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Mathematics Subject Classifications (1991):82B44, 47B80, 60H25.

Key words: Lifshitz tails, integrated density of states.

1. Introduction

In this note, we present a very simple approach to proving Lifshitz asymptotics
for random operators and apply it to Schrödinger operators with Anderson and
Poisson potentials. Let us first briefly recall what Lifshitz asymptotics is about:
considerH0 = −1 on Rd and a random potential termVω. The operatorH0+ Vω
is to be thought of as the effective Hamiltonian of fixed a realization of a random
solid. If we assume that theVω are bounded below uniformly inω, Vω > 0 say,
the restriction(H0+Vω)3 of H0+Vω to an open cube3 with Neumann boundary
conditions has compact resolvent. Therefore, the spectral counting function

n(E, (H0+ Vω)3) := tr
[
χ[0,E](H0+ Vω)3

]
which gives the number of eigenvalues belowE, counted with multiplicity, is fi-
nite. This function bears important information about the random potential under
consideration. In fact, its limit as3 exhausts the whole space has an asymptotic
behaviour characteristic of disorder. To see that, let us first recall that by the cel-
ebrated Weyl asymptotic formula, in absence of disorder, i.e. forVω = 0, we
have

n(E, (H0)3) = CdEd/2(|3| + o(|3|)) E > 0

(where we use|3| for the volume of the cube) which means that

lim
3↗Rd

1

|3|n(E, (H0)3) =: N0(E) = CdEd/2.



280 P. STOLLMANN

A submultiplicative ergodic theorem implies that the respective limit

N(E) := lim
3↗Rd

1

|3|n(E, (H0+ Vω)3)

exists for a.e.ω under some mild and very natural ergodicity assumption onVω
(see [4]). Moreover, this limit is independent of the choice ofω outside some set
of measure zero and equals

N(E) = inf
3

1

|3|E{n(E, (H0+ Vω)3)}.

Now the right-hand side above is readily interpreted as the expected number of
energy levels per unit volume belowE. Clearly, this quantity is of importance
both mathematically and from the physicists point of view. In his landmark work,
Lifshitz predicted an asymptotic behaviour ofN(E) which differs drastically from
the dimension-dependent power law decay ofN0(E). Namely, he claimed that
for nontrivial Vω which obeys some spatial independence (this will be explained
below),

N(E) ∼ exp(−γE−d/2) asE ↘ 0.

(Here we assume that 0 is the inf of the spectrum ofH0 + Vω a.e. for notational
convenience.) His reasoning is as follows:

first of all n(E, (H0+ Vω)3) 6 n(E, (H0)3) as the nonnegative potential term
shifts the eigenvalues to the right. Therefore, withE1(. . .) denoting the bottom
eigenvalue of the operator in question, we have

N(E) 6 1

|3|
∫
n(E, (H0+ Vω)3)χ{E1((H0+Vω)3)6E} dP(ω)

6 CEd/2P{ω : E1((H0+ Vω)3) 6 E}.
Now we want to estimate the probability of having small eigenvalues. Ifφ is a
normalized eigenfunction of(H0+Vω)3 with eigenvalueE ∼ 0 it must be localized
to a region whereVω = 0, asE = (−1φ|φ) + (Vωφ|φ). As the kinetic energy of
a function localized to a set of diameterR is at least of orderR−2, there must be a
ball of radiusE−1/2 on whichVω vanishes essentially. The spatial independence
referred to above means that we assume that the restrictions ofVω to disjoint
subsets are independent of each other. In that case, the probability thatVω vanishes
on a ball of radiusR goes to zero exponentially in the volumeRd of the ball asR
goes to infinity. Inserting the lengthR = E−1/2 found above, we get that

P{ω : E1((H0+ Vω)3) 6 E} 6 const exp(−γE−d/2).
Of course, this is not a mathematically rigorous proof. The point which certainly
has to be made precise is the existence of a large enough region whereVω = 0.
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For due to tunneling effects,φ might still live on parts of space whereVω � 0. Of
course,Vω may not increase the potential energy too much.

Our way around that difficulty goes as follows: LetH(ω) = H0 + Vω be a
random Schrödinger operator withVω > 0. By what we said above, Lifshitz be-
haviour for the integrated density of states can be deduced from an estimate of the
following form, whereH3(ω) denotesH0+Vω in L2(3), with Neumann boundary
condition (b.c.),3 = 3l(0) an open cube with sidelengthl in Rd andE1(·) the first
eigenvalue.

