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Abstract

For Hamiltonians H associated with Dirichlet forms and complex locally integrable
V with negative real part in the Kato class we construct an extension of H + V
which generates a Cj-semigroup on L? for p € {1,00) and prove the continuity of the
semigroup with respect to V.

1. Introduction

In [2] Brezis and Kato constructed m-accretive realizations of Schrodinger operators
with complex potentials generalizing earlier results by Nelson [10] and Kato [7].
More precisely they showed that the maximal operator in L? is maximal accretive;
similar results were proven by Devinatz in [4] using probabilistic methods. We show
how to define the corresponding generator of a strongly continuous semigroup in
L? for all p € [l,00} in a more general context: the Laplacian is replaced by
a selfadjoint operator associated with a Dirichlet form, thus giving a much wider
range of applications. We use the common approach of approximating the singular
complex potential by bounded ones. This gives, at the same time, a Feynman-
Kac representation for the semigroup. Two key ideas used in this procedure are of
independent interest: the “local test” and the fact that L}, -convergence of potentials
implies strong resolvent convergence of the generators, provided a uniform Kato
condition holds.

Let us now introduce the framework of regular Dirichlet forms very briefly,
referring to [6] as a standard reference for the properties of Dirichlet forms used in
the text. We work on a locally compact, second countable space X as in [6] endowed
with a Radon measure m of full support. Let b with domain D be a regular, closed
Dirichlet form in L? = L?(X, m) whose associated selfadjoint operator is denoted by
H,. We write —H,, for the generator of the contraction semigroup which is induced
on LP by exp(—tH). As a standard example take X = ) an open subset of R?
and hfu,v] := [ VuVodz with domain H}{) for which the associated self adjoint
operator is the Dirichlet Laplacian —A and the semigroup is the heat semigroup with
absorption at the boundary, which is defined and contractive on all L?-spaces.
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2. The results

First of all let us recall the appropriate equivalent of the Kato condition in our
abstract setting. Consider

Fy(V): LY(X,m) = C, f = /X(H +a)" f(2)V (z) dm(z),
K={Vell,,: 3a>0 st F,(V) is bounded}
and for such a potential V' the Kato constant
(V) = [ Fa(V)Il-

It was shown in [15] that for the case of the classical Dirichlet form associated with
the Laplacian on R? the potentials V € K satisfying ¢,(V) = 0 form the usual Kato
class K. Therefore we call the K above the extended Kato class. For V € L} real
valued with negative part V=~ € K such that ¢,(V) < 1 for some a it was shown in
[15] that —H, — V is a generator in L? for all p € [1,00). This semigroup allows a
very convenient probabilistic representation, which we use in the sequel. To this end
recall that there is a Markov process with state space X U {oo} such that

e f(a) = E*[f o X,

See [6] for this fundamental result in the theory of Dirichlet forms. Using the Trotter-
Kato theorem it is quite easy to deduce the following representation for perturbed
semigroups, for a potential V as above (see [11, 14] for details in the classical case):

e tHe V) £ () = B° [e'f(; VoXeds £ o X,] (1)

This is the celebrated Feynman-Kac formula which also holds for more general po-
tentials and can be used as a starting point for defining the corresponding semigroups
by means of additive functionals. Generally speaking, there are two ways of defining
semigroups associated with singular perturbations: Showing that the Feynman-Kac
formula indeed defines a semigroup with the desired properties (see [1] and the ref-
erences given there), or approximating the singular perturbation by well-behaved
ones and proving that the limit exists in an appropriate sense (see [15, 14]). In
the next theorem we show that these ways lead to the same result for the complex
singular perturbation. From what we said above and the Trotter-Kato theorem it
is easily deduced that for a complez V with bounded imaginary part SV we have
equation (1).

Theorem 1. Let p € [1,00). Let V € L} (X,C) such that c,((RV)™) < 1 for
some a > 0. Assume that V,, is a sequence of bounded functions converging to V in
L},(X,C) such that (RV,)~™ < (RV)~ for all n € N. Then H, + V, converges in
strong resolvent sense to an operator denoted by H,+V such that —H,—V generates
a Cy-semigroup on LP, which satisfies the Feynman-Kac formula (1). ]
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At this point we want to caution the reader that H, + V' does not stand
for the operator sum. It is quite easy to see that it is an extension of the latter.
In the case when the imaginary part of V is zero, the generator constructed in
Theorem 1 corresponds to the form sum and the convergence result can be deduced
from the dominated convergence theorem in [16]. In the case of the Laplacian on
R?, Devinatz [4] has constructed a maximal realization satisfying the Feynman-Kac
formula. In this context our result can be considered as an approximation theorem
for this generator.

