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Abstract

We prove spectral and dynamical localization on a cubic-lattice quantum
graph with a random potential. We use multiscale analysis and show how
to obtain the necessary estimates in analogy to the well-studied case of
random Schrédinger operators.

1 Introduction

Since the middle of the 1980’s the mathematical approach to the phenomenon of
localization in random solids witnessed a rapid development. One of the tech-
niques used to prove localization is multiscale analysis. Introduced by Frohlich
and Spencer in [FS83] and further developed by von Dreifus and Klein in [DK89]
for the original Anderson model on the lattice, it had been extended to the con-
tinuum by Combes and Hislop in [CH94]. By now there is a large number of
discrete and continuum models for which localization has been established this
way, see [Sto01] and for more recent advances [GKOI].

On the other hand in recent years the interest also turned to the shape of struc-
tures made of semiconductor and other materials. In particular, quantum graph
models became popular as models of various superlattice structures. Therefore it
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seems natural to ask how one can extend the multiscale proof of localization to
such graph models. In this paper we want to give an answer for a particular case
of a special cubic lattice graph that can be embedded in R?, so that the known
techniques work similarly as in the “continuum” case. Recall that rectangular
lattice graphs also exhibit other interesting spectral properties [Ex95.

The embedding into RY provides an easy way to describe our graph I'. Let
V([) = Z* be the vertex set and let the set of edges F(I') consist of all line
segments of length one between two neighbouring vertices in directions of the
coordinate axes. As usual we identify each edge with the interval [0, 1] with ori-
entation in the sense of the increasing coordinate in R%. The initial and endpoint
of an edge e are labeled by ¢(e) and 7(e).

The embedding of T' into R? allows us to define subgraphs of I' in terms
of suitable domains in R¢. To make this precise, we will call a bounded domain
A C R? with piecewise smooth boundary I'—edge bounded (T-ebdd.) if OA C E(T)
and for each edge e € E(I') either e C JA, or e intersects OA at most in its
endpoints. The graph I' N A arises from I' by deleting all the edges outside A
(including those on the boundary). For its sets of edges and vertices we write
E('nA) and V(I' N A), respectively.

The Hilbert space underlying our model is Ly(I') := D,y L2(0,1); in a
similar way we associate Ly(I'NA) := @ c prna) L2(0, 1) with ' A. Further we
need the Sobolev space of order one,

W) = {f¢ @ W3(0,1) | f continuous at all vertices v € V,
ecE
”f”xzxvg(r) = Z er”%/v;(o,n < oo}
ecE(T)

with the obvious notation and terminology for edge components of f, and its
analogue W3 (I N A).
We can now define the random Schrddinger operator H(w) for w € Q :=
[q_, q.]F via their associated forms,
D(h.) = Wy(I),
bo(f.9) = > [(f19)mon + (@e- fol ge)raom)]

ecE(T)

These self-adjoint operators correspond to the differential expression —f/ 4w, - f.
on the edges, together with the free (often called Kirchhoff) boundary conditions
at the inner vertices, i.e.

dOHO)= ) f0)=0 (WweVna),
t(e)=v T(e)=v

The coupling constants w, carry the random structure. They are picked inde-
pendently for different edges with a probability measure p on R with supp p =
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[¢_,q.]. For technical reasons we have to assume that p is Holder continuous
with Holder exponent o and further that p satisfies the following assumption:
there exists 7 > g such that for A small

p(lg-,q- +h]) < A" (1)

This single site measure p defines a probability P := @) .5 4 on €2
We will also need restrictions HY (w) for an ebbd open A defined via the form

D(hy,) = W(TNA)
qu}(f7 g) = Z [(.fe, | g;)L2(071) + (we e | ge)]a

e€E(TNA)

which corresponds to Neumann boundary conditions at the boundary vertices
v eV NIA — cf. [KuO4].

2 The main results and the idea of their proof

Our family of random Schrédinger operators exhibits deterministic spectrum, i.e.
there exists a closed subset ¥ C R s.t. o(H(w)) = ¥ almost surely. This is a
standard result from the theory of random operators — see, e.g., [CLI0] — and
comes from fundamental properties of our construction, especially the ergodicity
w.r.t. lattice translations. To locate the deterministic spectrum we can consider
the free operator Hy (the one with V' = 0) and use some results that relate the
spectrum of Hy to the spectrum of its transition operator, the Laplacian on Z¢
— see, e.g., [Ex97, [Cat97]. In this way we get o(Hy) = [0, 00) and hence again by
standard theory 3 = [¢_, c0).

