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Abstract

We prove that a strong form of dynamical localization follows from
a variable energy multi-scale analysis. This abstract result is applied
to a number of models for wave propagation in disordered media.

1 Introduction

In the present paper we prove that a variable energy multi-scale analysis
implies dynamical localization in a strong (expectation) form. Thus we
accomplish a goal of a long line of research. Ever since Anderson’s paper
[An], the dynamics of waves in random media has been a subject of intensive
research in mathematical physics. The breakthrough as far as mathemati-
cally rigorous results are concerned came with the paper [FrS] by Fröhlich
and Spencer in which absence of diffusion is proven. They also introduced
a technique of central importance to the topic: multi-scale analysis.

The next step was a proof of exponential localization, by which one un-
derstands pure point spectrum with exponentially decaying eigenfunctions;
see the bibliography for a list of results in different generality. However,
from the point of view of transport properties, exponential localization does
not yield too much information. We refer to [RJLS1,2] where a strength-
ening of exponential decay is introduced, property (SULE), which in fact
allows one to prove dynamical localization. In [GB] it was shown that a
variable energy multi-scale analysis implies (SULE) almost surely, so that

sup
t>0

∥∥|X|pe−itH(ω)PI(H(ω))χK
∥∥ <∞ P-a.s. ,

where H(ω) is a random Hamiltonian which admits multi-scale analysis
in the interval I, PI is the spectral projector onto that interval, and K is
compact.

We will strengthen the last statement to

E
{

sup
t>0

∥∥|X|pe−itH(ω)PI(H(ω))χK
∥∥} <∞ .
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Here, as in [GB], the p which is admissible depends on the characteristic
parameters of multi-scale analysis. In order to explain this we will sketch
in the next section an abstract form of multi-scale analysis and introduce
the necessary setup. In section 3, we show that multi-scale analysis implies
dynamical localization in the expectation. We do so by showing that (more
or less) for η ∈ L∞, supp η ⊂ I (the localized region),

E
{
‖χΛ1η(H(ω))χΛ2‖

}
≤ ‖η‖∞ · dist(Λ1,Λ2)−2ξ ,

where ξ is one of the characteristic exponents of multi-scale analysis. We
should note here that the main progress concerns continuum models, since
for discrete models the Aizenman technique [A], [AM] is available, which
gives even exponential decay of the expectation above (see [AG] for an
exposition in which a number of applications is presented and the very re-
cent [ASFH] which shows that the Aizenman technique is applicable in the
energy region in which multi-scale analysis works). However, our results
clearly apply to discrete models with singular single-site distribution, most
notably the one-dimensional Bernoulli–Anderson model. Moreover, we re-
fer to [BFM] where a study of time means instead of the sup is undertaken.
However, the latter paper does not contain too much about continuum
models, and the results we present contain the estimates given there. In
section 4 we present our applications to a number of models for wave propa-
gation in disordered media, including band edge dynamical localization for
Schrödinger and divergence form operators as well as Landau Hamiltonians.

2 The Multi-scale Scenario

In this section we present the abstract framework for multi-scale analysis
developed in [S3]. We start with a number of properties which are easily
verified for the applications we shall discuss, where H(ω) is a random op-
erator in L2(Rd) and HΛ(ω) denotes its restriction to an open cube Λ ⊂ Rd
with suitable boundary conditions.

We call a cube Λ = ΛL(x) of sidelength L centered at x suitable if
x ∈ Zd and L ∈ 3N \ 6N. In this case Λ itself as well as ΛL/3(x) are unions
of closed unit cubes centered on the lattice. Denote

Λint := ΛL/3(x) , Λout := ΛL(x) \ ΛL−2(x) ,

and denote the respective characteristic functions by χint = χint
Λ = χint

L,x :=
χΛint and χout = χout

Λ = χout
L,x := χΛout .

The first condition concerns measurability and independence:
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(INDY) (Ω,F ,P) is a probability space; for every cube Λ, HΛ(ω) is
a self-adjoint operator in L2(Λ), measurable in ω, such that HΛL(x)(ω) is
stationary in x ∈ Zd and HΛ and HΛ′ are independent for disjoint cubes Λ
and Λ′.

So far, HΛ and HΛ′ are not related if Λ ⊂ Λ′. The next condition
supplies a relation. In concrete examples it is the so-called geometric resol-
vent inequality which follows from commutator estimates and the resolvent
identity. For E ∈ ρ(HΛ(ω)), we denote

RΛ(E) = RΛ(ω,E) =
(
HΛ(ω)−E

)−1
.

(GRI) For given bounded I0 ⊂ R, there is a constant Cgeom such that
for all suitable cubes Λ,Λ′ with Λ ⊂ Λ′, A ⊂ Λint, B ⊂ Λ′ \ Λ, E ∈ I0 and
ω ∈ Ω, the following inequality holds:∥∥χBRΛ′(E)χA

∥∥ ≤ Cgeom ·
∥∥χBRΛ′(E)χout

Λ
∥∥ · ∥∥χout

Λ RΛ(E)χA
∥∥ .

