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ABSTRACT. We carry out a careful study of basic topological and ergodic features of
Delone dynamical systems. We then investigate the associated topological groupoids
and in particular their representations on certain direct integrals with non constant fibres.
Via noncommutative integration theory these representations give rise to von Neumann
algebras of random operators. Features of these algebras and operators are discussed.
Restricting our attention to a certain subalgebra of tight binding operators, we then discuss
a Shubin trace formula.

INTRODUCTION

The study of disorder is one of the most important issues today. In mathematical
models of solid state physics order or disorder are expressed in terms of the hamiltonian
that drives the system. The latter operator appears in the Schrödinger equation and its
properties are used to describe the electronic properties of the solid under consideration.

Both order and disorder can be cast in the framework of parametrized operators. Let
us be a little more precise on that point. We start at one extreme: a perfectly orderered
solid, an ideal crystal. Since the atomic positions belong to a latticeΓ in this case, the
hamiltonian exhibits a corresponding translational symmetry. This symmetry is encoded
in the quotientX/Γ of the underlying spaceX ∈ {Rd, Zd} which leads to a family
of operators parametrized byX/Γ. As elementary as this observation is, it leads to a
number of important consequences. One of these consequences concerns the nature of the
spectrum and the dynamics of the hamiltonian: periodic operators (at least under some
additional assumptions) have purely absolutely continuous spectrum and only extended
states. The other extreme case concerns models that are statistically independent at distant
parts of space. Important and well studied are models of Anderson type for which the
parameter space is typically of the formIZd

, I a compact interval inR. For these models a
completely different spectral and dynamical picture is expected with energy regions filled
by dense pure point spectrum with localized eigenfunctions and absence of mobility. The
key notion is localization, a phenomenon that is rigorously proved in certain cases, see
[7, 28, 36]. The models we want to study are situated in between ordered (e.g. periodic)
and heavily disordered (e.g. Anderson models) and are used to describe quasicrystals. The
discovery of quasicrystals (see the celebrated 1984 paper [32]) has led to an impressive
research activity. However, mathematically rigorous results concerning the spectral theory
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and dynamics of quasicrystalline Schrödinger operators are somewhat rare except for one
dimensional papers.

In the present paper we report on some basic issues concerning the treatment of the
multidimensional case. Namely, we describe how Delone dynamical systems of finite
type can be used as the relevant parameter spaces. It turns out that there are aspects
common with the one dimensional situation: local finiteness and a hierarchical order.
There is one important difference as well: a more complicated geometry and the absence
of a lattice structure. This leads to complications concerning the parametrized family of
hamiltonians that appears. The latter are defined on different Hilbert spaces. The first
point we mentioned is reflected in the strong ergodic properties that are the same as in the
one dimensional case. The second point leads to the lack of spectral consequences that
follow from these ergodic properties.

At this point let us end this general preview and refer the reader to the main text for
more details. Instead we go on to relate our results to what can be found in the literature:

Various features of Delone sets and tilings have been considered in the literature. See,
e.g., [6, 17, 19, 20, 21, 22, 31, 34, 35] and the literature cited there. However, as will be
seen in Section 1 below there are certain misunderstandings concerning the problem of
defining a suitable topology on the set of Delone sets.

On the other hand, a thorough study of “almost random operators” in an algebraic
setting focusing onK-theory can be found in [3, 4, 5]. This has been taken up by Kellen-
donk who introduced certainC∗-algebras associated to tilings and studied theirK-theory
[15, 16], see [1, 17, 29] as well. In fact, we have been inspired by these works although
they do not cover all the results mentioned here. Our focus is rather on general features of
random operators associated to tilings. These features include (almost sure) constancy of
the spectrum and its various parts, absence of discrete spectrum and validity of a Shubin
trace formula.

The important method here is Connes noncommutative integration theory, which we
use to associate a von Neumann algebra to Delone dynamical systems. We should stress
that this does not mean to associate in some general fashion a von Neumann algebra to
a dynamical system. Rather we use the specific situation at hand as well as the guidance
provided by the physical background.

Acknowledgement. It is our pleasure to acknowledge fruitful correspondence with J.
Lagarias, P. Pleasants and B. Solomyak. Moreover, both authors are grateful for finan-
cial support from the German Science Foundation in the priority programs “Interacting
stochastic systems of high complexity” and “Quasicrystals”.

1. GENERALITIES ON DELONE SETS

The aim of this section is to recall standard concepts from the theory of Delone sets
and to introduce a suitable topology on the closed sets in euclidian space.

We will be concerned with Delone sets inRd. A subsetω of Rd is called aDelone
setif there exist0 < r, R < ∞ such thatr ≤ ‖x − y‖ wheneverx, y ∈ ω with x 6= y,
andBR(x) ∩ ω 6= ∅ for all x ∈ Rd. Here, the Euclidean norm onRd is denoted by‖ · ‖
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andBs(x) denotes the (closed) ball inRd aroundx with radiuss. The setω is then also
called an(r, R)-set. We will be particularly interested in the restrictions of Delone sets to
bounded sets. In order to treat these restrictions, we introduce the following definition.

Definition 1.1. (a) A pair (Λ, Q) consisting of a bounded subsetQ of Rd andΛ ⊂ Q
finite is called a pattern. The setQ is called the support of the pattern.
(b) A pattern(Λ, Q) is called a ball pattern ifQ = Bs(x) with x ∈ Λ for suitablex ∈ Rd

ands ∈ (0,∞).

The pattern(Λ1, Q1) is contained in the pattern(Λ2, Q2) written as(Λ1, Q1) ⊂
(Λ2, Q2) if Q1 ⊂ Q2 and Λ1 = Q1 ∩ Λ2. Diameter, volume etc. of a pattern are
defined to be the diameter, volume etc of its support. For patternsX1 = (Λ1, Q1) and
X2 = (Λ2, Q2), we define]X1X2, the number of occurences ofX1 in X2, to be the
number of elements in{t ∈ Rd : Λ1 + t ⊂ Λ2, Q1 + t ⊂ Q2}.

For further investigation we will have to identify patterns which are equal up to trans-
lation. Thus, on the set of patterns we introduce an equivalence relation by setting
(Λ1, Q1) ∼ (Λ2, Q2) if and only if there exists at ∈ Rd with Λ1 = Λ2 + t and
Q1 = Q2 + t. In this latter case we write(Λ1, Q1) = (Λ2, Q2) + t. The class of a
pattern(Λ, Q) is denoted by[(Λ, Q)]. The notions of diameter, volume, occurence etc.
can easily be carried over from patterns to pattern classes.

