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ABSTRACT. We carry out a careful study of basic topological and ergodic features of
Delone dynamical systems. We then investigate the associated topological groupoids
and in particular their representations on certain direct integrals with non constant fibres.
Via noncommutative integration theory these representations give rise to von Neumann
algebras of random operators. Features of these algebras and operators are discussed.
Restricting our attention to a certain subalgebra of tight binding operators, we then discuss

a Shubin trace formula.

INTRODUCTION

The study of disorder is one of the most important issues today. In mathematical
models of solid state physics order or disorder are expressed in terms of the hamiltonian
that drives the system. The latter operator appears in thed&icdger equation and its
properties are used to describe the electronic properties of the solid under consideration.

Both order and disorder can be cast in the framework of parametrized operators. Let
us be a little more precise on that point. We start at one extreme: a perfectly orderered
solid, an ideal crystal. Since the atomic positions belong to a laftizethis case, the
hamiltonian exhibits a corresponding translational symmetry. This symmetry is encoded
in the quotientX/T" of the underlying spac& € {R? Z4} which leads to a family
of operators parametrized by /T". As elementary as this observation is, it leads to a
number of important consequences. One of these consequences concerns the nature of the
spectrum and the dynamics of the hamiltonian: periodic operators (at least under some
additional assumptions) have purely absolutely continuous spectrum and only extended
states. The other extreme case concerns models that are statistically independent at distant
parts of space. Important and well studied are models of Anderson type for which the
parameter space is typically of the fodih , I a compact interval ilR. For these models a
completely different spectral and dynamical picture is expected with energy regions filled
by dense pure point spectrum with localized eigenfunctions and absence of mobility. The
key notion is localization, a phenomenon that is rigorously proved in certain cases, see
[7, 28, 36]. The models we want to study are situated in between ordered (e.g. periodic)
and heavily disordered (e.g. Anderson models) and are used to describe quasicrystals. The
discovery of quasicrystals (see the celebrated 1984 paper [32]) has led to an impressive
research activity. However, mathematically rigorous results concerning the spectral theory
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and dynamics of quasicrystalline Sédinger operators are somewhat rare except for one
dimensional papers.

In the present paper we report on some basic issues concerning the treatment of the
multidimensional case. Namely, we describe how Delone dynamical systems of finite
type can be used as the relevant parameter spaces. It turns out that there are aspects
common with the one dimensional situation: local finiteness and a hierarchical order.
There is one important difference as well: a more complicated geometry and the absence
of a lattice structure. This leads to complications concerning the parametrized family of
hamiltonians that appears. The latter are defined on different Hilbert spaces. The first
point we mentioned is reflected in the strong ergodic properties that are the same as in the
one dimensional case. The second point leads to the lack of spectral consequences that
follow from these ergodic properties.

At this point let us end this general preview and refer the reader to the main text for
more details. Instead we go on to relate our results to what can be found in the literature:

Various features of Delone sets and tilings have been considered in the literature. See,
e.g., [6, 17, 19, 20, 21, 22, 31, 34, 35] and the literature cited there. However, as will be
seen in Section 1 below there are certain misunderstandings concerning the problem of
defining a suitable topology on the set of Delone sets.

On the other hand, a thorough study of “almost random operators” in an algebraic
setting focusing otk -theory can be found in [3, 4, 5]. This has been taken up by Kellen-
donk who introduced certaifi*-algebras associated to tilings and studied theitheory
[15, 16], see [1, 17, 29] as well. In fact, we have been inspired by these works although
they do not cover all the results mentioned here. Our focus is rather on general features of
random operators associated to tilings. These features include (almost sure) constancy of
the spectrum and its various parts, absence of discrete spectrum and validity of a Shubin
trace formula.

The important method here is Connes nhoncommutative integration theory, which we
use to associate a von Neumann algebra to Delone dynamical systems. We should stress
that this does not mean to associate in some general fashion a von Neumann algebra to
a dynamical system. Rather we use the specific situation at hand as well as the guidance
provided by the physical background.

Acknowledgement. It is our pleasure to acknowledge fruitful correspondence with J.
Lagarias, P. Pleasants and B. Solomyak. Moreover, both authors are grateful for finan-
cial support from the German Science Foundation in the priority programs “Interacting
stochastic systems of high complexity” and “Quasicrystals”.

1. GENERALITIES ONDELONE SETS

The aim of this section is to recall standard concepts from the theory of Delone sets
and to introduce a suitable topology on the closed sets in euclidian space.

We will be concerned with Delone setsRf. A subsetw of R? is called aDelone
setif there exist0 < r, R < oo such that < ||z — y|| wheneverz,y € w with = # y,
andBg(r) Nw # 0 for all z € R<. Here, the Euclidean norm dkf is denoted by - ||
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and B, (x) denotes the (closed) ball R? aroundz with radiuss. The setv is then also
called an(r, R)-set. We will be particularly interested in the restrictions of Delone sets to
bounded sets. In order to treat these restrictions, we introduce the following definition.

Definition 1.1. (a) A pair (A, Q) consisting of a bounded subsgtof R? andA C Q
finite is called a pattern. The s@tis called the support of the pattern.

(b) A pattern(A, Q) is called a ball pattern i) = B, (z) with = € A for suitablexr € R¢
ands € (0, c0).

The pattern(A;, Q1) is contained in the patterfAs, Q2) written as(A1, Q1) C
(A2, Q9) If Q1 C Q2 andA; = @1 N A,. Diameter, volume etc. of a pattern are
defined to be the diameter, volume etc of its support. For patt€ins- (A;,Q;) and
Xo = (Ag,Q2), we definetx, X5, the number of occurences &f; in X5, to be the
number of elements ift € RY: Ay +1 C Ay, Q1 +1 C Q).

