) := k(p, ω, q) for p, q ∈ ω.
Clearly, the family K := πk, K = (Kω)ω∈Ω, is bounded in the product (equipped
with the supremum norm) Πω∈ΩB(`2(ω)). Thus, it belongs to N (Ω, T, µ). Now,
pointwise sum, the convolution (matrix) product

(k1 · k2)(p, ω, q) :=
∑
x∈ω

k1(p, ω, x)k2(x, ω, q)

and the involution k∗(p, ω, q) := k(q, ω, p) make Kfin(Ω, T ) into a ∗-algebra. Then,
the mapping π : Kfin(Ω, T ) → Πω∈ΩB(`2(ω)) is a faithful ∗-representation. We
denote Afin(Ω, T ) := π(Kfin(Ω, T )) and call it the operators of finite range.
This gives a subalgebra of N (Ω, T, µ), as can easily be seen. The completion of
Afin(Ω, T ) with respect to the norm ‖A‖ := supω∈Ω ‖Aω‖ is denoted by A(Ω, T ).
This again is a subalgebra of N (Ω, T, µ). Moreover, it is not hard to see that the
mapping πω : Afin(Ω, T )→ B(`2(ω)),K 7→ Kω is a representation that extends by
continuity to a representation of A(Ω, T ) that we denote by the same symbol.

2. Integrated density of states and its discontinuities

In this section, we first relate the abstract trace τ defined above to the mean
trace per unit volume. The latter object is quite often considered by physicists and
bears the name integrated density of states. We then study discontinuities of the
integrated density of states and characterize their occurence by existence of locally
supported eigenfunctions.

The proper definition of the integrated density of states rests on ergodicity;
we need the notion of a van Hove sequence of sets.For s > 0 and Q ⊂ R

d, we
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denote by ∂sQ the set of points in Rd whose distance to the boundary of Q is less
than s. A sequence (Qn) of bounded subsets of Rd is called a van Hove sequence
if |Qn|−1|∂sQn| −→ 0, n −→ 0 for every s > 0. The following result from [23]
establishes an identity that one might call an abstract Shubin’s trace formula. It
says that the abstractly defined trace τ is determined by the integrated density of
states. The latter is the limit of the following eigenvalue counting measures. Let,
for selfadjoint A ∈ A(Ω, T ) and Q ⊂ Rd:

〈ρ[Aω, Q], ϕ〉 :=
1
|Q|

tr(ϕ(Aω|Q)), ϕ ∈ C(R).

Its distribution function is denoted by n[Aω, Q], i.e. n[Aω, Q](E) gives the number
of eigenvalues below E per volume (counting multiplicities).
Theorem 2.1. Let (Ω, T ) be a uniquely ergodic (r,R)-system and µ its ergodic
probability measure. Then, for selfadjoint A ∈ A(Ω, T ) and any van Hove sequence
(Qn),

〈ρ[Aω, Qn], ϕ〉 → τ(ϕ(A)) as n→∞
for every ϕ ∈ C(R) and every ω ∈ Ω. Consequently, the measures ρQnω converge
weakly to the measure ρA defined above by 〈ρA, ϕ〉 := τ(ϕ(A)), for every ω ∈ Ω.
Remark 2.2. This generalizes results in Kellendonk [9] (see [7, 8] for related ma-
terial as well) and is an analog of results of Bellissard [2] in the almost periodic
setting. The proof is based on ideas from these works.

For a special class of operators we can actually say more. This class is defined
next. It includes all Hamiltonians based on a next neighbor Laplacian and a locally
determined potential.
Definition 2.3. Let (Ω, T ) be a DDSF. A finite range operator A = (Aω) is called
locally constant if there exists a constant rA such that Aω(x, y) = Aω′(x′, y′) when-
ever (BrA(x) ∪BrA(y)) ∧ ω = t+ (BrA(x′) ∪BrA(y′)) ∧ ω′ for some t ∈ Rd.

For such operators we can characerize the appearance of a discontinuity in the
integrated denstiy of states ρA (see [12] for details and proofs).
Theorem 2.4. Let (Ω, T ) be a strictly ergodic DDSF. Let A be a locally constant
finite range operator. Then E is a point of discontinuity of ρA if and only if there
exists a locally supported eigenfunction of Aω to E for one (all) ω ∈ Ω.
Remark 2.5. Let us emphasize that locally supported eigenfunctions do exist for
DDSF (see [12] and the references given in the introduction). Thus, the theorem
gives that the integrated density of states is not continuous for DDSF. This contrasts
with what is known for one dimensional operators as well as for random operators.
On the other hand the theorem also tells us that these discontinuities can only arise
in a certain way which is linked to the geometry of the Delone sets in question.

3. Generic purely singular continuous spectrum

In the sequel we consider Hamiltonians in L2(Rd) that can be considered for the
description of aperiodic solids. We fix a compactly supported, bounded f ≤ 0 that
gives the attractive potential of an ion. If these ions are distributed according to
the sites of a Delone set ω we arrive at

H(ω) = −∆ +
∑
t∈ω

f(· − t).
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Since we consider a fixed f 6= 0 as above we omit it from the notation. We now fix
0 < r < R in such a way that there exists a lattices γ, γ̃ ∈ Dr,R with the property
that the corresponding Hamiltonians H(γ) and H(γ̃) satisfy:

a := inf σ

(
−∆ +

∑
t∈γ

f(· − t)

)
< b̃ := inf σ

−∆ +
∑
t∈γ̃

f(· − t)

 .

