
Math. Z. 219, 275-287 (1995) 
Mathematische 

Zeitschrift 
�9 Springer-Verlag 1995 

A convergence theorem for Dirichlet forms 
with applications to boundary value problems 
with varying domains 

Peter Stollmann 

Fachbereich Mathematik, Johann Wolfgang Goethe-Universitiit, D-60054 Frankfurt am Main, 
Germany 

Received: 14 June 1993; in final form: 7 March 1994 

0 Introduction 

We study continuity of boundary problems with varying domains. To explain 
this in more detail, let us consider our standard example: Denote by Ha, the 
Dirichlet Laplacian on the open set G, C E a  The basic question which we 
adress is, whether we have convergence 

H~, ,HG, 

if the sets Gn converge to G in an appropriate sense. Two notions of convergence 
for the operators appear suitable: Generalized convergence in the strong resolvent 
sense (srs) and in the norm resolvent sense (nrs) (the "generalized" refers to the 
fact that the HG, act in different Hilbert spaces; we will frequently omit it). We 
shall introduce these concepts in some detail below but first we briefly describe 
the content of the following sections. 

In Section 1 we are concerned with convergence in srs. The main result, 
Theorem 1.3, says that He, sr-L~s HG if lim Gn, lim Gn and G are equivalent in an 
appropriate sense. This is, in fact, valid for measurable, not necessarily open sets, 
and for generators H of regular Dirichlet forms. The Dirichlet form setting turns 
out to allow a very convenient definition of He. Roughly speaking, the Dirichlet 
boundary condition can be described as an infinite potential. It is this viewpoint 
which allows the simple formulation of  Theorem 1.3. The main tool for its proof, 
monotone convergence of  forms has already been used in this context by Rauch 
and Taylor [16], Simon [18] and Weidmann [24]. In Corollary 1.4 we show how 
their results can be derived from Theorem 1.3. 

Section 2 deals with nrs convergence which yields much stronger spectral 
theoretic consequences. Here, the abstract monotone convergence results are not 
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sufficient, and a new aspect enters the picture: localization of the perturbation. To 
understand what this means, take the unperturbed Dirichlet form [9 and consider 
a monotone sequence of positive potentials V,. If the difference Vn - V,, is 
zero outside some fixed compact set for all n, m, then 0 + Vn converges in nrs. 
This follows from the main result of  the present article, Theorem 2.1, which 
states more: The potentials can be replaced by certain signed measures, the set 
on which the differences live only needs to be of finite capacity, and we even 
have Hilbert-Schmidt convergence of  the semigroup differences. Apart from a 
factorization argument from operator ideals, the proof of Theorem 2.1 relies on 
an inequality from probabilistic potential theory. Since this is the only instance 
where (via the Feynman-Kac formula) probability theory enters, we have chosen 
to present its proof in an appendix. The application of  our perturbation theorem 
to the motivating question is given in Theorem 2.2. It says that He~ 55~ He 
if the Gn satisfy the condition of Theorem 1.3 and, moreover, the symmetric 
differences G, A G  are contained in a fixed set of finite capacity. 

We now introduce srs and nrs convergence, following Simon's paper [18]; 
see also [24, 25]. To this end fix a Hilbert space .~, which corresponds to Lz(X) 
in our application. To each closed form t _> "7 with domain D(t) (not necessarily 

dense in .~), we can associate a self adjoint operator T in the Hilbert space D(t) ~ 
according to [15], Chap. VI, Thm. 2.1. If  ~b : ~ --~ ~ is bounded and measurable 
we define 

0(t) := O(T) |  on D(t)  |  -L. 

In particular, e t and ( t + E ) - I , E  suitable, are defined. We say that t~ converges 
to t in srs, if ( t + E )  -1 = s - lim(t~ + E )  -1 for a suitable E;  this is denoted by 
tn srs t or T~ ZL~ T, respectively. Similarly, 

tn nrs t ~ II(t. + E )  -1 - ( t + E ) - l l l  ~ 0. 

As in the densely defined case, one can easily prove the following 

Proposition A Let t, tn(n E N) be closed forms, with spectral resolution E(t) -- 
|(_oo,d(t),En(t) := l(_c~,d(tn), respectively. Then 
(a) tn SL~ t ==> E(A) = s - limn En (A) (A E p(T)). 
(b) t.  ~ t ~ E(A) = II �9 II - limn E.(A) (A E p(T)). 

