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Abstract. We discuss recent results of ours showing that geometric disorder leads
to some purely singularly continuous spectrum generically. This is based on a slight
extension of Simons Wonderland theorem. Our approach to this theorem relies
on the study of generic subsets of certain spaces of measures. In this article, we
elaborate on this purely measure theoretic basis of our approach.
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1 Introduction

In this article we review our work [8] and elaborate on certain measure the-
oretic parts of it. The starting point of [8] is the study of operators

Hω := −∆+
∑

x∈ω
v(· − x)

on L2(Rd), for suitable functions v and certain uniformly discrete subsets ω of
R
d called Delone sets. Such operators arise in the study of disordered solids.

More precisely, they can be thought to model geometric disorder. It is shown
that these operators have a purely singularly continuous spectral component
generically. Here, generic refers to a topology on the set of all Delone sets
(see below for details).

The abstract operator theoretic tool behind our reasoning is a slight
strengthening of a result due to B. Simon called the “Wonderland theo-
rem” [11]. Our method of proving this is different from Simons. It consists
of two steps. We first prove that certain subsets of spaces of measures are
generic. This generalizes the corresponding results of Simon [11] and Zam-
firescu [13] for R to rather general measure spaces. In the second step, the
Wonderland theorem follows by considering spectral measures as continuous
maps from the space of selfadjoint operators to measures on the real line.

Given our version of the Wonderland theorem, our result on generic sin-
gularly continuous spectrum follows from geometric considerations. There,
we approximate arbitrary ω by essentially periodic ones in various ways.
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In the present article, we particularly focus on the measure theoretic side
of things. This is discussed in the next two sections. In particular, Sect. 3
elaborates on the last part of Sect. 2 of [8] and presents a generalization of
Corollary 2.8 given there.

The subsequent discussion of the Wonderland theorem in Sect. 4 and the
application to geometric disorder in Sect. 5 then follows [8] quite closely.

2 Generic Subsets in Spaces of Measures

We will be concerned with subsets of the set of positive, regular Borel mea-
sures M+(S) on some locally compact, σ-compact, separable metric space S.
The closed ball around x ∈ S with radius r is denoted by Br(x). The space
M+(S) is endowed with the weak topology from Cc(S), also called the vague
topology. We refer the reader to [3] for standard results concerning the space
of measures. We will use in particular that the vague topology is metrizable
such that M+(S) becomes a complete metric space. Thus, the Baire category
theorem becomes applicable. For the application to spectral theory, S is just
an open subset U of the real line.

We call a measure µ ∈ M+(S) continuous if its atomic or pure point
part vanishes, i.e. if µ({x}) = 0 for every x ∈ S. (We prefer the former
terminology in the abstract framework and the latter for measures on the
real line.) The set of all continuous measures on S is denoted by Mc(S). A
measure µ is called a point measure if there exists a countable set Y in X
with µ(X \Y ) = 0. The set of all point measures on S is denoted by Mp(S).
This set is dense in M+(S). Two measures are said to be mutually singular,
µ ⊥ ν, if there exists a set C ⊂ S such that µ(C) = 0 = ν(S \C). The set of
all measures on S which are singular with respect to a measure λ is denoted
by Mλ,sing(S).

Our main generic result on spaces of measures reads as follows.

Theorem 1. Let S be a locally compact, σ-compact, separable complete met-
ric space. Then, the following holds:

(1)The set Mc(S) is a Gδ-set in M+(S).
(2) For any λ ∈ M+(S), the set Mλ,sing(S) is a Gδ-set in M+(S).
(3) For any closed F ⊂ S the set {µ ∈ M+(S)| F ⊂ supp(µ)} is a Gδ-set in

M+(S).

3 Singular Continuity of Measures

As a first application of Theorem 1, we obtain a result on genericity of singular
continuous spectrum. This generalizes the corresponding results of Simon [11]
and Zamfirescu [13, 14] for measures on the real line. The first result of this
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section elaborates on Corollary 2.8 of [8] and generalizes the result mentioned
there. The second result seems to be new.

Theorem 2. Let S be be locally compact, σ-compact, separable complete met-
ric space. Let λ be a continuous measure on S with suppλ = S. Then,

{µ ∈ M+(S)| µ continuous and µ ⊥ λ}

is a dense Gδ-set in M+(S).

Proof. The set in question is the intersection of Mc(S) and Mλ,sing(S). By
Theorem 1, Mc(S) and Mλ,sing(S) are Gδ-sets. Thus, by the Baire category
theorem, it remains to show that Mc(S) and Mλ,sing(S) are dense. Denseness
of these two sets follows from continuity of λ: By continuity of λ, Mλ,sing(S)
contains all point measures and is therefore dense. Also, by continuity of λ,
Mc(S) is dense (see e.g. (ii) of the next theorem).