Finally, we need an upper bound for the trace of the local Hamiltonians
HΛ in a given bounded energy region I0, which follows from Weyl’s law in
concrete cases at hand.

(WEYL) For each interval J ⊂ I0, there is a constant C such that

tr
(
PJ(HΛ(ω))

)
≤ C · |Λ| for all ω ∈ Ω .

Here PJ(·) denotes the spectral projection of the operator in question.
Given this basic setup, multi-scale analysis deals with an inductive proof
of resolvent decay estimates. This resolvent decay is measured in terms of
the following concept:
Definition 2.1. Let Λ = ΛL(x), x ∈ Zd, L ∈ 2N + 1. Λ is called (γ,E)-
good for ω ∈ Ω if ∥∥χoutRΛ(E)χint∥∥ ≤ exp(−γ · L) .

Λ is called (γ,E)-bad for ω ∈ Ω if it is not (γ,E)-good for ω.
We can now define the property on which we base our induction:
G(I, L, γ, ξ) ∀x, y ∈ Zd, d(x, y) ≥ L the following estimate holds:

P
{
∀E ∈ I : ΛL(x) or ΛL(y) is (γ,E)-good for ω

}
≥ 1− L−2ξ .

The basic idea of the multi-scale induction is that we consider some
larger cube Λ′ with sidelength L′ = Lα. With high probability there are
not too many disjoint bad cubes of sidelength L in Λ′. Of course, since the
number of cubes in Λ′ is governed by α, this will only hold if α is not too
large, depending on ξ.
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By virtue of the geometric resolvent inequality (GRI), each of the good
cubes of sidelength L in Λ′ will add to exponential decay on the big cube. In
order to make this work, we will additionally need a “worst case estimate.”
This is given by the following weak form of a Wegner estimate:
W (I, L,Θ, q) For all E ∈ I and Λ = ΛL(x), x ∈ Zd, the following

estimate holds:

P
{

dist(σ(HΛ(ω)), E) ≤ exp(−LΘ)
}
≤ L−q .

We have the following theorem:
Theorem 2.2. Let I0 ⊂ R be a bounded open set and assume that HΛ(ω)
satisfies (INDY), (GRI) and (WEYL) for I0.

Assume that there are L0 ∈ 2N + 1, q > d, Θ ∈ (0, 1/2) such that for
L ≥ L0, L ∈ 2N+ 1, the Wegner estimate W (I0, L,Θ, q) is valid.

Furthermore, fix ξ0 > 0 and β > 2Θ. Let α ∈ (1, 2) be such that

4d
α− 1
2− α ≤ ξ0 ∧

1
4

(q − d) .

Then there exist C1 = C1(d,Cgeom) and L∗ = L∗(q, d, ξ0,Θ, β, α) such that
the following implication holds:

If for I ⊂ I0, L ≥ L∗, L ∈ 3N \ 6N, and γL ≥ Lβ−1, the estimate
G(I, L, γL, ξ0) is satisfied, then G(I, L′, γL′ , ξ) also holds, where

(i) L′ ∈ 3N \ 6N, Lα ≤ L′ ≤ Lα + 6,
(ii) ξ ≥ ξ0 ∧

[1
4(q − d)

]
,

(iii) γL′ ≥ γL(1− 8L1−α)− C1 · L−1 − 6Lα(Θ−1) ≥ (L′)1−β.
For a proof of the result in this form we refer to [S3]. It is modelled

after the variable multi-scale analysis by von Dreifus–Klein [DK]. See also
[FK2] and [GB] for continuum versions.

Let us now formulate an immediate consequence of the preceding theo-
rem.
Corollary 2.3. Let I0, (HΛ(ω)), ξ0, β, q,Θ, α ∈ (1, 2) be as in Theo-
rem 2.2. There exists L = L(ξ0, β,Θ, q, Cgeom, α) such that the following
holds.

If I ⊂ I0 and G(I, L, γL, ξ0) is satisfied for some γL ≥ Lβ−1 and some
L ≥ L, then there exist a sequence (Lk)k∈N ⊂ 3N \ 6N and γ∞ > 0 with
the following properties:

(i) For all k ∈ N, the estimate G(I, Lk, γ∞, ξ) is satisfied, where ξ =
ξ0 ∧ 1

4(q − d).
(ii) Lαk ≤ Lk+1 ≤ Lαk + 6.
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3 Multi-scale Estimates Imply Strong Dynamical
Localization

We keep the framework introduced in the preceding section. Thus we start
out with a family HΛ of random local Hamiltonians where Λ runs through
the suitable cubes. Now we introduce a link to a Hamiltonian on the whole
space Rd. Consider the statement