In the proof of the theorem we need to introduce Dirichlet boundary conditions,
by which we mean the following: For an open subset G of X we can restrict the form
h to DN C.(G) and obtain a closable form whose domain is dense in L?*(G), the
closure hg again being a regular Dirichlet form. We denote the associated generator
in L?(G) by (—Hp)g. Using the hitting time 75 for a subset B of X it follows
(see [6], §4.4) that

et f(z) = BP[f 0 X e o VoXet 1, ). 2
We extend these semigroups to LP(X) in the obvious manner.

Proof of Theorem 1. We write U = RV, W = QV for the real and imaginary
part of V. From (1) for bounded W it is clear that

e~ HHptUn+iWa) ¢ < o=tHp=UT)| f| (3

By the Trotter-Kato-Neveu theorem we have to show that for fixed -f € L?

sup ||e_t(Hp+Un+lwn)f _ e-t(Hp+Um+1Wm

Vfll, = 0 for n,m — co. (4)
t€[0,1]

By the uniform bound in (3) it suffices to check (4) for f € LP N L™. In order to
use the L},.-convergence we introduce Dirichlet boundary conditions. Abbreviate
T, = Hy, + U, + iW, and write & for the relatively compact open subsets of X,
ordered by inclusion. For G € & we have

eI _ o=tTn — ~tTn _ o~tTn)e 4 ¢~ tTn) _ gt Tmle 4 ~tTmlo _ o~tTm (5)

We first show that

sup |le” T f — e7"Tmle £l 0 (6)
te(0,1]

for G ~ X uniformly in m. To this end recall that
Hy-U )¢5 H,—U™ as G/ X. (7

In fact, for p = 2 the convergence (7) follows from monotone convergence for forms
(see [13] for details). For arbitrary p it follows from the Feynman-Kac formula that
the semigroups are monotonically increasing as G X and hence converge strongly.
The limit is as asserted, since it coincides with e~%#»=U") on LP N L2
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To prove (6) we use the Feynman-Kac formula (2) to calculate

| (e'tT" _ e—t(Tn)G) fl@)] = [Ef[e” IN VaoXods £ 6 X, 16e < 1] (8)
< Effed UK f 0 Xy e < (9)
= (enHFemVT) =T ) |fi(z) . (10)

Together with (7) this proves (6). Note that (6) enables us to estimate the first
and last term on the RHS of (5) by choosing G large enough. We now show how
to estimate the middle term for large n,m using the L}, -convergence of V. By
Duhamel’s formula

¢
(e—t(T,.)G _ e—t(Tm)c) f = /0 e (t=)(Ta)e (T, — Tn)e‘s(T’")Gfds (11)

t
/0 e—(t—s)(Tn)GXG(Vm _ Vn)e—S(Tm)cfds (12)

so that we have the estimate
|| (7t — e~Te) fll; < cllxe(Vim = Vi) lhll flloo (13)

where we have used the fact, that the semigroups are bounded on L' and L®
independently of n and G. By assumption on the V, the RHS of (13) converges
to zero for n, m tending to infinity. To estimate the LP-norm of

(e"t(Tn)G _ e—t(Tm)G) f=g
we only have to note that .
1 et
lalle < llglitliglled (14)

To finish the proof of (4) which in turn gives the convergence asserted in the Theorem,
fix £ > 0. According to (6) we find a G € & such that

[ (7 — ™M) fll, <&
for ail n € N. With this G fixed use (13) and (14) to find N € N such that
| (e7e — e~ fl, <= (n,m 2 N).