P{E1(H3(ω)) 6 E1(H0)+ bl−2} 6 4 exp(−ldγ ). (1.1)

This latter inequality states in precise terms that it is very unlikely to find really
small eigenvalues ofH3(ω). In order to prove such an inequality, one has to over-
come the following main problem: for a simple-minded lower bound on the first
eigenvalue one would need a uniform lower bound on the perturbationVω. Such
uniform lower bounds only hold with small probability. On the other hand, what
one knows by standard probabilistic tools are lower bounds for the mean ofVω
for typical ω. So what we need is a relation between the mean ofVω and the first
eigenvalue. In our approach we choose a derivative related withE1(ω) as such a
link. As you will see, that provides a conceptually simple proof of inequality (1.1).

More precisely, let us consider

H3(ω, t) = H0+ tVω onL2(3) with Neumann b.c.

Then the first eigenvalueE1(ω, t) of this operator behaves like

E1(H3(ω)) > E1(ω, t) ≈ E1(H0)+ tE′1(ω,0) for small t, (1.2)

with

E′1(ω,0) = (Vωφ0|φ0),

whereφ0 is the normalized ground state ofH0.
Now, let us take a closer look at (1.2). We have to find out just how large we

may taket . Analytic perturbation theory suggestst ≈ l−2, as this is the distance of
E1(H0) toE2(H0) for typical Schrödinger operators. With this choice andb small
enough, fromE1(ω) 6 E1(H0) + bl−2 it follows thatE′1(ω,0) has to be small.
But, in the Anderson case,

E′1(ω,0) = (Vωφ0|φ0) =
(

1

|3|
∑
i∈3

ω(i)

)
const. (1.3)

is essentially the mean of a sum of|3| = ld i.i.d. variables. The probability that
this mean differs from the expectation by some fixed constant goes to zero expo-
nentially in the number of independent copies, i.e. exp(−γ |3|) which is exactly
the decay we need. For Poisson potentials, we provide a rather elementary large
deviation estimate, reducing it to something like (1.3). The above considerations
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constitute already the main idea of our method which we call ‘linear coupling of
disorder’ for obvious reasons. The rest of the paper is devoted to carrying out the
details needed to turn the above heuristics into a rigorous proof.

In principle, this requires three steps: firstly, the standard procedure to deduce
Lifshitz tails from (1.1) above. To prove (1.1) we need, of course, large deviation
results for(Vωφ0|φ0). As a last ingredient, a remainder estimate for the first-order
approximation toE1(ω, t) is needed, which, again, is quite standard.

As all three steps are rather straightforward, the expert reader could stop at
this point. (But please, read on.) To appreciate the simplicity of our approach, the
reader should compare it with the proofs available so far; see [1, 10], where detailed
references to the literature can be found. Usually, there is some tricky part when
it comes down to showing the main point: smallE1(ω) come from large deviation
from the typicalω.

For the Anderson model, Temple’s or Thirring’s inequality is used at that point.
The Poisson model was treated using the celebrated work of Donsker and Varad-

han [2] on the asymptotics of the Wiener sausage. A beautiful introduction to this
circle of ideas can be found in [8].

In our approach we single out a very convenient link, namelyE′1(ω,0).
This enabled us to apply our method to a random quantum waveguide model [5],

quite reminiscent of the Anderson model. For this model, however, determining the
derivativeE′1(ω,0) is harder (and more interesting), and the methods using Tem-
ple’s or Thirring’s inequality fail. Despite of all the advertisement for our method,
we should stress that, so far, we haven’t achieved ‘the right constant’ in the Poisson
case.

2. Lifshitz Tails for Anderson and Poisson Models

Let us first fix the notation and the basic assumptions. Throughout the following,
3 = 3l(x) denotes an open cube of sidelengthl centered atx. Moreover,p is an
exponent such thatp > d/2 for d > 4 andp = 2 for d 6 3, andf ∈ Lp(Rd),
f > 0 and suppf ⊂ 31(0). We will consider the following random potentials:

(A) THE ANDERSON MODEL. LetS > 0 andµ be a probability measure on
[0, S] with 0 ∈ suppµ andM = ∫

x dµ > 0, i.e.µ is not justδ. Denote its
variance byv = ∫

x2 dµ. Let � = [0, S]Zd , P = µZd and defineVAω (x) =∑
i∈Zd ω(i)f (x − i).

