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Let U=(U(t);t>0) be a substochastic strongly continuous semigroup on
L (X, m) where X is locally compact and m a Borel measure on X. We give condi-
tions on absorption rates V implying that the (strong) Feller property carries over
from U* to Uj%. These conditions are essentially in terms of the Kato class
associated with U. Preparing these results we discuss the perturbation theory of
strongly continuous semigroups and properties of one-parameter semigroups on
L (m). In the symmetric case of Dirichlet forms we generalize the results to
measure perturbations. For the case of the heat equation on R? we show that the
results are close to optimal.  © 1996 Academic Press, Inc.

INTRODUCTION

Let X be a locally compact space, m a Radon measure on X, U=
(U(2); t =20) a strongly continuous symmetric sub-Markov semigroup on
L,(m) (ie., a semigroup associated with a Dirichlet form in L,(m).)
Assume further that the semigroup U, induced by U on L_(m) satisfies
the Feller property, i.e., the restriction of U_ to Cy(X) (the continuous
functions on X vanishing at infinity) exists and is a strongly continuous
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semigroup. The basic issue of this paper is to present conditions on per-
turbations of the generator by multiplication operators such that the
perturbed semigroup still has the Feller property. In fact the situation
described so far is generalized in various ways, and other properties are
discussed as well.

As a particular example we mention the semigroup associated with the
heat equation on R“. Adding a suitable (but rather general) absorption rate
V one is led to treating Schrodinger operators —14 + V. It is known that
the spectrum of the Schrédinger operator as an operator in L,(R¢) does
not depend on pe[l, o) (cf. [HVI], [ScV], [A], [D]). Here the
Schrodinger operator in L,(R?) is defined as the negative generator of the
strongly continuous semigroup associated with the heat equation with
absorption

1
u,=5Adu—Vu.

Recently it was shown in [ HV2] that the spectrum of the corresponding
operator in Cy(R“) coincides with the L,-spectrum as well whenever it
makes sense to speak of this operator, ie., if the L,-semigroup induces a
strongly continuous semigroup on Co( R?). It was one of the motivations of
this paper to investigate circumstances for this to occur. We mention here
that the results for this case are contained to a certain extent in [ Si], and
several of the methods we present here are abstractions or generalizations
of ideas contained in that paper.

Investigating the above problem we found that it requires no additional
effort to treat the non-symmetric situation. In fact, the general case more
clearly exposes the involved structure of the problem. Thus we assume U
to be a substochastic strongly continuous semigroup on L,(m) and treat
perturbations by multiplication operators of its generator. The question is
then for which absorptions the Feller property carries over from the adjoint
semigroup U* to the adjoint U% of the perturbed semigroup.

As a particular feature of this paper we point out that we do not require
any kind of separability of X. Therefore, even in the symmetric case of
Dirichlet forms, there is no general construction of a Hunt process
associated with the semigroup. The reason that we can dispense with the
existence of a process is that our methods are purely functional analytic—
although they are influenced to a substantial degree by path integral
methods. (We note, however, that a certain process is associated with any
substochastic semigroup on any L,-space; cf. [ Sto].)

In Section 1 we give a perturbation theorem for semigroup generators
asserting norm convergence of the perturbed semigroups (Theorem 1.2).
The important quantity is the Miyadera norm which for potential pertur-
bations of the Laplace operator corresponds to the Kato class norm.



THE FELLER PROPERTY 353

In Section 2 we define several smoothing and localization properties of
one-parameter semigroups W= (W(t);t>=0) on L (m) where (X, B, m) is
as above. We delimit several of these properties by examples, and we derive
implications between these properties and other notions.

Section 3 contains the main result concerning the Feller property for the
general case. At the beginning we recall shortly how, for a positive semi-
group U on L, and an absorption rate V, the perturbed semigroup U, is
constructed. This construction uses strong convergence of semigroups.
Since strong convergence does not dualize we use the results of Section 1
in order to show that the Feller property carries over from U* to U% if V'
can be approximated from C,(X) with respect to the Miyadera norm
(Proposition 3.2). The class obtained in this step is too narrow, however,
since the conditions are global. In a second step we prove that, in fact,
global conditions are only needed for the negative part of ' (Theorem 3.3).

In Section 4 we investigate how the smoothing property, ie., the
property that U*(¢) maps L_(m) to C,(X) for t>0, carries over to the
perturbed semigroup. It turns out that, assuming the smoothing property,
the Feller property carries over under more general conditions than in
Section 3 (Theorem 4.5), whereas for the smoothing property to carry over
one needs an additional localization property (Theorem 4.6).

In Section 5 we return to the symmetric case. The trade-off for this
restriction consists in being able to incorporate perturbations by measures.
The method is to approximate measures by functions and to use estimates
which are independent of the approximation. In this case we cannot
transfer the Feller property without assuming the smoothing property since
in general measures cannot be approximated by functions with respect to
the Kato class norm. We obtain, however, results completely analogous to
those of Section 4 (Theorem 5.5).

In Section 6 we show that the Feller property for the Schrodinger semi-
group implies that the perturbation is locally in the Kato class (of
measures) if the perturbation is of one sign.

1. ON MIYADERA PERTURBATIONS FOR STRONGLY CONTINUOUS SEMIGROUPS

Let £ be a Banach space, U= (U(¢); t>0) a strongly continuous semi-
group on E, with generator 7. We call an operator B in E a Miyadera
perturbation of T if B is T-bounded and there exists ¢ >0 such that

[iBuxi i<l (xenim)
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We shall denote by

1
1Blo:= sup [ 1BU(x| di

xeD(T)
lIxlI<1

the Miyadera norm of B (with respect to U). Further, for «>0 we
introduce

¢(B):= sup f |BU(1) x| dt
TP

We refer to [Mil], [Mi2], [Vol] for this kind of perturbation. In
particular we recall that ¢,(B) <1 for some >0 implies that 7+ B is a
generator ([ Mi2], [ Vol]).

