
Digital Object Identifier (DOI) 10.1007/s00220-003-0920-7
Commun. Math. Phys. (2003) Communications in

Mathematical
Physics

Discontinuities of the Integrated Density of States
for Random Operators on Delone Sets�

Steffen Klassert, Daniel Lenz, Peter Stollmann

Fakultät für Mathematik, Technische Universität Chemnitz, 09107 Chemnitz, Germany.
E-mail: S.Klassert@mathematik.tu-chemnitz.de; D.Lenz@mathematik.tu-chemnitz.de;
P.Stollmann@mathematik.tu-chemnitz.de

Received: 9 September 2002 / Accepted: 16 April 2003
Published online: – © Springer-Verlag 2003

Abstract: Despite all the analogies with “usual random” models, tight binding opera-
tors for quasicrystals exhibit a feature that clearly distinguishes them from the former:
the integrated density of states may be discontinuous. This phenomenon is identified as
a local effect, due to the occurrence of eigenfunctions with bounded support.

1. Introduction

In the present article we study the occurrence of discontinuities of the integrated density
of states (IDS). For the special case of a tight binding model associated with the Penrose
tiling the occurrence of this effect has been known for quite some time as witnessed for
example in [ATF, FATK, KF, KS]. We present two results. The first aims at showing that
the occurrence of jumps in the IDS cannot be excluded by global assumptions concern-
ing, e.g., ergodic or combinatorial properties. To this end we present a theorem saying
that starting from some model of aperiodic order (phrased in the language of Delone sets)
one can construct a model that is “basically the same” and gives rise to a tight binding
operator for which the IDS is discontinuous. Here “basically the same” is cast in the
notion of “mutually locally derivable” for Delone dynamical systems. We discuss this
notion analogous to the respective notion for tilings found in [BSJ]. In the construction
we use that Laplacians on certain graphs have finitely supported eigenfunctions. It now
becomes clear that it is the more complex structure of graphs in higher dimension that
makes such a phenomenon possible. On lattices (and, consequently, in one-dimensional
systems) such finitely supported eigenfunctions cannot occur.

Our second theorem says that this is the only possibility to create a jump of the IDS,
at least when starting from a reasonable Delone dynamical system. It is a consequence
of a rather strong ergodic theorem in [LS3]. This theorem states that the IDS is in fact the
uniform limit of eigenvalue counting distributions. It is therefore substantially stronger
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than the weak convergence results typically proven in connection with the IDS see for
example [BLT, H, K]. The fact that such a strong convergence holds true is special for
models of aperiodic order and not met in usual random systems.

2. Notation and Results

In this section we introduce some notation and present our results. We will use the
same setting as the one found [LS2]. For completeness reasons we include the necessary
definitions.

Let d ≥ 1 be a fixed integer and all Delone sets, patterns etc. will be subsets of R
d .

The Euclidean norm on R
d will be denoted by ‖ · ‖. For r ∈ R

+ and p ∈ R
d , we let

B(p, r) be the closed ball in R
d centered at p with radius r .

A subset ω of R
d is called a Delone set if there exist r(ω) and R(ω) > 0 such that

2r(ω) ≤ ‖x − y‖ whenever x, y ∈ ω with x �= y, and B(x,R(ω)) ∩ ω �= ∅ for all
x ∈ R

d .
We are dealing in this paper with local structures of Delone sets, therefore the restric-

tions of ω to bounded subsets of R
d are of particular interest. In order to treat these

restrictions, we introduce the following definition.

Definition 2.1. (a) A pair (�,Q) consisting of a bounded subset Q of R
d and � ⊂ Q

finite is called a pattern. The set Q is called the support of the pattern.
(b) A pattern (�,Q) is called a ball pattern if Q = B(x, r) with x ∈ � for some
x ∈ R

d and r ∈ (0,∞).

The diameter and the volume of a pattern are defined to be the diameter and the
volume of its support respectively.

We will have to identify patterns that are equal up to translation. More precisely, on
the set of patterns we introduce an equivalence relation by setting (�1,Q1) ∼ (�2,Q2)

if and only if there exists a t ∈ R
d with �1 = �2 + t and Q1 = Q2 + t . The class of a

pattern (�,Q) is then denoted by [(�,Q)]. Obviously the notions of diameter, volume
occurrence etc. can easily be carried over from patterns to pattern classes.