(P) THE POISSON MODEL. Let� denote the point measures onRd andP the
Poisson measure on�, which is concentrated on{∑i δXi ; for some discrete se-
quence(Xi)}. Define

V P
ω (x) = f ∗ ω(x) =

∑
i

f (x −Xi(ω)).
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These two random measures correspond to quite different types of disorder:
while V A

ω is used to model solids with defects, with some periodicity still present
in the random potential,V P

ω describes an amorphous medium in which the nuclei
(atXi(ω)) are distributed erratically in space.

As many of the following considerations apply to both the Anderson and the
Poisson model, we will often writeVω to denote either of them, and use a super-
scriptsA,P to distinguish between them. With this convention, denoteH(ω) =
−1 + Vω in L2(Rd) and byH3(ω) the restriction of this operator toL2(3) with
Neumann boundary conditions.

The integrated density of statesfor H(ω) is given by

N(t) = inf
3

1

|3|E
{
tr
[
χ[0,t ](H3(ω))

]}
= lim

3↗Rd

1

|3| tr
[
χ[0,t ](H3(ω))

]
P-a.s.

We refer to [1, 4, 10] for a discussion of this very important quantity. Note that the
trace appearing above simply counts the number of eigenvalues belowt , so that
N(t) is interpreted as the number of energy levels per unit volume ofH(ω). The
fact that

1

|3|E
{
tr
[
χ[0,t ](H3(ω))

]}
decreases as3 increases is due to our choice of the boundary condition. Since
we are working with Neumann boundary conditions the spectral counting func-
tion is subadditive on disjoint open sets. It is also possible to work with Dirichlet
boundary conditions instead, in which case the spectral counting function is super-
additive. For reasonably well definedVω the limits are in fact the same. See [4] for
a thorough discussion of this point.

The estimate given in the next theorem is usually referred to as Lifshitz tail
behaviour and is one of the central topics of disordered systems ever since Lifshitz’
seminal contribution [9]:

THEOREM 2.1. The integrated density of statesN(t) satisfies

lim sup
t↘0

logN(t)

t−d/2
6 −γ (2.1)

for someγ > 0. For the Anderson model,γ = γA depends uponf,M, S and for
the Poisson model,γ = γP depends uponf .

The inequality (2.1) will easily follow from the next result, as we will show at
the end of this section. In the supplement given there one can see the dependence
quite clearly. Note that we writeE1(·) for the first eigenvalue of the operator in
question.

PROPOSITION 2.2. (A)There exist universal constantsc, K > 0 such that with
cA = c · S · ‖f ‖p/‖f ‖1, for every
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b 6 min

{
π2

4
,
M2

c2
A

}
,

we have

P{E1(H
A
3(ω)) 6 b · l−2}

6 K exp

[
−ld M − cA

√
b

K · S log

(
1+ S · (M − cA

√
b)

v

)]
. (2.2)

(P)There exists a universal constantc′ such that, forM = (e − 1)/e = v,

cP = c′ · ‖f ‖p‖f ‖1 ,

and every

b 6 min

{
π2

4
,
M2

c2
P

}
,

we have

P{E1(H
P
3 (ω)) 6 b · l−2}

6 K exp

[
−(l − 2)d

M − cP ld

(l−2)d

√
b

K
log

(
1+ M − cP

ld

(l−2)d

√
b

v

)]
.(2.3)

Let us first single out an important step in the proof of Proposition 2.2. To this
end, fixV ∈ Lploc,unif(3), letH(t) = −1+ t · V in L2(3) with Neumann b.c. and
denote its first eigenvalue byE1(t). Note thatE1(0) = 0.

LEMMA 2.3. There exists a universal constantC such that forτ = C·‖V ‖−1
p,loc,unif

and06 t 6 τ l−2 we have

|E1(t)− tE′1(0)| 6
π2

4τ2
· l2 · t2.

Proof. To estimate the remainder term in the Taylor expansion we want to use
[3], formula II(3.6). The isolation distanceϑ defined as the distance ofE1(0) to
the rest of the spectrum ofH(0) is given byϑ = π2/l2.