Our aim is the following result; details will appear elsewhere [25].
Theorem 3.1. There is an nonempty open interval I and a dense Gδ-set Ωsc
such that for all ω ∈ Ωsc the spectrum of H(ω) contains I and is purely singular
continuous there.

Let us stress that singular continuous spectrum is in fact what one expects for
quasicrystals. One reason is that the latter are in between highly disordered media
(for which pure point spectrum is typical) and ordered media (for which absolutely
continuous spectrum is characteristic). Moreover, there are by now a number of
rigorous results in this direction for one-dimensional operators, starting from [29];
references to more recent papers can be found in the survey papers [4, 30]. We are
not aware of any result concerning higher dimensions, however.

Of course, a more realistic Hamiltonian would allow for a finite number of differ-
ent ions. The framework of colored Delone sets as considered in [23] provides the
appropriate notions.

The main tool to prove the above result is the following Theorem 2.1 from [26]
that we include for the readers convenience.
Theorem 3.2. Let X be a regular metric space of self-adjoint operators. Suppose
that for some interval (a, b), we have that

(i) {A ∈ X| has purely continuous spectrum on (a, b)} is dense in X.
(ii) {A ∈ X| has purely singular spectrum on (a, b)} is dense in X.
(iii) {A ∈ X| has (a, b) in its spectrum} is dense in X.
Then {A|(a, b) ⊂ σ(A), (a, b) ∩ σpp(A) = ∅, (a, b) ∩ σac(A) = ∅} is a dense Gδ.
Clearly, the conclusion of this latter theorem is exactly the assertion of our

Theorem 3.1. Thus, we have to associate the right space of operators with Dr,R
and verify properties (i)-(iii) from the preceding Theorem.

Of course, the appropriate space is

Xr,R = {H(ω)|ω ∈ Dr,R}

equipped with the metric from Dr,R. Metrizability and completeness have already
been discussed in Section 1; they follow from the results in [22]. Moreover, one can
see that convergence with respect to the natural topology implies strong resolvent
convergence of the respective operators so that Xr,R is a regular metric space of
self-adjoint operators in the sense of [26].

Let us finally sketch how to prove property (iii). Recall the lattices γ, γ̃ from
above. This gives the energy interval (a, b) in the following way: We take a, b̃ as
above and define b := min{b̃, b∗} where b∗ is the upper edge of the spectral band of
−∆ +

∑
t∈γ f(· − t) that starts at a, i.e.,

b∗ := sup{λ|[a, λ] ⊂ σ

(
−∆ +

∑
t∈γ

f(· − t)

)
}.
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We can now use suitable perturbations of γ to see that (iii) is fulfilled. In fact, given
ω ∈ Dr,R find ωn that coincides with ω in the box centered at 0 with sidelength n
and coincides with γ outside the box centered at 0 with sidelength 2n. By Lemma
1.2 above we get convergence ωn → ω in the natural topology. Moreover, the
essential spectrum of H(ωn) coincides with the essential spectrum of H(ω), hence
[a, b] ⊂ σ (H(ωn)) for all n ∈ N.
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[14] Krajč́ı M. and Fujiwara T.: Strictly localized eigenstates on a three–dimensional Penrose
lattice, Phys. Rev. B 38 (1988) 12903-12907

[15] J. C. Lagarias, Geometric Models for Quasicrystals I. Delone Sets of Finite Type,
Discrete Comp. Geom., to appear

[16] J. C. Lagarias, Geometric Models for Quasicrystals II. Local Rules Under Isometries,

Disc. Comp. Geom., to appear
[17] J. C. Lagarias and P.A.B. Pleasants, Repetitive Delone sets and Quasicrystals, Er-

godic Theory Dynam. Systems, to appear
[18] J.-Y. Lee, R.V. Moody and B. Solomyak, Pure Point Dy-

namical and Diffraction Spectra, preprint 2001, available from

http://www.math.washington.edu/ solomyak/personal.html

[19] D. Lenz, Random Operators and Crossed Products, Math. Phys. Anal. Geom., 2, 1999,

pp. 197-220
[20] D. Lenz, Uniform ergodic theorems on subshifts over a finite alphabet, Ergodic Theory

Dynam. Systems, 22, 2002, 245–255

[21] D. Lenz and P. Stollmann, Delone dynamical systems, groupoid von Neuman algebras
and Hamiltonians for quasicrystals, C. R. Acad. Sci. Paris, Ser. I 334, 2002, 1-6



8 DANIEL LENZ AND PETER STOLLMANN

[22] D. Lenz and P. Stollmann, Delone dynamical systems and associated random opera-
tors, Proc. OAMP to appear, eprint: arXiv math-ph/0202142

[23] D. Lenz and P. Stollmann, Algebras of random operators associated to Delone dynam-
ical systems Math. Phys. Anal. Geom., to appear, eprint: arXiv math-ph/0210031

[24] D. Lenz and P. Stollmann, An ergodic theorem for Delone dynamical systems and

existence of the density of states, in preparation
[25] D. Lenz and P. Stollmann, in preparation

[26] B. Simon, Operators with singular continuous spectrum: I. General operators, Annals
Math. 141 (1995), 131-145

[27] B. Solomyak, Dynamics of self-similar tilings, Ergodic Theory Dynam. Systems, 17,

1997, pp. 695-738
[28] B. Solomyak, Spectrum of a dynamical system arising from Delone sets. In: Quasicrys-

tals and Discrete Geometry, ed. J. Patera, Fields Institute Monographs, vol. 10, AMS,
Providence, RI 1998, pp. 265-275
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