(EDI) Assume that H(ω) is a self-adjoint operator in L2(Rd), measur-
able with respect to ω, and suppose that there is a measurable set Ω1 with
P(Ω1) = 1 and a constant CEDI such that for every ω ∈ Ω1, the spectrum of
H(ω) in I0 is pure point and every eigenfunction u of H(ω) corresponding
to E ∈ I0 satisfies

‖χint
Λ u‖ ≤ CEDI ·

∥∥χout
Λ (HΛ(ω)−E)−1χint

Λ u
∥∥ · ‖χout

Λ u‖ . (EDI)

For the operators H(ω) we shall consider in section 4 and HΛ(ω) the
restriction to Λ with respect to suitable boundary conditions, the eigenfunc-
tion decay inequality (EDI) readily follows. Moreover, in this case, we can
use the multi-scale machinery to prove pure point spectrum almost surely.
Therefore, the condition above seems to be a natural abstract condition.
We can now state the main result of the present paper:

Theorem 3.1. Assume that H(ω) and HΛ(ω) satisfy (INDY), (GRI),
(WEYL) and (EDI) above for a given bounded open set I0 ⊂ R. Moreover,
assume

(i) χΛPI0(H(ω))χΛ is trace class for every suitable cube Λ and

tr
(
χΛPI0(H(ω))

)
≤ Ctr · |Λ|κ

for some fixed κ.
(ii) There exist L0 ∈ N, q > d and Θ ∈ (0, 1/2) such that for L ∈ 3N\6N,

L ≥ L0, the Wegner estimate W (I0, L,Θ, q) is valid.
(iii) For q > d from the Wegner estimate and ξ0 > 0 we have that

p < 2ξ0 ∧ 1
4(q − d).

Then there exists L = L(p, ξ0, β,Θ, q, Cgeom, d) such that if

(iv) for some L ∈ 3N \ 6N, L ≥ L, there is an open interval I 6= ∅, I ⊂ I0,
such that G(I, L,Lβ−1, ξ0) holds,

then for every η ∈ L∞ with supp η ⊂ I, it follows that

E
{
‖|X|pη(H(ω))χK‖

}
<∞

for every compact set K ⊂ Rd.
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Let us first sketch the idea of the proof which is quite simple. Of course,
by |X|p we denote the operator of multiplication with |x|p.

We write∥∥χΛ1η(H(ω))χΛ2

∥∥ ≤ ∑
En∈I0

∥∥χΛ1φn(ω)
∥∥ · ∥∥χΛ2φn(ω)

∥∥ · ∣∣η(En(ω))
∣∣ , (3.1)

where En(ω), φn(ω) denote the eigenvalues and eigenfunctions of H(ω)
in I. The probability that both Λ1 and Λ2 are bad for the same En(ω)
is small, roughly polynomially in the distance between Λ1,Λ2. If one of
them is good, the eigenfunction decay inequality (EDI) says that one of the
norms appearing in the rhs of (3.1) is exponentially small. This leads to
a polynomial decay of E{‖χΛ1η(H(ω))χΛ2‖} once the interval I is suitably
chosen to guarantee the necessary probabilistic estimates. The assumption
in (iii) of the theorem ensures that the polynomial growth of |X|p is killed
by this polynomial decay. To make all of this work we have to overcome
the difficulty that in the sum in (3.1) we have infinitely many terms. This
is taken care of by analyzing the centers of localization xn(ω) of φn(ω). All
this will be done relatively to a certain length scale Lk.

We proceed in several steps. The first steps will be used to choose an
appropriate α and set up a multi-scale scenario. Then we take care of
those φn(ω) whose centers are far away from K. To this end, we employ
the Weyl-type trace condition (i).
Proof. Step 1. Choose α ∈ (1, 2) such that

4d
α− 1
2− α ≤

1
4

(q − d) ∧ ξ0 =: ξ

and
3d(α− 1) + αp < 2ξ .

Note that the latter condition can be achieved for α > 1 small enough,
since p < 2ξ. For this choice of α, let L be the minimal length scale from
Corollary 2.3.

We can now use Theorem 2.2 and Corollary 2.3 to find a sequence
(Lk)k∈N ⊂ N and a constant γ > 0 such that for every k,
• Lk ∈ 3N \ 6N,
• Lαk ≤ Lk+1 ≤ 6Lαk ,
• G(I, Lk, γ, ξ) is satisfied.

For j ∈ N, denote Γj =
(Lj

3 Z
)d and

Ej =
{
ω ∈ Ω; for some E ∈ I there exist y, z ∈ Γj ∩ Λ3Lj+1 such that

ΛLj (y) and ΛLj (z) are disjoint and both not (γ,E)-good
}
.
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Since Γj ∩ Λ3Lj+1 ≤ (9Lj+1/Lj)d ≤ (54)dLd(α−1)
j and G(I, Lj , γ, ξ) holds,

we have
P(Ej) ≤ cdL2d(α−1)−2ξ

j .