The previous theorem assumes the existence of a suitable measure λ. Such
a λ does not always exist. Instead the following is valid.

Theorem 3. Let S be a locally compact σ-compact separable complete metric
space. Then, the following assertions are equivalent:

(i) There exists a continuous measure λ on S with suppλ = S.
(ii) The set Mc(S) is dense in M+(S).
(iii) S has no isolated points.

Proof. (i)=⇒ (ii): Let x ∈ S be arbitrary. Then, for any n ∈ N, the measure
µn with

µn := λ(B1/n(x))−1λ|B1/n(x)

is continuous. Moreover, the sequence (µn) converges towards the unit point
mass at x. Thus, every point measure can be approximated by continuous
measures. As the point measures are dense, so are the continuous measures.

(ii)=⇒ (iii): This is clear.
(iii)=⇒ (i): We start with the following intermediate result:

Claim. For each closed ball B in S with positive radius, there exists a con-
tinuous probability measure µB whose support is contained in B.

Proof of claim. Denote the metric on S by d. Let x ∈ S and r > 0 with
B = Br(x) be given. As S is locally compact, we can assume without loss of
generality that B is compact.

Define δ0 := r/4 and consider Bδ0(x). By (iii), Bδ0(x) contains two dif-
ferent points x(1)

1 and x
(1)
2 . Set δ1 := 1/4 d(x1

1, x
(1)
2 ) and consider Bδ1(x

(1)
2 )

and Bδ1(x
(1)
2 ). These balls are disjoint and by (ii) each contains two different

points, i.e. there exist x(2)
1 , x(2)

2 in Bδ1(x
(1)
1 ) and x(2)

3 , x(2)
4 in Bδ1(x

(1)
2 ).
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Set δ2 := 1/4min{d(x(2)
i , x

(2)
j ) : i, j = 1, . . . , 4}. Then, the balls Bδ2(x

(2)
j ),

j = 1, . . . , 4, are disjoint. Proceeding inductively, we can construct for each
n ∈ N a δn > 0 and a set

Xn := {x(n)
1 , . . . , x

(n)
2n }

with 2n elements such that

δn+1 ≤ δn
2
, Xn ⊂ B,

and for each y ∈ B, and n ≥ k, the ball Bδk(y) contains at most 2n−k points
of Xn. Now, consider, for each n ∈ N, the measure

µn :=
1
2n

2n
∑

j=1

δ
x
(n)
j

.

Then each µn is a probability measure supported in B and

µn(Bδk(y)) ≤ 1
2n

× 2n−k = 2−k (1)

for every k ≤ n and y ∈ S. By the Theorem of Banach/Alaoglu, the sequence
(µn) has a converging subsequence. Thus, without loss of generality, we can
assume that the sequence itself converges to a measure µ. As each µn is a
probability measure supported in B and B is compact, µ is a probability
measure supported in B as well. Moreover, by (1), µ is continuous. This
finishes the proof of the claim.

Let D be a countable dense subset of S. For each x ∈ D and n ∈ N,
we can find a continuous probability measure µn,x := µB 1

n
(x) supported in

B 1
n
(x) according to the claim. Now, choose numbers cn,x > 0, x ∈ D and

n ∈ N, with
∑

n∈N,x∈D
cn,x <∞.

Then,
λ :=

∑

n∈N,x∈D
cn,xµn,x

is a continuous measure whose support contains all x ∈ D. As D is dense,
the support of λ equals S and (i) follows.

4 Selfadjoint Operators and the Wonderland Theorem

In this section, we discuss a consequence of Theorem 2 on generic appear-
ance of a purely singular continuous component in the spectrum for certain
Hamiltonians.
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This provides a slight strengthening of Simon’s “Wonderland Theo-
rem”from [11]. The main point of our discussion, however, is not this strength-
ening but rather the new proof we provide.

In order to formulate our result, let us introduce the following notation:
For a fixed separable Hilbert space H consider the space S = S(H) of

self-adjoint operators in H. For ξ ∈ H and A ∈ S let the spectral measure
ρAξ be defined by

ρAξ (ϕ) := 〈ξ, ϕ(A)ξ〉
for each continuous ϕ on R with compact support.

We endow S with the strong resolvent topology τsrs, the weakest topology
for which all the mappings

S → C, A �→ (A+ i)−1ξ (ξ ∈ H)

are continuous. Therefore, a sequence (An) converges to A w.r.t. τsrs if and
only if

(An + i)−1ξ → (A+ i)−1ξ

for all ξ ∈ H. Thus, for each ξ ∈ H, the mapping

ρξ : S −→ M(R), A �→ ρAξ ,

is continuous.
The spectral subspaces of A ∈ S are defined by

Hac(A) = {ξ ∈ H| ρAξ is absolutely continuous}
Hsc(A) = {ξ ∈ H| ρAξ is singular continuous},
Hc(A) = {ξ ∈ H| ρAξ is continuous}
Hpp(A) = Hc(A)⊥,Hs(A) = Hac(A)⊥ .