Our first claim is that in some neighborhood of inf ¥ = ¢_ the operators
exhibit pure point spectrum with exponentially decaying eigenfunctions almost
surely:

2.1 Theorem (Spectral/Anderson localization) There is an ¢ > 0 such
that the spectrum of H(w) in [q_,q_ + €| is pure point for a.e. w € €. Further-
more, there exists a v > 0 and for each eigenfunction u associated to an energy
in this interval a constant C,, such that

IXar@ull < Cu-expl=yd(z,0)]  (zeT),
where A(z) is the intersection of I' with the unit cube centered at x € 74,

The assertion of the preceding theorem is sometimes called Anderson local-
ization or spectral localization (see [RJLS95] for a discussion of different concepts
of localization). An alternative and stronger concept is dynamical localization,
see [GAB98|, [DSt01] and [GKOI] for more recent developments. In the context of
our model the following result is valid.



2.2 Theorem (Strong dynamical localization) Let p > 2(27 — d) where 7
refers to (1l). Then there exists an € > 0 such that for K C T' compact, each
interval I C [Ey, Ey + ¢] and n € Lo (R) with supp n C I we have

E{[[XPn(H(w))xxll} < oo,

which in particular means that

E{stug) | X P ) Pr(H (w)) x|} < oc.
>

Both results will be proved by a multiscale induction as presented in detail in
[Sto01]. As the framework introduced there is general enough to include our case
it will be sufficient to establish the necessary model-dependent estimates that are
to be plugged into the multiscale machinery.

For the readers convenience we will now briefly describe the idea behind the
multiscale induction. The basic property one proves by induction is an exponen-
tial decay estimate for the kernel of the resolvent of H /]\V( /) (w). More precisely, it
is shown that with high probability (depending on L) the resolvent of Hf\V(L) (w)
shows exponential off-diagonal decay.

Note that, outside the spectrum of a Schrédinger operator, such an exponen-
tial decay estimate is just the content of the celebrated Combes-Thomas estimate.
We will make clear that an analogue holds for quantum graphs as well. Actually,
this kind of argument will give the starting point of our induction procedure, the
initial length scale estimate. More precisely, the assumption (1) on the tail of
the single site measure implies that energies near inf > are in the resolvent set
of H f\v( L (w) with high probability for any given L. However, keeping an interval
near inf ¥ fixed and letting L tend to infinity, the interval will be filled with eigen-
values of the box Hamiltonian. Therefore the sought property, the exponential
decay, must be deduced by a more clever argument. One important ingredient
is the relation between resolvents of different nested boxes, cast in the form of
a geometric resolvent identity. This will allow to conclude exponential decay on
a large box, knowing exponential decay on smaller sub-boxes. In this induction
step, from length L one proceeds to L* with suitable a > 1. A very important
a priori information is necessary, the so-called Wegner estimate. Putting these
estimates together as in [Sto0I] one arrives at the desired exponential decay esti-
mates for larger and larger boxes. To conclude, finally, that the operators H(w)
exhibit pure point spectrum almost surely, we need to know that the spectrum
is indeed determined by generalized eigenfunctions. In the next section we show
how to obtain these steps.

2.3 Remarks (a) Our results can easily be extended to certain other cases, for
instance, to a “rhombic” lattice, where the present method would work after ad-
justing constants appearing in the equivalence between the Euclidean and the



intrinsic metric.

(b) The results could be also extended to potentials, which are only relatively
bounded, for instance, one can consider suitable L,(0,1)—functions with a posi-
tive lower bound as “single edge” potentials, following [Sto01] and numerous other
papers; we did not take this path and treated characteristic functions as random
potentials here exclusively for the sake of simplicity.

(c) In a different direction, results are available for certain random quantum
graphs, namely for random trees with random edge lengths; see the recent work
in [ASW06, [HP06].