Every Delone set ω gives rise to a set of pattern classes, P(ω) = {[Q ∧ ω] : Q ⊂
R
d bounded and measurable}, and to a set of ball pattern classes PB(ω) = {[B(p, r) ∧
ω] : p ∈ ω, r ∈ R

+}. Here we setQ∧ω = (ω∩Q,Q). We define the radius s = s(P )

of an arbitrary ball pattern P to be the radius of the underlying ball. For s ∈ (0,∞), we
denote by PsB(ω) the set of ball pattern classes with radius s. A Delone set is said to be
of finite type or of finite local complexity if for every radius s > 0 the set PsB(ω) is finite.

The Hausdorff metric on the set of compact subsets of R
d induces the so called nat-

ural topology on the set of closed subsets of R
d . It is described in detail in [LS2] and

shares some nice properties: firstly, the set of all closed subsets of R
d is compact in the

natural topology. Secondly, and this is of prime importance in view of the dynamical
system we are to consider, the natural action T of R

d on the closed sets in R
d given by

TtG = G+ t is continuous.
Furthermore, a Delone dynamical system (DDS) consists of a set � of Delone sets,

which is invariant under the shift T and closed in the natural topology. A DDS is said
to be of finite type (DDSF) if ∪ω∈�PsB(ω) is finite for every s and the set P(�) of
patterns classes associated to a DDS � is defined by P(�) = ∪ω∈�P(ω). Due to the
compactness of the set of all closed sets in the natural topology a DDS � is compact.
We refrain from a precise discussion of the topology but we give the following lemma
from [LS2].
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Lemma 2.2. If (�, T ) is a DDSF then a sequence (ωk) converges to ω in the natural
topology if and only if there exists a sequence (tk) converging to 0 such that for every
L > 0 there is an k0 ∈ N with (ωk + tk) ∩ B(0, L) = ω ∩ B(0, L) for k ≥ k0.

Roughly speaking,ω is close to ω̃ ifω equals ω̃ on a large ball up to a small translation.
We now recall some standard notions from the theory of dynamical systems and some

available equivalent “combinatorial” characterizations. A dynamical system (�, T ) is
called minimal if the orbit {Ttω : t ∈ R

d} of any ω is dense in �. For a DDS this is
equivalent to the property that P(�) = P(ω) for any ω. This latter property is called
a local isomorphism property in the tiling framework; see [Sol1]. A sequence (Qk) of
subsets in R

d is called a van Hove sequence if the sequence |∂RQk||Qk|−1 tends to zero
for every R ∈ (0,∞). Here, ∂RQ denotes the set of those x ∈ R

d whose distance to
the boundary of Q is less than R. Furthermore, a dynamical system (�, T ) is called
uniquely ergodic if it admits only one T -invariant measure (up to normalization). For a
Delone dynamical system, this is equivalent to the fact that for every nonempty pattern
class P the frequency

ν(P ) ≡ lim
k→∞

|Qk|−1�P (Qk ∧ ω),

exists uniformly in ω ∈ � for every van Hove sequence (Qk). Here �PQ denotes the
number of occurrences of P inQ. We call a dynamical system (�, T ) strictly ergodic if
it is minimal and uniquely ergodic. Note that in this case the frequency ν(P ) is positive
for every P ∈ P(�).
Definition 2.3. Let (�, T ) be a DDSF. A family (Aω) of bounded operators Aω :
�2(ω) −→ �2(ω) is called a random operator of finite range on (�, T ) if there
exists a constant rA with

• Aω(x, y) = 0 whenever ‖x − y‖ ≥ rA.
• Aω(x, y) only depends on the pattern class of (B(x, rA) ∪ B(y, rA)) ∧ ω.

Usually, random operators are defined with respect to a measure. In our situation,
however, it seems natural to define them without a given measure, as the setting of De-
lone sets is a purely topological one. Moreover, in the case of uniquely ergodic DDS,
which is our main concern, a measure arises naturally as discussed above.

