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hni
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hemnitz.deAbstra
tWe prove spe
tral and dynami
al lo
alization on a 
ubi
-latti
e quantumgraph with a random potential. We use multis
ale analysis and show howto obtain the ne
essary estimates in analogy to the well-studied 
ase ofrandom S
hrödinger operators.1 Introdu
tionSin
e the middle of the 1980's the mathemati
al approa
h to the phenomenon oflo
alization in random solids witnessed a rapid development. One of the te
h-niques used to prove lo
alization is multis
ale analysis. Introdu
ed by Fröhli
hand Spen
er in [FS83℄ and further developed by von Dreifus and Klein in [DK89℄for the original Anderson model on the latti
e, it had been extended to the 
on-tinuum by Combes and Hislop in [CH94℄. By now there is a large number ofdis
rete and 
ontinuum models for whi
h lo
alization has been established thisway, see [Sto01℄ and for more re
ent advan
es [GK01℄.On the other hand in re
ent years the interest also turned to the shape of stru
-tures made of semi
ondu
tor and other materials. In parti
ular, quantum graphmodels be
ame popular as models of various superlatti
e stru
tures. Therefore it1
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seems natural to ask how one 
an extend the multis
ale proof of lo
alization tosu
h graph models. In this paper we want to give an answer for a parti
ular 
aseof a spe
ial 
ubi
 latti
e graph that 
an be embedded in R
d, so that the knownte
hniques work similarly as in the �
ontinuum� 
ase. Re
all that re
tangularlatti
e graphs also exhibit other interesting spe
tral properties [Ex95℄.The embedding into R

d provides an easy way to des
ribe our graph Γ. Let
V (Γ) = Z

d be the vertex set and let the set of edges E(Γ) 
onsist of all linesegments of length one between two neighbouring verti
es in dire
tions of the
oordinate axes. As usual we identify ea
h edge with the interval [0, 1] with ori-entation in the sense of the in
reasing 
oordinate in R
d. The initial and endpointof an edge e are labeled by ι(e) and τ(e).The embedding of Γ into R

d allows us to de�ne subgraphs of Γ in termsof suitable domains in R
d. To make this pre
ise, we will 
all a bounded domain

Λ ⊂ R
d with pie
ewise smooth boundary Γ−edge bounded (Γ-ebdd.) if ∂Λ ⊂ E(Γ)and for ea
h edge e ∈ E(Γ) either e ⊂ ∂Λ, or e interse
ts ∂Λ at most in itsendpoints. The graph Γ ∩ Λ arises from Γ by deleting all the edges outside Λ(in
luding those on the boundary). For its sets of edges and verti
es we write

E(Γ ∩ Λ) and V (Γ ∩ Λ), respe
tively.The Hilbert spa
e underlying our model is L2(Γ) :=
⊕

e∈E(Γ) L2(0, 1); in asimilar way we asso
iate L2(Γ∩Λ) :=
⊕

e∈E(Γ∩Λ) L2(0, 1) with Γ∩Λ. Further weneed the Sobolev spa
e of order one,
W 1

2 (Γ) := {f ∈
⊕

e∈E

W 1
2 (0, 1) | f 
ontinuous at all verti
es v ∈ V,

‖f‖2
W 1

2
(Γ) :=

∑

e∈E(Γ)

‖fe‖2
W 1

2
(0,1) <∞}with the obvious notation and terminology for edge 
omponents of f , and itsanalogue W 1

2 (Γ ∩ Λ).We 
an now de�ne the random S
hrödinger operator H(ω) for ω ∈ Ω :=
[q−, q+]E via their asso
iated forms,

D(hω) = W 1
2 (Γ),

hω(f, g) =
∑

e∈E(Γ)

[(f ′
e | g′e)L2(0,1) + (ωe · fe | ge)L2(0,1)]These self-adjoint operators 
orrespond to the di�erential expression −f ′′

e +ωe ·feon the edges, together with the free (often 
alled Kir
hho�) boundary 
onditionsat the inner verti
es, i.e.
∑

ι(e)=v

f ′
e(0) −

∑

τ(e)=v

f ′
e(0) = 0 (∀v ∈ V ∩ Λ),The 
oupling 
onstants ωe 
arry the random stru
ture. They are pi
ked inde-pendently for di�erent edges with a probability measure µ on R with suppµ =2



[q−, q+]. For te
hni
al reasons we have to assume that µ is Hölder 
ontinuouswith Hölder exponent α and further that µ satis�es the following assumption:there exists τ > d
2
su
h that for h small

µ([q−, q− + h]) ≤ hτ . (1)This single site measure µ de�nes a probability P :=
⊗

e∈E µ on Ω.We will also need restri
tions HN
Λ (ω) for an ebbd open Λ de�ned via the form

D(hNΛ,ω) = W 1
2 (Γ ∩ Λ)

hNΛ,ω(f, g) =
∑

e∈E(Γ∩Λ)