1.1. LemMmA. Let U be a Cy-semigroup, T its generator, B, B, Miyadera
perturbations of T,

l

| 1BUOx d<y X (xeD(T)),

|BU(t) x|| dt <y | x],

where a>0, 0<y<1, 0<y,, and denote by U the C,-semigroup generated
by T+ B.
Then B, is a Miyadera perturbation of T + B, and

Ly Ix|  (xeD(T)).

|18, 800y e <
0 1—

Proof. Let xe D(T). Then the Duhamel formula

~ t ~

T(1)x = U(z)x+f U(t—s) BO(s)x ds

0

holds for ¢ > 0. For / larger than the type of U we define C, :=A(A—T) !
and conclude
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J, 181,001 ds
<fa B, C, U(t)x| dz+j“ f |B, Ut —s) C,BU(s)x]| dr ds
0 0 Ys

<) 1B C U] di 4y, | 1C,BTS) x| ds

For 4 — oo the operators C; converge strongly to the identity on E as well
as on D(T) (with graph norm). Therefore

J, 181 0 xl di <y xl+7: | 1BOCs) ] ds.
Exploiting this inequality first with B, = B we obtain
BT 4
| 18O x| de < x.
0 -7

Inserting this into the previous inequality we obtain the assertion. ||

1.2. THEOREM. Let U be a Cy-semigroup, T its generator, B, B; (je N)
Miyadera perturbations of T, >0, 0<y <1,

(B)<y  (jeN),
IB;—=Blly—=0  (j— ).

(Note that this implies c.(B) <y.) Denote by U, U the Co-semlgroups gener-
atedby T+ B, T+ B;(jeN), respectwely Thensupy<, <, | U( )—T(t)| -0
(j— ).

Proof. 1In_view of Lemma 1 we may assume B=0. There exists M > 1
such that HU (<M (jeN, 0<t<1); cf. [Vol; Theorem 1]. Now the
Duhamel formula, for xe D(T),

(H)x— Ut)x :j' O (1 —s) B,U(s)x ds,
0
implies
(G0 = Vi)l <M [ 1B,Us)x] ds

and therefore the assertion is obtained. |
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2. SOME PROPERTIES OF SEMIGROUPS ON L _,

In this section let X be a locally compact space, m a measure on the
Borel g-algebra B of X having the properties that C,(X) separates the
functions of L,(m) and that Cy(X)— L_(m) is injective. For notational
convenience we also assume that L_(m) is the dual of L,(m). These
assumptions are satisfied if m is a Radon measure having supp m = X.

By # we shall denote the system of compact subsets of X. Further,
C.(X) will be the space of continuous functions with compact support,
Cy(X) the space of continuous functions vanishing at infinity, and C,(X)
the space of bounded continuous functions.

We assume that W= (W(t);t>=0) is a one-parameter semigroup of
positive operators on L. (m), supo<,<; ||W(?)| <oo. First we define
several possible properties which W might have.

(F) (Feller property) W(t)(Co(X))= Co(X) for all t>0, and the
restriction of W to Cy(X) is strongly continuous.

(WL) (weak localization property) VYKe A 3K e A"
W) Lyngell o0 0 (£ 0).

(L) (localization property) VKe # Jo>0Ve>03K' e A"
W) 1 ngolloo. o <6 (0<T<0).

(SL) (strong localization property) VKe A Ve>03K' e A"
[MeW(1) gl oo <6 (0.

(S) (smoothing property) WI(t)(L_(m))< Cy(X) (£>0).

(SF) (strong Feller property) W possesses properties (F) and (S).

2.1. Remarks. (a) If W is the adjoint semigroup U* of some positive
strongly continuous semigroup U on L,(m), then the norm in the localiza-
tion properties can be written in the form |1\, U(#)14|,;, and these
properties express, in a certain way, that the mass transport described by
U does not transport mass too far away in short times.

(b) In (SL) it is equivalent to require that the inequality should
hold on any fixed t-interval. E.g., given Ke %', >0, then choosing K’
such that [[1W(1) 1\l o <e (0<t<1) and K" such that
[T W(2) 1 gl oo, 0o <& (0<2<1) we find, for 0<7<2,

W) Lyl oo = L W2 (Lo 1) W) Lo
<2 sup [ W(s)].

0<s<l1
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(c) Clearly, there are the implications (SL)=-(L)=(WL). In the
following sections, property (L) will be used as an hypothesis. On the other
hand, the stronger property (SL) can by characterized in different other
ways; this will be presented in Theorem 2.4 below.

We include several examples illustrating the properties defined before.

2.2. ExamMPLES. (a) X not discrete, W(t)=id; (¢t=0). Then (F),
(SL), not (S).

(b) X=R? with Borel-Lebesgue measure, W Brownian semigroup
on L_ . Then (SF), (SL).

(¢) X=R\{0}, W as in (b). Then (S), (SL), not (F) (W(2)(Co(X))
& Co(X)).

(d) X=R“ U the semigroup generated by 14 —1/|x|? on L,(R“) (cf.
[Vo2]), W the adjoint semigroup on L_(R?). Then W satisfies (S), (SL),
not (F). In fact W(1)(Cy(R9)) = Co(R?), but W is not strongly continuous
on Cy(R?). In order to show this we note first that the expression given by
the Feynman—Kac formula

.| exp (=] vibts) ds ) pibion |

=E, {exp <_j0 V(x +b(s)) ds> (/J(X+b(f))}

is continuous if Ve C,(RY), ¢ € Co(R?), as can be seen from the dominated
convergence theorem applied in Wiener space. Here E ., denotes expectation
with respect to the Wiener measure P, for Brownian motion starting at
xeR“

Let V(x):=1/|x]%, V" :=Van Let peCy(RY), =0, u(t)=
e"24=g  Then u is continuous on [0, 00) x (R‘\{0}), by parabolic
regularity (cf. [ ArSe; Theorem 4]). Monotonicity implies

0 < im u(z, x) < e 24=V"p(0)

x—0

~ £y | exp (=[] o) as) b0 |.

Now, f’o(l/b(s)z) ds= o0 Py-as. (cf. [FOT; Example 5.1.1]), and so the
right hand side of the last inequality goes to 0 for n — co. It follows that
W(t) g is continuous and W(t) ¢(0)=0 for > 0. Therefore W(t)¢p cannot
converge to ¢ for 1 — 0 if ¢(0)#0.
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(e) X=(0,1), W(t) f(x):=[p f(y)dy (xeX, feL,, t>0). Then
(S), not (F), not (WL).