Every Delone setω gives rise to a set of pattern classes,P(ω) viz P(ω) = {Q ∧
ω : Q ⊂ Rd bounded and measurable}, and to a set of ball pattern classesPB(ω)) =
{Bs(x) ∧ ω : x ∈ ω, s > 0}. Here we setQ ∧ ω = [(ω ∩Q,Q)].

For s ∈ (0,∞), we denote byPs
B(ω) the set of ball patterns with radiuss; note the

relation withs-patches as considered in [19]. A Delone set is said to be offinite typeif for
every radiuss the setPs

B(ω) is finite. We refer the reader to [19] for a detailed discussion
of Delone sets of finite type.

Next we introduce a suitable topology on the set of closed subsets ofRd. Although
it is basically known how this can be done, we will take some care. Actually, it turns
out that certain statements in [20, 35] concerning this issue are, while morally true, not
completely correct ;-)

Denote byF(Rd) the set of closed subsets ofRd and recall that there is a natural action
T of Rd onF(Rd) given byTtG = G + t. We aim at a topology onF(Rd) that fulfills
two requirements: the actionT should be continuous and two sets that are close to each
other with respect to the topology are supposed to be such that their finite parts have small
Hausdorff distance. The latter can be defined by

dH(K1,K2) := inf({ε > 0 : K1 ⊂ Uε(K2) ∧K2 ⊂ Uε(K1)} ∪ {1}),

whereK1,K2 are compact subsets of a metric space(X, d) andUε(K) denotes the open
ε-neighborhood aroundK. The extra1 is to deal with the empty set that is included in
K(X) := {K ⊂ X : K compact}. It is wellknown that(K(X), dH) is complete if
(X, d) is complete and compact if(X, d) is compact. Quite often, the Hausdorff distance
is defined between nonvoid compact sets only. The way we defined it,∅ is added as an
isolated point. For our purposes later on it will be important to have the empty set at our
disposal and it will no longer be an isolated point.
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A natural first attempt to define a suitable topology goes as follows. Abbreviate
Br(0) =: Br andK(Br) := Kr which is a compact metric space by what we just men-
tioned. We call the initial topology onF(Rd), induced by the restriction mappings

JR : F(Rd) → KR, F 7→ F ∩BR, R > 0

thetopology of local Hausdorff convergence. Of course this topology satisfies the second
requirement listed above. However a serious problem connected with that topology comes
from the fact, thatF andG might be closer in Hausdorff distance thanF ∩Bk andG∩Bk

as two relatively close portions ofF andG might just lie inside respectively outside the
ball BR. Put differently, the restrictionF 7→ F ∩Br is by no way a contraction fromKR

toKr. In particular,T does not act continuously. Consider, e.g.,F := Z ∈ F(R); for any
t ∈ (0, 1) we get that

dH((TtF ) ∩Bk, F ∩Bk) = max{|t|, 1− |t|}.
Consequently, for anyk ≥ 3 andt ∈ (0, 1), TtF 6∈ Vk(F ). To circumvent this lamentable
fact we introduce

dk(F,G) := inf({ε > 0 : F ∩Bk ⊂ Uε(G) ∧G ∩Bk ⊂ Uε(F )} ∪ {1}),
a measure for the distance ofF andG that is monotone in the cutoff parameterk, i.e.,
dk(F,G) ≤ dk+1(F,G). Moreover,dk(F,G) ≤ dH(F ∩ Bk, G ∩ Bk). Unfortunately,
thedk do not satisfy the triangle inequality. To see this, consider, inR, the casek = 1 and
the setsF = {1 − ε}, G = {1 + ε},H = ∅, leading todk(F,G) = 2ε, dk(G, H) = 0
butdk(F,H) = 1 (if ε is small enough).

We use them to define a topology coarser than the topology of local Hausdorff conver-
gence via the neighborhood basis

Uε,k(F ) := {G ∈ F(Rd) : dk(F,G) ≤ ε}, ε > 0, k ∈ N;

we call the corresponding topologyτnat the natural topology. By the definition ofdk

it is clear thatdk(TtF, F ) ≤ |t| for any F ∈ F(Rd), t ∈ Rd so that translations are
continuous. Fortunately this topology has nice compactness properties as seen in:

Theorem 1.2. F(Rd) endowed with the natural topologyτnat is compact.

Proof. Let (Fι)ι∈I be a net inF(Rd). We use thatKk+ 1
2

is a compact metric space
for everyk. Therefore,(Fι ∩ Bk+ 1

2
)ι∈I has an accumulation pointCk+ 1

2
in Kk+ 1

2
for

everyk and we find a subsequence converging in the Hausdorff metric. By a standard
diagonal argument we can arrange a common subsequence, call it(Fm)m∈N, such that
(Fm ∩Bk+ 1

2
)m∈N converges toCk+ 1

2
for everyk ∈ N;

C :=
⋃
k∈N

Ck+ 1
2

is a good candidate for the limit of the(Fm) in the natural topology. Let us first note that

C ∩Bk = Ck+ 1
2
∩Bk (∗).

(This is clear but it is here that the· · · + 1
2 in the definitions above gets important. It is

not true in general thatC ∩ Bk+ 1
2

= Ck+ 1
2
∩ Bk+ 1

2
. We will meet this kind of effect
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again later when discussing the lack of compactness for the topology of local Hausdorff
convergence in the paragraph following the present proof.) From(∗) it follows thatC is
closed. We have to show that

dk(Fm, C) → 0 asm →∞
for anyk; so fixk. If

1 > δm > dH(Fm ∩Bk+ 1
2
, Ck+ 1

2
)

we get that
C ∩Bk ⊂ Ck+ 1

2
⊂ Uδm

(Fm ∩Bk+ 1
2
)

by definition of the Hausdorff metric. Conversely,

Fm ∩Bk ⊂ Fm ∩Bk+ 1
2
⊂ Uδm

(Ck+ 1
2
) ⊂ Uδm

(C).

Put together, we get
dk(Fm, C) ≤ δm

for δm > dH(Fm ∩Bk+ 1
2
, Ck+ 1

2
), i.e.,

dk(Fm, C) ≤ dH(Fm ∩Bk+ 1
2
, Ck+ 1

2
)

and the latter tends to0 asm → ∞. Thus we have proved that every net inF(Rd) has a
converging subsequence. �

Note that, interestingly, no additional properties are needed for compactness. Of
course, this result immediately gives compactness of certain subsets of the set of all De-
lone sets, e.g. compactness of the union overR of the (r, R)-sets for any fixed value of
r.