For further investigation we will have to identify patterns which are equal up to trans-
lation. Thus, on the set of patterns we introduce an equivalence relation by setting
(A1,Q1) ~ (As,Q-) if and only if there exists @ € R? with A; = A, + ¢ and
Q1 = Q2 + t. In this latter case we writéA1, Q1) = (A3, Q2) + t. The class of a
pattern(A, Q) is denoted byj(A, @)]. The notions of diameter, volume, occurence etc.
can easily be carried over from patterns to pattern classes.

Every Delone set gives rise to a set of pattern class@w) viz P(w) = {Q A
w : Q C R bounded and measurabjeand to a set of ball pattern classBg(w)) =
{Bs(x) N\w:z € w,s > 0}. Herewe se@ Aw = [(wN Q, Q)]

Fors € (0,00), we denote byP;;(w) the set of ball patterns with radius note the
relation withs-patches as considered in [19]. A Delone set is said to fieité typeif for
every radius; the setP3 (w) is finite. We refer the reader to [19] for a detailed discussion
of Delone sets of finite type.

Next we introduce a suitable topology on the set of closed subs&é.oflthough
it is basically known how this can be done, we will take some care. Actually, it turns
out that certain statements in [20, 35] concerning this issue are, while morally true, not
completely correct ;-)

Denote byF (R?) the set of closed subsetsRf and recall that there is a natural action
T of R on F(R?) given byT;G = G +t. We aim at a topology orF (R¢) that fulfills
two requirements: the actidfi should be continuous and two sets that are close to each
other with respect to the topology are supposed to be such that their finite parts have small
Hausdorff distanceThe latter can be defined by

dH(Kl,KQ) = iIlf({€ >0:K; C Us(KQ) NKy C UE(Kl)} U {1}),

whereK, K, are compact subsets of a metric spé&ed) andU. (K) denotes the open
e-neighborhood around’. The extral is to deal with the empty set that is included in
K(X) := {K Cc X : K compac}. Itis wellknown that(}C(X),dy) is complete if

(X, d) is complete and compact(fX, d) is compact. Quite often, the Hausdorff distance

is defined between nonvoid compact sets only. The way we defingdsitadded as an
isolated point. For our purposes later on it will be important to have the empty set at our
disposal and it will no longer be an isolated point.
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A natural first attempt to define a suitable topology goes as follows. Abbreviate
B,.(0) =: B, andK(B,) := K, which is a compact metric space by what we just men-
tioned. We call the initial topology off (R?), induced by the restriction mappings

Jr: FRY — Kg,F— FNBr,R>0

thetopology of local Hausdorff convergend@ef course this topology satisfies the second
requirement listed above. However a serious problem connected with that topology comes
from the fact, tha#” andG might be closer in Hausdorff distance them B, andG N By,
as two relatively close portions df andG might just lie inside respectively outside the
ball Bi. Put differently, the restrictio®” — F N B,. is by no way a contraction froik
to k.. In particular,I” does not act continuously. Consider, elg.— Z € F(R); for any
t € (0,1) we get that

dp ((TyF) N By, F'N By,) = max{|t|,1 — [t|}.

Consequently, forany > 3 andt € (0, 1), T, F' ¢ Vi.(F). To circumvent this lamentable
fact we introduce

dp(F,G):=inf({e >0: FN B, CU.(G)ANGN B, CU.(F)}U{1}),

a measure for the distance Bfand G that is monotone in the cutoff parameteri.e.,
di(F,G) < dg+1(F, G). Moreover,d,(F,G) < dg(F N By, G N By). Unfortunately,
thed do not satisfy the triangle inequality. To see this, consideR, ithe casé = 1 and

the setsF" = {1 —¢},G = {1 + ¢}, H = 0, leading tod (F,G) = 2¢, di(G,H) =0

butd (F, H) = 1 (if € is small enough).

We use them to define a topology coarser than the topology of local Hausdorff conver-

gence via the neighborhood basis

U k(F) :={G € F(RY) : dy(F,G) < e}, > 0,k € N;

we call the corresponding topology,.; the natural topology By the definition ofd,
it is clear thatdy, (T, F, F) < |t| for any F € F(R%),t € R? so that translations are
continuous. Fortunately this topology has nice compactness properties as seen in:

Theorem 1.2. F(R%) endowed with the natural topology,,; is compact.

Proof. Let (F,),c; be a net inF(R?). We use thatC;. , 1 is a compact metric space

for everyk. Therefore,(F, N BH%)LQ has an accumulation poilﬂkJr% in ICH% for
everyk and we find a subsequence converging in the Hausdorff metric. By a standard
diagonal argument we can arrange a common subsequence, (@J])it.cn, such that

(Fn N BH%)meN converges tco?k+% for everyk € N;

C:=J Ciss
keN
is a good candidate for the limit of tHé,,) in the natural topology. Let us first note that
CﬁBkZCk+%ﬁBk (*)

(This is clear but it is here that the- + % in the definitions above gets important. It is
not true in general that' N B, ;1 = Cyy 1 N By, 1. We will meet this kind of effect
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again later when discussing the lack of compactness for the topology of local Hausdorff
convergence in the paragraph following the present proof.) Regrit follows thatC' is
closed. We have to show that

di(Fpn,C) — 0asm — oo

for anyk; so fix k. If
1> 6y, >da(Fnn Bk%,()k%)
we get that
CNBp CCrpy CUs, (Frn N Byy1)
by definition of the Hausdorff metric. Conversely,

F,,N By C FmﬂBkJr% C U[;,"L<Ck+%) Cc Us (C)

m

Put together, we get
dk (Fm; C) < 5m
for ém > du (Frn N By 1, Cryn), e,

di(Fm,C) < dg(Fn N By 1, Cry1)

and the latter tends t@asm — co. Thus we have proved that every netAifR¢) has a
converging subsequence. O

Note that, interestingly, no additional properties are needed for compactness. Of
course, this result immediately gives compactness of certain subsets of the set of all De-
lone sets, e.g. compactness of the union dvef the (r, R)-sets for any fixed value of
T.