(f) X=(0,1), W(t)f(x);:{f(Xt) if x>1,

0 if x<ut
Then (L), not (SL), not (F), not (S).

N A b

Then (F), (L), not (SL), not (S).

(h) Let X=T&® with the product topology, where T =R/Z is the
torus. Then X is not separable.
Choose y € X and define the semigroup of translations in direction y on

L. (X) by
W(t) f(x) := fx —tp).

(x —ty is to be understood coordinate-wise and modulo 1.)

Then (F), (SL), not (S). (For (F) note that x — x — ¢y is continuous and
therefore W(¢) C(X)= C(X). Further |W(¢t)f—f].,— 0 (t— 0) since this
is true for functions depending only on finitely many coordinates, and the
set of these functions is dense in C(X). If W is extended to a one-parameter
group—Dby the above expression for W(t)—then W(¢) C(X)= C(X) holds
for all e R. This implies that (S) does not hold.)

(i) Let X be as in (h), and let m=(4, | [0, 1])®. Define (U(?); 1= 0)
on L,(m) as the tensor product of periodic Brownian motions on all the
coordinates. Then U is associated with a Dirichlet form in L,(m). For U*
one has (SF), (SL).

2.3. PROPOSITION.  Assume that W satisfies (F). Then:

(a) (WL)< |[1(W () f— .. >0 (t—>0) for all feC\(X), Ke A
(b) Iflimsup,_, |W(t)|| <1 then (WL) holds for W.

Proof. (a) “=” Let feCy(X), Ke#', and choose K' according to
(WL). (Note that automatically K< K'.) Further, choose € C.(X), 1 <
Y < 1. Then

L W(0) f= 1L WD) + L W((1 =) f) = L + 0= 1, f (1-0)

uniformly.
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“<” Let Ke #, and K' € # such that K< K'. There exists € C (X),
1, <Yy <Ig. Then
e W) 1kl oo, oo < M WO =)o = M (T=¥)] . =0 (1—>0).
(b) Let Ke.#, and K'ex with K< K, yeC(X) with 1 ;< <1,.. Then
W)+ W()(1 =)= W) L < | W(1)],
O<W()(1=y) <[ W) =)y -0  (1—0)
uniformly on K, and therefore
M W) Vgl oo, oo < M WA =) [, >0 (120). |

If W satisfies (F) then for all 1>0, xe X there is a positive Radon
measure p(t, x, -) on X such that

W) o(x) = [ o(3) p(t, x, dy)

for all p € Cy(X). For t =0, fe C,(X) one can then define
W) 00 = [ f0) plex,dy) - (xeX).

2.4. THEOREM. Assume that W satisfies (F), and let p(-,-,-) be as just

defined. Then the following properties are equivalent:

(1) W satisfies (SL).

(i) On |||, -bounded subsets of Co(X) the set {W(t);0<t<1} is
equicontinuous for the topology of compact convergence.

(iii) VKeX, e>03K' e p(t,x, X\K')<e forall 0<t<1, xek.

(iv)  The function F, defined by F(t, x) := p(t, x, X), is continuous on
[0,1]xX.

If these conditions are satisfied then

W) (Cy(X)) = Cy(X)  (120).

Proof. (i)=(ii). Let ¢>0, Ke#, ¢>0. Then there exists K'e %"
such that [[1xW(1) 1\l <& (0<t<1). For ge Co(X), llo].<c,
14| .. <& we conclude

MW ()| < T WO @)l + [T W)y g @)
<e sup |W(1)| +ec.

0<r<l1
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(i) = (ii1). Let Ke #', ¢>0. Then there exist K' € #, d >0 such that
peCy(X), Mgl <o, lol.,.<1 imply |[1W(1)pll<e (0<r<1). Let
0<r<1, xeK geCy(X), supp ¢ = X\K', ], < 1. Then

U o(y) p(t, x, dy)‘ =|W(1) p(x)| <e.

Taking the supremum over the ¢ on the left hand side we obtain
pt, x, X\K') <e.

(iii)=(iv). Let Ke#'. For ¢>0 there exists K'e# such that
p(t, x, X\K')<e for all 0<r<1, xeK. Choose yeCyX), 1p.<y<l1.
Then |p(t, x, X) — W(t) Y(x)| < p(t, x, X\K') <e for all (1, x)e[0,1]xK.
Since (2, x)+— W(t) y(x) is continuous we obtain that p(-,., X) is con-
tinuous on [0, 1] x K.

(iv)=(i). Theset Z :={y e C(X); 0<y <1} is directed (<) by the
order of functions. For each (7, x)€[0,1]x X the net (W(¢)y), . con-
verges to F(t¢, x). Dini’s theorem (cf. [Bou; X, 34]) implies that this
convergence is uniform on compact sets.

Let Ke %", ¢>0. Then there exists iy € # such that

L& W) 1 qupp pll oo oo S TT WO =)l o
= [Hx(F(2,-) = W(OP)Il
<e (0.
In order to prove the last assertion of the theorem we use property (iii).

Let feC,(X). For Ke#', ¢>0 there exists K'e# as indicated. Let
YeCyX), I <y¥y<1. For (¢, x)e[0, 1] x K we obtain

| W(1) f(x) = W) (f )(x)| = ff(y)(l —¥(») pt, x, dy)

< Iflle p(t, x, X\K')

<elfle-
Thus W(t) f is approximated uniformly on K by continuous functions. ||

2.5. Remark. Assume that W satisfies (F) and (SL) and that the
operators W(t) are order continuous, i.e., sup W(t)# = W(t)sup & for all
sets & < L _(m), which are bounded and directed by <, for all 7>0.
Then one has W= W, and therefore the last statement of Theorem 2.4
applies to W.
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In order to see this, let fe C,(X),. Then 7 :={peC(X);0<p< [}
is directed by <, and sup# =f in L_(m). Consequently W(¢) f=
sup,,. » W(t)p =sup,,. , W(t)p=W(1) f, where the last equality follows
from the fact that W(z) f=Ilim,_, W(¢)p in the topology of compact
convergence (property (ii) of Theorem 2.3).

If U is a positive C,-semigroup on L,(m) and W= U¥*, then it is easy to
see that the operators W(¢) are order continuous.