3 The proofs

3.1 A Combes-Thomas estimate

The statements of this section will show how to obtain “exponential decay of the
local resolvent” outside the spectrum. The results go back to the celebrated paper
[CT73] and its improvement in [BCH97].

3.1 Theorem (Combes-Thomas estimate) Let R > 0. There exist con-
stants ¢; = ¢1(q—, qy, R), ca = c2(q—, q+, R), s.t. from the assumptions

(i) A C R? T—ebdd. box, A, B C A T—ebdd., dist(A, B) =: § > 1,
(i) (r,s) C o(HY)N (=R, R), E € (r,s), n := dist(E, (r,s)) > 0
it follows that
IxA(HR — E)'xpl <e-pt-emevatre,

Proof: Let w: A —R be defined as w(x) := dist(x, B). By triangle inequality

w(y) = w(z)] < [z —yl,

so that [|[Vwl||» < 1, and this in turn implies ||w’||o < 1 for the restriction to the
graph. Furthermore, the functions ¥(z) = e™*® and () = *®) are uniformly
Lipschitz continuous on all edges because

e — @] < sup |(expow)(€)| - |y — 7
EelrnA

< sup |exp(w(§)|[w'(€)]- |y — =l
geTNA

Hence for each u € D(h) also the functions ¢u, pu belong to D(h), which means
that
ba(u,v) ;= ble Pu, ”v)



is well defined for all u,v € D(h). By the product rule we have the relation

B, o) = (€ |0 — Al(e a0
— (7w’ | 7 ow’) + (e u' | e vw') + (V| v)
= bu,v) = B [(uw' | V) = (u] vw')] =B (wu|v).

(-

'

)
Referring to the term (%) above we define the symmetric form

t(u,v) :=i[(uw' | V") — (u]ow")].
Using 1 > m := w?> > 0 one can write

bs(u,v) = 6(% v) +if¢(u,v), where
= b(u,v) — F(mu|v).

Next we are going to show that bz is sectorial. From ||w’||.c < 1 one gets
e(u) < 2ffull [lu'l] < flo/[J* + Jlu]]*. (2)

On the other hand, consider the operator H associated with h and C' = C(R),
C > f(%+1,C >1—rm for which we have

I(H +C)2ul> > |(H + 8% +1)2ul?
— )P+ (V + B2 (1 —m) +1]u | u)
>0
> |2+ ul® (3)

It follows from (2)) and (B]) that

()| < [(H +C)2ul® = (b + C)(w), (4)
hence bz = b + 43¢ is sectorial and there exists an associated sectorial operator
Hgs — see, e.g., [Kato76].

In the next step we are going to show the existence of a bounded operator S
on Loy('NA), |5 < 1, s.t.

B(u,v) = (S(H + C)2u| (H+C)2v)  (Yu,v € D(h)).

Let thus D(h) be equipped with the scalar product (h + C)(-,-). By the Riesz
representation theorem there exists a bounded operator K on D(h) with

E(uv U) = (6 + C)(KU, U)



and by (@) we have ||K|| < 1. Put

1

Si=(H+C):K(H+C)2: Ly(T'NA)— Ly(T N A).

As (H+C)2 : D(h) — Ly(DNA) and (H +C)~2 : Ly(D'NA) — D(h) are unitary,
we have ||S|| = || K| <1, and for u,v € D(h) we get the desired relation

v) =

M\»—l

(H+C)2 Ku| (H +C)?v)
t(u,v).
Now we have to investigate invertibility of Hz — E for £ € (r,s) in dependence

on (3. Here we can use the proof of [Sto01] (which in turn uses Lemma 3.1. from
IBCHI7|) word by word, so we present just the result: let

/81 ::min{ﬁOaRiC 3_12 (S-T’)},

then for || < (3 the operator 7'+ i3S is invertible with

(H+ C)2u|(H + C)

R+C
(T +ips) | <422

(5)

Next we will find a connection between 7"+ ¢3S and Hg — E which shows that
for |B| < 5y the operator Hz — E is invertible too, namely

MIH

(Hs— E) ' = (H+C) 2(T +iBS) " "(H +C)~ (6)
Let f € Ly(I'NA), then
= (H+C) 2(T+iBS)""(H+C)2f € D(h)

holds, since (H + C)~2 maps Ly(A) to D(h). Using the definitions of T, S and u
we can calculate for v € D(h) the expression

(hs — E)(w,v) = (h—E)(u,v)+ife(u,v)
(ﬂH+CMMH+@%) iB (S(H + C)zu|(H + C)20)
(T +14BS)(H + C)2u|(H >%>
= (H+0)2 ﬂw+cﬁ>
(flv).