Note that the above defined operators provide a framework including Laplace type
operators defined on �2(Zd). Let us mention that for ω̃, ω ∈ � the operators act on dif-
ferent Hilbert spaces �2(ω) and �2(ω̃) unless ω and ω̃ differ only by translation. Thus,
to deal with operators on �2(ω) is more complicated than in the lattice case.

The aim of this article is to discuss the phenomenon of discontinuities of the inte-
grated density of states of random operators (Aω) on a DDSF (�, T ). This might rather
come as a surprise in view of what is known for random models as well as one dimen-
sional quasicrystals. It turns out that this phenomenon occurs if and only if there exist
locally supported eigenfunctions of (Aω). One can find examples of locally supported
eigenfunctions on the Penrose tiling in [KS] and [ATF]. An eigenfunction f is said to
be locally supported if suppf ⊂ K , with K a compact set. The phenomenon of locally
supported eigenfunctions is by no means pathological. Rather from any given DDSF
(�, T ) we can construct an, in some sense, local equivalent DDSF (�b, T ) such that a
random operator of finite range (Abω) defined on (�b, T ) has locally supported eigen-
functions. More precisely (�, T ) and (�b, T ) are mutually locally derivable (MLD).
The equivalence concept of mutual local derivability for tilings was discussed in detail
in [BSJ]. This will all be discussed below. Our first result reads as follows.
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Theorem 1. Let (�, T ) be a DDSF. Then there exists a DDSF (�b, T ) and a random
operator of finite range (Abw) on (�b, T ) such that (�, T ) and (�b, T ) are mutually
locally derivable and (Abw) has locally supported eigenfunctions with the same eigen-
value for every ω ∈ �b. Moreover, (Abw) can be chosen to be the nearest neighbor
Laplacian of a suitable graph.

Remark 2.4. The theorem also holds in the tiling setting. Here a single tile of the original
tiling will be replaced by tiles of a new tiling which is MLD to the originally given one
(see below for further discussion).

Note that for a selfadjoint random operator A and bounded Q ⊂ R
d the restriction

Aω|Q defined on �2(Q ∩ ω) has finite rank. Therefore, the spectral counting function

n(Aω,Q)(E) := #{ eigenvalues of Aω|Q not exceeding E}

is finite and 1
|Q|n(Aω,Q) is the distribution function of the measure ρAωQ , defined by

〈ρAωQ , ϕ〉 := 1

|Q| tr(ϕ(Aω|Q)) for ϕ ∈ Cb(R).

For a uniquely ergodic DDSF the measures ρAωQk converge in distribution to a measure

ρA which is independent of ω ∈ � and called the integrated density of states (IDS) for
any van Hove sequence Qk as k → ∞. This is described in [LS2, LS4]. There one can
also find an interpretation of the IDS as a certain trace on a von Neumann algebra. Now,
we can state our main theorem.

Theorem 2. Let (�, T ) be a strictly ergodic DDSF. Let A be a selfajoint random oper-
ator of finite range. Then E is a point of discontinuity of ρA if and only if there exists a
locally supported eigenfunction of Aω to E for one (all) ω ∈ �.

Remarks 2.5. (1) It rather straightforward to see that locally supported eigenfunctions
lead to a discontinuity of the IDS. The more interesting part of the equivalence is
that discontinuities only happen in that way.

(2) As pointed out already the theorem gives rise to a complete characterization of the
phenomenon of locally supported eigenfunctions in quasicrystal settings (i.e. DDSF
and tiling settings).

(3) Let us emphasize that the integrated density of states is continuous in the case of
almost periodic and random operators on lattices. Due to the more complex geometry
this does not follow in the quasicrystal framework.

3. Preliminaries

In this section we will study the equivalence concept of MLD. Further we are going to
construct a map that maps any given DDSF to a DDSF which is MLD to the original one
and which admits a random operator with locally supported eigenfunctions. We record
as well some tools that we will use later on to prove our results.

As mentioned already the equivalence concept of MLD for patterns on tilings was
discussed in [BSJ]. We give the obvious definition for Delone dynamical systems of
finite type.
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Definition 3.1. Let (�, T ) and (�b, T ) both be DDSF. A map D : � → �b is called
a local derivation map if there exists a radius rD > 0 such that D(ω) ∩ {x} = (t +
D(ω)) ∩ {x} holds whenever ω ∩ B(x, rD) = (t + ω) ∩ B(x, rD). In this case (�b, T )
is called locally derivable from (�, T ). Two DDSF (�, T ) and (�b, T ) are mutually
locally derivable if (�, T ) is locally derivable from (�b, T ) and vice versa (with a
possibly different radius r ′D).

