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15.1 Introduction: Leaving stationarity

In recent years there has been considerable progress concerning mathemat-
ically rigorous results on the phenomenon of localization. We refer to the
bibliography where we chose some classics, some recent articles as well as
books on the subject. However, all these results provide only one part of the
picture that is accepted since the groundbreaking work [4, 79] by Anderson,
Mott and Twose: one expects a metal insulator transition. This effect is sup-
posed to depend upon the dimension and the general picture is as follows:
Once translated into the language of spectral theory there is a transition from

Fig. 15.1. Metal insulator transition

a localized phase that exhibits pure point spectrum (= only bound states =
no transport) to a delocalized phase with absolutely continuous spectrum
(= scattering states = transport). What has been proven so far is the occur-
rence of the former phase, well known under the name of localization. The
missing part, delocalization, has not been settled for genuine random models.

There is need for an immediate disclaimer or, put differently, for an expla-
nation of what I mean by “genuine”.

An instance where a metal insulator transition has been verified rigorously
is supplied by the almost Mathieu operator, a model with modest disorder
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for which the parameter that triggers the transition is the strength of the
coupling. As references let us mention [6, 40, 57, 58, 59, 73] where the reader
can find more about the literature on this true evergreen. Quite recently itAu: Clarify “true evergreen”

has attracted a lot of interest especially among harmonic analysts; see [7, 8,
9, 10, 11, 12, 13, 14, 15, 44, 82]

The underlying Hilbert space is l2(Z). Consider parameters α, λ, θ ∈ R

and define the self-adjoint, bounded operator hα,λ,θ by

(hα,λ,θu)(n) = u(n + 1) + u(n − 1) + λ cos(2π(αn + θ))u(n),

for u = (u(n))n∈Z ∈ l2(Z).
Note that this operator is a discrete Schrödinger operator with a potential

term with the coupling constant λ in front and the discrete analog of the
Laplacian. For irrational α the potential term is an almost periodic function
on Z.

Basically, there is a metal insulator transition at the critical value 2 for the
coupling constant λ. Since these operators are very close to being periodic,
one can fairly label them as poorly disordered. Moreover, the proof of delo-
calization boils down to the proof of localization for a “dual operator” that
happens to have the same form. In this sense, the almost Mathieu operator is
not a genuine random model.

A second instance, where a delocalized phase is proven to exist is the Bethe
lattice. See Klein’s paper [61].

Quite recently, an order parameter has been introduced by Germinet and
Klein to characterize the range of energies where a multiscale scenario provides
a proof of a localized regime, [42]. In their work the important parameter is
the energy.

However, as we already pointed out above, for genuine random models,
there is no rigorous proof of the existence of a transition or even of the ap-
pearance of spectral components other than pure point, so far. This is a
quite strange situation: the unperturbed problem exhibits extended states
and purely a.c. spectrum but for the perturbed problem one can prove the
opposite spectral behavior only.

In this survey we are dealing with models that are not transitive in the
sense that the influence of the random potential is not uniform in space. The
precise meaning of this admittedly vague description differs from case to case
but will be clear for each of them.

15.2 Sparse random potentials

The term sparse potentials is mostly known for potentials that have been
introduced in the 1970s by Pearson [81] to construct Schrödinger operators on
the line with singular continuous spectrum. To use similar geometries to obtain
a metal insulator transition can be traced back to Molchanov, Molchanov and
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Vainberg [77, 78] and Krishna [70, 71], see also [63, 64, 72]. We have been
strongly influenced by the paper [49] from which we take the random operator
in L2(Rd), Model I:

H(ω) = −∆ + Vω, where Vω(x) =
∑

k∈Zm

ξk(ω)f(x − k),

f ≤ 0 is a compactly supported single site potential and the ξk are independent
Bernoulli variables with pk := P{ξk = 1}.

To understand the appearance of a metallic regime, we recall the following
facts from scattering theory:

We write −∆ = H0 so that the operators we are interested in can be
written as H = H0 + V . By σac(H) we denote the absolutely continuous
spectrum, related to delocalized states.

Theorem 1 (Cooks criterion) If for some T0 > 0 and all φ in a dense set∫ ∞

T0

‖V e−itH0φ‖dt < ∞, (∗)

then Ω− := limt→∞eitHe−itH0 exists and, consequently, [0,∞) ⊂ σac(H),
i.e., there are scattering states for H and any nonnegative energy.

The typical application rests on the fact that (∗) is satisfied if

|V (x)| ≤ C(1 + |x|)−(1+ε), (∗∗)

a condition that obviously fails to hold for almost every Vω provided the pk

are not summable. However, the following nice result holds; see Hundertmark
and Kirsch [49] who also provided the absolutely correct name:

Theorem 2 (Almost surely free lunch theorem) Assume that

W (x) :=
(
E(Vω(x)2)

) 1
2

!
≤ C(1 + |x|)−(1+ε).

Then Vω satisfies Cook’s criterion for a.e. ω.

The proof is so elegant and short that we can not resist to reproduce it
here.

Proof.

