Representation of operators by kernels

PETER STOLLMANN

Fachbereich Mathematik, Johann Wolfgang Goethe-Universität

Robert-Mayer-Str. 10, D-6000 Frankfurt am Main

Received February 12, 1992

ABSTRACT

We prove that differences of order-continuous operators acting between function spaces can be represented with a pseudo-kernel, proved the underlying measure spaces satisfy certain (rather weak) conditions.

To see that part of these conditions are necessary, we show that the strict localizability of a measure space can be characterized by the existence of a pseudo-kernel for a certain operator.

1. Introduction

The representation of classes of operators between function spaces by kernels is a widely used tool in operator theory and functional analysis with an impressive list of applications. See [1], [3], [4], [7], [8], [10], [11] and [14]. The aim of the present note is to prove a representation theorem for certain operators between function spaces under very weak conditions concerning the underlying measure spaces.

Such a generalization seems to be worthwhile for the following reason: The results available in the literature usually require that one of the measure spaces be Standard Borel, the Borel space of a second countable topological space or something similar which, at least, implies that the Borel σ -algebra is countably generated.

Our Theorem 1.1 shows that such a condition is not necessary.

286 STOLLMANN

In the second section we use the Gelfand isomorphism of $L_{\infty}(X, \mathfrak{A}, \mu)$ to show that the assumption of strict localizability of (X, \mathfrak{A}, μ) in Theorem 1.1 is indispensable. To be more precise, we construct an operator which has a representation with a pseudo-kernel iff $\mathfrak{L}_{\infty}(X, \mathfrak{A}, \mu)$ has a lifting.

1. The Representation Theorem

In this section we are going to show that linear operators between spaces of functions which satisfy a certain "continuity property" can be represented by means of pseudo-kernels.

First, we have to recall some measure theoretic notions for which there seems to be no standard terminology. (For detailed information we refer the reader to [5].) Starting with a measure space (X,\mathfrak{A},μ) , a function $f:X\to [-\infty,\infty]$ is called \mathfrak{A} -measurable, if $\{f\leq\alpha\}\in\mathfrak{A}\}$ for every $\alpha\in\mathbb{R}$ (here $\{f\leq\alpha\}=\{x\in X;f(x)\leq\alpha\}$). We weaken this condition and call $f:X\to [-\infty,\infty]$ locally μ -measurable, if, for every $A\in\mathfrak{A}^{\mu}_{fin}:=\{B\in\mathfrak{A};\mu(B)<\infty\}$ there is an \mathfrak{A} -measurable function which coincides with f μ -a.e. on A (i.e. on $A\setminus N$ for some $N\in\mathfrak{A}$ with $\mu(N)=0$). $N\subset X$ is said to be a local μ -null set if, for every $A\in\mathfrak{A}^{\mu}_{fin}$ there is an $N_A\in\mathfrak{A}$ with $\mu(N_A)=0$ such that $N\cap A\subset N_A$. By $\mathfrak{L}_0(X,\mathfrak{A},\mu)$ we denote the space of all locally μ -measurable functions which are finite locally μ -a.e. (i.e. outside some local μ -null set).

For every $f \in \mathfrak{L}_0(X, \mathfrak{A}, \mu)$ its equivalence class is defined as $\tilde{f} := \{g \in \mathfrak{L}_0(X, \mathfrak{A}, \mu); f = g \text{ locally } \mu\text{-a.e.}\}$ and the symbol $L_0(X, \mathfrak{A}, \mu)$ is used for the corresponding space of equivalence classes.

An element $f \in \mathcal{L}_0(X, \mathfrak{A}, \mu)$ is said to be essentially bounded, if $||f||_{\infty} := \inf\{c; |f| \leq c \text{ locally } \mu\text{-a.e.}\}$ is finite (where we use the convention inf $\emptyset = \infty$). By $\mathcal{L}_{\infty}(X, \mathfrak{A}, \mu)$ we denote the set of essentially bounded functions in $\mathcal{L}_0(X, \mathfrak{A}, \mu)$, while $L_{\infty}(X, \mathfrak{A}, \mu)$ stands for the corresponding space of equivalence classes.