One might think that the topology of local Hausdorff leads to a compact space as well,
since in this topology,F(Rd) is considered as a subset of the product of theKR, which
is compact by Tychonovs theorem. However, it is not closed, as seen forFn := {1 + 1

n};
of course,R = 1 is the crucial value. This latter sequence also shows directly that the
topology of local Hausdorff convergence is not compact and not too natural either ;-)

We will also use the natural topology to define a topology on tiling spaces in a quite
general setting.

Let us note in passing that the metricρ proposed in [35] as well as the metric in [20]
do not satisfy the triangle inequality and that these metrics are restricted to Delone sets.
This is again due to the phenomenon alluded to above, namely that restricting sets does
not make the Hausdorff distance smaller. See, however, [22], in which a metric on the set
of Delone sets is constructed. A discussion in a more general framework can be found
in [30], where the author constructs a topology on the set of closed discrete subsets of
a locally compactσ-compact space. In the case ofRd this topology coincides with the
restriction of the above given natural topology.

To settle the issue of metrizability of the natural topology we next mention an alterna-
tive approach. The method we are going to outline now has most definitely been pointed
out to us by someone else. Unfortunately, we were not able to find out by whom.

We use the stereographic projection to identify pointsx ∈ Rd ∪{∞} in the one-point-
compactification ofRd with the corresponding points̃x ∈ Sd. Clearly, the latter denotes
thed-dimensional unit sphereSd = {ξ ∈ Rd+1 : ‖ξ‖ = 1}. NowSd carries the euclidean
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metric ρ. Since the unit sphere is compact and complete, we can associate a complete
metricρH onK(Sd) by what we said above.

ForF ∈ F(Rd) write F̃ for the corresponding subset ofSd and define

ρ(F,G) := ρH( ˜F ∪ {∞}, ˜G ∪ {∞}) for F,G ∈ F(Rd).

Although this constitutes a slight abuse of notation it makes sense sincẽF ∪ {∞}, ˜G ∪ {∞}
are compact inSd providedF,G are closed inRd.

We have the following result:

Proposition 1.3. The metricρ above induces the natural topology onF(Rd).

Proof. An explicit calculation of the stereographic projection shows that

(1) ρ(x̃, ∞̃) ≤ 42
‖x‖

for x ∈ Rd as well as

(2) ρ(x̃, ỹ) ≤ 2‖x− y‖.
We want to show that the identityid : (F(Rd), τnat) → (F(Rd), ρ) is continuous. Since
(F(Rd), τnat) is a compact space this implies thatid : (F(Rd), τnat) → (F(Rd), ρ) is
in fact a homeomorphism. To prove the desired continuity, fixF ∈ F(Rd) andε > 0.
We have to find a basic neighborhoodUδ,k that is contained in theε- ball aroundF (with
respect toρ, of course). To this end choosek ∈ N such that42/k < ε andδ = ε/2.

This is a good choice; in fact, letG ∈ Uδ,k. CombiningF ∩Bk ⊂ Uδ(G) with (2) we
get that

(3) F̃ ∩Bk ⊂ Uρ
ε (G̃),

where the superscriptρ indicates the underlying metric space. By (1) and the choice ofk
we know that

(4) ˜F ∩ (Bc
k ∪ {∞}) ⊂ Uρ

ε ( ˜G ∪ {∞}).
Relations (3) and (4) together yield that

˜F ∪ {∞} ⊂ Uρ
ε ( ˜G ∪ {∞}).

The corresponding relation withF andG interchanged follows in the same way so that

ρH( ˜F ∪ {∞}, ( ˜G ∪ {∞}) ≤ ε.

This proves the asserted continuity. �

Next, we define Delone dynamical systems, following [21] and single out some impor-
tant properties:

Definition 1.4. (a) Let Ω be a set of Delone sets. The pair(Ω, T ) is called aDelone
dynamical system(DDS) if Ω is invariant under the shiftT and closed in the natural
topology.
(b) A DDS (Ω, T ) is said to be offinite typeif ∪ω∈ΩP s

B(ω) is finite for everys > 0.
(c) Let 0 < r, R < ∞ be given. A DDS(Ω, T ) is said to be an(r, R)-systemif every
ω ∈ Ω is an(r, R)-set.
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(d) The setP(Ω) of pattern classes associated to a DDSΩ is defined byP(Ω) =
∪ω∈ΩP(ω).

Remark 1.5. (a) Whenever(Ω, T ) is a Delone dynamical system, there exists anR > 0
with BR(x) ∩ ω 6= ∅ for everyω ∈ Ω and everyx ∈ Rd. This follows easily asΩ is
closed and invariant under the action ofT .
(b) Every DDSF is an(r, R)-system for suitable0 < r,R < ∞.
(c) Let ω be an(r, R)-set and letΩω be the closure of{Ttω : t ∈ Rd} in F(Rd) with
respect to the natural topology. Then(Ωω, T ) is an(r, R)-system.

For a DDSF, there is a simple way to describe convergence in the natural topology.
This is shown in the following lemma. We omit the straightforward proof.

Lemma 1.6. If (Ω, T ) is a DDSF then a sequence(ωn) converges toω in the natural
topology if and only if there exists a sequence(tn) converging to0 such that for every
L > 0 there is ann0 ∈ N with (ωn + tn) ∩BL = ω ∩BL for n ≥ n0.

We will need standard notions from the theory of dynamical systems. Namely, a DDS
is calledminimalif every orbit is dense. It is calleduniquely ergodicif there exists exactly
oneT -invariant probability measure. It is calledaperiodicif Tt does not have a fixed point
for anyt 6= 0.

For s > 0 andQ ∈ Rd, we denote by∂sQ the set of points inRd whose distance to
the boundary ofQ is less thans. A sequence(Qn) of bounded subsets ofRd is called a
van Hove sequence if|Qn|−1|∂sQn| −→ 0, n −→ 0 for everys > 0.

Theorem 1.7. Let (Ω, T ) be a DDSF. Then(Ω, T ) is uniquely ergodic if and only if,
for every pattern classP the frequencylimn→∞ |Qn|−1]P (ω ∧ Qn) exists uniformly in
ω ∈ Ω for every van Hove sequenceQn.

Remark 1.8. After a first version of the present paper was on the web, B. Solomyak
kindly informed us of the work [22] by Lee, Moody and Solomyak. As [22], Theorem
2.7 the reader can find a result analogous to the preceding Theorem.

Proof. For the “if” part we can refer to [34], Theorem 3.3. There, it is additionally as-
sumed that the tiling dynamical system has the local isomorphism property. The latter is
only used, however, to guarantee that frequencies are strictly positive. We will describe
how to pass from Delone dynamical systems to tilings in detail later.