Consequently, we have u € D(Hz — E) and (Hg — E)u = f, so (@) follows, and

by ([B) we get
R+C

I(Hs — E)7'|| < 4 (7)



A straightforward calculation now shows that
(Hs = E)"'f = ™(H — E)"'e™™f,
and therefore
Ixa(H = E)"'xa]l < Ixae™lloo - (Hs = E)7HI - [1€7 X5/ oo- (8)

Putting 3 := %ﬁl we analyze the factors on the right-hand side. By w|g = 0 one
has ||e?“x5|lsc < 1. The second factor is controlled by (), and furthermore, by
definition of (3, there is a constant ca = co(R) s.t.

B> ca(R)-/n(s—r).
By assumption, w(z) = dist(z, B) > § for all z € A, i.e.
xae™||lso < €770 < exp(— (s —r)-6).

Combining this argument with (§)) we get finally the result,
Ixa(H — E)"'xal < cr(R) - n~" - exp(— /(s =) - 0).

3.2 The initial length scale estimate

The initial length scale estimate tells us something about the probability that an
eigenvalue of the box hamiltonian is found inside a suitable interval. Specifically,
we take an interval centered at the lower bound ¢_ of the deterministic spectrum
and we suppose that its length depends on the size [ of the box. The estimate
we are interested in will only hold for lengths larger than some initial value [*.

3.2 Theorem (Initial length scale estimate) For each £ € (0,27 —d) there
exist B = [(7,€) € (0,2) and [* = 1*(7,£) such that

P{dist(o(H} (w)),q-) <177} < 1°¢ (9)
holds for all T'—ebdd. boxes A = A;(0) with [ > [*.
Proof: Let

Qp={we | qg(w)>qg +hforaleec E(I'NA}.
By the min-max principle we infer that for w € €,

Eo(HY) > Eo((=A+q- +h)}) =q +h,



where Ej is the lowest eigenvalue of the respective operator. Using assumption
(@) the probability of €, can be estimated by

P(Qun) 1—4ETNA) - p(lg-, g + h])
1—d-

>
> A|- 1.

Let £ € (0,27—d). Then it is always possible to choose § € (0,2) such that
E<r(2-8)—d,
and inserting h := [°~2 we get for [ large

P(Q;) = 1—d[A[I"P?
1 — J16-72=0)+d 1=
—_—
<1 for [ large
> 1-1"¢

3.3 The geometric resolvent inequality

As we mentioned above, in the multiscale induction step one has to deal with
restrictions of a Schrédinger operator to nested cubes on different length scales.
Consequently, we need a tool that relates the resolvents of such restrictions. The
first step on this way is the following lemma, called geometric resolvent equality.

3.3 Lemma (Geometric resolvent equality) Let A C A’ C R? be some open
I'—ebdd. boxes, Hy and Hy: the respective realizations of our model operator
with Neumann b.c. Let ¥ € {f|raa | f € CL(A)} be real-valued. Then we have
for each z € o(Hyx) N o(Hy/) the relation

Rpt) = Ry + Ry [Y' - D+ D'] Ry,

where we have denoted Ry = (Hy — z)™', Ry := (Hy — 2)7%, D is the first
derivative, and all the terms are interpreted as operators on Ly(I' N A’).

Proof: ~ We regard Lo(I' N A) as a subspace of Lo(I' M A’). In terms of the
associated forms the assertion then reads as follows:

(ha = 2)( Ry + Ra [ - D+ DY'| Ryr)g, w) = (Yg|w)
(Vg € Lo(TNA),w € D(b));

notice that in this case the first argument at the left-hand side, which we denote
as u, belongs to D(Hy) and (H — 2)u =1 - g.

In the first step we have to show that v € D(h) holds. By the product
rule, ¥, (Rag)e € W3(0,1) for all e € E(T'NA). The continuity of ¢ Ryg at



the inner vertices of A’ is clear, so the first term is controlled. Further we find
W' DRy Ly(TNA)— Ly(T'NA), ie.