1 Strong convergence for perturbed domains 

In this section we extend and unify results of  Rauch and Taylor [16], Weidmann 
[24] and Simon [18] concerning strong continuity under perturbation of  domains. 
The framework of Dirichlet forms appears to be well suited for that study. Thus. 
let X denote a locally compact, second countable space, which is endowed with 
a Radon measure m with full support and let us assume that 

(I) 0 is a c losed,  regular Dirichlet form in L2(X,m). ] 
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This means that I} : D • D ~ ~ is a nonnegative symmetric bilinear form which 
induces an inner product (.1.)0 on the linear space D by (u Iv)b := IT[u, v] + (u Iv) 
with the following properties: (D, ('I')0) is complete ("closed"), D n Cc(X) is 
dense both in (O, ('t ')0) and in (Co(X), II �9 I1~) ("regular"), and u E O implies 
that u § 1 E O,llu + A 1t1~ _< tlull0 ("Dirichletform"); for the details we refer 
to [13]. 

1.1 Example. Let X C R a be open, m the Lebesgue measure, and X ~ x ~-+ a(x) 
a locally integrable function with values in the symmetric matrices such that 
A <_ a(x) = (aij(x)) < # for some A,/z > 0. Then D = W01'2(X), 

b[u, v] = ~ / aij(x)Oiu(x)Ojv(x)dx 
t,j 

defines a regular Dirichlet form (see [5], Section 1.2). For a(x) = 1 this form is 
associated with the Dirichlet Laplacian on X. 

The capacity induced by 0 will play a key role in the subsequent discussion. It 
is defined as follows: for A C X, 

cap(A) = inf{lLt'll~;A c U, U open, f  _> 1,}. 

Obviously, cap(A) > re(A) for all A C X. Since 0 is regular, cap(A) < cx~ for all 
relatively compact A. 

Assume, for the moment, that G C X is open. Then, in analogy with the 
Dirichlet Laplacian - A  G whose form domain is Wo l'2(G) = W 1,2 N Co(G), 

[}6 := [}l o A Cr 

can be considered as the form, whose operator HG is obtained from H by impos- 
ing Dirichlet boundary conditions at B := X \ G. If  m(B) > 0, one has to view 
HG as an operator in L2(G) = D(06). To obtain a representation of bG which 
is better suited for our purpose and, at the same time, allows sets G which are 
merely measurable, we have to recall that every u E D admits a quasi-continuous 
version fi (for every c > 0 there exists an open set U with cap(U) < e outside 
of which fi is continuous), see [13], Thm. 3.1.3, p. 65. Such a fi is unique q.e., 
i.e. up to sets of capacity zero. It is not hard to check that 

Do(G) = {u C D;fi = 0  q.e. on X \ G }  

is a closed subspace of  D for arbitrary G C X and that 

Do(G) = O • Cc(G) [~ = D ( O G )  

if G is open. Hence it is consistent to write b6 and 146 for the form I} restricted 
to Do(G) and the associated self adjoint operator. (The analogous spaces WoL2(E) 
have been introduced and studied in [10, 11 ].) It is sometimes illustrative to think 
of He as given by H + V, where V is a potential which is infinite on X \ G. 
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Having in mind the Laplacian and thinking in terms of quantum mechanical 
models one might picture that such an infinite barrier forces wave functions to 
vanish outside G. Our next aim is to put this intuition into precise mathematical 
terms, introducing "measure perturbations". The right class of  measures is 

M0 = { # ' ~  ~ [0, oo]; # c~-additive, B E ~3, cap(B)=  0 ==:> # ( B ) =  0}, 

which has been studied in [4, 23] for the - , 4  case, and in [19] in the generality 
considered here. In particular, it is known that 

D(I~ + #) := {u E D;fi  E L2(#)}, (~ + #) [u ,v]  := b[u,v]  + / fi~d# 

defines a closed form. Note that Vdm E Mo for every measurable V > 0 and 
that 1~ + Vdm is just the sum of the forms of  H and the multiplication operator 
V. The corresponding operators are well-studied, at least for locally integrable 
V and H = - A ,  and often this self adjoint operator, the so-called form sum, is 
meant implicitly, if one writes - , 4  + V. 