For the “only if” part we construct a continuous function onΩ that essentially counts
occurences of a fixed pattern. Here are the details:

Fix 0 < r < R such thatΩ is an(r, R)-system. We fix a patternP = (ΛP , QP ) with
0 ∈ ΛP and diameterRP . Moreover, we choose an auxiliary functiong ∈ Cc(Rd), g ≥ 0
with support contained inB r

42
and normalized to

∫
g(x)dx = 1. With the help ofg we

define

fP : Ω → R, fP (ω) = g(t) iff QP ∧ (ω + t) = P

(where such at is uniquely determined in caseg(t) 6= 0) and0 if no translate ofP appears
in ω. We consider all the points ofω at which a copy ofP is centered, namely

Sω := {sn ∈ Rd : QP ∧ (ω + sn) = P}
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and remark that the distinct points ofSω have distance at leastr sinceΩ is an (r, R)-
system. Using the setSω, we get

fP (ω + t) =
∑

n

g(sn − t)

and, therefore, ∫
Q

fP (ω + t)dt =
∑

n

∫
Q

g(sn − t)dt

=
∑

B r
42 (sn)∩Q6=∅

∫
Q

g(sn − t)dt

Thus, if we let

Q− := {y ∈ Q : y + BRP +r ⊂ Q}, Q+ := Ur(Q),

we get that
]P Q ∧ ω = #{n : sn + QP ⊂ Q}

along with the inequalities∫
Q−

fP (ω + t)dt ≤ #{n : B r
42

(sn) ∩Q− 6= ∅}

≤ ]P Q ∧ ω = #{n : sn + QP ⊂ Q}
≤ #{n : B r

42
(sn) ⊂ Q+}

≤
∫

Q+
fP (ω + t)dt.

Now, take a van Hove sequence(Qn). Then, since(Ω, T ) is uniquely ergodic,

lim
n→∞

1
|Qn|

∫
Q−n

fP (ω + t)dt = lim
n→∞

1
|Qn|

∫
Qn

fP (ω + t)dt =
∫

Ω

fP (ω)dµ(ω),

whereµ is the unique normalized invariant measure. Similarly,

lim
n→∞

1
|Qn|

∫
Q+

n

fP (ω + t)dt =
∫

Ω

fP (ω)dµ(ω).

Using the inequality above, we now find that

1
|Qn|

∫
Q−n

fP (ω + t)dt ≤ 1
|Qn|

]P Qn ≤
1

|Qn|

∫
Q+

n

fP (ω + t)dt

and consequently that

lim
n→∞

1
|Qn|

]P Qn =
∫

Ω

fP (ω)dµ(ω)

uniformly in ω. �

In order to take advantage of the analysis from the theory of tilings, let us now relate
Delone dynamical systems and tiling dynamical systems. To do so, we start with a slight
generalization of what can, e.g., be found in [34]. For the readers convenience we will
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repeat all the necessary definitions. We follow mainly [34] (see [31] as well) although we
rephrase some notions slightly.

A tile is just a setT that agrees with the closure of its interior. Atiling S is a count-
able familyS = (Tn) of tiles with disjoint interiors covering the whole spaceRd. It is
sometimes very useful to supply tiles with an additional mark or decoration. To do so,
consider a finite setA called the alphabet or the set ofdecorations. An A-decorated tiling
S consists of a countable familyS = ((Tn, an))n∈N such that(Tn) is a tiling and the
decorations of two tiles agree only if the tiles are translates of each other. Following [34]
we also callan thetypeof the tileTn.

In order to describe a convenient topology for tilings let us first ignore decorations.
Then, the natural topology provides a suitable topology. In fact, let us call

Σ(S) := ∪n∂Tn

the shape of the tilingS = (Tn) andΣ the shape map acting from the setT of all tilings
toF(Rd). We call the initial topology with respect to the shape map thenatural topology
onT . On the space ofA-decorated tilingsTA we define the shape map as

ΣA : TA → F(Rd)A, ((Tn, an)) 7→ (∪{∂Tn : an = a})a∈A.

Note that in the case of nonconnected tiles the shape map might loose some information.
This won’t bother us in what follows, since we are dealing with convex polygonal tiles.

Definition 1.9. (a) LetX ⊂ TA be a set ofA-decorated tilings. The pair(X, T ) is called
anA-tiling dynamical system, A-TDS, if X is invariant under the shiftT = (Tt)t∈Rd and
closed in the natural topology.

(b) An A-TDS (X, T ) is said to be offinite type, if there is a finite set of tilesP such
that every tile from one of the tilings inX is the translate of one of the tiles inP .

Next we describe the Voronoi construction. It enables us to pass from Delone dynam-
ical to decorated tiling dynamical systems. See the discussion in [19], Section 2 as well.
There, the reader will also find an account of theDelone tesselation, a possibility to pass
from Delone sets to tilings that goes back to Delone (Delaunay), [10].

Let ω ⊂ Rd be a Delone set; forx ∈ ω define

T (x, ω) := {y ∈ Rn : d(x, y) ≤ d(y, ω)}
= {y ∈ Rn : ‖x− y‖ ≤ ‖z − y‖ (z ∈ ω)}.

Clearly,T (x, ω) is the convex hull of finitely many points, a polygon, called the Voronoi
cell of ω aroundx. If ω is an(r, R)-set, it follows that

B r
2
(x) ⊂ T (x, ω) ⊂ B2R(x).

Moreover,
Sω := (T (x, ω))x∈ω

defines a tiling ofRd. In this way, we get a TDSXΩ = {Sω : ω ∈ Ω}. It is clear that

V : Ω → XΩ, ω 7→ Sω

is continuous and respects translations.
Unfortunately,V doesn’t need to be injective. In fact, you will easily find different

periodic sets (e.g.Z and ( 1
4 + 2Z) ∪ ( 3

4 + 2Z)) that lead to the same Voronoi tiling.
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However, decorations can help to recover the original Delone set in the DDSF case. In
fact, starting from a DDSFΩ define

A := {(ω ∩B2R(x)− x, T (x, ω)− x) =: a(x, ω) : ω ∈ Ω, x ∈ ω},

which is a finite set ifΩ is of finite type. Define

V : Ω → XA
Ω, Vω := ((T (x, ω), a(x, ω))x∈ω.