One might think that the topology of local Hausdorff leads to a compact space as well,
since in this topologyF(R?) is considered as a subset of the product ofithg which
is compact by Tychonovs theorem. However, it is not closed, as seéf fer {1 + %};
of course,R = 1 is the crucial value. This latter sequence also shows directly that the
topology of local Hausdorff convergence is not compact and not too natural either ;-)

We will also use the natural topology to define a topology on tiling spaces in a quite
general setting.

Let us note in passing that the mettiproposed in [35] as well as the metric in [20]
do not satisfy the triangle inequality and that these metrics are restricted to Delone sets.
This is again due to the phenomenon alluded to above, namely that restricting sets does
not make the Hausdorff distance smaller. See, however, [22], in which a metric on the set
of Delone sets is constructed. A discussion in a more general framework can be found
in [30], where the author constructs a topology on the set of closed discrete subsets of
a locally compact-compact space. In the case®f this topology coincides with the
restriction of the above given natural topology.

To settle the issue of metrizability of the natural topology we next mention an alterna-
tive approach. The method we are going to outline now has most definitely been pointed
out to us by someone else. Unfortunately, we were not able to find out by whom.

We use the stereographic projection to identify points R? U {co} in the one-point-
compactification oR? with the corresponding points € S¢. Clearly, the latter denotes
thed-dimensional unit sphe® = {¢ € R4+ : ||¢|| = 1}. NowSH carries the euclidean
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metric p. Since the unit sphere is compact and complete, we can associate a complete
metric py; on K (S%) by what we said above.
For F' € F(R?) write F for the corresponding subset®f and define

p(F,G) == pr(F U {0}, G U [oo}) for F, G € F(RY).

Although this constitutes a slight abuse of notation it makes senseBincex}, G U {oo}
are compact i8? providedF, G are closed iR¢.
We have the following result:

Proposition 1.3. The metricp above induces the natural topology Gi{R9).

Proof. An explicit calculation of the stereographic projection shows that
— 42
1) p(@,0) < 7—
(]

for x € R4 as well as

¥y p(7,7) < 2l|z — yl.
We want to show that the identityl : (F(R9), 7,,4¢) — (F(R?), p) is continuous. Since
(F(RY), Tq¢) is @ compact space this implies thdt: (F(R?), 7,4:) — (F(R?),p) is
in fact a homeomorphism. To prove the desired continuity/fix F(R¢) ande > 0.
We have to find a basic neighborhobil, that is contained in the- ball aroundF” (with
respect tg, of course). To this end choogec N such thatl2/k < € andé = /2.

This is a good choice; in fact, |t € Us ;.. CombiningF' N By, C Us(G) with (2) we
get that

3) FO By UL(G),

where the superscriptindicates the underlying metric space. By (1) and the choide of
we know that

—_~—

(a) F (B U {o0}) C UP(GU{o0}).
Relations (3) and (4) together yield that
FU{oo} € UP(GU {o0}).
The corresponding relation with andG interchanged follows in the same way so that
pr(FU{oo}, (GU{oo}) <e.
This proves the asserted continuity. d

Next, we define Delone dynamical systems, following [21] and single out some impor-
tant properties:

Definition 1.4. (a) LetQ) be a set of Delone sets. The pé&i, T') is called aDelone
dynamical systeniDDS) if 2 is invariant under the shifi’ and closed in the natural
topology.

(b) ADDS (2, T) is said to be ofinite typeif U, cqP5(w) is finite for everys > 0.

(c) Let0 < r,R < oo be given. A DDS(Q2,T) is said to be arfr, R)-systenif every
w € Qisan(r, R)-set.
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(d) The setP(Q2) of pattern classes associated to a DDSis defined byP(Q}) =
UweQP(W).

Remark 1.5. (a) Wheneve(2, T') is a Delone dynamical system, there existdar 0
with Br(x) Nw # () for everyw € Q and everyx € R?. This follows easily a$2 is
closed and invariant under the actioniaf

(b) Every DDSF is arfr, R)-system for suitablé < r, R < co.

(c) Letw be an(r, R)-set and let?,, be the closure of T;w : t € R} in F(R?) with
respect to the natural topology. Thén,,, T') is an(r, R)-system.

For a DDSF, there is a simple way to describe convergence in the natural topology.
This is shown in the following lemma. We omit the straightforward proof.

Lemma 1.6. If (2,7) is a DDSF then a sequence,,) converges tav in the natural
topology if and only if there exists a sequerfég) converging to0 such that for every
L > 0thereis amy € N with (w,, +t,) N By, =w N By, forn > nyg.

We will need standard notions from the theory of dynamical systems. Namely, a DDS
is calledminimalif every orbit is dense. Itis calleghiquely ergodidf there exists exactly
oneT-invariant probability measure. Itis callegeriodicif 7; does not have a fixed point
for anyt # 0.

Fors > 0 and@ € R?, we denote by, the set of points ilR? whose distance to
the boundary of) is less thars. A sequencé(@,,) of bounded subsets &¢ is called a
van Hove sequence if),,|~*|0sQ,| — 0,n — 0 for everys > 0.

Theorem 1.7. Let (2, T) be a DDSF. Ther{©2, T") is uniquely ergodic if and only if,
for every pattern clas® the frequencyim,, ... |Q,| 'tr(w A Q) exists uniformly in
w € () for every van Hove sequengg,.