Note that the map D is local in the sense that D(ω) ∩ B(x, s) only depends on
ω ∩ B(x, s + 2rD).

Proposition 3.2. Let (�, T ) be a DDSF, D : � → �b, ω �→ D(ω), a local derivation
map. Then D is continuous with respect to the natural topology.

Proof. This is immediate as D is local and the topology is local in the sense of Lemma
2.2. ��

We now want to insert a well scaled local structure into a given Delone set wherever
a certain pattern occurs. Let ω be a Delone set and P be a ball pattern class with
P ∈ PB(ω). Then, we define ωP to be the set of all occurrences of P in R

d , i.e.

ωP ≡ {t ∈ R
d : [B(t, s(P )) ∧ ω] = P }. (1)

Now, let (�, T ) be a DDSF and r < r(ω) for all ω ∈ �, G be a finite graph
with VG the set of vertices of G contained in R

d . Furthermore let diam(G) = r
21 and

VG ⊂ B(0, r42 ). We use this finite graph to define a local derivation map by setting
DP,VG(ω) ≡ ω ∪ {t + VG : t ∈ ωP } for ω ∈ � and �b := {DP,VG(ω) : ω ∈ �}. Then,

DP,VG : � → �b, ω �→ DP,VG(ω)

is a local derivation with inverse given by the local derivation map

HP,VG : �b → �, HP,VG(ω
b) = {x ∈ ωb : ωb ∩ B(x, r3 ) = ωb ∩ B(x, r42 )}.

Note that (�, T ) is also a local derivation of (�b, T ). Thus, (�, T ) and (�b, T ) are
mutually locally derivable.

Remarks 3.3. Let � and �b be as above. Then

(1) As (�, T ) is a DDSF so is (�b, T ).
(2) If (�, T ) is a uniquely ergodic DDSF, the same holds for (�b, T ).
(3) The frequency of G in �b is the same as the frequency ν(P ) of P in �.

The following two ingredients are essential for the proof of Theorem 2. The first one
is one of the main results from [LS3]. It relies on a strong ergodic type theorem proven
there (see [Len] for a study of uniform ergodic theorems in the one dimensional case).

Theorem 3.4. Let (�, T ) be a strictly ergodic DDSF. Let A be a selfadjoint operator
of finite range and (Qk) be a van Hove sequence in R

d . Then, the distribution func-
tions of ρAωQk converge uniformly to the distribution function of the measure ρA and this
convergence is uniform in ω ∈ �.

The second one is a well known dimension argument from linear algebra which we
will state for completeness reasons.

Proposition 3.5. LetH be a finite dimensional Hilbert space,U,V subspaces ofH with
dimU > dim V , then dim V ⊥ ∩ U > 0.
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Fig. 1. The finite graph Gfin

4. Proofs

In this section we prove Theorem 1 and Theorem 2.

Proof of Theorem 1. To prove the theorem we start with the construction of a DDSF
where a random operator of finite range (Aω) exists which has locally supported eigen-
functions. The starting point is a small graph Gfin = (Vfin, Efin) and an eigenfunction
ufin of the associated nearest neighbor Laplacian. For definiteness sake consider Fig. 1.
The values of ufin are indicated near the corresponding vertices. Here the eigenvalue is
E = 0.

It is clear that whatever edges reach out of the four corners in a larger graph extending
Gfin, the extension of ufin by 0 to the larger vertex set will still constitute an eigenfunc-
tion of the Laplacian on the large graph. It is now easy to implement this picture into
a given DDSF. In fact, let (�, T ) be a DDSF and P be a ball pattern. We use the local
derivation map DP,Vfin discussed in the last section to put in Vfin from above, scaled
properly, whenever P appears. It is obvious by the definition of DP,Vfin , that this gives
rise to a DDSF (�b, T ) which is locally derivable from (�, T ) and vice versa.