3. THE FELLER PROPERTY FOR ADJOINT ABSORPTION SEMIGROUPS

Let X and m be as in Section 2. We assume that U= (U(¢);t=0) is a
positive Cy-semigroup of contractions on L,(m), with generator 7.
The enlarged Kato class K associated with U is defined as

K:={V: X [ — o0, o] locally measurable; V(1 — 7))~ ! bounded}.
For VeK, >0 we define

(V)= V(B=T)""],
c(V):= lim cgx(V)= inf cx(V).

B o B>0
Then
K:={VeK;c(V)=0}

is the Kato class associated with U.

We refer to [ Vo2; Proposition 5.1] for the proof that the Kato class as
defined above coincides with the usual Kato class if U is the unperturbed
Schrodinger semigroup. Further, we note that

R={71Vlo= swp [ 1vuin 1 di<oo|

feD(T) *0
Irl<1

which means that K consists of Miyadera perturbations of 7. Recall the
definition of the norm ||-|, from Section 1; this norm will be used as the
norm on K. It is easy to verify that K is a closed subspace of K. Moreover
it is shown in [Vo4; Proposition 3.2] that K is complete. With ¢, from
Section 1 one obtains

(V)= 1lim (V) = inf (V).

a—0 a>0
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For these statements we refer to [ Vo2; Proposition 4.7]. The condition
that U* satisfies the Feller property implies in particular that Cy(X) is
contained in the sun dual L,(m)® associated with U. (For the theory of
adjoint semigroups we refer to [HP], [VN].)

The following examples illustrate typical situations covered by the
previous assumptions.

3.1. ExamMPLES. (a) (X, B, m) as above, and U(t)=id, ., U*(1)=
id, (. (=0). In this case

~

K=K=L_(m), I-llo=1"Ilc-

(b) X=R with Borel-Lebesgue measure, U(¢) right translation by
t, U* left translation by ¢ (1 >0). Here

K = Ll, loc, um’f( R)’

x+1
Wio=sup [ 1V(p)l dy,

xeR X

X+ o
K={VeLypoum®isu [ I d~0m-0)].

(¢) X =R with Borel-Lebesgue measure, U the strongly continuous
semigroup generated by 4. Then U*(t)= U(t) on L, n L (R?) (1=0). In
this case K and K are the known (enlarged) Kato classes K, and K,; cf.
[AS], [Si], [Vo2]. For d>=3 they are as indicated in (c) below, with
o=2.

(d) X=R?asin (c), U the semigroup generated by — | —4|*?, where
0 <o <?2; this semigroup is called the symmetric stable semigroup (of
index «) (cf. [FOT]). For a <d one has

R Vi
R={veL w®ysp| Tl aycal,
« Jx—yi<t =yl
L V
K:{VeK; hm{supf l(yyady} :O}J
P10 =< [Xx— Y

cf. [Zh; Theorem 2]. The expression in the above description of K is not
the norm | -||,, but equivalent to it. This is an example with a non-local
generator (and with the underlying process having discontinuous paths).
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If V: X— [0, o] is locally measurable, V" :=V A n (neN), then

Up(t) :=s— lim "= """

n— oo

exists for all >0, and has the semigroup property. It was shown in [ AB;
Corollary 3.3] that U, (0) :=s—1im, _, , U, (¢) exists and is a band projec-
tion, and therefore U, is a strongly continuous semigroup on L,(X) for
suitable X< X, and U, vanishes on L,(X\X). The function V is called
U-admissible if U, (0) =1

On the other hand, — V is called U-admissible if

U_,(1):=s— lim 7+"™

n— oo

exists for all >0 and supy.,<; |Uy(#)| <oo. (Then U_ is strongly con-
tinuous by [ Vo3; Proposition A.1].)

If V,:X—>[0,00] are locally measurable and —V _ is U-admissible
then

(UV+)7V,=(U7V,)V+=: Uy (3.1)

(where in the first term one considers U, as a strongly continuous semi-
group on L,(X)). For the case that V', is also U-admissible this statement
is shown in [Vo3; Theorem 2.6]. The proof given there carries over as
soon as one knows that it is true for bounded V' ~. For this case, however,
(3.1) is an easy consequence of [ AB; Proposition 4.6]. Note that V', are
not necessarily the positive and negative parts of V=1V, —V_, where
(3.1) together with [ Vo2; Theorem 2.6] also implies that it is irrelevant
how V is defined at those points where V', as well as V'_ are infinite.

For the above definitions and for further information we refer the reader
to [Vo2], [Vo3], [AB].

3.2. PROPOSITION. Assume that U* has the Feller property. Let
Ve C,,(X)K. Then U% has the Feller property.

Proof. Note first that Ve K implies ¢(V)=0, ¢, (V) <1 for some o> 0.
Denote the restriction of U* to Cy(X) by Ug, and its generator by T'§ (the
restriction of T* to Cy(X)). For Ve C,(X) the operator V is continuous in
Cy(X), and therefore T¢— V is the generator of a strongly continuous semi-
group U¢ , which is adjoint to Uy, and therefore U ; is the restriction of
U% to Cy(X).

Let Ve Ch(X)K, (V,) in Cy(X), |V—"V,|y— 0. Theorem 1.2 implies

sup [|UT,(1) = U)o, .o = sup Uy (1) =Up(0)]1,, =0 (n—o0). 1

0<r<l1 0<r<l1
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The following theorem is the main result of this section.

3.3. THEOREM. Assume that U* satisfies (F). Let V=V _ —V_,V, >0
be measurable functions on X such that \yV is U-admissible and U, satll;sfies
(F) for all ye C(X),. (By Proposition 3.2, this holds if yVe Cy,(X) for
all ye C(X)_.) Furthermore assume that V _ ek, ¢(V_)<1. Then V is
U-admissible, and U% satisfies (F).

Note that Ve C,(X)* clearly implies ¥ e C,(X) " for all Y € C,(X). This
property, however, does not carry over to all Yy € L_(m), as can be seen
easily by considering Example 3.1(a). This is the reason why localization
has to be carried out more cautiously than by simply cutting off by
indicator functions.

For the proof of Theorem 3.3 we shall need several auxiliary results
which will be presented next.

34. LemMA. Let V=V _—V_ where V :=X—-[0,00] are locally
measurable, and —V _ is U-admissible. Let & < L _(m) . be directed by <,
with sup # = 1. Then

Up(t)=s— lim U,,(1)

veF

for all t>0.