Remark 1.8. After a first version of the present paper was on the web, B. Solomyak
kindly informed us of the work [22] by Lee, Moody and Solomyak. As [22], Theorem
2.7 the reader can find a result analogous to the preceding Theorem.

Proof. For the “if” part we can refer to [34], Theorem 3.3. There, it is additionally as-
sumed that the tiling dynamical system has the local isomorphism property. The latter is
only used, however, to guarantee that frequencies are strictly positive. We will describe
how to pass from Delone dynamical systems to tilings in detail later.

For the “only if” part we construct a continuous function Qrthat essentially counts
occurences of a fixed pattern. Here are the details:

Fix 0 < r < R such that is an(r, R)-system. We fix a patter® = (Ap, Qp) with
0 € Ap and diameteR . Moreover, we choose an auxiliary functigre C,(R4), g > 0
with support contained i3 and normalized tq g(z)dz = 1. With the help ofg we
define

fr: Q=R fp(w)=g@)iff QpA(w+t)=P
(where such ais uniquely determined in cagét) # 0) and0 if no translate of® appears
in w. We consider all the points af at which a copy of? is centered, namely

S, :=1{sn € R?: Qp A (w4 sp) =P}
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and remark that the distinct points 6f, have distance at leastsince2 is an (r, R)-
system. Using the s&,, we get
=> g(s
and, therefore,
/pr(w—i-t)dt = Z/ g(sn —
R

B (sﬂ)ﬁQ?é@

Thus, if we let

= {y € Q Y+ BRP+T C Q}7Q+ = UT(Q)?
we get that
tPQANw=#{n:s,+Qp CQ}

along with the inequalities

fr+0dt < #{n:By(s.) Q™ # 0}
o-
< tpQAw=#{n:s, +Qp C Q}
< #{n:By(s,) C Q)
< / folw+ t)dt.
Qt
Now, take a van Hove sequen@@,,). Then, since{Q, T) is uniquely ergodic,
lim fp(w +t)dt = lim —— frlw+t)dt = / fr(w)du(w),
n—oo |Qn| n—oo |Qn| Qn Q
wherey is the umque normalized invariant measure. Similarly,
hm— ertdt:/ w)du(w).
Ao RCRR) .QfP( Jdp(w)

n

Using the inequality above, we now find that

1
Vom| fr(w+ T iP@n < fp(wt)at
|Qn| Qn P( ) IQn‘ P |Qn‘ n P( )
and consequently that
Jim 5t0Qu = [ frlw)du)
uniformly in w. O

In order to take advantage of the analysis from the theory of tilings, let us now relate
Delone dynamical systems and tiling dynamical systems. To do so, we start with a slight
generalization of what can, e.g., be found in [34]. For the readers convenience we will
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repeat all the necessary definitions. We follow mainly [34] (see [31] as well) although we
rephrase some notions slightly.

A tile is just a setl” that agrees with the closure of its interior.tiing S is a count-
able family.S = (T;,) of tiles with disjoint interiors covering the whole spaRé. It is
sometimes very useful to supply tiles with an additional mark or decoration. To do so,
consider a finite set called the alphabet or the setagcorations An A-decorated tiling
S consists of a countable family = ((7},, an))nen Such that(7),) is a tiling and the
decorations of two tiles agree only if the tiles are translates of each other. Following [34]
we also call,, thetypeof the tileT,,.

In order to describe a convenient topology for tilings let us first ignore decorations.
Then, the natural topology provides a suitable topology. In fact, let us call

$(S) = UndT,

the shape of the tiling = (7;,) andX the shape map acting from the geof all tilings
to F(R?). We call the initial topology with respect to the shape mapnthiiral topology
on7. On the space ofi-decorated tilingg, we define the shape map as

Sa Ta — FRYY, (To, an)) = (U{0Ty = an = a})aca-

Note that in the case of nonconnected tiles the shape map might loose some information.
This won't bother us in what follows, since we are dealing with convex polygonal tiles.

Definition 1.9. (a) Let X C 7, be a set ofA-decorated tilings. The paiX, T) is called
anA-tiling dynamical systemA-TDS, if X is invariant under the shiff = (T});cg« and
closed in the natural topology.

(b) An A-TDS (X, T) is said to be ofinite type if there is a finite set of tile® such
that every tile from one of the tilings iX is the translate of one of the tiles in

Next we describe the Voronoi construction. It enables us to pass from Delone dynam-
ical to decorated tiling dynamical systems. See the discussion in [19], Section 2 as well.
There, the reader will also find an account of Belone tesselatigra possibility to pass
from Delone sets to tilings that goes back to Delone (Delaunay), [10].

Letw C R? be a Delone set; far € w define

T(x,w) = {yeR":d(zy)<dy,w)}
= {yeR":fz—yll<lz—yl (zew)}
Clearly,T'(z,w) is the convex hull of finitely many points, a polygon, called the Voronoi
cell ofw aroundz. If wis an(r, R)-set, it follows that
Br(z) C T(x,w) C Bag(x).
Moreover,
Sw = (T(z,w))zew

defines a tiling ofR?. In this way, we get a TDS(q = {S,, : w € Q}. ltis clear that

V:.Q—- Xqg,w— S,

is continuous and respects translations.
Unfortunately,V doesn't need to be injective. In fact, you will easily find different
periodic sets (e.gZ and (1 + 2Z) U (2 + 2Z)) that lead to the same Voronoi tiling.
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However, decorations can help to recover the original Delone set in the DDSF case. In
fact, starting from a DDSF define

A:={(wNBar(x) —z,T(z,w) —z) = a(z,w) :w € Q,z € w},
which is a finite set if2 is of finite type. Define
V:Q— XAV, = ((T(z,w),a(z,w))ren-

It is not hard to see that we can reconstr@drom X4 and thatl” is an isomorphism of
dynamical systems.