For B C ~B, 
o~B(M) := cx~. cap(B r i M )  

(with the convention ~ - 0 = 0) defines a measure cxzB E Mo which takes only 
the values 0 or cxz. It is clear that 

~ = ~ + C~x\c _> I~ + o e .  lx \o  

for every G E ~3. Under rather weak regularity conditions this last inequality is 
in fact an equality. This is the case for closed G and for G which satisfy the 
segment property; see the example below. Let us first introduce some notation: 
F o r # , u E M 0 w e w r i t e # - , < u o r # ~ u i f [ 9 + # < _ I ~ + u o r  D + #  = l ) + u i n t h e  
sense of forms. We want to caution the reader that # -< u does not imply that 
# _< u as set functions. As a further abbreviation we sometimes use A ,-~ B to 
indicate the equivalence CXZA '~ coB. From cap(AAB) = 0 it obviously follows 
that A ,-~ B. The converse is not true, as we see in 

1.2 Example. Consider the classical Dirichlet form on ~d,  A := {x 1 > 0}, B := 
{xl _> 0}. Then A ~ B while cap(B \ A) ~ 0. Moreover, OO a "~ OO B N O~][A. 
This easily follows by translating element~ which vanish on A q.e. along the 
xl-direction and using the fact that Do(X \ B) is closed. This argument can be 
"localized" to prove the following simple fact: 
Let G C ]~d be open and let G satisfy the segment property at R COG by 
which we mean (cf. [1], p. 54) that for all x E R there exists a neighborhood U~ 
and a nonzero Yx E ~d such that Ux n G- + tyx C G for every t E (0, l). Then 
X\(GuR),.,X\G. 

Using the notions introduced above and the notation 

l imB, := N U Bk,limB, := U N Bk 
nE~  k>n n E ~  k>n 
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for a sequence (B~) in ~B, the main result of the present section reads as follows: 

1.3 Theorem.  Assume (I). Let B~ E ~ for n E H and assume that lim B, ,-~ 
li._m_m B,. Then 

srs 

for every B ~ lim Bn. 

Proof Define An := Nk>. Bk, C, := Uk>, Bk" Then An . /  l imB, =: A, Cn 

limB, - :  C. By monotone form convergence theorems (cf. [18], Thin. 3.2 and 
srs srs Thin. 4.1, [24], Satz 3.1), it follows that b + OOan ' ~ + ~za and b + cxDc, , 

+ (DO C . A S  ~ + OOAn < ~ + OOBn < ~ "4- OOCn and ~ + OO A = ~ "4- OO C the asserted 
convergence follows. [] 

Together with Proposition A, this Theorem implies strong convergence of the 
spectral projections of  ~ + CXDB~ and I~ + cr From the discussion in [16] and [24] 
it follows that the eigenprojections En(~) converge even in norm for )~ below the 
essential spectrum of b + coB. 

Coming back to "real Dirichlet boundary conditions" let us consider open sets 
Gn for n E 1~, and set B, := X \ G n. The above theorem tells us that the sequence 
Ho, converges in strong resolvent sense if l imB, ~ limBn. Its limit is of the 
form Hc with an open set G if and only if there is a closed set B which satisfies 
B ~ lira Bn. Rauch and Taylor [16] and Weidmann [24] give sufficient conditions 
for this to happen in the setting of Example 1.1. We now show how their results 
can be derived from Theorem 1.3. Here we use the notation K CC G, if K is a 
compact set in X which is contained in G. 

1.4 Corollary.  Let I~ be as in Example 1.1, and let G, Gn be open sets. 

(a) (Cf. [16], Lemma 1.1) Assume 

(i) VK C C G ~ n o  E H : K C Gn (n >no) ,  
(ii) VK C C X \ G 3 n o  E H " K C X \ Gn (n >no) ,  

(iii) CX~x\ G ,,~ cr  6. 

Then l imX \ Gn ~ li_~mX \ Gn "~ X \ G. 
(b) (Cf. [24], Satz 4,8) Assume 

(i) VK CC G : cap(K \ Gn) ~ O for  n ~ cxz, 
(ii) VK CC I~ d " $(K N (Gn \ G)) -~ O for  n ~ exp. 