It is not hard to see that we can reconstructΩ from XA
Ω and thatV is an isomorphism of

dynamical systems.
Therefore, we can use analogs for Delone dynamical systems of the results from [34]

on ergodic properties of tiling dynamical systems.
For a quite different approach to the topology on the set of Delone sets we refer to [6],

where Delone sets are identified with the sum of delta measures sitting at the points of
the Delone set. Then one has the w∗-topology on the set of measures at ones disposal,
providing good compactness properties. The approach presented here has the advantage
that a topology is induced on the set of closed sets. That can be used to define a topology
on (decorated) tilings via the shape map.

2. GROUPOIDS AND NON COMMUTATIVE INTEGRATION THEORY

In this section we introduce groupoids and basic notions from Connes non-commutative
integration theory.

We will be concerned with several locally compact topological spaces. Given such a
spaceZ, we denote the set of continuous functions onZ with compact support byCc(Z).
The support of a function inCc(Z) is denoted by supp(f). The topology gives rise to
the Borel-σ-algebra. The measurable nonnegative functions with respect to thisσ-algebra
will be denoted byF+(Z). The measures onZ will be denoted byM(Z).

A setG together with a partially defined associative multiplication· : G2 ⊂ G×G −→
G, and an inversion−1 : G −→ G is called a groupoid if the following holds:

• (g−1)−1 = g for all g ∈ G,
• If g1 · g2 andg2 · g3 exist, theng1 · g2 · g3 exists as well,
• g−1 · g exists always andg−1 · g · h = h, wheneverg · h exists,
• h · h−1 exists always andg · h · h−1 = g, wheneverg · h exists.

A groupoid is called topological groupoid if it carries a topology making inversion
and multiplication continuous. Here, of course,G × G carries the product topology and
G2 ⊂ G × G is equipped with the induced topology.

A given groupoidG gives rise to some standard objects: The subsetG0 = {g · g−1 :
g ∈ G} is called the set ofunits. For g ∈ G we define itsranger(g) by r(g) = g · g−1

and itssourceby s(g) = g−1 · g. Moreover, we setGω = r−1({ω}) for any unitω ∈ G0.
One easily checks thatg · h exists if and only ifr(h) = s(g).

By a standard construction we can assign a groupoidG(Ω, T ) to a Delone dynamical
system. As a setG(Ω, T ) is just Ω × Rn. The multiplication is given by(ω, x)(ω −
x, y) = (ω, x + y) and the inversion is given by(ω, x)−1 = (ω − x,−x). The groupoid
operations can be visualized by considering an element(ω, x) as an arrowω − x

x−→
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ω. Multiplication then corresponds to concatenation of arrows; inversion corresponds to
reversing arrows.

Apparently this groupoidG(Ω, T ) is a toplogical groupoid whenΩ is equipped with
the topology of the previous section andRn carries the usual topology.

The groupoidG(Ω, T ) acts naturally on a certain topological spaceX . This space and
the action ofG on it are of crucial importance in the sequel. The spaceX is given by

X = {(ω, x) ∈ G : x ∈ ω} ⊂ G(Ω, T ).

In particular, it inherits a topology formG(Ω, T ). Two features of the topology are given
in the following proposition.

Proposition 2.1. (a)X ⊂ G is closed.
(b) Let (Ω, T ) be an(r, R)-system andω ∈ Ω and x ∈ ω be arbitrary. Then there

exist a neighbourhoodU of ω ∈ Ω and a continuous functionh : U −→ B r
2
(x) with

ω′ ∩B r
2
(x) = {h(ω′)} for everyω′ ∈ U .

Proof. (a) Let((ωι, xι)ι∈I) be a net inX converging to(ω, x) ∈ G. Thus,ωι −→ ω and
xι −→ x and it remains to showx ∈ ω. Assume the contrary, i.e.x /∈ ω. As ω is closed,
there exists aδ > 0 with Bδ(x)∩ω = ∅. Thus,ωι −→ ω impliesωι ∩B δ

2
(x) = ∅ for all

i large. But this is a contradiction toxι −→ x.

(b) By the definition of the topology, there exists a neighbourhoodŨ of ω with ω′ ∩
B r

2
(x) 6= ∅ for everyω′ ∈ Ũ . As (Ω, T ) is an(r, R)-system,ω′ ∩ B r

2
(x) consists of

only one element. Denoting this element byh(ω′), we get a functionh : Ũ −→ B r
2
(x).

Continuity ofh is now a direct consequence of the definition of the topology onΩ. �

Remark 2.2. Note that the proof of part (a) does not use thatΩ is a set of Delone sets.
Thus, the corresponding statement remains valid wheneverΩ is a subset ofF(Rd) which
is closed in the natural topology.

Corollary 2.3. Cc(X ) = {f |X : f ∈ Cc(G)}.

Proof. As X is closed inG be the foregoing proposition, this follows by standard argu-
ments involving Uryson’s Lemma. �

A key feature ofX is its bundle structure. More precisely, we have a continuous map
p : X −→ Ω, p((ω, x)) = ω makingX into a bundle overΩ with fibresXω = p−1(ω) =
{(ω, p) : p ∈ ω)} ' ω ⊂ Rn.

Now, we can discuss the action ofG on X . Every g = (ω, x) gives rise to a map
J(g) : X s(g) −→ X r(g), J(g)(ω − x, p) = (ω, p + x). A simple calculation shows that
J(g1g2) = J(g1)J(g2) andJ(g−1) = J(g)−1, whenevers(g1) = r(g2). Thus,X is
anG-space (see [24]). TheseG-spaces are important objects in Connes non-commutative
integration theory. They give rise to random variables. More precisely we have the fol-
lowing definition.

Definition 2.4. Let (Ω, T ) be an(r, R)-system.
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(a) A choice of measuresβ : Ω → M(X ) is called a positive random variable with
values inX if the mapω 7→ βω(f) is measurable for everyf ∈ F+(X ), βω is supported
onXω, i.e.,βω(X − Xω) = 0, ω ∈ Ω, andβ satisfies the following invariance condition∫

X s(g)
f(J(g)p)dβs(g)(p) =

∫
X r(g)

f(q)dβr(g)(q)

for all g ∈ G andf ∈ F+(X r(g)).
(b) A mapΩ × Cc(X ) −→ C is called a complex random variable if there exist an

n ∈ N, positive random variablesβi, i = 1, . . . , n and λi ∈ C, i = 1, . . . , n with
βω(f) =

∑k
i=1 βω

i (f).

We are now heading towards introducing and studying a special random variable. This
variable is quite important. It will give rise to thè2-spaces on which the Hamiltonians
act. Later we will see that these Hamiltonians also induce random variables. We will need
some information on the continuous functions onX .