RAw,DRA/g € D(b)
For the analysis of the third term one has
W' Ry g € Loy(TNA).

Now Ry D : W3 (I'N A) — D(h,) extends to a bounded operator from Ly(I' N A)
to D(hy). Indeed, we can always choose z small enough, in which case

=
o=

R((Hy — 2)72) = D((Hx — 2)2) = D(ha) C W5 (T NA).

For v € D(ha) we have

1
W = B0 - 3 W / o2 (a)dz
)

e€ B(TNA

< HUHD(hA)’

i.e. D(Hy — z)72 is bounded on Ly(I' N A). Thus for ¢ € WXI N A) and
fe Ly('NA) we get

(Hy—2)2' | /)] = (] D(Hy—2)"%f)|
< e ||ellrarnay - 1l zamanys

and from here finally the boundedness of the map
RoD = (Hy — 2)"2(Hy — 2) 72D 1 Ly(T N A) — Ly(D N A) — D(b).

The next step is to control the behavior of some functions at the inner vertices.
For a fixed inner vertex of I'NA let ey, and ey, oy, be the in- and outcoming edges,
respectively, parallel to the k—th coordinate axis, and let dyi)(v) be the k—th
partial derivative of the C!(A)—continuation of 1. Then

(DY Baglw)ryweny = Y (DYLRage | we)ry01)
ecE(I'NA)
= > {(=¥LRage | W) 1a01) + V. Ragewe |5}
ecE(I'NA)

= —('Rag|w)pymrnn

Y DA (Rugwle,, (1) — (Ragw)e,, (0)}

v inn. vertex k=1 R .
=0 by continuity at inner vertices

= —('Rag|w)pymrnn)- (10)
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The following calculation now finishes the proof:

(br—)ww) =  (hs—2)( Rugow) + (& - DRy + D&/ Rl | w)
D (@ Rug) [u) + (V= 200 Rug|w)
+(¢'(Rarg) |w) — (W' Rarg | W)
— (' Ruglu) + ((Rug) |0) + (& (Rag) |w)
(V= 200 Rwg|w) — (& Rug | )
1 real val.

((Rag)' | @w)) + ((V = 2) Ryvg | dw)
= (b = 2)(Ryg, Yw)
=
(

g yw)
Vg |w).

We will next prove another preparatory lemma after which we will be ready
to state the main theorem of this section.

3.4 Lemma Let Q C Q C R? be a I'—ebdd. domains, dist(@fl, 00) >0, FeR
and g € Ly(T'NQ). Then there exists C = C(q_,q4, E) s.t. forallu € W3 (I'NQ)
with

(W' | ¢") orne) + (V| @) nyrne) = (9190) Larne) (Vo € Wyo(T'NQ))

it holds that
[Nl Ly rrey < Cllullawno) + 19/ Larney)-

Proof: By construction, dist(0f2, 6(2) > 1, hence there exists a vector
Y e {flrna | f € Cu(Q), supp f' C {z € Q| dist(z,Q) < 1}}

with 0 < ¢ < 1, ¢|png = 1 and [[¢/]|ec < C(d). Let w := ug? then w €
W3o(I'NQ), and by product rule we find

(U | W) Lorn) = (Pu' [Yu) +2(¥u [ uy)’).
Using V :=V — E and support properties of the functions involved we get
[ (0| w') = 2(¢u’ [ wy)')
(g]w) = (Vulw) =2’ |uy))

gl lull + (Vi [ )] + 2 | [l 14 oc
gl lull + Cla, av, B)[[ull® + 2C [lypu'|| [full.

IAINA
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We consider the latter as a quadratic inequality in ||¢u/[|, and find after some
simple manipulations, that it can only be fulfilled for

~ - 1
[l < 2+ Cllull + —=—==ll4l
2vC2+C

= Clg- g4, E)(Jlull + llgll)

By ¢|pqq = 1 the assertion follows. O

Before we come to the main point we introduce some notation. A I'—ebdd.
box A = Ay () is called suitable, if v € Z¢, L € 6N\ 12N and L > 42. For such
boxes we define

Aint(ﬂf) = AL,int(x) = AL/3(37)7
Aot ($) = AL,out(x) = AL@) \ AL—12($)

and write for the respective characteristic functions on the graph:

int int out out out

XA = XAp(z) ‘= Xifr‘lrtﬁAi“t(xﬁ XA = XAp(z) *= Xrnaint(z)-

In general the symbol x4 for a I'—ebdd. domain is to be understood as xrna.