Proof. (i) Assume first V_~=0. Fix ¢>0. The net (Uyp(1)),.»
is decreasing, and therefore U, (¢) :=s—l~imw€@ U, (1) exists. From
Uy (1)< Uyy(t) (Y eF) we obtain Uy (t) < Uy (t). On the other hand, for
neN one has

Uplt)=s— lim U, yo(1)

WeF

by the Trotter convergence theorem (cf. [ Pa]; this theorem is usually
stated for sequences of semigroups but holds similarly in the above
situation). Because of U, pm(t) = U,y (1) we obtain Uyw(t) > U,(t) (neN),
hence U, (t)= U,(1).

(ii)) Assume V', =0. Reversing the inequality signs in (i) yields the
statement in this case.

(ii1) General case. Fix > 0. For y € # we note the inequalities
—V_+yV, . <yrV<s —yVv_+V,,

which imply (recall (3.1))

(U_v )yr ()2 Uyp(t) =2 (Uyp,) _yp (2).
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Since the outer terms converge strongly to U,(¢) by (i), (ii) and (3.1) we
obtain the desired convergence. ||

35. LeMMA. Let V=V _—V_where V, : X— [0, 0], V, U-admissible,
V_ a Miyadera perturbation of T, with >0, ye [0, 1) such that

j: V_UG) di

<.
1,1

Then V 4+ V_ is a Miyadera perturbation of T, (the generator of U,,), with

Proof. From [Vo2; Lemma 4.1] we know

Therefore Lemma 1.1 implies

0

Iy
11 11—y

[vivvovma

<1

r V. U, (1) di
0

1,1

1
<—.

X

[[viwe) v wa) <
11 -7

Also, Lemma 1.1 implies

f: V_U,(t)dt

<
1,1

f: V_U_, (t)dt

The following lemma is analogous to [Si; Lemma B.4.1].

3.6. LEMMA. Let V<0, and assume that there exists ¢>1 such that ¢V
is U-admissible. Let f, ge L _(m) .. Then, for all t =0,

1fU(1) gllia < ISUep(0) gl15 1FU) gl 7 e
Proof. Stein interpolation. ||

Proof of Theorem 3.3. The admissibility of V' will be shown at the end
of the proof.

Let « >0, y <1 be chosen such that c,(V_)<y.

The set 7 :={y e C(X);0<y <1} is directed by <, with sup # =1.
Let ¢ € Co(X). We show that the net (1 Uj, (1) @), » is a Cauchy net in
[0, x1; Co(X)).
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Let ¢>0. From (F) we obtain K,€ " such that

for 0 <s <a. Choose Y, e # such that 1, <y,. In order to apply Lemma
3.6 we choose ¢>1 such that ¢y < 1. Taking adjoints one obtains

U [l oo o < C LI NG NgU*(0) £ 2°

for 0 <7<a, where the constant C with sup,—,—, [|U_., (1)]}/;<C only
depends on «, y, ¢. Choosing f'= || one obtains

(We emphasize the fact that C depends only on the mentioned constants.

We shall use the last inequality with V" replaced by ¥, V, in the sequel.)
Let € #, yy = ,. Then, having in mind the Duhamel formula

USA0)9 — Ul (00 =[ U3(1=s)o =) VU3(s)g ds (32)

we estimate, for 0 <t <aq,

I+y
1—y
(3.3)

[ U= 1wo—w)v1ds

[V Uyp(t—s) ds

<

00, 00

by Lemma 3.5. (The first integral in the previous estimate should be under-
stood in the w*-sense.) Hence, using (3.2) one obtains

1+y
sup U ()¢ = U (@l <7 SUP 1y Uyw ()9l
0<r<a O0<s<a

1

< e

1—y

For >0 Lemma 3.4 implies U, (f)— U, (t) strongly, and therefore
Uk(t)p - U(t)p in the w*-sense. This shows U, (t)p— U¥(t)e
uniformly for 7€ (0, a].

Thus (F) for U% is shown if we show that V' is admissible, i.e., U, (1) =
strongly for t — 0. We know that P=s—1lim,_ , U, (¢) exists and is a band
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projection; we have to show P =1 In order to do so let f € L,(m). Because
of

jpﬁp dm=Tim [ (U(t) f)o dm

t—0

— lim j FU(1) @ dm
t—0

= [ fop dm

for all ¢ € Cy(X) we obtain Pf=f |

3.7. Remarks. (a) The hypothesis “V_ €K, ¢(V_)<1” in Theorem
3.3 can be weakened to the requirement that — J'_ is U-admissible and a
Miyadera perturbation of the generator 7_, of U_ .

In order to see this note first that it is sufficient to treat the case V' =0.
(This is because Theorem 3.3 implies (F) for U¥..)

Now we assume V= —V_ and use the proof of Theorem 3.3. The
hypothesis implies that there exists ¢ > 1 such that —(¢—1) V_is U_, -
admissible which in turn implies that —cJV’_ is U-admissible, and Lemma
3.6 can be applied. Further, the hypothesis yields directly an estimate for
the term estimated in (3.2).

(b) If U(z) is stochastic for all r=0 (ie., |U(¢)f]=|f] for all
feL(m),)and —V _ is U-admissible then it follows from [ Vo2; Proposi-
tion 4.6] that V' _ is a Miyadera perturbation of U_, (-), and therefore the
hypothesis made in (a) is satisfied.

We conclude this section with a “noncanonical” application of Theorem
3.3.

3.8. ExampLE. We consider the semigroup U associated with the heat
equation u, =1 Au and want to find a class of V’s such that U, acts as a
C,-semigroup on C, ,(R?), the bounded uniformly continuous functions.

This question enters the framework treated so far if we note that
C, (RY) is a commutative C*-algebra, and the Gelfand space X of
C, (R is a compactification of R’ Then C(X)=C, ,(R). Also, U*
satisfies (F) on X. Therefore, Theorem 3.3 yields that U% acts as a
C,-semigroup on C, (R?) if Ve Cb,u(R"’)K. (In fact, note that for compact
X Theorems 3.2 and 3.3 coincide.) «

We r]r(lention that the inclusion C,,(RY) =K is strict since even
L, (RY)" is strictly contained in K.
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4. THE SMOOTHING PROPERTY FOR ADJOINT ABSORPTION SEMIGROUPS

In this section we assume the same setup concerning (X, B, m) and U as
in Section 3.