These subspaces are closed and invariant under A. Hpp(A) is the closed linear
hull of the eigenvectors of A. Recall that the spectra σ∗(A) are just the spectra
of A restricted to H∗(A).

Theorem 4. Let (X, ρ) be a complete metric space and H : (X, ρ) → (S, τsrs)
a continuous mapping. Assume that, for an open set U ⊂ R,

(1) the set {x ∈ X| σpp(H(x)) ∩ U = ∅} is dense in X,
(2) the set {x ∈ X| σac(H(x)) ∩ U = ∅} is dense in X,
(3) the set {x ∈ X| U ⊂ σ(H(x))} is dense in X.

Then, the set

{x ∈ X| U ⊂ σ(H(x)), σac(H(x)) ∩ U = ∅, σpp(H(x)) ∩ U = ∅}

is a dense Gδ-set in X.
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A proof can be sketched as follows (see [8] for details): By assumption H
is continuous. Furthermore, the restriction rU : M(R) −→ M(U), µ �→ µ|U ,
can easily be seen to be continuous as well. Finally, as discussed above, for
each ξ ∈ H, the map ρξ is continuous. Thus, the composition

µξ := rU ◦ ρξ ◦H : X −→ M(U), x �→ ρ
H(x)
ξ |U ,

is a continuous map. Thus, the inverse image of a Gδ-set in M(U) under µξ
is a Gδ-set in X. Thus, by Theorem 1, the sets {x ∈ S : µξ(x) is continuous},
{x ∈ S : µξ(x) is singular w.r.t. Lebesgue measure} and {x ∈ S : suppµξ(x)
contains U} are all Gδ-sets. Moreover, by assumption they are dense. Thus,
their intersection is a dense Gδ-set by the Baire category theorem. One more
intersection over a countable dense subset of ξ ∈ H yields the desired result.
This finishes the proof of the theorem.

We say that the spectrum of A ∈ S is pure point (purely absolutely
continuous, purely singularly continuous) on U ⊂ R if the restrictions ρAξ |U
have the corresponding properties. Of course, if A has pure point (purely
absolutely continuous) spectrum on U it does not have any absolutely con-
tinuous (pure point) spectrum on U . As in [11], the theorem has then the
following immediate but remarkable corollary.

Corollary 1. Let (X, ρ) be a complete metric space and H : (X, ρ) →
(S, τsrs) a continuous mapping. Assume that, for an open set U ⊂ R,

(1) the set {x ∈ X| H(x) has pure point spectrum in U} is dense in X,
(2) the set {x ∈ X| H(x) has purely absolutely continuous spectrum in U} is

dense in X,
(3) the set {x ∈ X| U ⊂ σ(H(x))} is dense in X.

Then, the set

{x ∈ X| U ⊂ σ(H(x)), σac(H(x)) ∩ U = ∅, σpp(H(x)) ∩ U = ∅}

is a dense Gδ-set in X.

5 Operators Associated to Delone Sets

In this section we discuss an application of Theorem 4 to geometric disorder.
We start by recalling the necessary notation. A key notion is the notion

of Delone set, named after B.N. Delone (Delaunay), [6]. The Euclidean norm
on R

d is denoted by ‖ · ‖. We replace B by U to denote open balls.

Definition 1. A set ω ⊂ R
d is called an (r,R)-set if

– ∀x, y ∈ ω, x �= y : ‖x− y‖ > r,
– ∀p ∈ R

d ∃x ∈ ω : ‖x− p‖ ≤ R.
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By Dr,R(Rd) = Dr,R we denote the set of all (r,R)-sets. We say that ω ⊂ R
d

is a Delone set, if it is an (r,R)-set for some 0 < r ≤ R so that D(Rd) =
D =

⋃

0<r≤R Dr,R(Rd) is the set of all Delone sets.

Delone sets turn out to be quite useful in the description of quasicrystals
and more general aperiodic solids; see also [4], where the relation to discrete
operators is discussed. In fact, if we regard an infinitely extended solid whose
ions are assumed to be fixed, then the positions are naturally distributed
according to the points of a Delone set. Fixing an effective potential v for all
the ions this leads us to consider the Hamiltonian

H(ω) := −∆+
∑

x∈ω
v(· − x) in R

d ,

where ω ∈ D. Let us assume, for simplicity that v is bounded, measurable
and compactly supported.