For k ∈ N, denote
Ωk

2bad =
⋃
j≥k

Ej .

Claim. For every k ∈ N,

P(Ωk
2bad) ≤ c(α, d, ξ) · L2d(α−1)−2ξ

k . (3.2)

Proof. We have

P(Ωk
2bad) ≤ cd ·

∑
j≥k

L
2d(α−1)−2ξ
j

≤ cd · L2d(α−1)−2ξ
k ·

(
1 +

∑
j≥k+1

(
Lj
Lk

)2d(α−1)−2ξ )
.

Now, for j ≥ k + 1,

Lj
Lk
≥ Lα

j−k
k
Lk

= Lα
j−k−1
k ≥ 3α

j−k
,

which gives the assertion.

Step 2. Denote by φn(ω) the normalized eigenfunctions of H(ω), ω ∈ Ω1,
with corresponding eigenvalues En(ω) ∈ I. For each ω, n, define a center
of localization xn(ω) ∈ Zd by∥∥χΛ1(xn(ω))φn(ω)

∥∥ = max
{
‖χΛ1(y)φn(ω)‖; y ∈ Zd

}
.

Since φn(ω) ∈ L2, such a center always exists.

Claim. There is k0 = k0(γ, d,CEDI) such that for ω ∈ Ω1, k ≥ k0 and
xn(ω) ∈ Λint

Lk
(x), the cube ΛLk(x) is (γ,En(ω))-bad.

Proof. Assume otherwise. Then by (EDI) it follows that∥∥χΛ1(xn(ω))φn(ω)
∥∥ ≤ ∥∥χint

Lk,x
φn(ω)

∥∥ ≤ CEDI · e−γLk ·
∥∥χout

Lk,x
φn(ω)

∥∥ .
Estimating the number of unit cubes in Λout

Lk
(x) very roughly by Ldk we find

that
· · · ≤ CEDI · e−γLk · Ldk · max

x̃∈Λout
Lk

(x)

∥∥χΛ1(x̃)φn(ω)
∥∥ .

If k0 is large enough to ensure

CEDI · e−γLk0 · Ldk0
< 1 ,

the inequality above contradicts the choice of xn(ω).
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Step 3. Let ω ∈ Ωk
2good = (Ωk

2bad)c ∩ Ω1 with k ≥ k0. Then there exists
j0 = j0(γ, α, d,CEDI) such that for j ≥ j0, j ≥ k and xn(ω) ∈ ΛLj+1 ,∥∥(1− χ3Lj+2)φn(ω)

∥∥2 ≤ 1
4 ,

where χL is shorthand for χΛL(0).
Proof. We divide Λc3Lj+2

into annular regions Mi,

Mi = Λ3Li+1 \ Λ3Li , i ≥ j + 2 .

We have ∥∥(1− χ3Lj+2)φn(ω)
∥∥2 =

∑
i≥j+2

∥∥χMiφn(ω)
∥∥2

=
∑
i≥j+2

∑
x̃∈Mi∩Γi

∥∥χint
Li,x̃φn(ω)

∥∥2
.

By construction of Mi, for every x̃ ∈Mi ∩Γi, we find x̃n ∈ Γi ∩ΛLj+1 such
that xn(ω) ∈ Λint

Li
(x̃n) and d(x̃, x̃n) ≥ Li.

Since ΛLi(x̃n) is (γ,En(ω))-bad and ω ∈ Ωk
2good, it follows that ΛLi(x̃)

is (γ,En(ω))-good so that

‖χint
Li,x̃φn‖

2 ≤ (CEDI)2 · e−2γLi .

Since #Mi ∩ Γi grows only polynomially in Li, the assertion follows.
Step 4. There exists C = C(γ, α, d, κ,Ctr) such that for ω ∈ Ωk

2good, j ≥ k,

#
{
n;xn(ω) ∈ ΛLj+1

}
≤ C · Lακdj+1 .

Proof. Since #{. . . } is non-decreasing in j, and since j0 from Step 3 only
depends on (γ, α, d), we can restrict ourselves to the case j ≥ j0 and adapt
the constant C.

We start by observing∑
xn∈ΛLj+1

(
χ3Lj+2PI(H(ω))χ3Lj+2φn(ω)|φn(ω)

)
≤ tr

(
χ3Lj+2PI(H(ω))

)
.

We want to show that each of the terms in the sum is at least 1/2, thus giv-
ing an estimate on the number as asserted. Using Step 3 and suppressing ω,
we have

(χ3Lj+2PIχ3Lj+2φn|φn) = (χ3Lj+2PIφn|φn)−
(
χ3Lj+2PI(1− χ3Lj+2)φn|φn

)
≥ (χ3Lj+2φn|φn)− 1

4

= (φn|φn)−
(
(1− χ3Lj+2)φn|φn

)
− 1

4

≥ 1
2 .
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Plugging this into the above estimate on the trace, we get the claimed
bound for the number #{n; . . . }.
Step 5. There is k1 = k1(CEDI, α,Ctr, κ, L0, γ, d) such that for k ≥ k1,
ω ∈ Ωk

2good and x ∈ Γk ∩ ΛLk+1 \ ΛLk ,∥∥χint
Lk,x

η(H(ω))χint
Lk,0

∥∥ ≤ exp
(
− γ

2Lk
)
· ‖η‖∞ .