4.1. THEOREM. Assume that U* satisfies (S). Let VeK. Then U%
satisfies (S).

The following lemma is a preparation for the proof.

4.2. LEMMA. Let VeK. Then
1US() = U*()ll 0,00 =0 (£0).

More precisely, let « >0, 0<y<1 be such that c,(V)<y. Then there exists
M depending only on a,y such that

[Up () = UD)[l1,1 < Mcy(V).

(Recall the definition and properties of c,( V) from Section 3.)

Proof. Tt is sufficient to prove the second statement. There exists M
only depending on a,y such that |[U,(¢)] <M for 0<t<a Now the
Duhamel formula

U0 f =V f= = [ Uplt=9) VUs) fds (f€D(T))

implies the desired estimate. ||

Proof of Theorem 4.1. let felL_(m), t>0. For 0<s<t we have
U*(s) U¥(t—s) fe C,(X), by (S). Further

1UF(0) f = U*(s) Uit =5) fl
<NUBS) = U*$) o0 [UB(1=5) fll o =0

0, 0

for s > 0 by Lemma 4.2. This implies U%(z) fe C,(X). |

4.3. PROPOSITION. Assume that U* satisfies (F), and let V>0, V=

V,—=V_,—cV_ admissible for some c>1. Then U”,}(l)(l_,ao)o(m))c
L, o(m) for all t=0.
(Here L, o(m):=L., (m)~""

0, ¢

, Where

L, (m):={feL_(m);supp fcompact}.)
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Proof. 1t is sufficient to treat the case V', =0. We have to show that,
given Ke %', >0, there exists K’ € # such that

HlX\K’U;k/([)lKHco,oogg (0<r<).
This, however, follows from (F) for U* together with Lemma 3.6. ||
4.4. COROLLARY. Assume that U* satisfies (SF), and let Ve K. Then U%
satisfies (F).

Proof. This is a straight-forward combination of Theorem 4.1, Lemma
4.2 and Proposition 4.3. (Note Co(X)=C,(X)nL_ o(X).) 1

In the following we shall need the local Kato class

Ky :={V:X->[—o,0];1xVeKforall Ke #}
(={V:X>[—o0,0];eVeKforallpe C(X)}).

4.5. THEOREM. Assume that U* satisfies (SF). Let V=V, —V_,
V.20,V .eKy,., V_eK, c«(V_)<1. Then U¥ satisfies (F).

Proof. This follows from Theorem 3.3 in combination with Corollary
44. 1

In order to extend Theorem 4.1 to more general absorption rates we
need the localization property (L) defined in Section 2.

4.6. THEOREM. Assume that U *A satisfies (SF) and (L). Let V=
V,=V_,V,.20,V,.eK,., V_eK, c«(V_)<1. Then U¥ satisfies (SF).

Proof. 1In view of Theorem 4.5 it remains to show (S).

Let o' >0, y <1 be chosen such that {5 V_U(t) dt|,, <y.

Let Ke ', and choose a > 0 according to (L); without restriction a <a'.
Let ¢ >0, and choose K’ according to (L). Choosing ¢ > 1 such that ¢y <1
we obtain

|‘1KU>15(Z)1X\K"|M;,@<C‘S (Oglga)a

as in the proof of Theorem 3.3. The Feller property implies that there exists
K" € A such that

e UHs) Ll <2 (0<s<0).
As above we obtain

ke U Tl <Co (0<s<0).
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We conclude

ICUE(0) = Ul () gl o,

Up(t—s) V(1 =1 g) Uty () L ds
0

<

S

Ce

0, 00

ft Uk(t—s)Vds
0

1
<ﬂ C£
I—y
for 0 <t <a, where Lemma 3.5 has been used in the last estimate.
Now let fe L (m). Then U,,,,(t) fe Cy(X) by Theorem 4.1, and, for
0<r<aq,

M (UF(0) f = Ul () Nl o < N (UF(2) = Ul (0)1 = 1) fl
+ICUF() = Ut () 1 Sl

1+
<2Ce|If . +—C 11

by the previous inequalities. Therefore, on K, U%(¢)f is uniformly
approximated by continuous functions, and thereby is itself continuous on
K, for 0 <t<a. The formula U(t) f=U(s) U(t—s) f (with 0 <s<a, and
where U(t—s) fe L. (m)) implies that U t) f is continuous on K for all
t>0. |

4.7. Remark. The proof of Theorem 4.6 is, in a sense, an abstract ver-
sion of [Si; Proof of Theorem B.10.2], and in fact is modelled after this
proof.

5. DIRICHLET FORMS AND MEASURE PERTURBATIONS

In this section we are going to extend the results of the previous sections
to measure perturbations of Dirichlet forms.

Let X, m and U be as in the previous sections, with the additional
requirement that m is a Radon measure on X satisfying supp m=X.
Moreover assume that U(t)= U*(¢) on the intersection L,(m)n L _(m),
and denote by — H the generator of the C,-semigroup induced on L,(m).
The form b associated with H is then a Dirichlet form. We further assume
that § is regular, ie., D(h) n C.(X) is a core for b, and D(h)n C(X) is
dense in C.(X) with respect to the supremum norm.
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For measure perturbations of Dirichlet forms we refer to [AM], [SV2].
For the definition of the classes M, (capacity-absolutely continuous
measures), S (smooth measures), S, (finite energy integral measures), S
(extended Kato class), S, (Kato class) we refer to [SV2].

Since in general measures in S, cannot be approximated by functions in
the norm of S, (for the Schrédinger semigroup, e.g., the Kato class K is
complete), we do not obtain results for measure perturbations of U which
are analogous to the results of Section 3. We rather follow the treatment
given in Section 4, using that the estimates obtained there carry over.

5.1. THEOREM. Assume that U* satisfies (S), and let u, €Sy, u=
.y —u_. Then U}t satisfies (S).

This can be proved as Theorem 4.1 once the following lemma is estab-
lished.

5.2. LeMmMA. Let U and p be as in Theorem 5.1. Then |U¥(t) — U*(t)|l . ..
-0 (t—0).

Proof. We only treat the case . =0 and refer to the end of this proof
for the general case.