(iii) G admits a locally finite covering (Un) with the following properties: U1 n 
Gn C G (n E H), Vj > 1 3aj E ll~ d such that (Uj N-G) + taj C G for  

t E (0,1). 
Then HG, srs HG. 

Proof Let B :=X \ G ,  B, :=X \ G,.  

(a): By (i) we have li__mm Gn C G, so that 

lim Bn -< cr 
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(iii) implies that c~B ~ ~Bo "~ cx~lBo. Hence it follows from (ii) that 

~Bo -< lim B ~ -< lim Bn. 

(b): We use the "subsequence of a subsequence argument" already employed in 
[24]. Thus we have to check that every subsequence of (Bn) has a subsequence 
to which we can apply Theorem 1.3. To avoid triple indices, we denote the 
given subsequence by (Bn). Using (i), (ii) and a diagonal argument, we find a 
subsequence such that 

cap(K \ li_~m Gnu) = 0 (K CC G), 

A(K n (lim G.~ \ G)) = 0, 

which can be restated in the following way (using the inner regularity of cap and 
the Lebesgue measure. A): 

cap(limB~ \ B) -- 0, A(B \ li__~mBn~) = 0. 

This implies 

(X)l'~mBn t -~ OQB~ OO| B --~ OOlimBn �9 

Denote A := limBn~, C := limBn k and A i :=A A Ui, B i := B N Ui, C i := C N Ui 

for i E 1~, where Ui is as in (iii). Then w c, -< ooB,, ~ IB ,  ~ CX~IA, for i E /7. 
Since Gn n G1 C G (n c 1~), we have that B n U1 C Bn N U1 for all n E 1~ 
which yields wB~ -< ~A~. Therefore, 

C 1 ,...., B 1 ,-.~A 1" 

It remains to check oc B, -4 oellB for i > 1, because then, for suitable open Uo, 

o o  

OG C ,'~ ~ OGC' --~ OQ B 
i 

i=0 

,'~ OOBO + OOBI + ~ OOB' 

i>1 

O(3|B 

i>1 

-~ O<3 A 

which gives the asserted equality. The inequality ~B, -< ~ | B  follows with thc 
segment property (as in Example 1.2), since OB i C O B  ~ Ui. [] 

We note that our Theorem 1.3 clearly applies to the example from [24], which 
does not satisfy the conditions of  [16, 24]. More generally it gives convergence 
for all monotone sequences generalizing an observation by Simon; cf [18], E x  
ample 1, p. 383. This illustrates one big advantage of  Theorem 1.3: it does no 
require a priori regularity assumptions on the limit set. 
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In [24], the classical Dirichlet form is replaced by a form of the type [~ + q, 
where q§ E L~(A ~) for some closed set A of Lebesgue measure zero and q -  sat- 
isfies a condition which implies form boundedness with bound zero with respect 
to - A .  It is easy to see that one may include much more singular perturbations. 
For instance, Theorem 1.3 remains valid if one replaces 0 (in the general Dirich- 
let form setting) by [3 + #, where #+ E Mo and # -  is form bounded with respect 
to ~) with bound less than 1. 

2 Convergence of measure perturbations 

In this section we deal with generalized norm resolvent convergence for perturbed 
Dirichlet forms. One major application is again to boundary value problems with 
varying domains. While Theorem 1.3 rested on an abstract convergence theorem 
for monotone sequences of forms (and the Dirichlet form setting was necessary 
for the definition of Dirichlet boundary conditions) the main tool in this section is 
a convergence theorem for perturbations of Dirichlet forms by measures, Theorem 
2.1. The crucial assumption is that the perturbation is "localized in space" in the 
sense that it takes place on a set of finite capacity. The following assumption 
will be very important in the sequel 

(II) I) is a closed regular Dirichlet form such that e - '~ induces a 
bounded linear operator from LI(X) to L~(X). 