[(f ′
e | g′e)L2(0,1) + (ωe · fe | ge)],whi
h 
orresponds to Neumann boundary 
onditions at the boundary verti
es

v ∈ V ∩ ∂Λ � 
f. [Ku04℄.2 The main results and the idea of their proofOur family of random S
hrödinger operators exhibits deterministi
 spe
trum, i.e.there exists a 
losed subset Σ ⊂ R s.t. σ(H(ω)) = Σ almost surely. This is astandard result from the theory of random operators � see, e.g., [CL90℄ � and
omes from fundamental properties of our 
onstru
tion, espe
ially the ergodi
ityw.r.t. latti
e translations. To lo
ate the deterministi
 spe
trum we 
an 
onsiderthe free operator H0 (the one with V = 0) and use some results that relate thespe
trum of H0 to the spe
trum of its transition operator, the Lapla
ian on Z
d� see, e.g., [Ex97, Cat97℄. In this way we get σ(H0) = [0,∞) and hen
e again bystandard theory Σ = [q−,∞).Our �rst 
laim is that in some neighborhood of inf Σ = q− the operatorsexhibit pure point spe
trum with exponentially de
aying eigenfun
tions almostsurely:2.1 Theorem (Spe
tral/Anderson lo
alization) There is an ε > 0 su
hthat the spe
trum of H(ω) in [q−, q− + ε0] is pure point for a.e. ω ∈ Ω. Further-more, there exists a γ > 0 and for ea
h eigenfun
tion u asso
iated to an energyin this interval a 
onstant Cu su
h that

‖χΛ1(x)u‖ ≤ Cu · exp[−γ d(x, 0)] (x ∈ Γ),where Λ1(x) is the interse
tion of Γ with the unit 
ube 
entered at x ∈ Z
d.The assertion of the pre
eding theorem is sometimes 
alled Anderson lo
al-ization or spe
tral lo
alization (see [RJLS95℄ for a dis
ussion of di�erent 
on
eptsof lo
alization). An alternative and stronger 
on
ept is dynami
al lo
alization,see [GdB98, DSt01℄ and [GK01℄ for more re
ent developments. In the 
ontext ofour model the following result is valid. 3



2.2 Theorem (Strong dynami
al lo
alization) Let p > 2(2τ − d) where τrefers to (1). Then there exists an ε > 0 su
h that for K ⊂ Γ 
ompa
t, ea
hinterval I ⊂ [E0, E0 + ε] and η ∈ L∞(R) with supp η ⊂ I we have
E{‖|X|pη(H(ω))χK‖} <∞,whi
h in parti
ular means that

E{sup
t>0

‖|X|pe−itH(ω)PI(H(ω))χK‖} <∞.Both results will be proved by a multis
ale indu
tion as presented in detail in[Sto01℄. As the framework introdu
ed there is general enough to in
lude our 
aseit will be su�
ient to establish the ne
essary model-dependent estimates that areto be plugged into the multis
ale ma
hinery.For the readers 
onvenien
e we will now brie�y des
ribe the idea behind themultis
ale indu
tion. The basi
 property one proves by indu
tion is an exponen-tial de
ay estimate for the kernel of the resolvent of HN
Λ(L)(ω). More pre
isely, itis shown that with high probability (depending on L) the resolvent of HN

Λ(L)(ω)shows exponential o�-diagonal de
ay.Note that, outside the spe
trum of a S
hrödinger operator, su
h an exponen-tial de
ay estimate is just the 
ontent of the 
elebrated Combes-Thomas estimate.We will make 
lear that an analogue holds for quantum graphs as well. A
tually,this kind of argument will give the starting point of our indu
tion pro
edure, theinitial length s
ale estimate. More pre
isely, the assumption (1) on the tail ofthe single site measure implies that energies near inf Σ are in the resolvent setof HN
Λ(L)(ω) with high probability for any given L. However, keeping an intervalnear inf Σ �xed and letting L tend to in�nity, the interval will be �lled with eigen-values of the box Hamiltonian. Therefore the sought property, the exponentialde
ay, must be dedu
ed by a more 
lever argument. One important ingredientis the relation between resolvents of di�erent nested boxes, 
ast in the form ofa geometri
 resolvent identity. This will allow to 
on
lude exponential de
ay ona large box, knowing exponential de
ay on smaller sub-boxes. In this indu
tionstep, from length L one pro
eeds to Lα with suitable α > 1. A very importanta priori information is ne
essary, the so-
alled Wegner estimate. Putting theseestimates together as in [Sto01℄ one arrives at the desired exponential de
ay esti-mates for larger and larger boxes. To 
on
lude, �nally, that the operators H(ω)exhibit pure point spe
trum almost surely, we need to know that the spe
trumis indeed determined by generalized eigenfun
tions. In the next se
tion we showhow to obtain these steps.2.3 Remarks (a) Our results 
an easily be extended to 
ertain other 
ases, forinstan
e, to a �rhombi
� latti
e, where the present method would work after ad-justing 
onstants appearing in the equivalen
e between the Eu
lidean and the4