3.5 Theorem (Geometric resolvent inequality) Let A C A’ C R? be suit-
able T—ebdd. boxes. Let further A C A" and B C A’\ A be I'—ebdd. domains,
Iy C R bounded and E € Iy. Then there exists Cgeom = Cgeom(q—, ¢+, E) s.t.

xRy (E)xall < Cgeom + x5 Rar (E)XR" ] XK Ra(E)xall

Proof: Let x € Z% be the center of A. We choose ¢ € {f|rna | f € C®(A)}
real-valued with supp f C Ap_4(x) s.t. ¢ =1 on Ap_g(z). This can be certainly
achieved, with [|¢'||« bounded independent on A.

Let © := int A°, i.e. dist (09, supp¢’) > 2. By the geometric resolvent
equality (Lemma [3.3]) we have

IxBRA XAl = IxaRa X5
= Ixa(pRa — Ra@) x| (pla=1,0p=0)
temmaB.3 ) (ORA(DY' + ¢/ D) Ry
< IxapBaDe' Ry xsl + [xapBRae' DRy x| -

-~

(*) (+)

We start with the analysis of (x). If Q :=int (Ay_s(z) \ Ar_10(z)) it holds that
(*)

IxapRaDxg xo¢ Rax Bl

< ¢l IxaeRaADXgl IxoRA x5
—_———

(***)
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The term (xx*x) can be now controlled with the help of Lemma [3.4. We put
f e Ly('NA), g:=xaf, u:= Ryg.
Then u € D(h) and
(ba — E)(u,w) = (g |w)
for all w € D(hy). Furthermore, we have glg = 0 as well as dist (99, 9Q) = 1.
Consequently, Lemma [B.4] is applicable and it gives

Ixau'|| < Cilg-, g4, 1) [Jull Lorne)
= Ci(q=, g+, 1) [[xaRaxafll,

i.e.
(r5%) < C1 (g0 1) X Raxal .

The term () can be treated in a similar way. [

3.4 The Wegner estimate

The Wegner estimate represents a statement about the probability that the op-
erator HYY (w), restricted to a I'—ebdd. box A = Ay(z) centered at x € Z¢, will
have an eigenvalue near some fixed energy. Typically — and sufficiently for our
multiscale analysis — this probability is polynomially bounded in terms of the box
volume.

3.6 Theorem (Wegner estimate) For each R > 0 there exists a constant Cr
such that for all T—ebdd. boxes A = \(i), i € Z¢, and all intervals I C (=R, R)
of length |I| the following estimate holds:

P{o(HY (W) N1 # 0} < Cr-[AP- [1]"

Before we start with the proof let us recall the following elementary lemma from
[Sto00].

3.7 Lemma Let J be a finite index set, u a Holder continuous probability mea-
sure on R? with Holder exponent o, 17 := ®;c;p the product measure on R”.
Let ® : R/ — R a monotone function, for which there are constants § and a > 0
s.t. for all t € [0,6], ¢ € R’ we have

O(g+t(1,...,1)) —P(q) > t-a. (11)

Then for each interval I of length smaller than ¢ < ad the following estimate

holds: £\ @
wlaz e ey <1y (5)

13



Proof of Theorem [3.6: We start with an estimate for the number of eigenvalues

smaller than a given energy R. To this aim we define the Neumann-decoupled
N,dec _._ . .

operator —A " via its quadratic form

D(hi’ dec) = EBeeE(FmA)VVQ1 (0, 1),
by “(f.9) = Z (f'19") arrn)-
ecE(I'NA)

By a direct calculation the eigenvalues of this operator are %an, n € Ny, with

the multiplicity #{E(T' N A)} < d-1% = d|A|. Hence there exists a constant Cp
s.t. for the n-th eigenvalue, counting multiplicity, it holds that