Proof. We have∥∥χint
Lk,x

η(H(ω))χint
Lk,0
∥∥ ≤∑

En∈I

∣∣η(En(ω))
∣∣ · ∥∥χint

Lk,x
φn(ω)

∥∥ · ∥∥χint
Lk,0φn(ω)

∥∥.
(3.3)

We now divide the sum according to where the xn(ω) are located:∑
En∈I

xn(ω)∈Λk+1

∥∥χint
Lk,x

φn(ω)
∥∥ · ∥∥χint

Lk,0φn(ω)
∥∥ ≤ C · Lακdk+1 · CEDI · e−γLk ,

since one of the cubes ΛLk(x),ΛLk(0) has to be (γ,En(ω))-good and the
number of xn(ω) has been estimated in Step 4.

For k large enough, depending only on the indicated parameters, k ≥ k0,∑
En∈I

xn(ω)∈Λk+1

∥∥χint
Lk,x

φn(ω)
∥∥ · ∥∥χint

Lk,0
φn(ω)

∥∥ ≤ 1
2 exp

(
− γ

2Lk
)
. (3.4)

We now treat the remaining terms. Note that for j ≥ k + 1 and xn(ω) ∈
ΛLj+1 \ΛLj , we find an x̃n(ω) ∈ ΛLj+1 ∩ Γj such that xn(ω) ∈ Λint

Lj
(x̃n(ω)).

From Step 2 we know that ΛLj (x̃n(ω)) must be (γ,En(ω))-bad so that
ΛLj (0) has to be (γ,En(ω))-good since ω ∈ Ωk

2good. Therefore∥∥χint
Lk,0φn(ω)

∥∥ ≤ ∥∥χint
Lj ,0φn(ω)

∥∥ ≤ CEDI · exp(−γLj) .
Using Step 4 again, we see that

∞∑
j=k+1

( ∑
xn∈ΛLj+1\ΛLj

∥∥χint
Lk,x

φn(ω)
∥∥ · ∥∥χint

Lk,0φn(ω)
∥∥)

≤ C · CEDI ·
∞∑

j=k+1

e−γLjLακdj+1

≤ 1
2 exp

(
− γ

2Lk
)

if k ≥ k1(CEDI, α,Ctr, κ, L0, γ, d). The latter estimate, together with (3.3)
and (3.4), gives the assertion.
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Step 6. For k ≥ k1 from Step 5 and x ∈ Γk ∩ ΛLk+1 \ ΛLk , we have

E
{
‖χint

Lk,x
η(H(ω))χint

Lk,0‖
}
≤ ‖η‖∞ ·

(
c(α, d, ξ) ·L2d(α−1)−2ξ

k + exp
(
− γ

2Lk
))
.

Proof. For ω ∈ Ωk
2bad, we can estimate the norm by ‖η‖∞ and use Step 1,

while for ω ∈ Ωk
2good, we can use Step 5.

Put together, we have

E{. . . } ≤ ‖η‖∞ ·
(
P(Ωk

2bad) + exp
(
− γ

2Lk
)
P(Ωk

2good)
)

≤ ‖η‖∞ ·
(
c(α, d, ξ)L2d(α−1)−2ξ

k + exp
(
− γ

2Lk
))
.

Step 7. End of the proof. For compact K, we find k ≥ k1 such that
K ⊂ Λint

Lk
(0). Then with D = D(d, k, p, ‖η‖∞), we have

E
{
‖|X|pη(H(ω))χK‖

}
≤ cdLpk‖η‖∞+E

{∑
j≥k

∥∥|X|pχΛLj+1\ΛLj η(H(ω))χK
∥∥}

≤ D +
∑
j≥k

cdL
p
j+1

∑
x̃∈ΛLj+1\ΛLj

x̃∈Γj

E
{
‖χint

Lj ,x̃η(H(ω))χint
Lj ,0‖

}

≤ D
[
1+
∑
j≥1

Lαpj L
d(α−1)
j

(
L

2d(α−1)−2ξ
j + exp

(
− γ

2Lj
))]

<∞ ,

since αp+ 3d(α− 1)− 2ξ < 0 and the Lj grow fast enough. 2

Although we cannot apply the theorem directly, a look at the proof,
particularly at Steps 5 to 7, shows that we have the following:
Corollary 3.2. Let the assumptions of Theorem 3.1 be satisfied. Then
we have

E
{

sup
t>0

∥∥|X|pe−itH(ω)PI(H(ω))χK
∥∥} <∞ .