intrinsi
 metri
.(b) The results 
ould be also extended to potentials, whi
h are only relativelybounded, for instan
e, one 
an 
onsider suitable Lp(0, 1)−fun
tions with a posi-tive lower bound as �single edge� potentials, following [Sto01℄ and numerous otherpapers; we did not take this path and treated 
hara
teristi
 fun
tions as randompotentials here ex
lusively for the sake of simpli
ity.(
) In a di�erent dire
tion, results are available for 
ertain random quantumgraphs, namely for random trees with random edge lengths; see the re
ent workin [ASW06, HP06℄.3 The proofs3.1 A Combes-Thomas estimateThe statements of this se
tion will show how to obtain �exponential de
ay of thelo
al resolvent� outside the spe
trum. The results go ba
k to the 
elebrated paper[CT73℄ and its improvement in [BCH97℄.3.1 Theorem (Combes-Thomas estimate) Let R > 0. There exist 
on-stants c1 = c1(q−, q+, R), c2 = c2(q−, q+, R), s.t. from the assumptions(i) Λ ⊂ R
d Γ−ebdd. box, A,B ⊂ Λ Γ−ebdd., dist(A,B) =: δ ≥ 1,(ii) (r, s) ⊂ ̺(HN

Λ ) ∩ (−R,R) , E ∈ (r, s), η := dist(E, (r, s)c) > 0it follows that
‖χA(HN

Λ −E)−1χB‖ ≤ c1 · η−1 · e−c2
√
η(s−r) δ.Proof: Let w : Λ→R be de�ned as w(x) := dist(x,B). By triangle inequality

|w(y)− w(x)| ≤ |x− y|,so that ‖∇w‖∞ ≤ 1, and this in turn implies ‖w′‖∞ ≤ 1 for the restri
tion to thegraph. Furthermore, the fun
tions ψ(x) = e−w(x) and ϕ(x) = ew(x) are uniformlyLips
hitz 
ontinuous on all edges be
ause
|ew(y) − ew(x)| ≤ sup

ξ∈Γ∩Λ
|(exp ◦w)′(ξ)| · |y − x|

≤ sup
ξ∈Γ∩Λ

| exp(w(ξ))||w′(ξ)| · |y − x|.Hen
e for ea
h u ∈ D(h) also the fun
tions ψu, ϕu belong to D(h), whi
h meansthat
hβ(u, v) := h(e−βwu, eβwv)5



is well de�ned for all u, v ∈ D(h). By the produ
t rule we have the relation
hβ(u, v) = (e−βwu′ | eβwv′) − β((e−βwuw′ | eβwv′)

−β2((e−βwuw′ | eβwvw′) + β((e−βwu′ | eβwvw′) + (V u | v)
= h(u, v) − β [(uw′ | v′) − (u | vw′)]︸ ︷︷ ︸

(∗)

−β2(w′2u | v).Referring to the term (∗) above we de�ne the symmetri
 form
k(u, v) := i[(uw′ | v′) − (u | vw′)].Using 1 ≥ m := w′2 ≥ 0 one 
an write

hβ(u, v) = h̃(u, v) + iβk(u, v), where
h̃(u, v) = h(u, v) − β2(mu | v).Next we are going to show that hβ is se
torial. From ‖w′‖∞ ≤ 1 one gets
k(u) ≤ 2‖u‖ ‖u′‖ ≤ ‖u′‖2 + ‖u‖2. (2)On the other hand, 
onsider the operator H̃ asso
iated with h̃ and C = C(R),

C ≥ β2 + 1, C ≥ 1 − rm for whi
h we have
‖(H̃ + C)

1

2u‖2 ≥ ‖(H̃ + β2 + 1)
1

2u‖2

= ‖u′‖2 + ([V + β2 (1 −m)︸ ︷︷ ︸
≥0

+1]u |u)

≥ ‖u′‖2 + ‖u‖2. (3)It follows from (2) and (3) that
|k(u)| ≤ ‖(H̃ + C)

1

2u‖2 = (h̃ + C)(u), (4)hen
e hβ = h̃ + iβk is se
torial and there exists an asso
iated se
torial operator
Hβ � see, e.g., [Kato76℄.In the next step we are going to show the existen
e of a bounded operator Son L2(Γ ∩ Λ), ‖S‖ ≤ 1, s.t.

k(u, v) = (S(H̃ + C)
1

2u | (H̃ + C)
1

2v) (∀u, v ∈ D(h)).Let thus D(h) be equipped with the s
alar produ
t (h̃ + C)(·, ·). By the Rieszrepresentation theorem there exists a bounded operator K on D(h) with
k(u, v) = (h̃ + C)(Ku, v)6



and by (4) we have ‖K‖ ≤ 1. Put
S := (H̃ + C)

1

2K(H̃ + C)−
1

2 : L2(Γ ∩ Λ)→L2(Γ ∩ Λ).As (H̃ +C)
1

2 : D(h)→L2(Γ∩Λ) and (H̃ +C)−
1

2 : L2(Γ∩Λ)→D(h) are unitary,we have ‖S‖ = ‖K‖ ≤ 1, and for u, v ∈ D(h) we get the desired relation
((H̃ + C)