In order to apply our analysis above, we need to introduce a suitable topol-
ogy on D. This can be done in several ways, cf. [4,7]. The emerging topology is
called the natural topology. It defines a compact, complete metrizable topol-
ogy on the set of all closed subsets of R

d for which Dr,R(Rd) is a compact,
complete space. We refrain from giving the exact definition of this topology
here and refer to the cited literature. Instead we note the following lemma,
which describes convergence w.r.t the natural topology.

Lemma 1. A sequence (ωn) of Delone sets converges to ω ∈ D in the natural
topology if and only if there exists for any l > 0 an L > l such that the
ωn ∩ UL(0) converge to ω ∩ UL(0) with respect to the Hausdorff distance as
n→ ∞.

Given the lemma, it is not hard to see that the map

H : Dr,R(Rd) −→ S(L2((Rd)), ω �→ H(ω),

is continuous.
Finally, we recall that a Delone set γ on R

d is called crystallographic if
the set of its periods

Per(γ) := {t ∈ R
d : t+ γ = γ}

is a lattice of full rank in R
d. Now our result on generic singularly continuous

spectrum can be stated as follows.

Theorem 5. Let r,R > 0 with 2r ≤ R and v be given such that there exist
crystallographic γ, γ̃ ∈ Dr,R with σ(H(γ)) �= σ(H(γ̃)). Then

U := (σ(H(γ))◦ \ σ(H(γ̃))) ∪ (σ(H(γ̃))◦ \ σ(H(γ)))

is nonempty and there exists a dense Gδ-set Ωsc ⊂ Dr,R such that for every
ω ∈ Ωsc the spectrum of H(ω) contains U and is purely singular continuous
in U .
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A proof can be sketched as follows (see [8] for details):
We let U1 := σ(H(γ))◦ \ σ(H(γ̃)) and U2 := σ(H(γ̃))◦ \ σ(H(γ)). Since

γ, γ̃ are crystallographic, the corresponding operators are periodic and their
spectra are consequently purely absolutely continuous and consist of a union
of closed intervals with only finitely many gaps in every compact subset of
the reals. Hence, under the assumption of the theorem U1 or U2 is nonempty.
Thus, U is nonempty.

We now consider the case that U1 is nonempty. We will verify conditions
(1)-(3) from Theorem 4.

Ad (1): Fix ω ∈ Dr,R. For n ∈ N consider νn := ω ∩ Q(n). We can
then periodically extend νn, i.e. we find crystallographic ωn in Dr,R with
ωn ∩Q(n) = νn. For given L > 0 we get that ωn ∩ UL(0) = ω ∩ UL(0) if n is
large enough. Therefore, by Lemma 1, we find that ωn → ω with respect to
the natural topology. On the other hand, σpp(H(ωn)) = ∅ since the potential
of H(ωn) is periodic. Consequently,

{ω ∈ Dr,R|σpp(H(ω)) ∩ U1 = ∅}

is dense in Dr,R.
Ad (2): We have to show denseness of ω for which σac(H(ω)) ∩ U1 = ∅.

Thus, fix ω ∈ Dr,R. Then, we can construct ωn which agree with ω around
zero and with γ̃ away from zero. More precisely, for n ∈ N large enough, find
ωn ∈ Dr,R such that

ωn ∩ Un(0) = ω ∩ Un(0) and ωn ∩ U2n(0)c = γ̃ ∩ U2n(0)c .

In virtue of the last property, H(ωn) and H(γ̃) only differ by a compactly
supported, bounded potential, so that σac(H(ωn)) = σac(H(γ̃)) ⊂ U c1 . Again,
ωn → ω yields condition (2) of Theorem 4.

Ad (3): This can be checked with a similar argument as (2), this time
with γ̃ instead of γ. More precisely, fix ω ∈ Dr,R. For n ∈ N large enough, we
find ωn ∈ Dr,R such that

ωn ∩ Un(0) = ω ∩ Un(0) and ωn ∩ U2n(0)c = γ ∩ U2n(0)c .

In virtue of the last property, H(ωn) and H(γ) only differ by a compactly
supported, bounded potential, so that σac(H(ωn)) = σac(H(γ)) ⊃ U1. By
ωn → ω, we obtain (3) of Theorem 4.

As a consequence of these considerations, Theorem 4 gives that

{ω ∈ Dr,R| σpp(H(ω)) ∩ U1 = ∅, σac(H(ω)) ∩ U1 = ∅, U1 ⊂ σ(H(ω))}

is a dense Gδ-set if U1 is not empty. An analogous argument shows the same
statement with U2 instead of U1. This proves the assertion if only one of the
Ui, i = 1, 2, is not empty. Otherwise, the assertion follows after intersecting
the two dense Gδ’s. This finishes the proof of the theorem.
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