4 Applications

In this section we present a list of models for which the variable energy
multi-scale analysis has been established and which therefore exhibit strong
dynamical localization by the results of the preceding section.

4.1 Periodic plus Anderson. Here we discuss band edge localization
for alloy-type models which consist of a periodic background operator with
impurities sitting on the periodicity lattice. We take Zd as this lattice
simply for notational convenience; a reformulation for more general lattices
presents no difficulties whatsoever. Note that compared with most results
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available in the literature, we assume minimal conditions on the single-site
measure:

1. Let p = 2 if d ≤ 3 and p > d/2 if d > 3.
2. Let V0 ∈ Lploc(R

d), V0 periodic w.r.t. Zd and H0 = −∆ + V0.
3. Let f ∈ Lp(Λ1(0)), f ≥ 0 and f ≥ σ on Λs(0) for some σ > 0, s > 0;
f is called the single-site potential.

4. Let µ be a probability measure on R, with suppµ = [q−, q+], where
q− < q+ ∈ R; µ is called the single-site measure.

5. Let
Ω = [q−, q+]Z

d
, P =

⊗
Zd

µ on Ω

and qk : Ω→ R, qk(ω) = ωk.
6. Let

Vω(x) :=
∑
k∈Zd

qk(ω)f(x− k)

and
HA(ω) = −∆ + V0 + Vω .

For an elementary discussion of this model and all the ingredients nec-
essary to prove localization, we refer to [S3]; see also [KSS1,2]. Note that
to conform with standard notation, we denote by p both the power of the
moment operator in the dynamical bounds and the power defining the ap-
propriate Lp space the potentials have to belong to. This, however, should
not lead to any real confusion.
Theorem 4.1. Let HA(ω) be as above. Assume that the single-site
measure µ is Hölder continuous, that is, there exists a > 0 such that for
every interval J of length small enough, µ(J) ≤ |J |a. Denote Σ = σ(HA(ω))
a.e. and E0 = inf Σ. Let p > 0. Then there exists ε0 > 0 such that for
η ∈ L∞(R) with supp η ⊂ [E0, E0 + ε0] and compact K, we have

E
{
‖|X|pη(HA(ω))χK‖

}
<∞ .

Moreover, for I ⊂ [E0, E0 + ε0] and K compact:

E
{

sup
t

∥∥|X|pe−iHA(ω)tPI(HA(ω))χK
∥∥} <∞ .

Proof. It is well known that (INDY), (WEYL), (GRI) and (EDI) are sat-
isfied if we take for HA

Λ the operator HA restricted to Λ with periodic
boundary conditions. Due to [KSS1], [S2] we have a Wegner estimate of
the form

P
{

dist(σ(HA
Λ (ω)), E0) ≤ exp(−LΘ)

}
≤ C · L2 · d · exp(−aLΘ) ,
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where L denotes the sidelength of the cube Λ. In particular, W (I0, L,Θ, q)
is satisfied for a neighborhood I0 of E0, arbitrarily given Θ and q, and L
large enough. For given p > 0, we can start the multi-scale induction with
2ξ > p by Lifshitz asymptotics. 2

Note that the above theorem includes the case of single-site potentials
with small support. Moreover, using Klopp’s analysis of internal Lifshitz
tails [Klo2], Veselic establishes the necessary initial length scale estimates at
lower band edges in the case where H0 exhibits a non-degenerate behavior
at the corresponding edge [V], so the result above extends to this case. If
one does not know that H0 has a non-degenerate band edge, one can still
derive an initial length scale estimate by requiring a disorder assumption.
This, however, might put some restriction on the power p.

Theorem 4.2. Let HA(ω) be as above. Assume

(i) The single-site measure µ is Hölder continuous.
(ii) There exists τ > d such that for small h > 0,

µ
(
[q−, q− + h]

)
≤ hτ and µ

(
[q+ − h, q+]

)
≤ hτ .

Denote Σ = σ(H(ω)) a.e. and let E0 ∈ ∂Σ. Let p < 2(2τ − d). Then there
exists ε0 > 0 such that for η ∈ L∞(R) with supp η ⊂ [E0− ε0, E0 + ε0] and
compact K, we have

E
{
‖|X|pη(HA(ω))χK‖

}
<∞ .

Moreover, for I ⊂ [E0 − ε0, E0 + ε0] and K compact:

E
{

sup
t

∥∥|X|pe−iHA(ω)tPI(HA(ω))χK
∥∥} <∞ .

Proof. We have already checked everything except for the initial length
scale estimate G(I, L, γ, ξ), and in particular how large ξ can be taken. By
an elementary argument, we can take ξ subject to the condition ξ < 2τ −d
(see [KSS1]), which gives the claimed result. 2

With a modification of independent multi-scale analysis given in [KSS2]
we can also treat the correlated or long-range case, by which we understand
that the single-site potential f is no longer assumed to have support in the
unit cube; see [KSS2].