1

2u | (H̃ + C)
1

2v) = ((H̃ + C)
1

2Ku | (H̃ + C)
1

2v)

= k(u, v).Now we have to investigate invertibility of Hβ − E for E ∈ (r, s) in dependen
eon β. Here we 
an use the proof of [Sto01℄ (whi
h in turn uses Lemma 3.1. from[BCH97℄) word by word, so we present just the result: let
β1 := min

{
β0,

1

R + C

√
1

32
η (s− r)

}
,then for |β| ≤ β1 the operator T + iβS is invertible with

‖(T + iβS)−1‖ ≤ 4
R + C

η
. (5)Next we will �nd a 
onne
tion between T + iβS and Hβ − E whi
h shows thatfor |β| ≤ β1 the operator Hβ −E is invertible too, namely

(Hβ −E)−1 = (H̃ + C)−
1

2 (T + iβS)−1(H̃ + C)−
1

2 . (6)Let f ∈ L2(Γ ∩ Λ), then
u := (H̃ + C)−

1

2 (T + iβS)−1(H̃ + C)−
1

2f ∈ D(h)holds, sin
e (H̃ +C)−
1

2 maps L2(Λ) to D(h). Using the de�nitions of T, S and uwe 
an 
al
ulate for v ∈ D(h) the expression
(hβ −E)(u, v) = (h̃ − E)(u, v) + iβ k(u, v)

= (T (H̃ + C)
1

2u|(H̃ + C)
1

2 v) + iβ (S(H̃ + C)
1

2u|(H̃ + C)
1

2 v)

= ((T + iβS)(H̃ + C)
1

2u|(H̃ + C)
1

2v)

= ((H̃ + C)−
1

2 f |(H̃ + C)
1

2v)

= (f |v).Consequently, we have u ∈ D(Hβ − E) and (Hβ − E)u = f , so (6) follows, andby (5) we get
‖(Hβ − E)−1‖ ≤ 4

R + C

η
. (7)7



A straightforward 
al
ulation now shows that
(Hβ − E)−1f = eβw(H −E)−1e−βwf,and therefore

‖χA(H − E)−1χB‖ ≤ ‖χAe−βw‖∞ · ‖(Hβ −E)−1‖ · ‖eβwχB‖∞. (8)Putting β := 1
2
β1 we analyze the fa
tors on the right-hand side. By w|B = 0 onehas ‖eβwχB‖∞ ≤ 1. The se
ond fa
tor is 
ontrolled by (7), and furthermore, byde�nition of β1 there is a 
onstant c2 = c2(R) s.t.

β ≥ c2(R) ·
√
η(s− r).By assumption, w(x) = dist(x,B) ≥ δ for all x ∈ A, i.e.

‖χAe−βw‖∞ ≤ e−β·δ ≤ exp(−c2(R) ·
√
η(s− r) · δ).Combining this argument with (8) we get �nally the result,

‖χA(H −E)−1χB‖ ≤ c1(R) · η−1 · exp(−c2(R) ·
√
η(s− r) · δ).3.2 The initial length s
ale estimateThe initial length s
ale estimate tells us something about the probability that aneigenvalue of the box hamiltonian is found inside a suitable interval. Spe
i�
ally,we take an interval 
entered at the lower bound q− of the deterministi
 spe
trumand we suppose that its length depends on the size l of the box. The estimatewe are interested in will only hold for lengths larger than some initial value l∗.3.2 Theorem (Initial length s
ale estimate) For ea
h ξ ∈ (0, 2τ−d) thereexist β = β(τ, ξ) ∈ (0, 2) and l∗ = l∗(τ, ξ) su
h that

P{dist(σ(HN
Λ (ω)), q−) ≤ lβ−2} ≤ l−ξ (9)holds for all Γ−ebdd. boxes Λ = Λl(0) with l ≥ l∗.Proof: Let

Ωl,h := {ω ∈ Ω | qe(ω) ≥ q− + h for all e ∈ E(Γ ∩ Λ}.By the min-max prin
iple we infer that for ω ∈ Ωl,h

E0(H
N
Λ ) ≥ E0((−∆ + q− + h)NΛ ) = q− + h,8



where E0 is the lowest eigenvalue of the respe
tive operator. Using assumption(1) the probability of Ωl,h 
an be estimated by
P(Ωl,h) ≥ 1 − ♯E(Γ ∩ Λ) · µ([q−, q− + h])

≥ 1 − d · |Λ| · hτ .Let ξ ∈ (0, 2τ−d). Then it is always possible to 
hoose β ∈ (0, 2) su
h that
ξ < τ(2 − β) − d,and inserting h := lβ−2 we get for l large

P(Ωl,h) = 1 − d |Λ| lτ(β−2)