Proposition 2.5. LetΩ be an(r, R)-system.
(a)Letg ∈ Cc(X ) be given. Then, the functionα(g) : Ω −→ R, αω(g) =

∑
p∈ω g(ω, p)

belongs toCc(X ).
(b) For g ∈ F+(X ) the functionα(g) : Ω −→ R, αω(g) =

∑
p∈ω g(ω, p) is measur-

able.

Proof. (a) We fixω0 ∈ Ω arbitrary and show continuity ofα(g) atω0. As g has compact
support, there existss > 0, with g(ω, p) = 0 wheneverp /∈ Bs. Apparently,ω0 ∩
Bs+r is finite. Thus, there existsk ∈ N and pairwise differentx1, . . . , xk ∈ Rd with
{x1, . . . , xk} = ω0 ∩ Bs+r. By Proposition 2.1, there exist̃U ⊂ Ω with ω0 ∈ Ũ and
hi : Ũ −→ B r

2
(xi) continuous with{hi(ω)} = B r

2
(xi) ∩ ω for everyω ∈ Ũ , i =

1, . . . , k. As (Ω, T ) is an(r, R)-system, theB r
2
(xi) are pairwise disjoint. By definition

of the topology onΩ, we can findU ⊂ Ũ such that

ω ∩Bs ⊂ {hi(ω) : i = 1, . . . , k} for all ω ∈ U .

(Note that the ball appearing on the left hand side of this inclusion has radius strictly less
thanr + s.) Thus, forω ∈ U , the following holds

α(g)(ω) =
∑

p∈ω∩B(0,s)

g(ω, p) =
k∑

i=1

g(ω, hi(ω))

and the desired continuity follows. It is not hard to see thatα(g) has compact support.

(b) This follows from (a) by standard monotone class arguments. �

As apparentlyαω(h) = αω+x(h(·−x)), we immediately have the following corollary
from part (b) of the Proposition.

Corollary 2.6. The mapα : Ω −→ M(X ), αω(f) =
∑

p∈ω f(p) is a random variable
with values inX .
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Now, let µ be a measure onΩ. By (b) of Proposition 2.5, we see that(µ ◦ α)(g) =∫
Ω

αω(g) dµ(ω) exists for everyg ∈ Cc(X ). The following is the key lemma on integra-
tion of random variables.

Lemma 2.7. Letµ beT -invariant (i.e.µ(f) = µ(f(· − t)) for everyt ∈ Rn).
(a) Let β be a nonnegative random variable. Then

∫
Ω

βω(F (ω, ·)) dµ(ω) does not
depend onF ∈ F+(X ) providedF satisfies

∫
F ((ω + t, x+ t) dt = 1 for every(ω, x) ∈

X .
(b) Letβ be an arbitrary random variable.

∫
Ω

βω(F (ω, ·)) dµ(ω) does not depend on
F ∈ F+(X )∩Cc(X ) providedF satisfies

∫
F ((ω+t, x+t) dt = 1 for every(ω, x) ∈ X .

Proof. (a) This follows from [9] (see [24] for a discussion as well).
(b) This is an immediate consequence of (a). �

It is instructive to consider a special instance of the lemma. Namely, considerf ∈
Cc(Rn). Apparentlyf gives rise to a functionFf ∈ Cc(X ) given byFf ((ω, x)) = f(x).
Now, letµ be an invariant measure onΩ andβ a random variable. Then, the invariance
properties ofµ andβ show that the functionalI : Cc(Rn) −→ R, I(f) = (µ ◦ α)(Ff ) is
translation invariant and positive. By uniqueness of the Haarmeasure onRn, we infer that
there exists a constantλ(β) with µ◦β(Ff ) = λ(β)

∫
Rn f(t) dt. This shows, in particular,

that the integral
∫
Ω

βω(Ff (ω, ·)) dµ(ω) does not depend onf ≥ 0 providedf satisfies∫
Rn f(t) dt = 1.

Let an invariant measureµ onΩ and the random variableα as above be given. We can
then introduce the spaceL2(X , µ ◦ α). The bundle structure ofX and ofα suggest, that
this space can be considered as a direct integral. This means we aim at giving sense to the
equation

(5) L2(X , µ ◦ α) =
∫ ⊕

Ω

`2(Xω, αω) dµ(ω).

As the fibres in this direct integral are not constant, we need to be careful about the notion
of measurability. More precisely, we need to introduce a setV of functionsf on Ω with
f(ω) ∈ `2(Xω, αω), ω ∈ Ω, satsifying the following properties

(V) V is a vectorspace under the the obvious operations (i.e.(f + g)(ω) = f(ω) +
g(ω) and(λf)(ω) = λf(ω)).

(M) ω 7→ 〈f(ω), g(ω)〉ω is measurable for arbitraryf, g ∈ V. Here,〈·, ·〉ω is the inner
product oǹ 2(Xω, αω).

(S) If f is a function onΩ with f(ω) ∈ `2(Xω, αω), ω ∈ Ω andω 7→ 〈f(ω), g(ω)〉ω
measurable for everyg ∈ V, thenf belongs toV as well.

(D) There exists a countable setD ⊂ V such that the set{d(ω) : d ∈ D} is total in
`2(Xω, αω) for everyω ∈ Ω.

Such a set will be called a measurable structure on the family(`2(Xω, αω))ω∈Ω. Note,
that the condition(M) says that the functions inV have a certain measurability property.
Condition(S) is a maximality assumption.

Given the special structure ofX , we can actually identify functionsf onΩ with values
in `2(Xω, αω) with functions onX . This will be done tacitely in the sequel. There are at
least three good canditates for measurable structures. They are given as follows:
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• The setV1 consists of allf : X −→ C which are measurable and satisfyf(ω, ·) ∈
`2(Xω, αω) for everyω ∈ Ω

• The setV2 consists of allf : X −→ C such thatf(ω, ·) ∈ `2(Xω, αω), for all
ω ∈ Ω, andω 7→ 〈f(ω, ·), F (ω, ·)〉ω is measurable for allF ∈ Cc(X ).

• Finally, the setV3 is given by allf : X −→ C such thatf(ω, ·) ∈ `2(Xω, αω),
for all ω ∈ Ω, andω 7→ 〈f(ω, ·), F (ω, ·)〉ω is measurable for allF ∈ Cc(G).

It is not too hard to check that these are all measurable structures. In fact, they are even
equal. This is shown next.

Proposition 2.8. V1 = V2 = V3.

Proof. The equality ofV2 andV3 is immediate from Corallary 2.3.