Given a Hausdorff space Y we say that ν is a Radon measure on Y, if ν is locally finite (i.e. each point has a ν -integrable neighborhood) and ν is inner regular, i.e. $\nu(B) = \sup\{\nu(K); K \subset B, K \text{ compact}\}$ for every $B \in \mathfrak{B}_Y$, where the latter denotes the Borel σ -algebra of Y. We write $M_R(Y)$ for the space of finite signed Radon measures on Y.

An important condition in our Representation Theorem is the *strict localizability* of a measure space (X, \mathfrak{A}, μ) . This means that there is a family $\mathfrak{D} \subset \mathfrak{A}^{\mu}_{fin}$ of disjoint sets of nonzero measure which satisfies: $\forall A \in \mathfrak{A}^{\mu}_{fin}, \mu(A) > 0 \; \exists D \in \mathfrak{D} : \mu(A \cap D) > 0$. Such a family \mathfrak{D} is called a μ -decomposition. We are going to use that every

strictly localizable (X, \mathfrak{A}, μ) admits a linear lifting of $\mathfrak{L}_{\infty}(X, \mathfrak{A}, \mu)$, i.e. a positive $\Lambda: L_{\infty}(X, \mathfrak{A}, \mu) \to \mathfrak{L}_{\infty}(E, \mathfrak{A}, \mu)$ with $\Lambda f \in f$ for all $f \in L_{\infty}(X, \mathfrak{A}, \mu)$ and $\Lambda \tilde{1} = 1$ (see [5], [6]).

We use $M_{\infty}(X,\mathfrak{A},\mu)$ for the space of equivalence classes of bounded measurable functions.

1.1. Representation Theorem

Let (X, \mathfrak{A}, μ) be strictly localizable and ν be a Radon measure on the Hausdorff space Y with $\mathfrak{B} = \mathfrak{B}_Y$. Let $T: M_{\infty}(Y, \mathfrak{B}, \nu) \to L_0(X, \mathfrak{A}, \mu)$ be linear and $T = T_+ - T_-$, with order continuous T_+ and T_- . Then there exists $\tau: X \to M_R(Y)$ such that

$$\int f(y)\tau(\,\cdot\,)(dy) \,\,\in\,\, T\tilde{f}$$

for every bounded, \mathfrak{B} -measurable f.

We express this relation between τ and T by saying that τ is a pseudo-kernel for T.

Under more restrictive conditions concerning the underlying measure spaces, similar results have been proved in [1], [3], [4], [7], [8], [11], [12] and [15]. The last reference contains more information concerning the relevant literature and an excellent study of the consequences of theorems of the above kind. We call an operator T order-continuous, if $T(\sup \mathfrak{F}) = \sup T(\mathfrak{F})$ for any set \mathfrak{F} of functions which is directed under \leq . Note that if μ is finite (as is the case in [15]), it is sufficient to check this condition for sequences.

1.2. Corollary

With (X, \mathfrak{A}, μ) and (Y, \mathfrak{B}, ν) as in 1.1, let $T: L_1(X, \mathfrak{A}, \mu) \to L_1(Y, \mathfrak{B}, \nu)$ be linear and bounded. Then there exists a mapping $\tau: X \to M_R(Y)$ such that

$$\int_{B} Tf \, d\nu = \int f(x) \, \tau(x)(B) \, \mu(dx)$$

for every $f \in L_1(X, \mathfrak{A}, \mu)$ and every $B \in \mathfrak{B}$.

Proof. Apply 1.1 to $T': L_{\infty}(Y, \mathfrak{B}, \nu) \to L_{\infty}(X, \mathfrak{A}, \mu)$ and use that the dual of a positive operator on L_1 is order-continuous. \square

Note that in all of the above quoted references the σ -algebra \mathfrak{B} has to be countably generated.

Since in [13] we wanted to apply a result like 1.2 in the case where Y is an uncountable product, we were forced to prove the above generalization.

288 STOLLMANN

Proof of 1.1. Without restriction we may assume $T \geq 0$. Since $T\tilde{1} \in L_0(X, \mathfrak{A}, \mu)$, we find a finite representative $g \in T\tilde{1}$. The locally μ -measurable sets $X_n := \{g \in [n-1,n)\}$ cover X as n runs through \mathbb{N} . Note that $0 \leq Tf \leq n||f||_{\infty}$ on X_n for every $n \in \mathbb{N}$ and $f \in L_{\infty}(Y, \mathfrak{B}, \nu)$.