Theorem 4.3. Let HA(ω) be as above, with condition 3 replaced by

3. Let f ∈ Lploc, f ≥ 0 and f ≥ σ on Λs(0) for some σ > 0, s > 0;

f ≤ C|x|−m for |x| large .
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Then the conclusions of Theorems 4.1 and 4.2 hold true with

p < 2
(
m
4 − d

)
and p < 2

(
m
4 − d

)
∧ 2(2τ − d) ,

respectively.

Remark. Although discrete models are not explicitly included in the
above framework, our principal strategy pursued in section 3 is clearly able
to treat random operators in `2(Zd) for which a multi-scale analysis has
been established. In particular, building on results from [CKM] one may
establish strong dynamical localization for the discrete Anderson model,
where for d = 1, even pure point single-site measures (e.g., the Bernoulli
case) are within the scope of this result. See [CKM] for explicit requirements
to make the multi-scale machinery work. We thus obtain new results on
strong dynamical localization also in the discrete case since the Aizenman
method does not cover single-site distributions which are too singular (e.g.,
the Bernoulli case).

4.2 Random divergence form operators. The following type of
model has been introduced in [FK2], [S1] in order to study classical waves
(see [FK2] for a motivation). These models are also intensively studied
in [S3].

1. Let a0 : Rd →M(d×d) be measurable, Zd-periodic and such that for
some η > 0, M > 0,

η ≤ a0(x) ≤M for all x ∈ Rd

as matrices, that is, η‖ζ‖2 ≤ (a0(x)ζ|ζ) ≤M‖ζ‖2 for every ζ ∈ Cd.
2. Let S = [0, λmax]d × O(d), where λmax > 0 and O(d) denotes the

orthogonal matrices.
3. Let ν be a probability measure on O(d) and let γi, i = 1, ..., d be

probability measures on R with supp γi = [0, λmax].
4. S is called the single-site space and µ = γ1⊗ · · · ⊗ γd⊗ ν is called the

single-site measure.
5. Let

Ω = SZ
d
, P = µZ

d
,

and for ω(k) = (λ1(k), . . . , λd(k), u(k)), define

ak(ω) = u(k)∗ diag
(
λ1(k), . . . , λd(k)

)
u(k) ,

where diag(λ1(k), . . . , λd(k)) denotes the diagonal matrix with the
indicated diagonal elements.



24 D. DAMANIK AND P. STOLLMANN GAFA

6. Define
aω(x) :=

∑
k∈Zd

χΛ1(k)(x)ak(ω)

and
HDIV(ω) = −∇(a0 + aω)∇ .

Although the formulas may seem intricate, it is easy to see what is
happening. For site k, we choose a non-negative matrix ak(ω) at random
by choosing its d eigenvalues and a unitary conjugation matrix. This is
done independently at different sites and we get an Anderson-like random
matrix function aω which is used as a perturbation to the perfectly periodic
medium a0. Note that a0+aω have uniform upper and lower bounds (η and
M + λmax) so that the operators can be defined via quadratic forms with
the Sobolev space W 1,2(Rd) as common form domain. The initial value
problem we are now interested in is governed by the wave equation

∂2v
∂t2

= −HDIV(ω)v , v(0) = v0 ,
∂v
∂t |t=0 = v1 (WE)

rather than the Schrödinger equation. Solutions are given by

v(t) = cos
(
t
√
HDIV(ω)

)
v0 + sin

(
t
√
HDIV(ω)

)
w1 ,

where v1 =
√
HDIV(ω)w1, and v0, w1 have to belong to the appropriate

operator domains. The following result yields a strong form of dynamical
localization in this case:
Theorem 4.4. Let HDIV(ω) be as above. Assume

(i) The measures γi, i = 1, . . . , d are Hölder continuous.
(ii) There exists τ > d such that for small h > 0,

γi([0, h]) ≤ hτ and γi
(
[λmax − h, λmax]

)
≤ hτ

for all i = 1, . . . , d.
Denote Σ = σ(HDIV(ω)) a.e. and let E0 ∈ ∂Σ \ {0}.

Then there exists ε0 > 0 such that for η ∈ L∞(R) with supp η ⊂
[E0 − ε0, E0 + ε0] and compact K, we have

E
{
‖|X|pη(HDIV(ω))χK‖

}
<∞ .

Moreover, for I ⊂ [E0 − ε0, E0 + ε0] and K compact:

E
{

sup
t

∥∥∥|X|p cos
(
t
√
HDIV(ω)

)
PI
(
HDIV(ω)

)
χK

∥∥∥} <∞
and

E
{

sup
t

∥∥∥|X|p sin
(
t
√
HDIV(ω)

)
PI
(
HDIV(ω)

)
χK

∥∥∥} <∞ .
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By the results from [FK2], [S1] the conditions for multi-scale analysis
are satisfied.