Therefore, we can use analogs for Delone dynamical systems of the results from [34]
on ergodic properties of tiling dynamical systems.

For a quite different approach to the topology on the set of Delone sets we refer to [6],
where Delone sets are identified with the sum of delta measures sitting at the points of
the Delone set. Then one has th&-tepology on the set of measures at ones disposal,
providing good compactness properties. The approach presented here has the advantage
that a topology is induced on the set of closed sets. That can be used to define a topology
on (decorated) tilings via the shape map.

2. GROUPOIDS AND NON COMMUTATIVE INTEGRATION THEORY

In this section we introduce groupoids and basic notions from Connes non-commutative
integration theory.

We will be concerned with several locally compact topological spaces. Given such a
spaceZ, we denote the set of continuous functionsbwith compact support bg'.(2).
The support of a function i€.(Z) is denoted by sudy). The topology gives rise to
the Borelo-algebra. The measurable nonnegative functions with respect io-tigebra
will be denoted byF* (7). The measures off will be denoted byM (Z).
A setG together with a partially defined associative multiplicatiog? € G x G —
G, and an inversion-1 : G — G is called a groupoid if the following holds:

(97"t =gforallgeg,

If g1 - g2 andgs - g3 exist, thery; - g- - g3 exists as well,

g~ ! g exists always and~! - g - h = h, whenever - h exists,
h - h~! exists always ang - k- h~' = g, whenever - h exists.

A groupoid is called topological groupoid if it carries a topology making inversion
and multiplication continuous. Here, of coursex G carries the product topology and
G? C G x G is equipped with the induced topology.

A given groupoidg gives rise to some standard objects: The sug8et {g- g~ ' :

g € G} is called the set ofinits Forg € G we define itvanger(g) by r(g) = g - g~ *
and itssourceby s(g) = g~ - g. Moreover, we se§“ = r~!({w}) for any unitw € G°.
One easily checks that- h exists if and only ifr(h) = s(g).

By a standard construction we can assign a grougdfd, 7') to a Delone dynamical
system. As a sef(Q2,T) is justQ x R™. The multiplication is given byw, z)(w —
x,y) = (w,x + y) and the inversion is given by, z)~! = (w — z, —z). The groupoid
operations can be visualized by considering an elerfient) as an arrono — z ——
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w. Multiplication then corresponds to concatenation of arrows; inversion corresponds to
reversing arrows.
Apparently this groupoid; (2, T') is a toplogical groupoid whef? is equipped with
the topology of the previous section aRé carries the usual topology.
The groupoidj (2, T') acts naturally on a certain topological spaeThis space and
the action ofG on it are of crucial importance in the sequel. The sp&ds given by

X ={(w,z) €G:xew} CG(T).

In particular, it inherits a topology forrg (2, 7). Two features of the topology are given
in the following proposition.

Proposition 2.1. (&) X C G is closed.

(b) Let (22,T) be an(r, R)-system and € Q andxz € w be arbitrary. Then there
exist a neighbourhood’ of w € € and a continuous functioh : U — Bz (z) with
w'N Bz (z) = {h(w')} for everyw' € U.

Proof. (a) Let((w,, z,),cr) be a netint converging taw, z) € G. Thus,w, — w and
x, — x and it remains to show € w. Assume the contrary, i.e. ¢ w. Asw is closed,
there exists @ > 0 with Bs(z) Nw = 0. Thus,w, — w impliesw, N B%(x) = () for all
i large. But this is a contradiction tg — .

(b) By the definition of the topology, there exists a neighbourhﬁwf w with ' N
Br(x) # 0 for everyw’ € U. As (Q,T) is an(r, R)-systemw’ N Bz (~a:) consists of
only one element. Denoting this element/by’), we get a functiorh : U — B: ().
Continuity of is now a direct consequence of the definition of the topologf2on [

Remark 2.2. Note that the proof of part (a) does not use tfat a set of Delone sets.
Thus, the corresponding statement remains valid wherieiea subset ofF (R?) which
is closed in the natural topology.

Corollary 2.3. C.(X) ={flx: f € C.(9)}.

Proof. As X is closed inG be the foregoing proposition, this follows by standard argu-
ments involving Uryson’s Lemma. O

A key feature ofX’ is its bundle structure. More precisely, we have a continuous map
p: X — Q,p((w,r)) = wmakingXx into a bundle ovef? with fibresx = p=1(w) =
{(wp):pew)}t ~w R

Now, we can discuss the action gfon X. Everyg = (w,z) gives rise to a map
J(g) : x°9@) — X7 J(g)(w — z,p) = (w,p+ x). A simple calculation shows that
J(g192) = J(g1)J(g92) andJ(g~) = J(g)~ !, whenevers(g;) = r(g2). Thus,X is
ang-space (see [24]). Theskspaces are important objects in Connes non-commutative
integration theory. They give rise to random variables. More precisely we have the fol-
lowing definition.

Definition 2.4. Let (2, T") be an(r, R)-system.
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(a) A choice of measures : Q@ — M(X) is called a positive random variable with
values inX if the mapw — (3“(f) is measurable for everf € F*(X), 8¢ is supported
onX¥, i.e.,p¥ (X — X¥) =0,w € Q, andg satisfies the following invariance condition

/ FI@)p)ds* ) (p) = / H@)dsm (q)
Xs(9)

xr(9)
forallg € Gandf € FH(xr).
(b) AmapQ x C.(X¥) — C is called a complex random variable if there exist an
n € N, positive random variables;, i = 1,...,nand\; € C, ¢ = 1,...,n with

B(f) = Siy BE(S)-

We are now heading towards introducing and studying a special random variable. This
variable is quite important. It will give rise to th&-spaces on which the Hamiltonians
act. Later we will see that these Hamiltonians also induce random variables. We will need
some information on the continuous functionsAn

Proposition 2.5. LetQ) be an(r, R)-system.