Let $\Lambda: L_{\infty}(X, \mathfrak{A}, \mu) \to \mathfrak{L}_{\infty}(X, \mathfrak{A}, \mu)$ be a linear lifting. Denote the set of compact subsets of Y by \mathfrak{K} .

For $K \in \mathfrak{K}$ and $\varphi \in C(K)$ let φ^0 be the function which is 0 on $Y \setminus K$ and equals φ on K.

Set

$$\langle \tau(x), \varphi \rangle := \Lambda \left((T\tilde{\varphi}^0) \chi_{x_n} \right) (x)$$

for $n \in \mathbb{N}, x \in X_n, K \in \mathfrak{K}$ and $\varphi \in C(K)$.

Clearly, $\tau(x) \in C(K)'$ for every $x \in X, K \in \mathcal{R}$ and $\tau(x)$ is a measure in the sense of [2; §1, N^0 3, déf. 5]; see [2; §3, N^0 2, Thm 2] for the relation with the notion of a Radon measure as given above. Note that we simply write τ instead of Bourbaki's τ .

From the properties of Λ , we have

$$\langle \tau(\,\cdot\,), \varphi \rangle \in T\tilde{\varphi}^0$$

for all $K \in \mathfrak{K}, \varphi \in C(K)$.

It follows that

$$\tau(\cdot)(U) \in T\tilde{\chi}_U$$

for all open $U \subset Y$.

By its very definition,

$$\tau(x)(U) = \sup \big\{ \langle \tau(x), \varphi \rangle; K \in \mathfrak{K}, K \subset U, \varphi \in C(\mathfrak{K}) \\ 0 \leq \varphi \leq \chi_{_U} \big\}$$

For $B \subset X_n, \mu(B) < \infty$,

$$\begin{split} \int_{B} \tau(x)(U)\mu(dx) &= \int_{B} \sup_{\cdots} \langle \tau(x), \varphi \rangle \mu(dx) \\ &= \sup_{\cdots} \int_{B} \Lambda \left[(T\tilde{\varphi}^{0}) \chi_{x_{n}} \right] (x)\mu(dx) \\ &= \sup_{\cdots} \int_{B} T\tilde{\varphi}^{0} d\mu = \int_{B} T\tilde{\chi}_{n} d\mu \ , \end{split}$$

where we used [6; Chap. III, Thm. 3, p. 40] for the crucial second equality sign and the order continuity of T for the last equation.

Now consider $\mathfrak{F} := \{g \text{ bounded, measurable; } \int g(y)\tau(\cdot)(dy) \in T\tilde{g}\}$. Then $\chi_U \in \mathfrak{F}$ for all open $U \subset Y$ by the last inclusion and the continuity of T implies that \mathfrak{F} is closed under monotone limits.

An appeal to a monotone class theorem (eg. [9; App. 1, Lemma 3, p.241]) finishes the proof. \Box

Some of the ideas in the above proof were inspired by [10].

2. Pseudo-Kernels related to the Gelfand isomorphism

In this section we prove that the use of a lifting in Theorem 1.1 was, in fact, necessary. To be more precise, we show in 2.2 that a certain operator defined with the help of the Gelfand isomorphism of $L_{\infty}(X,\mathfrak{A},\mu)$ admits a pseudo-kernel iff (X,\mathfrak{A},μ) is strictly localizable.

By its very definition $L_{\infty}(X,\mathfrak{A},\mu)$ is isometrically imbedded in $L_1(X,\mathfrak{A},\mu)'$. From now on we assume that the measure space (X,\mathfrak{A},μ) is localizable, i.e. this canonical mapping is surjective. As $L_{\infty}(X,\mathfrak{A},\mu)$ is an abelian C^* -algebra, there is an isomorphism

$$\Gamma: L_{\infty}(X, \mathfrak{A}, \mu) \longrightarrow C(\hat{X})$$
,

called the Gelfand isomorphism, where \hat{X} denotes the maximal ideal space of $L_{\infty}(X,\mathfrak{A},\mu)$.