Let us say that a measure # E Mo is supported on a set Y C X if # -< c~r,  and 
call Z' a quasi-support of # if Z' is a minimal (with respect to -<) quasi-closed 
supporting set. This is in accordance with the definition of quasi-support given 
in [ 14], where the authors restrict themselves to smooth measures. The existence 
of a quasi-support is not a priori clear. Since this is not our main concern we 
defer the proof to Corollary 2.3, where we also show that Z' is characterized by 

In view of possible applications we allow perturbations of  the form #+ - # - ,  
where #+ C Mo and # -  satisfies a Kato condition. We briefly explain the latter 
but refer the reader to [2, 22] for details. Consider 

SK := {# E Mo; (#,(H + E) -1.) E LI(X;m)'= L~(X,m)},  

cE(/~) := II(#,(H +E)-~>l l~ ,  

c(#) := inf cE(#). 
E>0 

This class generalizes the class Ka of potentials (for the classical Dirichlet form 
on ~a) in the sense that V > 0, V E Kd implies that VA E ~Sx, c(VA) = O. 
From [22], Theorem 3.1 we know that # E SK implies that # is l~-bounded with 
bound c(#). Thus, for c(#) < 1, the KLMN Theorem allows us to define ~ - #, 
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and some crucial properties of the corresponding semigroups depend only on 
c(#)  (see [22] for an account of this type of results). A sequence (#~) in M,, - S x  

is called monotone, if h + t~, is a monotone (increasing or decreasing) sequence 
of forms. 

2.1 Theorem.  Assume (II). Let #+n C Mo, # -  C SK with c ( # - )  < 1/2 and let 
_ _  + #n - # ,  - # - .  Assume that (#~) is monotone and that # ,  - #1 is supported on a 

set En f o r  n G I~ such that supnE~ cap(E , )  < oo. Then, f o r  all t > O, 

lie -'(~+~'") - e - ' (~+~ ' ' ) l lHs  ~ O for  n , m  ~ e~. 

t i t s  

In particular, 0 + #~ ~ b ~  for  suitable Oct, and ~r~s.~(H,) = Cr~ss(H~) for  the 
associated sel f  adjoint operators. 

Proof  From [22], Theorem 5.1 we infer that for every t > 0 there exists c(t)  > 0 
such that 

lie -'(~+~"~ "Z2 ~ t ~ [ ]  _< c(t)  

for all n E 1~. From Proposition A.3 in the appendix we know that (e -t(~+u") - 

e-t(~+U0)l E L2 with an estimate I1... 112 _< c .  cap(~'n) 1/2 for all n c i~1, Since 
either D,( t )  : =  e -t(~+t~") - e  -t(~+tz') or - D , ( t )  acts positivity preserving, this 
implies 

liOn(t) : t ~  ~ L2II _< C -cap(L ' , )  1/2. 

Using [6], t 1.2 and I 1.6, we conclude that 

Dn(t)e -t(~+u") E ~ G ,  

I I . - - I lHs  ~ C .  c ( t ) .  cap(~ ' , )  1/2. 

(This kind of factorization argument has also been used in [21], where it is 
explained in more detail.) The same arguments together with duality show that 

liOn(t) e-t(O+u') IIHs <-- C �9 c ( t )  . cap(~ ' , )  I/2. 

Therefore, for arbitrary t > 0, (Dn(t)) is a bounded sequence in 5)6.  As the 
# ,  are monotone, the kernels for D,( t )  form a monotone sequence (cf. [22], 
Appendix B). Hence, I I D ~ ( t ) -  D,,(t)ll•s ---, 0 for n , m  ~ oo. The assertion 
concerning the nrs convergence follows from the representation 

f0 ~ 
([) +/-zn + E)  - l  - (b + #m + E)  -1 = e-Et[e-t(O+u") - e-t(~+u")]dt, 

(which holds for E _> 1) with the help of Lebesgue 's  theorem. The stability oi 
the essential spectrum can be shown with an appeal to Weyl ' s  theorem as in [211 
Corollary to Theorem 1. [] 
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As a first application of this convergence result we state the following nrs-version 
of Theorem 1.3 : 

2.2 Theorem. Let Bn be Borel sets, for  n E I~. Assume that lim B, ,~ lim B, and 

that Bn ABm C • (n, m E I~) for  some 2: with finite capacity. Then 

,r.~ 
0 + ~ 8 ~  - -"  0 + ~ 8  

for every B ~ limB,. 