As 0 we choose a circle aroundE0 with radiusϑ/2. We need an estimate for
ther0 appearing in [3], II(3.3), which means that we have to consider

r(ζ ) = ‖V (H(0)− ζ )−1‖−1 for ζ ∈ 0.
As (H(0) − ζ )−1 mapsL2 to the Sobolev spaceW2,2 with norm controlled by
dist(ζ, σ (H(0))) > ϑ/2, we have by Sobolev’s inequality that

‖V (H(0)− ζ )−1‖ 6 c′ · 2

ϑ
· ‖V ‖p,loc,unif,
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so that

r0 = min
ζ∈0 r(ζ ) > C

′′ ϑ

‖V ‖p,loc,unif
,

and an appeal to [3], estimate II(3.6) finishes the proof. 2
We are now ready to present the proof of Proposition 2.2.

Proof of Proposition 2.2.DenoteH(ω, t) = −1+t ·Vω inL2(3)with Neumann
b.c. and denote byE1(ω, t) its first eigenvalue. From the remainder estimate in
Lemma 2.3 we have

|E1(ω, t)− t ·E′1(ω,0)| 6
π2

4τ2
· l2 · t2 (06 t 6 τ l−2),

where

τ = C · 1

‖Vω‖p,loc,unif
> C · 1

S · ‖f ‖p
is bounded away from 0, independently ofω. Assume thatE1(ω) 6 b · l−2 for
b 6 π2/4. Then the above inequality yields

t ·E′1(ω,0) 6
π2

4τ2
· l2 · t2+ b · l−2 for all 06 t 6 τ l−2.

Insertingt = sτ l−2 we get

E′1(ω,0) 6
π2s

4τ
+ b

τs
for all 06 s 6 1.

Optimizing w.r.t.s we gets = 2
π

√
b and

E′1(ω,0) 6
π

τ

√
b,

which implies

(Vωφ0|φ0) 6
π

τ

√
b,

where

φ0 = 1

|3|1/2χ3.

We now specialize to the case (A):
Then

(Vωφ0|φ0) = ‖f ‖1
(

1

|3|
∑
i∈3

ω(i)

)
.
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Define

cA = π · S · ‖f ‖p
C · ‖f ‖1 ,

so that
π

‖f ‖1 · τ 6 cA

Now, if 0 6 b 6 M2/c2
A it follows that

P
{
E1(ω,1) 6 b · l−2} 6 P

{
1

|3|
∑
i∈3

ω(i) 6 cA
√
b

}
6 P

{∣∣∣∣ 1

|3|
∑
i∈3

ω(i)−M
∣∣∣∣ > M − cA√b}.

By [11], Thm. 1.4, this latter probability can be estimated by

K exp

[
− ld M − cA

√
b

K · S log

(
1+ S · (M − cA

√
b)

v

)]
,

the assertion.
To treat case (P), we want to use a similar calculation and subdivide3 into the

unit cubes31(m), wherem runs through3l(0) ∩ Zd .
We introduce the random variables

Ym(ω) :=
{

1, if there is anXi(ω) ∈ 31(m),
0, else,

for m ∈ 3l−2(0). By the properties of the Poisson process, these r.v. are i.i.d. with
expectation and variance equal toM = (e − 1)/e = v. We define an auxiliary
random potential by

Wω(x) :=
∑

m∈3l−2(0)

Ym(ω) · f (x − Xi(m)(ω)),

whereXi(m)(ω) is one of the Poisson points in31(m), if Ym(ω) = 1, and zero else.
Clearly,

Wω(x) 6 Vω(x) for all ω ∈ �, x ∈ Rd,

and, hence,

P{E1(H3(ω)) 6 b · l−2} 6 P{E1(−1+Wω) 6 b · l−2}.
Now the latter probability can be estimated by the same calculation as in the case
(A) above, since

(Wωφ0|φ0) > ‖f ‖1 (l − 2)d

ld

(
1

(l − 2)d
∑
m

Ym

)
,
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and

‖Wω‖p,loc,unif 6 3d · ‖f ‖p,
where for the last inequality we counted the neighbouring boxes and thus the max-
imal number of nontrivial terms in the sum which definesWω. Thus, we are again
left with applying a large deviation result for sums of i.i.d. variables. We get, with