V1 ⊂ V2: Let f ∈ V1 be given. Without loss of generality we can assume thatf
is the characteristic functionχM of a measurable setM ⊂ X with M ∩ ω ⊂ B(0, s)
for all ω ∈ Ω and a certains > 0 not depending onω. As X is both locally compact
andσ-compact, its Borel-σ-algebra is generated by compact sets. Thus, it suffices to
considerχK with K ⊂ X compact. By standard arguments, it then suffices to consider
f ∈ Cc(X ). For suchf , measurability follows from Proposition 2.5.

V2 ⊂ V1: Let f ∈ V2 be given. We have to show thatf : X −→ C is measurable.
By σ-compactness ofX , it suffices, to find, for every(ω0, x0) ∈ X , an open setU ⊂ X
with (ω0, x0) ∈ U such thatf |U is measurable. To provide such anU , we associate to
(ω0, x0) an open setU1 ⊂ Ω containingω0 as well ash : U1 −→ B r

2
(x0) according

to Proposition 2.1. By Uryson’s lemma, we can findU2 ⊂ U1 open containingω0 and
g ∈ Cc(Ω) with support contained inU1 andg ≡ 1 on U2. Moreover, lets : Rd −→ R
be continuous withs(0) = 1 and support contained inB r

4
. Then,F : X −→ R, with

F (ω, x) = g(ω)s(x− h(ω)) wheneverω ∈ U andF (ω, x) = 0 otherwise, is continuous
with compact support. It is immediate that

F (ω, x) =
{

1 : ω ∈ U2 andx = h(ω),
0 : ω ∈ U2, andx 6= h(ω).

OnU ≡ (U2 ×B r
4
(x0)) ∩ X , we then have

f(ω, x) = f(ω, h(ω)) = 〈F (ω, ·), f(ω, ·)〉ω
and we infer measurability off |U asf ∈ V2.

It remains to show thatV1 = V2 is a measurable structure, i.e. satisfies the conditions
(V ), (S), (M) and(D). Now, (V ) is clear and(M) is a simple consequence of Corollary
2.6.

Moreover, obviously,Cc(X ) belongs toV1 and(S) follows asV2 ⊂ V1. To show(D),
choose for eachq ∈ Qd a functionfq ∈ Cc(Rd) with support contained inB r

2
(q) and

fq ≡ 1 onB r
4
(q). Then,{fq|X : q ∈ Qd} has the desired properties. �

Having discussed the appropriate notion of measurability, we can now give sense to
equation (5). This is the content of the following lemma.
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Lemma 2.9. The mapU : L2(X , µ ◦ α) −→
∫ ⊕
Ω

`2(Xω, αω) dµ(ω) with U(f)(ω)(x) =
f((ω, x)) is unitary.

Proof. By the foregoing proposition,U(f) belongs indeed toV1. Direct calculations in-
voking Fubini’s Theorem show thatU is isometric. Thus,U indeed maps into

∫ ⊕
Ω

`2(Xω, αω) dµ(ω)
and is injective. To show thatU is surjective, is suffices to show that its image is dense.
This can be done as follows: LetD be a dense set of bounded functions inL2(Ω, µ) and
fq, q ∈ Qd, as in the proof of the foregoing proposition. Then{h : X −→ C : h(ω, x) =
g(ω)fq(x) for suitableg ∈ D andq ∈ Qd} has dense image underU . �

This lemma shows thatL2(X , µ ◦ α) can be identified with
∫ ⊕
Ω

`2(Xω, αω) dµ(ω) in
a canonical way.

Remark 2.10. In the above considerations, we have introducedX as a tautological bundle
overΩ and then constructed an action ofG onX as well as a familyα of measures onX .
An alternative point of view is given as follows: A slight rearrangement of the arguments
in the proof of Proposition 2.5 shows that

αω : Cc(Rd) −→ C, αω(f) =
∑
p∈ω

f(p)

is continuous inω and satisfies an invariance condition. Thus,ω 7→ αω is a transverse
function on the groupoidG in the sense of Connes non-commutative-integration theory.
The spaceX is then nothing but the “support” ofα.

3. THE VON NEUMAN ALGEBRA OF RANDOM OPERATORS

In this section we discuss the von Neuman algebra associated to a uniquely ergodic
dynamical system. Details and proofs will be given in [26].

Let (Ω, T ) be an(r, R)-system and letµ be an invariant measure onΩ. As there exists
a canonical isomorphism betweenL2(X , µ◦α) and

∫ ⊕
Ω

`2(Xω, αω) dµ(ω), a special role
is played by operators onL2(X , µ ◦α) which respect this fibre structure. More precisely,
we consider families(Aω)ω∈Ω of bounded operatorsAω : `2(ω, αω) −→ `2(ω, αω).
Such a family is calledmeasurableif ω 7→ 〈f(ω), (Aωg)(ω)〉ω is measurable for every
f ∈ V1. It is calledboundedif the norms of theAω are uniformly bounded. It is called
covariantif it satisfies the covariance condition

(6) Hω+t = UtHωU∗
t , ω ∈ Ω, t ∈ Rd,

whereUt : `2(ω) −→ `2(ω + t) is the unitary operator induced by translation. Now, we
can define

(7) N (Ω, T, µ) := {A = (Aω)ω∈Ω|A covariant, measurable and bounded}/ ∼,

where∼ means that we identify families which agreeµ almost everywhere.

Remark 3.1. It is possible to defineN (Ω, T, µ) by requiring seemingly weaker condi-
tions. Namely, one can consider families(Hω) which are essentially bounded and which
satisfy the covariance condition almost everywhere. However, by standard procedures
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(see [9, 23]), it is possible to show that each of these families agrees almost everywhere
with a family satisfying the stronger conditions discussed above.

As is clear from the definition, the elements ofN (Ω, T, µ) are classes of families of
operators. However, we will not distinguish too pedantically between classes and their
representatives in the sequel.

Apparently,N (Ω, T, µ) is an involutive algebra under the obvious operations. There is
an immediate representationπ : N (Ω, T, µ) −→ B(L2(X , µ◦α)) given byπ(A)f((ω, x)) =
(Aωfω)((ω, x)). Obviously,π is injective.

Lemma 3.2. π(N (Ω, T, µ)) is a von Neuman algebra.

The elements ofN (Ω, T, µ) andπ(N (Ω, T, µ)) are called random operators.

Lemma 3.3. Let µ be ergodic and(Aω) ∈ N (Ω, T, µ) be selfadjoint. Then there exists
Σ,Σac,Σsc,Σpp,Σess ⊂ R and a subset̃Ω of Ω of full measure such thatΣ = σ(Aω)
andσ•(Aω) = Σ• for • = ac, sc, pp, ess andσdisc(Aω) = ∅ for everyω ∈ Ω̃.