2.3 Remark. (1) It will be clear from the following proof that in the above theorem 
D can be replaced by I~ + #, where #+ E Mo and # -  E S/~ with c ( # - )  < 1/2. 

(2) In the situation of the theorem, Proposition A implies that the spectral 
projections depend continuously on the domain. This yields continuity of discrete 
eigenvalues and the associated eigenfunctions. 

Proof We use the notation An etc. from the proof of Theorem 1.3. We want 
to apply Theorem 2.1 to the sequence #n := CX~a. For n < m, A n C A m, and 
Am \ An supports P m -  #n. Moreover, Am \ A, C Y:, so that the assumptions of  
Theorem 2.1 are fulfilled and we get 

, r s  
[~ + OGA. ~ [~ + (X) a : D + O G B .  

Similarly, 
, rs _________+ h + etc .  0 + ~ c  = ~ + ~ B ,  

from which the asserted convergence follows since 

O + OQ An ~ O + OQ B n ~ O + OC)C n [] 

We now proceed to a further application of Theorem 2.1 which deals with "large 
coupling limits". Before stating the result in full generality let us consider a 
special case which has been analyzed in detail by Baumg~irtel and Demuth [3, 8]. 
Fix a closed set B C X and consider [~+nlB. I f n  ---* cx3, this sequence converges 
in srs to ~ + CXZ|B (by monotone convergence results). As we already remarked 
above, rather weak regularity assumptions on B will ensure that b + c d B  = be, for 
G = X \B .  If  B is compact then the convergence will even take place with respect 
to nrs, whether or not the limit equals [~c, as we see from the following Corollary 
(we want to note, however, that in [3, 8] unbounded B are also included). 

2.4 Corollary.  Let # E Mo with quasi-support ~ .  I fcap(~ ' )  < cx~, then 

, rs 
~ + n . #  ~ ~ + cxz~ f o r  n ---* c~. 
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Proof. By Theorem 2.1 it follows that the I~ + n #  converge in nrs. To identify its 
limit, it suffices to check that 

s r s  

By monotone convergence theorems for forms, the limit 0~  of the left hand side 
can easily be described as 

D ( [ ~ )  = {u E D( 0 + # ) ; / ~ 2 d #  = 0}, 0~  = l~ID(0oo). 

Consequently, we have to check that there exists a S such that the following 
holds for all u E D, u > 0: 

fi = 0 q . e .  o n X  \ E  r  fi = 0  # - a.e. 

Clearly, I := {u E D;fi = 0 #-a.e.} is a closed subspace of D which satisfies 
the ideal property. Hence Theorem 1 in [20] guarantees the existence of L'. 
(Although one cannot use the idea of [14] directly to prove the existence of a 
quasi-support for non-smooth measures, a look at [14] and [20] shows that part 
of  the arguments are similar.) In view of our definition of  quasi-support we still 
have to show that ~' is a minimal supporting set. Assume that S C X, S supports 
#, i.e. # -< OCs and OOs --< cx~s. Then we have c o s  = cx~# _< CXDs. [] 

A An inequality from probabUistic potential theory 

This section is devoted to proving Proposition A.3, which is essential for the 
proof of Theorem 2.1. Recall that assumption (I) guarantees the existence of a 
Markov process (Y2, (~Z~;x E X), (Xt; t > 0)) with state space X U {~x~} such that 

e - t~ f ( x )  = gx ( f  oXt)  

for all f E Lp, 1 < p < oc. Perturbation of h by a measure tt can be represented 
by an additive functional A in the sense that 

e-t(~+~)f (x ) = EX(f.o Xt . e-A(t)), 

This has been established in different generality in [2, 9, 13, 23]. We wilt use 
this identity, the celebrated Feynman-Kacformula,  only for measures of the form 
Vm with V E L ~ ,  for which the additive functional A takes the form 

A(t) = V o X~ds, 

see [13], p. 133 or [ 17], Theorem X.68, p.279, where actually only the case of the 
classical Dirichlet form is studied explicitely. As a first consequence we describe 
the additive functional corresponding to the measure oot:, where U is open. O~ 
course, this is nothing new for the experts. Since we didn't find a reference f{~i 
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it in full generality (for the classical case, see [23], (4.5), Feller generators are 
treated in [9], Thm. 4.4) we have chosen to prove the following 

A1 Lemma.  Let U C X be open, and set 

/o Tu(t)(w) := lu o Xs(w)ds, 

which is the total time up to t, which the particle w spent in U. Let 

Tu(w ) := inf{s > o;X~ ~' U} 

denote the first exit time of  U. Then 

e-'(O+e~v)f(x) = Ex[f  o Xt �9 l{vu(,)=0}] >_ Ex[f  o X, �9 |{ru<,}]. 