(@)Letg € C.(X) be given. Then, the functier(g) : @ — R,a“(g) = >, 9(w,p)
belongs taC,(X).

(b) For g € F*(&) the functiona(g) : @ — R, a¥(g9) = 3_ ., 9(w, p) is measur-
able.

Proof. (a) We fixw, € 2 arbitrary and show continuity af(g) atwy. As g has compact
support, there exists > 0, with g(w,p) = 0 wheneverp ¢ B,. Apparently,wy N
B, is finite. Thus, there exist8 € N and pairwise different, ...z, € R? with
{a1,..., 2} = wo N Bsyr. By Proposition 2.1, there exit ¢ Q with wy € U and
h; + U — Bz (z;) continuous with{h;(w)} = Bz (z;) Nw for everyw € U, i =
L....k. As(Q,T) is an(r, R)-system, theB: (z;) are pairwise disjoint. By definition
of the topology o2, we can findU C U such that

wNBs C{hiw):i=1,...,k} forallw e U .

(Note that the ball appearing on the left hand side of this inclusion has radius strictly less
thanr + s.) Thus, forw € U, the following holds

k

alg)w) = Y. glwp) = glwhiw)

pEWNB(0,5) i=1
and the desired continuity follows. It is not hard to see th@t) has compact support.

(b) This follows from (a) by standard monotone class arguments. O

As apparentlyy” (h) = a“**(h(- —z)), we immediately have the following corollary
from part (b) of the Proposition.

Corollary 2.6. The mapx : @ — M(X), a®(f) = >_ ., f(p) is arandom variable
with values in.
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Now Ietu be a measure oft. By (b) of Proposition 2.5, we see th@ti o a)(g) =
Jo ¥ (g) du(w) exists for everyy € C.(X). The following is the key lemma on integra-
tion of random variables.

Lemma 2.7. Let i beT-invariant (i.e. u(f) = p(f(- —t)) for everyt € R™).

(a) Let 3 be a nonnegative random variable. Thén“(F(w,-)) du(w) does not
depend orF" € F*(X) providedF satisfies| F((w +t,z +t) dt = 1 for every(w, z) €
X.

(b) Let 5 be an arbitrary random variable/,, 5 (F(w, -)) du(w) does not depend on
F € FH(X)NC.(X) providedF satisfies| F((w+t,z+t) dt = 1 for every(w, z) € X.

Proof. (a) This follows from [9] (see [24] for a discussion as well).
(b) This is an immediate consequence of (a). O

It is instructive to consider a special instance of the lemma. Namely, congider
C.(R™). Apparentlyf gives rise to a functiod’y € C.(X) given byF((w,z)) = f(z).
Now, let u be an invariant measure éhand/ a random variable. Then, the invariance
properties ofx and show that the functiondl : C.(R") — R, I(f) = (p o a)(Fy) is
translation invariant and positive. By uniqueness of the Haarmeas(Reé,ame infer that
there exists a constant ) with pio 6(Fy) = A(8) [g. f(t) dt. This shows, in particular,
that the integralf, 5 (Fy(w,-)) du(w) does not depend ofi > 0 provided f satisfies
Jgn f(t)dt = 1.

Let an invariant measureon €2 and the random variable as above be given. We can
then introduce the spade’ (X, u o ). The bundle structure 6t and ofa suggest, that
this space can be considered as a direct integral. This means we aim at giving sense to the
equation

S2]
(5) LQ(/'\,’,,uooz):/Q (X%, a”) du(w).

As the fibres in this direct integral are not constant, we need to be careful about the notion
of measurability. More precisely, we need to introduce asef functions f on 2 with
flw) € (X%, a®), w € Q, satsifying the following properties
(V) Vis a vectorspace under the the obvious operations((f.e- g)(w) = f(w) +
g(w) and(\f)(w) = Af ().
M) w— (f(w),g(w)). is measurable for arbitrarf;, g € V. Here,(, )., is the inner
product ond? (X« a*).
(S) If fisafunction o with f(w) € 2(X*,a*),w € Qandw — (f(w), g(w))w
measurable for every € V, then f belongs toV as well.
(D) There exists a countable sBtC V such that the seftd(w) : d € D} is total in
22(xv av) for everyw € Q.
Such a set will be called a measurable structure on the fdifilyt, o)) ,cq. Note,
that the conditior{ M) says that the functions i have a certain measurability property.
Condition(.S) is a maximality assumption.

Given the special structure &f, we can actually identify functiong on Q2 with values
in £2(x*, a*) with functions onX. This will be done tacitely in the sequel. There are at
least three good canditates for measurable structures. They are given as follows:
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e The set; consists ofallf : X — C which are measurable and satigfy, ) €
22(xv, av) for everyw € Q

e The set), consists of allf : X — C such thatf(w,-) € 2(X“,av), for all
we Q,andw — (f(w,"), F(w, ")), is measurable for alf’ € C.(X).

e Finally, the set; is given by allf : X — C such thatf(w, ) € £2(X¥,av),
forallw € Q, andw — (f(w, "), F(w,-)), is measurable for ali" € C.(G).

Itis not too hard to check that these are all measurable structures. In fact, they are even
equal. This is shown next.

Proposition 2.8. V; =V, = V3.
Proof. The equality of; andVs is immediate from Corallary 2.3.