Each random operator gives rise to a random variable.

Proposition 3.4. Let (Aω) ∈ N (Ω, T, µ) be given. Then the mapβA : Ω −→ M(X ),
βω

A(f) = tr(AωMf (ω)) is a complex random variable.

Now, choose a nonnegativef ∈ Cc(Rn) with
∫

Rn f(x)dx = 1. Combining the previ-
ous proposition with Lemma 2.7, we infer that the map

τ : N (Ω, T, µ) −→ C, τ(A) =
∫

Ω

tr(AωMf ) dµ(ω)

does not depend on the choice off . Important feature ofτ are given in the following
lemma.

Lemma 3.5. The mapτ : N (Ω, T, µ) −→ C is continuous, faithful, nonegative on
N (Ω, T, µ)+ and satisfiesτ(AB) = τ(BA).

Having definedτ , we can now associate a canonial measureρA to every selfadjoint
A ∈ N (Ω, T, µ).

Definition 3.6. ForA ∈ N (Ω, T, µ) selfadjoint, andB ⊂ R Borel measurable, we set let
ρA(B) ≡ τ(χB(A)), whereχB is the characteristic function ofB.

Lemma 3.7. LetA ∈ N (Ω, T, µ) selfadjoint be given. ThenρA is a spectral measure for
A. In particular, the support ofρA agrees with the almost sure spectrumΣ of A and the
equalityρA(F ) = τ(F (A)) holds for every bounded measurableF onR.

Theorem 3.8. Let (Ω, T ) be a uniquely ergodic, aperiodic DDSF. Letµ be the unique
invariant probability measure. ThenN (Ω, T, µ) is a factor of typeII1, and

τ(1) = D := limR→∞
#(ω ∩BR(0))

|BR(0)|
is thedensityof ω.
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4. TIGHT BINDING OPERATORS

In order to describe the properties of disordered models quantum mechanically it is
common to use a tight binding approach. E.g., a random model is often described by an
operator oǹ 2(Zd) consisting of the Laplacian that stands for nearest neighbor interac-
tions plus a random potential perturbation. We search for an analogous description of
quasicrystals, introducing the following notion that still leaves a lot of flexibility. In com-
parison with the random or almost random case it is again the fact that the space varies
that makes the fundamental difference.

Related constructions have been introduced by Kellendonk [15, 16] and later been
discussed by Kelledonk/Putnam [17] and Bellissard/Hermann/Zarrouati [6] (see [1, 29]
as well). All these works are concerned withK-theory. The relevantC∗-algebras of tight
binding operators are then discussed within the framework of discrete goupoids. These
groupoids are transversals ofG(Ω, T ) [17, 6] (see [4] for discussion of transversals and
tight binding operators as well). Our discussion below does not use transversals and in fact
not even groupoids. We rather directly introduce aC∗-algebra of tight binding operators.
For further details and proofs we refer the reader to [25, 26].

Definition 4.1. Let Ω be a DDSF. A familyA = (Aω), Aω ∈ B(`2(ω)) is said to be an
operator (family) of finite rangeif there existss > 0 such that

• (Aωδx|δy) = 0 if x, y ∈ ω and|x− y| ≥ s.
• (Aω+tδx+t|δy+t) = (Aω̃δx|δy) if ω ∩Bs(x + t) = ω̃ ∩Bs(x) + t andx, y ∈ ω̃.

This merely says that the matrix elementsAω(x, y) = (Aωδx|δy) of Aω only depend
on a sufficiently large patch aroundx and vanish if the distance betweenx andy is too
large. Since there are only finitely many nonequivalent patches, an operator of finite range
is bounded in the sense that

‖A‖ = sup
ω∈Ω

‖Aω‖ < ∞.

Moreover it is clear that every suchA is covariant and consequentlyA ∈ N (Ω, T, µ) for
every invariant measureµ. The completion of the space of all finite range operators with
respect to the above norm is aC∗–algebra that we denote byA(Ω, T ). The representations
πω : A 7→ Aω can be uniquely extended to representations ofA(Ω, T ) and are again
denoted byπω : A(Ω, T ) → B(`2(ω)). We have the following result:

Theorem 4.2. The following conditions onΩ are equivalent:

(i) (Ω, T ) is minimal.
(ii) For any selfadjointA ∈ A(Ω, T ) the spectrumσ(Aω) is independent ofω ∈ Ω.

(iii) πω is faithful for everyω ∈ Ω.

Next we relate the “abstract integrated density of states”ρA to the integrated density
of states as considered in random or almost random models and defined by a volume limit
over finite parts of the operator.

Note that for selfadjointA ∈ A(Ω, T ) and boundedQ ⊂ Rd the restrictionAω|Q
defined oǹ 2(Q ∩ ω) has finite rank. Therefore, the spectral counting function

n(Aω, Q)(E) := #{ eigenvalues ofAω|Q belowE}
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is finite and 1
|Q|n(Aω, Q) is the distribution function of the measureρ(Aω, Q), defined

by

〈ρ(Aω, Q), ϕ〉 :=
1
|Q|

tr(ϕ(Aω|Q)) for ϕ ∈ Cb(R).

One of the fundamentals of random operator theory is the existence of the infinite volume
limit

N(E) = lim
Q↗Rd

1
|Q|

n(Aω, Q)(E)

for every ω ∈ Ω. This amounts to the convergence in distribution of the measures
ρ(Aω, Q) just defined. As a first result on weak convergence we get:

Theorem 4.3. Let (Ω, T ) be a uniquely ergodic DDSF andA ∈ A(Ω, T ) selfadjoint.
Then, for any van Hoove sequenceQn, ρ(Aω, Qn) → ρA weakly asn →∞.

Remark 4.4. This result is analogous to corresponding results for random or almost pe-
riodic operators as e.g. [33, 3, 4]. It generalizes results in Kellendonk’s [15] on tilings
associated to primitive substitutions. Its proof uses ideas of the cited works of Bellissard
(see [15] as well) and of Hof [12].

For strictly ergodic, aperiodoc DDSF, we actually have a much stronger result. Namely,
we can show pointwise and even uniform convergence of the corresponding distribution
functions. Of course, uniform convergence follows from vage convergene if the limit is
continuous. Thus, let us emphasize that in the context of DDSF continuity of the distri-
bution function ofρ is wrong in general, see [18]. Still uniform convergence holds. Let
us mention that this fits well within the general philosophy that everything behaves very
uniformly within the reign of quasicrystals. All of this will be discussed in [26].
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