= 1 − d lξ−τ(2−β)+d
︸ ︷︷ ︸
≤1 for l large l−ξ

≥ 1 − l−ξ.3.3 The geometri
 resolvent inequalityAs we mentioned above, in the multis
ale indu
tion step one has to deal withrestri
tions of a S
hrödinger operator to nested 
ubes on di�erent length s
ales.Consequently, we need a tool that relates the resolvents of su
h restri
tions. The�rst step on this way is the following lemma, 
alled geometri
 resolvent equality.3.3 Lemma (Geometri
 resolvent equality) Let Λ ⊂ Λ′ ⊂ R
d be some open

Γ−ebdd. boxes, HΛ and HΛ′ the respe
tive realizations of our model operatorwith Neumann b.
. Let ψ ∈ {f |Γ∩Λ | f ∈ C1
c (Λ)} be real-valued. Then we havefor ea
h z ∈ ̺(HΛ) ∩ ̺(HΛ′) the relation

RΛψ = ψRΛ′ +RΛ [ψ′ ·D +Dψ′]RΛ′ ,where we have denoted RΛ := (HΛ − z)−1, RΛ′ := (HΛ′ − z)−1, D is the �rstderivative, and all the terms are interpreted as operators on L2(Γ ∩ Λ′).Proof: We regard L2(Γ ∩ Λ) as a subspa
e of L2(Γ ∩ Λ′). In terms of theasso
iated forms the assertion then reads as follows:
(hΛ − z)(ψ RΛ′ +RΛ [ψ′ ·D +Dψ′]RΛ′)g, w) = (ψg |w)

(∀g ∈ L2(Γ ∩ Λ), w ∈ D(h));noti
e that in this 
ase the �rst argument at the left-hand side, whi
h we denoteas u, belongs to D(HΛ) and (H − z)u = ψ · g.In the �rst step we have to show that u ∈ D(h) holds. By the produ
trule, ψe (RΛ′g)e ∈ W 1
2 (0, 1) for all e ∈ E(Γ ∩ Λ). The 
ontinuity of ψRΛ′g at9



the inner verti
es of Λ′ is 
lear, so the �rst term is 
ontrolled. Further we �nd
ψ′DRΛ′ : L2(Γ ∩ Λ)→L2(Γ ∩ Λ), i.e.

RΛψ
′DRΛ′ g ∈ D(h).For the analysis of the third term one has

ψ′RΛ′ g ∈ L2(Γ ∩ Λ).Now RΛD : W 1
2 (Γ ∩ Λ)→D(hΛ) extends to a bounded operator from L2(Γ ∩ Λ)to D(hΛ). Indeed, we 
an always 
hoose z small enough, in whi
h 
ase

R((HΛ − z)−
1

2 ) = D((HΛ − z)
1

2 ) = D(hΛ) ⊂W 1
2 (Γ ∩ Λ).For v ∈ D(hΛ) we have

‖v′‖2
L2(Γ∩Λ) = h(v) −

∑

e∈E(Γ∩Λ)

Ve

∫ 1

0

v2
e(x)dx

≤ ‖v‖D(hΛ),i.e. D (HΛ − z)−
1

2 is bounded on L2(Γ ∩ Λ). Thus for ϕ ∈ W 1
2 (Γ ∩ Λ) and

f ∈ L2(Γ ∩ Λ) we get
|((HΛ − z)

1

2ϕ′ | f)| = |(ϕ| D (HΛ − z)−
1

2f)|
≤ c · ‖ϕ‖L2(Γ∩Λ) · ‖f‖L2(Γ∩Λ),and from here �nally the boundedness of the map

RΛD = (HΛ − z)−
1

2 (HΛ − z)−
1

2D : L2(Γ ∩ Λ)→L2(Γ ∩ Λ)→D(hΛ).The next step is to 
ontrol the behavior of some fun
tions at the inner verti
es.For a �xed inner vertex of Γ∩Λ let ek,in and ek,out be the in- and out
oming edges,respe
tively, parallel to the k−th 
oordinate axis, and let ∂kψ(v) be the k−thpartial derivative of the C1
c (Λ)−
ontinuation of ψ. Then

(Dψ′RΛ′g |w)L2(Γ∩Λ) =
∑

e∈E(Γ∩Λ)

(Dψ′
eRΛ′ge |we)L2(0,1)

=
∑

e∈E(Γ∩Λ)

{(−ψ′
eRΛ′ge |w′

e)L2(0,1) + ψ′
eRΛ′gewe |10}

= −(ψ′RΛ′g |w′)L2(Γ∩Λ)

+
∑

v inn. vertex d∑

k=1

∂kψ(v){(RΛ′gw)ek,in(1) − (RΛ′gw)ek,out(0)
︸ ︷︷ ︸

=0 by 
ontinuity at inner verti
es }

= −(ψ′RΛ′g |w′)L2(Γ∩Λ). (10)10



The following 
al
ulation now �nishes the proof:
(hΛ − z)(u, w) = (hΛ − z)(ψ RΛ′g, w) + ((ψ′ ·DRΛ′ +Dψ′RΛ′)g |w)

(10)
= ((ψRΛ′g)′ |w′) + ((V − z)ψ RΛ′g |w)

+(ψ′(RΛ′g)′ |w) − (ψ′RΛ′g |w′)

= (ψ′RΛ′g |w′) + (ψ(RΛ′g)′ |w′) + (ψ′(RΛ′g)′ |w)

+((V − z)ψRΛ′g |w) − (ψ′RΛ′g |w′)
ψ real val.