E, (=AY %) >R forn > Cg|Al

Now we have
HY (w) > (Hy+q-)) > =AY

since ¢_ > 0 by assumption, and thus by min-max principle the corresponding
inequality for the n-th eigenvalues. Using the previous inequality we get

P{o(HY(w)NT#D}< Y P{EL(HY(w)) € I}. (12)
n<Cr-|Al

Next we estimate the terms of the sum by means of Lemma 3.7l Because of the
independence of Hy(w) of coupling constants outside A we have

P{E(HAW) € I} = p"{w| B, (Hw)) € 1)
WG = (w)eswnn | Ea(Haw)) € T},

By ®(©) = E,(H\(@)) = E,(Hx(w)) a monotone function on RE(T' N A) is
defined, and it fulfills condition (II]) because

Hy@+t(1,....1) = A+ > (wett)xe
e€E(I'NA)
= Hy(w) +t.

Hence by Lemma 3.7 we have

P{E.(Hr(w)) € I} tE(COA) - 1]°

<
< dIAJ],

which in combination with (I2]) yields the assertion. [
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3.5 Expansion in generalized eigenfunctions

Now we come to the last statement needed for the multiscale analysis, namely
that polynomially bounded generalized eigenfunctions exist spectrally a.s.

We want to use the main result from [BMSt03], that gives the polynomial
boundedness in terms of the intrinsic metric (see [Stu94]) generated by the free
Laplacian H, on the graph. Using the embedding of our graph into R? it can
easily be seen that the intrinsic metric is equivalent to the Euclidean one on R?,
and consequently, after adjusting some constants the statement can be written
in terms of absolute values as well. We start by checking the assumptions of
[BMSt03]. First of all one has to show that the form by associated with the free
Laplacian is a Dirichlet form. Note that [/ - ||y, is equivalent to the norm || - [|yz(r)
so b is closed. For w € D(hy) which is real-valued we have |u| € D(ho), and

therefore
ho(|ul) = Z / sgn ue(2)ul(z))* dz = bo(u).

ecE(l

If w is in addition nonnegative, we have u A 1 € D(h,) and

o(unl) Z / Tye<r(z) de < bo(u).

ecE(l

Obviously by is strongly local and regular — see, e.g., [BMSt03] for definitions.

The next point is that the volume of balls with respect to the intrinsic metric
o does not grow too fast as R — co. Because the graph is embedded into R? and
the intrinsic metric and the || - ||;-metric are equivalent, the volume of the ball
B} (z) can be estimated by the number of edges contained inside a box Asg(x)
and hence by c¢yR? for large R.

Finally, the third assumption to be checked is that e bounded as a
map from Ly(I") to Lo (") for some ¢ > 0. To this aim we employ the following
extension of the ultracontractivity result [KMS06|, Lemma 3.2, demonstrated by
using the same method as in the cited paper.

—tHyp iS

3.8 Lemma Fort € (0, 1] it holds that

_ 1
lle tHOHLg(F)—»LOO(F) <ct 1.

Proof: By [Ou05], Thm. 6.3 ff, see also [Na58| [FSt86), Dav89], it is sufficient to
show that

1 2
[ leay < C-M1FIG - IFI1E,

for f € D(h) N Ly(T). Now, by [Gab9, Ni59|, or by [Ma85, Sect. 1.4.8], we have
the following Nash type inequality for v € W} (0, 1):

=

lullz01) < a- (”U‘/HL2(071) + HUHLl(o,l)) : HUHEl(m)

IA

Cy - ||u||§[/21(0,1) ’ HUHEA(OJ)’
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where in the second step the Holder inequality has been applied to u - 1. For
f € D(h) N Ly(I") we have by another application of Holder inequality

ey = D Ifelliaon

ecE(T)
2 4
< @3 Wil 1ol on
ecE(T)
1 4
< A Mot (3 1fellion?
ecE(T) eeE(D)

2 4
= - fllg - WL, oy

With these assumptions, given using the arguments in the opening of the
section, [BMSt03] yields the following result:

3.9 Theorem For spectrally a.a. E € o(H) there exists a generalized eigen-
function ¢

(L+]- ) 29 € Ly(I).
satisfying for any m > di;.

This completes the necessary input for the use of Theorem 3.2.2 from [Sto0T] and
thus the proof of Theorems 2.1 and 2.2.
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