Obviously we get a random operator Ab with locally supported eigenfunctions by
taking for Abω the nearest neighbor Laplacian on the copies of Efin in ω and consistent
matrix elements otherwise. ��

Remarks 4.1. (1) The simplest case of the construction made above is of course given
by choosing P = ({x}, B(x, r)) with r < r(ω). Then the graph Gfin is glued at any
point of the underlying Delone set. The corresponding �2 space is just a direct sum
(or tensor product) and that applies to the operators as well. Related constructions
have been considered by [SA] in the context of creation of spectral gaps.

(2) For those who prefer tiling examples we now indicate how to view the construc-
tion above in this framework. Take a tiling dynamical system (see [LS2, Sol2]) and
replace one given tile T by a suitable homeomorphic image of T b indicated in Fig. 2.
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Fig. 2. The tiling of Gfin

We also indicated the next neighbor relations, showing that the resulting graph is just
Gfin above.

Proof of Theorem 2. We first show that the condition is sufficient. Let u be an eigenfunc-
tion of Aω0 associated to an eigenvalue E with supp u ⊂ B(x, r) and x ∈ ω0. Then for
anyω ∈ � every copy of P = B(x, r)∧ω0 inQ∧ω adds a dimension to the eigenspace
ofAω|Q belonging to the eigenvalueE. Let �̇PQ∧ω be the maximal number of disjoint
copies of P in Q ∧ ω. Note that |B(0,3r+r(ω))|

|B(0,r(ω))| =: C is an upper bound for the number
of points (and therefore the maximal number of copies of P ) in B(0, 3r) ∩ ω.

This gives by a direct combinatorial argument that

�̇PQ ∧ ω ≥ 1

C
�PQ ∧ ω.

Thus, for arbitrary ε > 0 ,

tr(χ(−∞,E−ε)(Aω|Q))
|Q| ≤ tr(χ(−∞,E+ε)(Aω|Q))

|Q| − 1

C

�Pω ∧Q
|Q| .

SettingQ = Qk withQk from a van Hove sequence and letting k tend to infinity, we get
that ρA(E − ε) ≤ ρA(E + ε) − ν(P )

C
. As ε > 0 is arbitrary and ν(P ) > 0 the desired

implication follows.
Next we show the converse implication. Let Ẽ be a point of discontinuity of the

function E �→ ρA((−∞, E]) and (Qk) an arbitrary van Hove sequence. We consider
the distribution function 1

|Q|n(Aω,Q) of the measure ρAωQk . Proposition 3.4 shows that
1

|Qk |n(Aω,Qk) converges w.r.t. the supremum norm to the functionE �→ ρA((−∞, E]).
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Thus, for large k the jump at Ẽ of the function 1
|Qk |n(Aω,Qk)(E) does not become small.

More precisely we get

dim
(

ker (Aω|Qk − Ẽ)
)

= lim
ε→0

(n(Aω,Qk)(Ẽ + ε)− n(Aω,Qk)(Ẽ − ε)) ≥ c|Qk|

for a c > 0 and all k ∈ N. Now let ∂2rAQk ≡ ∂2rAQk ∩Qk denote the inner boundary
of range 2rA of Qk . For a van Hove sequence (Qk) we have

dim �2(∂2rAQk ∩ ω) = �{x ∈ R
d : x ∈ ∂2rAQk ∩ ω}

≤ |∂2rA+r(ω)Qk|
|B(0, r(ω))|

= εk · 1

|B(0, r(ω))| · |Qk|

with a suitable εk which tends to 0 for k → ∞. For k large enough we get that
c > εk · 1

|B(0,r(ω))| . Thus, for large k the inequality

dim
(

ker (Aω|Qk − Ẽ)
)
> dim �2(∂2rAQk ∩ ω)

holds. Now let Wk be the projection onto the inner boundary of range 2rA of Qk . Then
Propositon 3.5 shows that there exists an eigenfunction f of Aω such thatWkf = 0 for
k large enough. ��
Remark 4.2. Let the conditions be as above. Then E is an infinitely degenerate eigen-
value of Aω for every ω ∈ �. The integrated density of states has a jump at E whose
height is at least C−1ν(P ).

Acknowledgement. The authors would like to thank Uwe Grimm for helpful comments on the physics
literature.
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