= ((RΛ′g)′ | (ψw)′) + ((V − z)RΛ′g |ψw)

= (hΛ′ − z)(RΛ′g, ψw)

= (g |ψw)

= (ψg |w).We will next prove another preparatory lemma after whi
h we will be readyto state the main theorem of this se
tion.3.4 Lemma Let Ω̃ ⊂ Ω ⊂ R
d be a Γ−ebdd. domains, dist(∂Ω̃, ∂Ω) > 0, E ∈ Rand g ∈ L2(Γ∩Ω). Then there exists C = C(q−, q+, E) s.t. for all u ∈W 1

2 (Γ∩Ω)with
(u′ |ϕ′)L2(Γ∩Ω) + (V u |ϕ)L2(Γ∩Ω) = (g |ϕ)L2(Γ∩Ω) (∀ϕ ∈W 1

2,0(Γ ∩ Ω))it holds that
‖u′‖L2(Γ∩Ω̃) ≤ C(‖u‖L2(Γ∩Ω) + ‖g‖L2(Γ∩Ω)).Proof: By 
onstru
tion, dist(∂Ω, ∂Ω̃) ≥ 1, hen
e there exists a ve
tor

ψ ∈ {f |Γ∩Ω | f ∈ Cc(Ω), supp f ′ ⊂ {x ∈ Ω | dist(x, Ω̃) < 1}}with 0 ≤ ψ ≤ 1, ψ|Γ∩Ω̃ = 1 and ‖ψ′‖∞ ≤ C̃(d). Let w := uψ2, then w ∈
W 1

2,0(Γ ∩ Ω), and by produ
t rule we �nd
(u′ |w′)L2(Γ∩Ω) = (ψu′ |ψu′) + 2(ψu′ | uψ′).Using Ṽ := V −E and support properties of the fun
tions involved we get

‖ψu′‖2 = (u′ |w′) − 2(ψu′ | uψ′)

= (g |w) − (Ṽ u |w) − 2(ψu′ |uψ′)

≤ ‖g‖ ‖u‖+ |(Ṽ ψu |ψu)| + 2 ‖ψu′‖ ‖u‖ ‖ψ′‖∞
≤ ‖g‖ ‖u‖+ Ĉ(q−, q+, E)‖u‖2 + 2C̃ ‖ψu′‖ ‖u‖.

11



We 
onsider the latter as a quadrati
 inequality in ‖ψu′‖, and �nd after somesimple manipulations, that it 
an only be ful�lled for
‖ψu′‖ ≤

√
C̃2 + Ĉ ‖u‖ +

1

2
√
C̃2 + Ĉ

‖g‖

= C(q−, q+, E)(‖u‖ + ‖g‖)By ψ|Γ∩Ω̃ = 1 the assertion follows. �Before we 
ome to the main point we introdu
e some notation. A Γ−ebdd.box Λ = ΛL(x) is 
alled suitable, if x ∈ Z
d, L ∈ 6N \ 12N and L ≥ 42. For su
hboxes we de�ne

Λint(x) = ΛL,int(x) := ΛL/3(x),

Λout(x) = ΛL,out(x) := ΛL(x) \ ΛL−12(x)and write for the respe
tive 
hara
teristi
 fun
tions on the graph:
χintΛ = χintΛL(x) := χintΓ∩Λint(x), χoutΛ = χoutΛL(x) := χoutΓ∩Λint(x).In general the symbol χA for a Γ−ebdd. domain is to be understood as χΓ∩A.3.5 Theorem (Geometri
 resolvent inequality) Let Λ ⊂ Λ′ ⊂ R

d be suit-able Γ−ebdd. boxes. Let further A ⊂ Λint and B ⊂ Λ′ \Λ be Γ−ebdd. domains,
I0 ⊂ R bounded and E ∈ I0. Then there exists Cgeom = Cgeom(q−, q+, E) s.t.

‖χBRΛ′(E)χA‖ ≤ Cgeom · ‖χBRΛ′(E)χout
Λ ‖ ‖χout

Λ RΛ(E)χA‖.Proof: Let x ∈ Z
d be the 
enter of Λ. We 
hoose ϕ ∈ {f |Γ∩Λ | f ∈ C∞

c (Λ)}real-valued with supp f ⊂ ΛL−4(x) s.t. ϕ = 1 on ΛL−8(x). This 
an be 
ertainlya
hieved, with ‖ϕ′‖∞ bounded independent on Λ.Let Ω := intΛout, i.e. dist (∂Ω, suppϕ′) ≥ 2. By the geometri
 resolventequality (Lemma 3.3) we have
‖χBRΛ′χA‖ = ‖χARΛ′χB‖