cP = π

C
· ‖f ‖p‖f ‖1 ,

that

P
{
E1(ω,1) 6 b · l−2

}
6 P

{
1

(l − 2)d
∑

m∈3l−2

Ym 6 cP
ld

(l − 2)d
√
b

}

6 P
{∣∣∣∣ 1

|3|
∑

m∈3l−2

Ym −M
∣∣∣∣ > M − cP ld

(l − 2)d
√
b

}

6 K exp

[
− (l − 2)d

M − cP ld

(l−2)d

√
b

K
log

(
1+ M − cP

ld

(l−2)d

√
b

v

)]
,

by [11], Thm. 1.4. 2
It remains to prove the theorem. In order to give more precise information on

the exponent, let us introduce some notation. Denote

γ∗(b) = bd/2M − c∗
√
b

K · S log
(

1+ S · (M − c∗
√
b)

v

)
for ∗ = A,P , whereM,v, S are defined in(A) for the Anderson case andM =
v = (e − 1)/e, S = 1 in the Poisson case.

SUPPLEMENT TO THEOREM 2.1. Inequality(2.1)holds for

γ∗ = max

{
γ∗(b);06 b 6 min

{
π2

4
,
M2

c∗

}}
.

Proof.We first deduce inequality (1.1) with ab-dependent exponentγ (b), where
b is as in Proposition 2.2. The result above will then follow by optimizing with
respect tob.

First note that

N(t) = inf
3

1

|3|E
{
tr
[
χ[0,t ](H3(ω))

]}
6 inf

3

1

|3|P {E1(H3(ω)) 6 t} · c · |3|
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by Weyl’s law, referred to in the introduction; choosingt = b · l−2 with

06 b 6 min

{
π2

4
,
M2

c2
A

}
, and 3 = 3l(0),

we get the assertion. 2

3. Concluding Remarks

Of course, one could shorten the above proof if one isn’t interested in the exponent.
There are different quite easy perturbation theoretic proofs for Lifshitz tail

asymptotics which use Temple’s or Thirring’s inequality. See [4] for a detailed
explanation and references. The method presented here has the advantage that the
link between spectral and probability theory provided by the derivative allows for
a conceptually more transparent proof, at least in our opinion. Moreover, the deriv-
ative is in many cases easy to calculate or at least easy to guess, which provides a
road map for the rigorous proof. An example is the application of the above method
in [5], where we didn’t see how to use the methods previously available.

So far we haven’t been able to strengthen our arguments so as to obtain the
correct value of the exponent which is known to beC · γ d/2d , whereC is a known
constant andγd is the lowest eigenvalue of the Dirichlet Laplacian on a ball of unit
volume inRd ; see [10] for an extensive discussion. This correct value is related
with isoperimetric inequalities and is obtained by using the celebrated results of
Donsker and Varadhan; see [2, 8, 4, 10].

To date there are more detailed results available for the bottom (i.e. principal)
eigenvalue of a Schrödinger operator with Poissonian obstacles; we refer the reader
to [12] and the literature cited there.

A recent thorough investigation of the attractive Poissonian case (i.e. the case
wheref is nonpositive) is given in [7].

Let us further mention recent deep work of Klopp, [6], which deals with what
is called internal Lifshitz tails. ConsiderH0 = −1+V0, whereV0 is aZd-periodic
potential, andH(ω) = H0+V A

ω . The spectrum ofH0 consists of a number of closed
intervals, called bands, separated by open intervals called gaps. The same is true for
H(ω), where the bands are usually shifted and somewhat enlarged, depending on
sign and size ofVAω . Lifshitz predicted that the behaviour of the integrated density
of statesN0 for H0 near band edgesE0 should have the same power law decay as
in the caseV0 = 0 at energy 0, i.e.

N0(E0+ ε) ∼ N0(E0)+ εd/2 asε ↘ 0

if E0 is the left endpoint of one of the bands. Moreover, for the randomized op-
eratorH(ω) he claimed that the integrated density of statesN should exhibit
the exponential decay discussed above for the inf of the spectrum. Interestingly
enough, both claims are still not proved nor disproved in general. Klopps work
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establishes an equivalence between them, saying that at band edges at whichN0

behaves as predicted so doesN . Presumably, this can be proven by our methods
above (work in progress, jointly with G. Stolz). However, Klopp’s article gives
more information: expanding the projection of the periodic Hamiltonian onto a
band into Wannier functions he establishes a certain equivalence with a discrete
Schrödinger type operator. This equivalence is used to reduce the proof of Lifshitz
asymptotics near band edges to the proof of Lifshitz asymptotics of an associated
discrete operator at the bottom of the spectrum.
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