V1 C Vo: Let f € V; be given. Without loss of generality we can assume phat
is the characteristic functiog,, of a measurable sét/f C X with M Nw C B(0,s)
for all w € Q and a certains > 0 not depending ow. As X is both locally compact
and o-compact, its Borelk-algebra is generated by compact sets. Thus, it suffices to
considery i with K C X compact. By standard arguments, it then suffices to consider
f € C.(X). For suchf, measurability follows from Proposition 2.5.

Vo C Vy: Let f € V, be given. We have to show th#t: X — C is measurable.
By o-compactness ot it suffices, to find, for everyw, z9) € X', an opensetV C X
with (wg, o) € U such thatf|y is measurable. To provide such &n we associate to
(wo, o) @an open set/; C ) containingw, as well ash : U; — Bg(:vo) according
to Proposition 2.1. By Uryson’s lemma, we can fitid C U; open containingvy and
g € C.() with support contained ify; andg = 1 onU,. Moreover, lets : R — R
be continuous withs(0) = 1 and support contained iff-. Then,F' : X — R, with
F(w,z) = g(w)s(z — h(w)) whenevew € U andF(w, z) = 0 otherwise, is continuous
with compact support. It is immediate that

[ 1 : weU,andz = h(w),
F(w,x){o D weU,, andx#h(W)-

OnU = (Uz x Bz (w0)) N X, we then have

f(wa CC) = f(w’ h(w)) = <F(w7 ')a f(w7 )>w
and we infer measurability of|; asf € Vs.

It remains to show thay; = Vs is a measurable structure, i.e. satisfies the conditions
(V),(S), (M) and(D). Now, (V) is clear and M) is a simple consequence of Corollary
2.6.

Moreover, obviouslyC,(X) belongs to); and(.S) follows asV, C V;. To show(D),
choose for each € Q a functionf, € C.(R%) with support contained i3+ (¢) and
fo=1onB:(q). Then{f,|x : q € Q%} has the desired properties. O

Having discussed the appropriate notion of measurability, we can now give sense to
equation (5). This is the content of the following lemma.
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Lemma 2.9. The map/ : L2(X, o a) — [ (3(X¥,a®) dp(w) with U(f)(w)(z) =
f((w,x)) is unitary.

Proof. By the foregoing propositiori/ (f) belongs indeed t¥;. Direct calculations in-

voking Fubini’s Theorem show thétis isometric. Thus/ indeed maps intg&éB (XY, a”) du(w)
and is injective. To show thdf is surjective, is suffices to show that its image is dense.
This can be done as follows: L&t be a dense set of bounded functiond.#(2, 1) and

f4» g € Q4, as in the proof of the foregoing proposition. Thgn: X — C : h(w,z) =
g(w)f,(z) for suitableg € D andg € Q?} has dense image undet O

This lemma shows that?(X, 1 o a) can be identified withf}; ¢2(X*, a*) du(w) in
a canonical way.

Remark 2.10. In the above considerations, we have introduteak a tautological bundle
over() and then constructed an action®bn X’ as well as a familyx of measures o/’.

An alternative point of view is given as follows: A slight rearrangement of the arguments
in the proof of Proposition 2.5 shows that

o CuRY) —C, a®(f) =Y f(p)
pEW
is continuous inv and satisfies an invariance condition. Thus— a“ is a transverse
function on the groupoid in the sense of Connes non-commutative-integration theory.
The spacet’ is then nothing but the “support” ef.

3. THE VON NEUMAN ALGEBRA OF RANDOM OPERATORS

In this section we discuss the von Neuman algebra associated to a uniquely ergodic
dynamical system. Details and proofs will be given in [26].

Let (2, T) be an(r, R)-system and let be an invariant measure 6h As there exists
a canonical isomorphism betwe&A(X', 110 ) andfé9 2(x% o) du(w), a special role
is played by operators ob? (X', 11 o o) which respect this fibre structure. More precisely,
we consider familieg A, ). cq of bounded operatord,, : ¢*(w,a*) — £2(w,a®).
Such a family is callegneasurabléf w — (f(w), (4wg)(w)). is measurable for every
f € V1. Itis calledboundedf the norms of thed,, are uniformly bounded. It is called
covariantif it satisfies the covariance condition

(6) Hw-i—t = UtHwUt*7 we Q7t € Rda

whereU, : /2(w) — (?(w + t) is the unitary operator induced by translation. Now, we
can define

(7 NQ,T,p) :={A = (A,)wealA covariant, measurable and boungéd-,
where~ means that we identify families which agre@lmost everywhere.

Remark 3.1. It is possible to defingV'(Q, T, 1) by requiring seemingly weaker condi-
tions. Namely, one can consider familigg,,) which are essentially bounded and which
satisfy the covariance condition almost everywhere. However, by standard procedures
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(see [9, 23)), it is possible to show that each of these families agrees almost everywhere
with a family satisfying the stronger conditions discussed above.

As is clear from the definition, the elements&tQ, T, 1) are classes of families of
operators. However, we will not distinguish too pedantically between classes and their
representatives in the sequel.

Apparently, N (Q, T, 1) is an involutive algebra under the obvious operations. There is
an immediate representation A/ (Q, T, u) — B(L?(X, poc)) given byr(A) f((w,z)) =
(Au fo)((w, z)). Obviously,r is injective.

Lemma 3.2. 7(N(Q, T, 1)) is a von Neuman algebra.

The elements oV (22, T, ) andw (N (2, T, u)) are called random operators.

Lemma 3.3. Let i1 be ergodic and A,,) € N (2, T, 1) be selfadjoint. Then there exists
3, Yae Lsey Lpps Less C R and a subsef? of Q of full measure such th&f = o(A,)
ando,(A,) = X, for e = ac, sc, pp, ess andog;s.(A,,) = 0 for everyw € Q.

Each random operator gives rise to a random variable.