= ‖χA(ϕRΛ′ −RΛϕ)χB‖ (ϕ|A = 1, ϕ|B = 0)Lemma 3.3
= ‖χA(ϕRΛ(Dϕ′ + ϕ′D)RΛ′χB‖
≤ ‖χAϕRΛDϕ

′RΛ′χB‖︸ ︷︷ ︸
(∗)

+ ‖χAϕRΛϕ
′DRΛ′χB‖︸ ︷︷ ︸

(∗∗)

.We start with the analysis of (∗). If Ω̃ := int (ΛL−2(x) \ ΛL−10(x)) it holds that
(∗) = ‖χAϕRΛDχΩ̃ χΩϕ

′RΛ′χB‖
≤ ‖ϕ′‖∞ ‖χAϕRΛDχΩ̃‖︸ ︷︷ ︸

(∗∗∗)

‖χΩRΛ′χB‖.12



The term (∗∗∗) 
an be now 
ontrolled with the help of Lemma 3.4. We put
f ∈ L2(Γ ∩ Λ), g := χAf, u := RΛg.Then u ∈ D(h) and

(hΛ −E)(u, w) = (g |w)for all w ∈ D(hΛ). Furthermore, we have g|Ω = 0 as well as dist (∂Ω, ∂Ω̃) = 1.Consequently, Lemma 3.4 is appli
able and it gives
‖χΩ̃u

′‖ ≤ C1(q−, q+, I) ‖u‖L2(Γ∩Ω)

= C1(q−, q+, I) ‖χΩRΛχAf‖,i.e.
(∗∗∗) ≤ C1 (q−, q+, I) ‖χoutΛ RΛχA‖.The term (∗∗) 
an be treated in a similar way. �3.4 The Wegner estimateThe Wegner estimate represents a statement about the probability that the op-erator HN

Λ (ω), restri
ted to a Γ−ebdd. box Λ = Λl(x) 
entered at x ∈ Z
d, willhave an eigenvalue near some �xed energy. Typi
ally � and su�
iently for ourmultis
ale analysis � this probability is polynomially bounded in terms of the boxvolume.3.6 Theorem (Wegner estimate) For ea
h R > 0 there exists a 
onstant CRsu
h that for all Γ−ebdd. boxes Λ = Λl(i), i ∈ Z

d, and all intervals I ⊂ (−R,R)of length |I| the following estimate holds:
P{σ(HN

Λ (ω)) ∩ I 6= ∅} ≤ CR · |Λ|2 · |I|α.Before we start with the proof let us re
all the following elementary lemma from[Sto00℄.3.7 Lemma Let J be a �nite index set, µ a Hölder 
ontinuous probability mea-sure on R
d with Hölder exponent α, µJ := ⊗i∈Jµ the produ
t measure on R

J .Let Φ : R
J →R a monotone fun
tion, for whi
h there are 
onstants δ and a > 0s.t. for all t ∈ [0, δ], q ∈ R

J we have
Φ(q + t(1, . . . , 1)) − Φ(q) ≥ t · a. (11)Then for ea
h interval I of length smaller than ε ≤ aδ the following estimateholds:
µJ({q : Φ(q) ∈ I}) ≤ |J | ·

(ε
a

)α
.13



Proof of Theorem 3.6: We start with an estimate for the number of eigenvaluessmaller than a given energy R. To this aim we de�ne the Neumann-de
oupledoperator −∆N,de

Λ via its quadrati
 form

D(hN, de
Λ ) = ⊕e∈E(Γ∩Λ)W
1
2 (0, 1),

h
N, de

Λ (f, g) :=

∑

e∈E(Γ∩Λ)

(f ′ | g′)L2(Γ∩Λ).By a dire
t 
al
ulation the eigenvalues of this operator are π2

4
n2, n ∈ N0, withthe multipli
ity ♯{E(Γ ∩ Λ)} ≤ d · ld = d|Λ|. Hen
e there exists a 
onstant C̃Rs.t. for the n-th eigenvalue, 
ounting multipli
ity, it holds that

En(−∆N, de

Λ ) > R for n > C̃R|Λ|.Now we have

HN
Λ (ω) ≥ (H0 + q−)NΛ ≥ −∆N, de


Λsin
e q− ≥ 0 by assumption, and thus by min-max prin
iple the 
orrespondinginequality for the n-th eigenvalues. Using the previous inequality we get
P{σ(HN

Λ (ω)) ∩ I 6= ∅} ≤
∑

n≤C̃R·|Λ|

P{En(HN
Λ (ω)) ∈ I}. (12)Next we estimate the terms of the sum by means of Lemma 3.7. Be
ause of theindependen
e of HΛ(ω) of 
oupling 
onstants outside Λ we have

P{En(HΛ(ω)) ∈ I} = µE(Γ){ω |En(HΛ(ω)) ∈ I}
= µE(Γ∩Λ){ω̃ = (ωe)e∈E(Γ∩Λ) |En(HΛ(ω)) ∈ I}.By Φ(ω̃) := En(HΛ(ω̃)) = En(HΛ(ω)) a monotone fun
tion on R