Let £ > 0. There exists >0 such that c4(u) <e. By [SV2; Theorem 3.5]
there exists a net (V,),., of functions V,e L, N L (m) such that cy4(V,) <
cplp), e =T ~"c strongly, for all #>0. There exists o« >0 such that
c(V)<e for any VeK with c4(V)<cy(u) (<e); cf. [Vo2; Proposition
4.7]. Therefore

—> e

IU_y()=UDIlsMe  (0<1<a)

for all 1e; by Lemma 4.2. The strong convergence in L,(m) implies, by
Fatou’s lemma, that the last inequality carries over to the limit,

1U.(0) = Ul <Me  (0<r<a)

The general case is proved in the same way if one observes that the con-
vergence theorem [SV2; Theorem A.1] yields a statement analogous to
[SV2; Theorem 3.5] if yu=u, —u_ as assumed in Theorem 5.1 is
allowed. |

5.3. PROPOSITION. Assume that U* satisfies (F), and let u,eSK,
cu_)<l,u,eMy. Then U_, ., ()L, o(m))=L, o(m) forall t=0.

(We recall from [SV2; Section 4] that, in general, U is not

strongly continuous.)

e
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Proof. Because of monotonicity it is sufficient to treat the case u . =0.
It is sufficient to show that, given Ke ", ¢ >0, there exists K' € 4 such
that

Mg Uy (D1g]o o <6 (0<1<1).

This, however, follows using (F) for U* as well as Lemma 3.6 together
with a suitable approximation procedure (as in the proof of Lemma
52). 1

5.4. COROLLARY. Assume that U* satisfies (SF), and let y1, €Sk, u=
Uy —p_. Then U}t satisfies (SF).

Proof. This is a straight-forward combination of Theorem 5.1, Lemma
5.2, and Proposition 5.3. |

Similarly to the local Kato class the local Kato class of measures is
defined by

Sk oc 1= {u measure on B; 1 ueSy (Ke A')}
(={w; pueSk (pe CX))}).

5.5. THEOREM. Assume that U* satisfies (SF), and let p, €Sk .,
U_ €Sk, clu_)<l.
(a) Then Ut satisfies (F).
(b) If additionally U* satisfies (L) then U, satisfies (SF).

56. LEMMA. Let u=pu, —p_ where i, e My, €Sy, c(u_)<1. Let
Fc{yeZ, (m);, 0< Y < 1} be directed under “< quasi-everywhere,” and
g—sup F =1 (ie, 1 =2y = qe. for all y € F implies y =1 q.e.). Then

U t)=s—lim U, (1)  (1=0),

veF
Proof. 1t is clear that
b+u=l}i€1§;(b+u+—¢ﬂ7)=éiérr;(b+ﬂ+—Wu7),

b+p=sup (b+l/fﬂ+—u7)=wli€mf(b+w+—ﬂ7),

VeF

where the nets are monotone decreasing and increasing, respectively.
The monotone convergence theorems for forms imply H, _,, —H,,
H,, _, —H, in strong resolvent sense. (See [RS; Theorems S.14 and

S.16, p. 373] for densely defined forms and [ We] for the general case. In
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both of these references the results are formulated for sequences, but the
proofs hold equally for nets.) We denote by U,, , (-) etc. the associated
L,-semigroups. The inequalities

Yy = <Ylpy —p ) <p —yu

imply then

Ull//t+ 7117(0 = Ut//(/l+ 7/17)([) = Ull+ ﬂlfﬂf(t) (5'1)

(t=0) in the sense of Banach lattice order, by [SV2; Remark 4.4] (see
also [Ou]). By the same reference, the nets (Uy,, _, (7)),.-, and
(U, —yu(1)), . are monotone decreasing and increasing, respectively;
therefore they are strongly convergent. The limit of both of these nets is
U, _, (1), by the strong resolvent convergence of the L,-generators

shown before. Therefore inequality (5.1) implies the assertion. ||

The proof of the first part of Theorem 5.5 will mainly consist in a
paraphrasis of the proof of Theorem 3.3. In order to carry this out we
single out an inequality which corresponds to the estimate obtained from
Equation (3.1).

5.7. LEMMA. Let u, € ScnS,, y<1, B>0, such that cplu )<y, and
denote u=p . —pu_. Then there exist constants >0, C =0, only depending
on y, B, with the following property: If Ke A" and {,, Y, € C(X) D(h) are
functions such that 1z <y, <y, <1 then for all pe Cy(X), 0<t<a

1US,()e—=Ul (D)ell.<C sup |1 U*(s)ol...

O0<s<a

Proof. By [SV2; Theorem 2.1] there exist sequences (V. ,) in
L,nL_(m)_ such that

C/}(V+,n)<yi (neN)

(where y, 1=cyluy), y_:=7y),
[ Vel dm<y 6Lul+p1ul?)  (1eN, ueD®b)),

and V. ,—u, strongly in L(D(h), D(h)*). The first two properties carry
over immediately to V., , (instead of V', ,). Moreover, the proof of
Theorem 2.1 in [SV2] yields that

!//jVir,n_)wj:ui (I’l—>OO,]:1,2)
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strongly in L(D(h), D(h)*), and [ SV2; Theorem A.1] implies
H+lij,1—>HlW (n—>o0,j=1,2)

in strong resolvent sense (with V,:=V, ,—V_ ). Fixing Y €(y, 1) one
can find « >0 only dependent on y, §, " such that c,(y, V_,) <y (neN);
cf. [Vo2; Proposition 4.7]. Let p € C.(X). For ne N, 0 <t<f we have the
Duhamel formula

—tH Y Vi) oy o~ 1H + ¥, Vi)

e

4 %

t
:J e U IH ANV gy ), oS H AU Vg g
0

and the considerations as in the proof of Theorem 3.3 show

!

Y +1
U, (00 = Vg0l < sup iUy n(5) 0l

-1 0<s<rt

Further, Lemma 3.6 implies that there exists C' >0, only dependent on
o, 7', such that

MUy (D]l C 1 U 9|

(0<t<a). Choosing C=((y"+1)/(y' —1))C" we obtain

1Uy (1) = Uy, (0@l <C sup |1 Uls)ol ...