Thus, formally, we can calculate e -t~o+~U) by setting V = ~z -  |u  in the 
Feynman-Kac formula for functions. This is actually the philosophy behind the 
following proof. 

Proof Let Vn := n - | u. Then 

O+v~/5% ~ + ~ .  lu = O + ~ u .  

In fact, the convergence is just monotone form convergence, and the equality 
follows from [13], Lemma 3.1.4, p. 65. Using the Feynman-Kac formula for V n 
and letting n ~ ~ we arrive at the asserted equality. The inequality is obvious. 

U 

Fix a set B of finite capacity, and let rB be given as in the preceeding lemma. 
In what follows, we shall use that 

eB(x) := EX[e -rB ] 

defines a quasi-continuous eB E D, the so-called 1-equilibrium potential of B. It 
satisfies eB _> IB q.e. and Ilee I1~ -- cap(B), which means that it is the "minimizing 
element" in the definition of the capacity (see Section 1). 

A2 Lemma.  Assume that cap(B) < ~ .  Then ~[~-t~ <_ t] c L1, 

I1~ [TB _</]Ill <- e'cap(B). 

Proof Since ~x[~- o < t] < eteB(x) for e8 as above, it suffices to check that 
eB E L1 with JleBil3 _< cap(B). To this end, let 9 c L2, 0 _< 9 -< 1. Then 

(eR,9) = ( O + l ) [ e s , ( H + l ) - ~ 9 ]  

/ i (  H + 1)-19(x)duB(x) 

<_ uB(X) = cap(B), 

where we used the equilibrium measure uB, cf. [13], ]3.3, p. 75 and the fact that 
0 < (H + 1)-19 _< 1. From the above inequality, the assertion concerning the 
norm of eB follows. [] 
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A3 Propos i t ion .  Let  #+, u + C Mo, # -  = u -  C SK, c( /~-)  < 1/2. Moreover  
assume that #+ > u+ and that I z§ - u+ is supported on a set ~ o f  f inite capacity. 
Then 

[l(e-'(b+~') - e - t ( l ~ + ~ ' ) )  1 I1= -< c �9 cap (S ) ,  

with a constant  C which only depends on # - .  

Proo f  Since cap is outer regular, we may assume S to be open. By assumption, 

we have /z  + _< u + + cxzs which implies  

e-t(O+u)f(x) >_ e - t (O-~  +u++~r)f(x)  

for all f > 0 by [22], Corollary B.3. Hence it suffices to prove the estimate for 
# = u + c~E. Using [22], Theorem 3.5 we may restrict ourselves to the case 

t,, = Vm, with V E L ~ ,  c E ( V - )  < 1/2 for suitable E > 0 (see the definitions 
preceding Theorem 2.1). For  such V we calculate 

(e- t (~+v)  _ e- t (O+v+oo~)) l  (x )  

= EX[e - fd V~ -- l{Tr(t)=O})] 

(here we used Lemma  A1) 

f '  < EX[e-  , v-ox,, /s 

(again by A1) 

(]EX[e - fo 2V-oXsds])l/2 . (~x [7.L, _< t ] ) l / 2  

where we used the Cauchy-Schwarz  inequali ty in L2(~ ~x) for the last step. Since 

the second factor defines an L2-funct ion by L e m m a  A2 we only need to show 

that EX[e - Jo 2V-oX, ds] is bounded with a bound only depending on 2 c E ( V - )  = 

c e ( 2 V - ) .  This  in turn follows from [22], Theorem 3.3 and the observat ion 

EX[e - j o 2 v - ~ 1 7 7  = e - t ( ~ - 2 V - ) l ( x )  <_ II e - ' r176  : Lt --~ till [] 
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