Proposition 3.4. Let (A4,,) € N (Q,T, 1) be given. Then the mapy : Q — M(X),
B4(f) = tr(A,M(w)) is a complex random variable.

Now, choose a nonnegatiyee C.(R") with [, f(x)dz = 1. Combining the previ-
ous proposition with Lemma 2.7, we infer that the map

T N(Q,T,u) — C, 7(A) = /Qtr(Awa) dp(w)

does not depend on the choice fof Important feature of are given in the following
lemma.

Lemma 3.5. The mapr : N(Q,T,:) — C is continuous, faithful, nonegative on
N(Q,T, )" and satisfies(AB) = 7(BA).

Having definedr, we can now associate a canonial meaguydo every selfadjoint
AeN(Q,T, ).

Definition 3.6. For A € N'(Q, T, 1) selfadjoint, and3 C R Borel measurable, we set let
pa(B) = 1(xB(A)), wherex g is the characteristic function @.

Lemma 3.7. Let A € N(Q, T, i) selfadjoint be given. Them, is a spectral measure for
A. In particular, the support of 4 agrees with the almost sure spectrihof A and the
equalityp4 (F) = 7(F(A)) holds for every bounded measuralfieon R.

Theorem 3.8. Let (2,7 be a uniquely ergodic, aperiodic DDSF. Letbe the unique
invariant probability measure. TheN'(Q, T, ;1) is a factor of type/ I, and
. #(w N Bgr(0))
T(1) =D :=limpoo————7—
W " B (o)

is thedensityof w.
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4. TIGHT BINDING OPERATORS

In order to describe the properties of disordered models quantum mechanically it is
common to use a tight binding approach. E.g., a random model is often described by an
operator or¢?(Z%) consisting of the Laplacian that stands for nearest neighbor interac-
tions plus a random potential perturbation. We search for an analogous description of
quasicrystals, introducing the following notion that still leaves a lot of flexibility. In com-
parison with the random or almost random case it is again the fact that the space varies
that makes the fundamental difference.

Related constructions have been introduced by Kellendonk [15, 16] and later been
discussed by Kelledonk/Putnam [17] and Bellissard/Hermann/Zarrouati [6] (see [1, 29]
as well). All these works are concerned withtheory. The relevant'-algebras of tight
binding operators are then discussed within the framework of discrete goupoids. These
groupoids are transversals @fQ2, T") [17, 6] (see [4] for discussion of transversals and
tight binding operators as well). Our discussion below does not use transversals and in fact
not even groupoids. We rather directly introduc€“aalgebra of tight binding operators.

For further details and proofs we refer the reader to [25, 26].

Definition 4.1. Let ) be a DDSF. A familyA = (A,,), A, € B(¢*(w)) is said to be an
operator (family) of finite rangé there existss > 0 such that

o (A,d;]0y) =0if z,y € wand|z —y| > s.

o (Autt0p4tl0ytt) = (Agdz|dy) If wN Bs(z +t) =0 N Bs(x) +tandr,y € .

This merely says that the matrix elemenits(z, y) = (A, 96:|d,) of A, only depend
on a sufficiently large patch aroundand vanish if the distance betwegrandy is too
large. Since there are only finitely many nonequivalent patches, an operator of finite range
is bounded in the sense that

| A]l = sup [[Aw | < oo.
weN

Moreover it is clear that every suchis covariant and consequentlye N (Q, T, u) for
every invariant measure. The completion of the space of all finite range operators with
respect to the above norm i€&—algebra that we denote b(2, T'). The representations
T, : A — A, can be uniquely extended to representationsi@®, T') and are again
denoted byr,, : A(Q,T) — B(¢*(w)). We have the following result:

Theorem 4.2. The following conditions of are equivalent:
(i) (Q,T) is minimal.
(i) For any selfadjointd € A(Q2, T) the spectrunz(A,,) is independent ab € Q.
(iii) =, is faithful for everyw € Q.

Next we relate the “abstract integrated density of stapesto the integrated density
of states as considered in random or almost random models and defined by a volume limit
over finite parts of the operator.

Note that for selfadjointdA € A(Q2,T) and bounded) C R the restrictionA,|q
defined or’?(Q N w) has finite rank. Therefore, the spectral counting function

n(As, Q)(E) := #{ eigenvalues ofi,, | below E'}
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is finite andﬁn(Aw, Q) is the distribution function of the measupéA,,, @), defined
by
1
(p(Au, Q) ) := @tf(w(flwlcz)) for p € Cy(R).

One of the fundamentals of random operator theory is the existence of the infinite volume
limit )
= lim —n(A4,,Q)(F

Jim, 154 Q)(E)
for everyw € Q. This amounts to the convergence in distribution of the measures
p(Ay, Q) just defined. As a first result on weak convergence we get:

Theorem 4.3. Let (2, T) be a uniquely ergodic DDSF and € A(,T) selfadjoint.
Then, for any van Hoove sequer@s, p(A,, @) — pa weakly asm — oo.

N(E)

Remark 4.4. This result is analogous to corresponding results for random or almost pe-
riodic operators as e.g. [33, 3, 4]. It generalizes results in Kellendonk’s [15] on tilings

associated to primitive substitutions. Its proof uses ideas of the cited works of Bellissard
(see [15] as well) and of Hof [12].

For strictly ergodic, aperiodoc DDSF, we actually have a much stronger result. Namely,
we can show pointwise and even uniform convergence of the corresponding distribution
functions. Of course, uniform convergence follows from vage convergene if the limit is
continuous. Thus, let us emphasize that in the context of DDSF continuity of the distri-
bution function ofp is wrong in general, see [18]. Still uniform convergence holds. Let
us mention that this fits well within the general philosophy that everything behaves very
uniformly within the reign of quasicrystals. All of this will be discussed in [26].
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