O0<s<ua

For n— oo the asserted inequality follows. By continuity, the inequality
carries over to all ¢ e Cy(X). |

Proof of Theorem 5.5. (a) The properties of Dirichlet forms imply
that the set 7 :={y e C(X)nD(h); 0<y <1} is directed by <. The
regularity of b implies sup & = 1.

There exist >0, y <1 such that c4(u ) <y. Choose a >0, C=0 corre-
sponding to y, f according to Lemma 5.7. Let ¢ € Cy(X). We show that the
net (1 Uj(1) @), . » is a Cauchy net in C([0, a]; Co(X)). (Note that U},
satisfies (F), by Corollary 5.4.)

Let £>0. From (F) for U* we obtain K,e€ " such that

My, U)ol <& (0<s<a).
Let Y, Yy € # be such that 1 <y, <y. With K:=supp ¢ we have

Y= (1xp), Wor = o(lgxp),
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and therefore we can apply Lemma 5.7 with u replaced by 1, and obtain

10 (D)o = Ub (D@l <C sup |1y U*(s) o] < Ce

0<s<a
Lemma 5.6 implies

U

i

(1)=s-lim U, (1),

VveF

and therefore Uj,(t)p — UX(t)e in the w*-sense. This implies that
t— UX(t) @ is continuous on [0, «], and thus U} satisfies (F).

(b) For the proof of this part we refer to the proof of Theorem 4.6
and note that the required inequalities have to be proved by approximation
procedures similarly as in the proof of Lemma 5.7. ||

6. NECESSARY CONDITIONS FOR THE FELLER PROPERTY FOR
SCHRODINGER SEMIGROUPS

In this section we consider the case where X =R“ m Lebesgue-Borel
measure, and U the C,-semigroup associated with the heat equation
0,u=1Au. Since U has (SF) and (L) we lfnow from Theorem 5.5 that U,
satisfies (SF) whenever u, €Sy s, #_ €Sk, c(p_)<1. In this section we
are going to show that these conditions are not far from necessary. Before
we do this we want to make it clear by a simple argument that continuity
cannot be expected even for rather nice perturbations.

6.1. ExamPLE. Let d>2. Then there exists a regular V: R — [0, o0]
such that V¢ L,(U) for any nonempty open Uc R cf. [SV1]. (Recall that
“regular” means that U, is strongly continuous, and s-lim, _,,, U, (1) =
U(t) (t=0).) For this V the following property holds: If fe L,(RY) and
t>0 are such that U,(¢)f is a continuous function then U,(z)f=0.
(Hence f=0 since U, (-)f is analytic on (0, o0), by [ AB; Theorem 6.1],
and continuous on [0, c0), as an L,-valued function.) Indeed, by the
holomorphy of the semigroup U, the function U,(¢) f belongs to D(T),
and the latter is equal to D(T)n D(V), by [Vo2; Corollary 4.3]. The
properties of V' imply that the only continuous function contained in D(V)
is the zero function.

In order to show the characterization stated at the beginning we recall,
as a preparation, the following property.
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6.2. LEMMA. Let ueM,.

(a) ([Stu; Korollar 4.7]) Then pueSy if and only if (H+a) 'y is
bounded and uniformly continuous for some (all) o> 0.

(b) ([BHH; Proposition 7.1]) Moreover, eSg 1. if and only if
(H 4 o)~ (1) is bounded and continuous for each compact set K = R? and
some (all) a>0.

(“(H+ o) 'u bounded” means: The functional C.(RY) 3¢ —
f ((H4+a) 'e)~ du is continuous with respect to the L,-norm, and
(H+ o)~ 'u is the L -function generating this functional. This implies that
1 is a Radon measure and that (H +«)~'u is obtained as the convolution
of the corresponding resolvent kernel with x.)

Proof. (a) LetpueSg, «>0. Then (H+a) 'u is a bounded function,
and therefore (H +o') ' (H+a) ' u is uniformly continuous for all o’ > 0.
In the resolvent equation

(H+o) " u= (o' —o)(H+o') " (Hta)  u+(H+o) "

the term (H +o') 'y tends to zero uniformly (this is by the definition of
the Kato class S; of measures), and therefore (H +a«) 'x is uniformly
approximated by uniformly continuous functions.

On the other hand, assume that (H + ') ~'x is uniformly continuous for
some o>0. Then (o« —a)(H+o' ) ' (H+a) 'u— (H+a) 'y uniformly
for o' — oo, and therefore the resolvent equation implies (H +o') 'y — 0
uniformly.

(b) The necessity of the condition is a trivial consequence of (a).

For the converse let K< R? be compact. The boundedness of
(H+ o)~ "' (1u) implies that 1gux has finite total mass, and therefore
(H+a) " (1gu) tends to zero at co in RY Now the continuity implies
uniform continuity, and 1u € S follows from (a). |

6.3. THEOREM. (a) Let peM, and let U)* satisfy (F). Then ueSg ..
(b) Let ueSg, c(u) <1, and let U*, satisfy (F). Then u €Sk .-

Proof. (a) Let peC,(RY), a>0. We use the following version of the
second resolvent equation which we shall prove subsequently:

(H+o) 'u(H+p+a) 'o=(H+a) 'o—(H+pu+a) o,

where “H + p” stands for H,, and the left hand side is a more intuitive way
to write (H+o) ' (H+u+a)  '@)u). By the hypothesis and the fact
that U satisfies (F) we have that the right hand side is a continuous func-
tion, and Lemma 6.2 shows ((H+u+a) '¢)ueSg. Choosing ¢ and «
properly we obtain €Sk ..
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The equation used at the beginning follows from the equality

[ (H+o) " y(H+p+2) o du

=ul(H+o) ", (H+pu+o) o]
=(h+p+a—H+a)[(H+o) ", (H+p+a) o]
=(H+o) '"Ylo) =W (H+pu+a) ')
=WI(H+a) 'o—(H+p+a) o).

(b) Asin (a), with g replaced by —u. |

6.4. Remark. A result corresponding to Theorem 6.3 for general U but
for perturbations given by V' is proved in [ Vo4].

[A]
[AB]
[AM]
[AS]
[ArSe]
[BHH]
[Bou]
[D]
[FOT]
[HP]
[HVI]

[HV2]

[Mil ]
[Mi2]

[Ou]
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