4.3 Random quantum waveguides Quantum waveguides have been
introduced for the investigation of two or three-dimensional motion of elec-
trons in small channels, tubes or layers of crystalline matter of high purity.
Mathematically speaking, one considers the free Laplacian in a domain
which should be thought of as a perturbation of a strip. The following
random model is taken from [KlS], where all the necessary conditions for
multi-scale analysis are verified:

It consists of a collection of randomly dented versions of a parallel strip
R × (0, dmax) = Dmax. More precisely, let dmax > 0, 0 < d < dmax, and
consider Ω = [0, d]Z. The i-th coordinate ω(i) of ω ∈ Ω gives the deviation
of the width of the random strip from dmax, that is,

di(ω) := dmax − ω(i) ,

which lies between dmin = dmax−d and dmax. Define γ(ω) : R→ [dmin, dmax]
as the polygon in R2 joining the points {(i, di(ω))}i∈Z and

D(ω) =
{

(x1, x2) ∈ R2 ∣∣ 0 < x2 < γ(ω)(x1)
}
.

The following picture will help in visualizing this domain:

-
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.

D(ω)

We fix a probability measure µ on [0, d] with 0 ∈ suppµ 6= {0} and
introduce P = µZ, a probability measure on Ω. ConsiderHW(ω) = −∆D(ω),
the Laplacian on D(ω) with Dirichlet boundary conditions, which is a self-
adjoint operator in L2(D(ω)).
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Note that

inf σ(HW(ω)) = E0 := π2

d2
max

for P-a.e. ω ∈ Ω .

In [KlS], exponential localization in a neighborhood of E0 is proven with the
help of a variable energy multi-scale analysis similar to the one presented in
section 2 of the present paper. In particular, suitably modified versions of
the assumptions of Theorem 3.1 are established which enable one to prove
strong dynamical localization along the lines of section 3. Thus, we have
Theorem 4.5. Let HW(ω) and E0 be as above. Assume that the single-
site measure µ is Hölder continuous. Let p > 0. Then there exists ε0 > 0
such that for η ∈ L∞(R) with supp η ⊂ [E0, E0 + ε0] and compact K, we
have

E
{
‖|X|pη(HW(ω))χK‖

}
<∞ .

Moreover, for I ⊂ [E0, E0 + ε0] and K compact:

E
{

sup
t

∥∥|X|pe−iHW(ω)tPI(HW(ω))χK
∥∥} <∞ .

4.4 Landau Hamiltonians. The models we discuss now are particu-
larly interesting due to their importance for the quantum Hall effect and
hence have been studied intensively [CoH2], [DMP1,2], [GB], [W]. We rely
here on the setup from [CoH2], also considered in [GB], as the latter au-
thors provide a proof of the basic assumptions needed for our approach.
In particular, the trace condition (i) from Theorem 3.1 is proven there and
the validity of (GRI) is discussed.

We consider electrons confined to the plane R2 subject to a perpendic-
ular constant B-field.

Assume
1. H0 =

(
∂1 + B

2 x2
)2 +

(
∂2 − B

2 x1
)2, where B > 0 is constant.

2. Let supp f ∈ L∞(Λ1(0)), f ≥ 0 and f ≥ σ on Λs(0) for some σ > 0,
s > 0; f is called the single-site potential.

3. Let µ be a probability measure on R, with density g, g ∈ C2
0(R)

even and strictly positive a.e. on its support [−q, q]; µ is called the
single-site measure.

4. Let
Ω = [−q, q]Z2

, P =
⊗
Z2

µ on Ω

and qk : Ω→ R, qk(ω) = ωk.
5. Let

Vω(x) :=
∑
k∈Z2

qk(ω)f(x− k)
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and
HL(ω) = H0 + Vω .

Recall that the spectrum of H0 in this case consists of the sequence of
Landau levels En(B) = (2n+ 1)B. We have the following:

Theorem 4.6. Let HL(ω) be as above with B large enough. Let
p > 0. Then for every n ∈ N, there exists εn(B) = O(B−1) > 0 such
that for η ∈ L∞(R) with supp η ⊂ [En(B) + εn(B), En+1(B)− εn(B)] and
compact K, we have

E
{
‖|X|pη(HL(ω))χK‖

}
<∞ .

Moreover, for I ⊂ [En(B) + εn(B), En+1(B)− εn(B)] and K compact:

E
{

sup
t

∥∥|X|pe−iHL(ω)tPI(HL(ω))χK
∥∥} <∞ .

In [W], a proof of exponential localization is given for a case which in-
cludes single-site potentials of changing sign. However, the use of microlocal
techniques requires smoothness of the potential.

Added in Proof. In [GK], Germinet and Klein present a bootstrap
multi-scale analysis by which they are able to prove sub-exponential off-
diagonal decay where in our paper we prove polynomial decay. Of course,
they need a Wegner estimate more restrictive than the one we use.
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