E(Γ ∩ Λ) isde�ned, and it ful�lls 
ondition (11) be
ause
HΛ(ω̃ + t(1, . . . , 1)) = −∆ +

∑

e∈E(Γ∩Λ)

(ωe + t)χe

= HΛ(ω̃) + t.Hen
e by Lemma 3.7 we have
P{En(HΛ(ω)) ∈ I} ≤ ♯E(Γ ∩ Λ) · |I|α

≤ d|Λ| |I|α,whi
h in 
ombination with (12) yields the assertion. �
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3.5 Expansion in generalized eigenfun
tionsNow we 
ome to the last statement needed for the multis
ale analysis, namelythat polynomially bounded generalized eigenfun
tions exist spe
trally a.s.We want to use the main result from [BMSt03℄, that gives the polynomialboundedness in terms of the intrinsi
 metri
 (see [Stu94℄) generated by the freeLapla
ian H0 on the graph. Using the embedding of our graph into R
d it 
aneasily be seen that the intrinsi
 metri
 is equivalent to the Eu
lidean one on R

d,and 
onsequently, after adjusting some 
onstants the statement 
an be writtenin terms of absolute values as well. We start by 
he
king the assumptions of[BMSt03℄. First of all one has to show that the form h0 asso
iated with the freeLapla
ian is a Diri
hlet form. Note that ‖ · ‖h0
is equivalent to the norm ‖ · ‖W 1

2
(Γ)so h0 is 
losed. For u ∈ D(h0) whi
h is real-valued we have |u| ∈ D(h0), andtherefore

h0(|u|) =
∑

e∈E(Γ)

∫ 1

0

(sgn ue(x)u′e(x))2 dx = h0(u).If u is in addition nonnegative, we have u ∧ 1 ∈ D(h0) and
h0(u ∧ 1) =

∑

e∈E(Γ)

∫ 1

0

u′e(x)
2 · 1[ue<1](x) dx ≤ h0(u).Obviously h0 is strongly lo
al and regular � see, e.g., [BMSt03℄ for de�nitions.The next point is that the volume of balls with respe
t to the intrinsi
 metri


̺ does not grow too fast as R→∞. Be
ause the graph is embedded into R
d andthe intrinsi
 metri
 and the ‖ · ‖1-metri
 are equivalent, the volume of the ball

B
̺
R(x) 
an be estimated by the number of edges 
ontained inside a box Λ2R(x)and hen
e by cdRd for large R.Finally, the third assumption to be 
he
ked is that e−tH0 is bounded as amap from L2(Γ) to L∞(Γ) for some t > 0. To this aim we employ the followingextension of the ultra
ontra
tivity result [KMS06℄, Lemma 3.2, demonstrated byusing the same method as in the 
ited paper.3.8 Lemma For t ∈ (0, 1] it holds that

‖e−tH0‖L2(Γ)→L∞(Γ) ≤ ct−
1

4 .Proof: By [Ou05℄, Thm. 6.3 �, see also [Na58, FSt86, Dav89℄, it is su�
ient toshow that
‖f‖L2(Γ) ≤ C · ‖f‖

1

3

h · ‖f‖
2

3

L1(Γ)for f ∈ D(h) ∩ L1(Γ). Now, by [Ga59, Ni59℄, or by [Ma85, Se
t. 1.4.8℄, we havethe following Nash type inequality for u ∈W 1
2 (0, 1):

‖u‖L2(0,1) ≤ c1 ·
(
‖u′‖L2(0,1) + ‖u‖L1(0,1)

) 1

3 · ‖u‖
2

3

L1(0,1)

≤ c1 · ‖u‖
1

3

W 1
2
(0,1)

· ‖u‖
2

3

L1(0,1)
,15



where in the se
ond step the Hölder inequality has been applied to u · 1. For
f ∈ D(h) ∩ L1(Γ) we have by another appli
ation of Hölder inequality

‖f‖2
L2(Γ) =

∑

e∈E(Γ)

‖fe‖2
L2(0,1)

≤ c21

∑

e∈E(Γ)

‖fe‖
2

3

W 1
2
(0,1)

· ‖fe‖
4

3

L1(0,1)

≤ c21 (
∑

e∈E(Γ)

‖fe‖2
W 1

2
(0,1))

1

3 · (
∑

e∈E(Γ)

‖fe‖L1(0,1))
4

3

= c2 · ‖f‖
2

3

h · ‖f‖
4

3

L1(Γ).With these assumptions, given using the arguments in the opening of these
tion, [BMSt03℄ yields the following result:3.9 Theorem For spe
trally a.a. E ∈ σ(H) there exists a generalized eigen-fun
tion ϕ
(1 + | · |2)−m

2 ϕ ∈ L2(Γ).satisfying for any m > d+1
2
.This 
ompletes the ne
essary input for the use of Theorem 3.2.2 from [Sto01℄ andthus the proof of Theorems 2.1 and 2.2.A
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