Using (5) gives the desired result.
Recall that we know already that

e—t(H,,+Vn)f(x) — ]Ez[e" f(: Vnoxsdsf o Xt]

and that the LHS converges in L? to e~##»*V) f Take V;, to be a truncation of V.
Once we can assure that for a.e. z

t
/0 [Wo Xlds <oo for P°—aew (15)

the Feynman-Kac formula follows from Lebesgue’s theorem. However, (15) follows in
the same way as the implication (i) = (i¢) of Proposition 6.1(d) in {15]. n
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We are now heading towards somewhat strengthened versions of the two basic
steps used in the above proof which constitute results of independent interest. To
simplify their statement we say that a sequence U, in Lj,, , satisfies a uniform Kato
condition, if there is a v < 1 and an a > 0 such that ¢,(U,) <+ for all n.

Lemma 2. (Local test) Let p € [1,00). Let V,, € L .(X,C) and assume that
the (RV,)~ satisfy a uniform Kato condition. If (H, + V,)g¢ - (H, + V)g for all
relatively compact G C X, then

H,+V, 25 H,+V.

Proof. Write U, = RV, T,, = H,+V,. Using the analogue of (5) from the above
proof

e—tTn . e—tT — e—tTn _ e—t(Tn)G + e—t(Tn)G _ e—t(T)G + e—t(T)G - e—tT’ (16)
it remains to check the equivalent of (6), since the convergence of the middle term
in the RHS of (16) is just our assumption. We may restrict ourselves to considering

f € L' N L* by uniform boundedness, which in turn follows from the uniform Kato
condition. To prove (6) we want to estimate

| (et Va) — Y ()| < B [eho U f o Xy o <8 (17)

in LP-norm, uniformly in n. Choose & > 1 such that ay < 1, where v < 1 is chosen
according to the uniform Kato condition. With this choice aU, still satisfy a uniform
Kato condition, and therefore the semigroups e ##»=2Us) admit a uniform bound as
operators from L™ to L*™. Denote the dual exponent of o by G and apply Holders
inequality to the RHS of (17) which gives

< (]Ex[efotaU;OX’dstt O){J)Z (]Ez“f| o X, Tge < t])Zli' . (18)

Note that we omitted the negative and imaginary exponentials which can be estimated
by 1 in absolute value. The first term on the RHS of (18) is uniformly bounded in
z and n by what we said above. Using the trick involving (14) as in the proof of
Theorem 1 it suffices to show that the second factor on the right hand side of (18)
converges to zero in L. This follows easily from (7), since

(E(|f] 0 Xeyrae <) = (7 = e™00) ()]
The same reasoning as in the proof of Theorem 1 yields the conclusion. ]

A particularly nice consequence of the “local test lemma” is the following

Theorem 3.  Let V,,V € L} (X,C) satisfy a uniform Kato condition. Then
Vo= Vin Lj,(X,C) = H,+V, =5 H,+ V. ]

Note that several special cases of Theorem 3 in the Hilbert space setting and
for real-valued potentials follow from abstract considerations:
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e if V,, > V one can apply [5], Proposition 7.9 with C.(X) N D as a common
form core of the H, + V.

o if there is a common core for the operators Hs + V;, counsisting of C.-functions,
one can apply [5], Proposition 7.6.

Moreover, in the case of the Laplacian and for non-negative potentials V,, the assertion
of Theorem 3 follows from Lemma 3.1 in [3].

Proof of Theorem 3. With the help of the local test lemma we are almost
done. If it were not for domain questions we could use the same arguments involving
Duhamel’s formula as in the proof of Theorem 1 leading to (13). This minor problem
is circumvented as follows: Cut off V,, and V and denote the result by V(¥ and V).
As in the proof of Theorem 1 we find

- (k) - (k)
|le™ ot ¥ 6 f— = HH VDG £l < el xa(Va = V)| fllco

using that the difference of the cut-off functions is dominated by the difference
of the functions themselves. From this the assertion follows as in the proof of
Theorem 1. [

We finish by several remarks:

o If the negative real part of the potential is in the Kato class, the Feynman-Kac
formula and [12], Theorem B.7.1 immediately imply a Gaussian estimate for
the semigroup constructed in Theorem 1. '

e For some of the above results it is clear and for some it is quite plausible that
one can treat measures instead of potentials.

e Another direction of research concerns dominated semigroups which include as
special case Hamiltonians with magnetic field; see [8].

o The results above remain valid for quasi-regular forms on topological spaces.
This is an easy consequence of the transfer method described in {9], Chapter VI.
As a consequence, our results may also be applied in the infinite dimensional
setting; see [9] for more information.
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