E

(∫ ∞

T0

‖Vωe−itH0φ‖dt

)

=
∫ ∞

T0

E

(∫
Vω(x)2|e−itH0φ(x)|2dx

) 1
2

dt

=
∫ ∞

T0

(
E

∫
Vω(x)2|e−itH0φ(x)|2dx

) 1
2

dt
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≤
∫ ∞

T0

(∫
E(Vω(x)2)|e−itH0φ(x)|2dx]

) 1
2

dt

=
∫ ∞

T0

‖W (x)e−itH0φ‖dt 
�

One can apply this result if the pk decay fast enough to guarantee sufficient
decay of W (x). On the other hand one wants to have that

∑
k pk = ∞, since

otherwise Vω has compact support a.s. by the Borel–Cantelli Lemma.
For fixed d ≥ 3 and d

2 + 1
2 < α < d and pk ∼ k−α one can moreover

control the essential spectrum below 0 as done in [49]: the negative essential
spectrum consists of a sequence of energies that can at most accumulate at
0. Therefore, the negative spectrum is pure point. This can be summarized in
the following picture:

Fig. 15.2. The spectral picture for the sparse model I

We refer the reader to [49] for more on sparse random potentials, especially
for models for which the negative spectrum has a richer structure and contains
intervals.

Remarks 3 In [17] we prove absence of an (absolutely) continuous spectrum
outside the spectrum of the unperturbed operator for certain random sparse
models reminiscent of Model I above and Model II from [49] but considerably
more general. We use the techniques from [52, 90, 91].

15.3 Random surface models

Consider the following self-adjoint random operator in L2(Rd) or �2(Zd), Rd =
Rm × Rd−m:

H(ω) = −∆ + Vω, where Vω(x) =
∑

k∈Zm

qk(ω)f(x − (k, 0)),

the qk are i.i.d. random variables and f ≥ 0 is a single site potential that
satisfies certain technical assumptions. This leads to the following geometry
characterizing random surface models. Sometimes the upper half-plane is con-
sidered only.
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There is a lot of literature, mostly on the discrete case, using a decompo-
sition into a bulk and a surface term see; [5, 18, 21, 46, 50, 51, 54, 53, 55, 56].

The moral of the story is the appearance of a metal insulator transition
at the edges of the unperturbed operator. We now concentrate on the contin-
uum case, where we only know of [16, 49] as references. The existence of an
a.c. component is proven in [49]. In the following, we present the result from
[16], giving strong dynamical localization. Similar but somewhat different re-
sults have been announced in [49]. As discussed there, an additional Dirichlet
boundary condition “stabilizes” the spectrum so that the appearance of a
negative spectrum requires a certain strength of the random perturbation.
Therefore, proving localization at negative energies is easier (compared to the
case without Dirichlet boundary conditions) since one is automatically dealing
with a “large coupling” regime.

In [16], no use is made of an additional Dirichlet b.c. and we have the
following picture:

Fig. 15.3. A typical realization of a continuum random surface potential

It is not hard to see that

σ(H(ω)) = [E0,∞) where E0 = inf σ(−∆ + qmin · fper),

and

fper =
∑

k∈Zm

f(x − (k, 0))

denotes the periodic continuation of f along the surface. Near the bottom of
the spectrum E0 one expects localization, i.e., suppression of transport as is
typical for insulators. For nonnegative energies one expects extended states.
To stress the existence of a metallic phase let us cite Theorem 4.3 of [49] t

Theorem 4 Let H(ω) be as below. Then we have, for every ω ∈ Ω: [0,∞) ⊂
σac(H(ω)).

The idea of the proof is that a wave packet with velocity pointing away
from the surface will escape the influence of the surface potential and is asymp-
totically free. The rigorous implementation of this idea uses Enss’ technique
from scattering theory.
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The model (1) 0 < m < d and points in Rd = Rm × Rd−m are written as
pairs, if convenient;

(2) The single site potential f ≥ 0, f ∈ Lp(Rd) where p ≥ 2 if d ≤ 3 and
p > d/2 if d > 3, and f ≥ σ > 0 on some open set U �= ∅ for some σ > 0.

(3) The qk are i.i.d. random variables distributed with respect to a proba-
bility measure µ on R, such that suppµ = [qmin, 0] with qmin < 0.

We will sometimes need further assumptions on the single site distribution
µ:

(4) µ is Hölder continuous, i.e., there are constants C, α > 0 such that

µ[a, b] ≤ C(b − a)α for qmin ≤ a ≤ b ≤ 0.

(5) Disorder assumption: there exist C, τ > 0 such that

µ[qmin, qmin + ε] ≤ C · ετ for ε > 0.

Fig. 15.4. Conclusion and open problems for the continuum surface model

What follows is the main result of [16].

Theorem 5 Let H(ω) be as above with τ > d/2 and assume that E0 < 0.
(a) There exists an ε > 0 such that in [E0, E0 +ε] the spectrum of H(ω) is

pure point for almost every ω ∈ Ω, with exponentially decaying eigenfunctions.
(b) Assume that p < 2(2τ − m). Then there exists an ε > 0 such that in

[E0, E0 + ε] = I we have strong dynamical localization in the sense that for
every compact set K ⊂ Rd:

E{sup
t>0

‖|X|pe−itH(ω)PI(H(ω))χK‖} < ∞ .

A consequence is a pure point spectrum in the interval [E0, E0 + ε] = I.
Together with the previous result on extended states we get the picture from
Figure 15.4 that still leaves open some important questions.

Remarks 6 (1) That we have to assume E0 < 0 was pointed out to us by J.
Voigt. Since we allow arbitrary m and d−m, a negative perturbation will not
automatically create a negative spectrum.

(2) In [17] we will present results that cover the negative spectrum for the
model above using techniques from [52, 90, 91]. So far this works only for
m = 1 but the proofs allow quite arbitrary background perturbations.
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