To simplify notation, we sometimes write \hat{f} instead of Γf . For $A \in \mathfrak{A}^{\mu}_{loc} := \{B \subset X : \chi_B \in \mathfrak{L}_{\infty}(X,\mathfrak{A},\mu)\}$ the function $\Gamma \tilde{\chi}_A$ is a continuous idempotent; hence there is a compact open $\hat{A} \subset \hat{X}$ such that

$$\Gamma \hat{\chi}_A = \chi_{\hat{A}} \ .$$

2.1. Lemma

Let $A \in \mathfrak{A}^{\mu}_{fin}$ and set

$$\langle \hat{\mu}_A, \varphi \rangle := \int_A \Gamma^{-1} \varphi \, d\mu \ .$$

Then $\hat{\mu}_A$ defines a measure on $\hat{X}, \hat{\mu}_A(X) = \mu(A)$ and the embedding

$$C(\hat{A}) \hookrightarrow L_{\infty}(\hat{A}, \mathfrak{B}_{\hat{A}}, \hat{\mu}_{A})$$

is surjective.

Proof. See e.g. [14; Prop. 1.12, p.107]. □

By Zorn's lemma we find a family $\mathfrak{F} \subset \mathfrak{A}^{\mu}_{fin}$ such that $\mu(E \cap F) = 0$ for different $E, F \in \mathfrak{F}$ which is maximal with respect to the order given by $\sup{\{\tilde{\chi}_F; F \in \mathfrak{F}\}}$, $(L_{\infty}(X, \mathfrak{A}, \mu))$ is order complete as (X, \mathfrak{A}, μ) is localizable, cf [6; 16.6.4, p.282]).

Let $X^{\#} := \bigcup \{\hat{F}; F \in \mathfrak{F}\}$, which is open and dense in \hat{X} . For every $F \in \mathfrak{F}$ the measure $\hat{\mu}_F$ from 2.1 defines a finite Radon measure on $X^{\#}$ with support \hat{F} . Hence

$$\mu^{\#} := \sum_{F \in \mathfrak{F}} \hat{\mu}_F$$

defines a Radon measure on $X^{\#}$.

Let $\mathfrak{B}^{\#}$ denote the Borel σ -algebra and set

$$G: M_{\infty}(X^{\#}, \mathfrak{B}^{\#}, \mu^{\#}) \longrightarrow L_{0}(X, \mathfrak{A}, \mu)$$
$$Gf:= \sup_{F \in \mathfrak{F}} \Gamma^{-1}(f\chi_{\hat{F}})$$

which is defined since, by 2.1, $f\chi_{\hat{F}} \in L_{\infty}(\hat{F})$ has a continuous representative.

$$G\chi_{\hat{A}} = \sup_{F \in \mathfrak{F}} \Gamma^{-1}(\chi_{\hat{A} \cap \hat{F}}) = \sup_{F \in \mathfrak{F}} (\chi_{A \cap F}) = \chi_A.$$

Again, the localizability of (X, \mathfrak{A}, μ) ensures the existence of this supremum.

It remains to check the order continuity of G. To this end it suffices to note that

$$G_*: L_1(X, \mathfrak{A}, \mu) \longrightarrow L_1(X^\#, \mathfrak{B}^\#, \mu^\#),$$

 $G_*f := (Tf)^\sim$

is a positive contraction with $(G_*)' \supset G$.

Assume that G has a pseudo-kernel $\gamma: X \to M_R(X^\#)$. Changing γ on a local μ -null set, if necessary, we may restrict ourselves to the case that $\gamma(x, X^\#) = 1$ for all $x \in X$. For $f \in L_\infty(X, \mathfrak{A}, \mu)$ set

$$\Lambda f(x) := \langle \gamma(x), \Gamma f \rangle$$
.

Then $\Lambda \tilde{1} = 1$ by what we just assumed and

$$\Lambda \tilde{\chi}_A = \chi_A$$
 locally μ -a.e.

for all locally measurable $A \subset X$.

To prove this last claim, observe that

$$G\chi_{\hat{A}} = \sup{\{\tilde{\chi}_{A\cap F}; F \in \mathfrak{F}\}} = \tilde{\chi}_A$$

where we used the maximality of 3 for the last equation.

Linearity and density imply

$$\Lambda f \in f \text{ for all } f \in L_{\infty}(X, \mathfrak{A}, \mu).$$

As Λ is clearly positive, it defines a linear lifting. Thus we have proven $(iii) \Rightarrow (i)$ of the following:

2.2. Theorem

Let (X, \mathfrak{A}, μ) be complete and localizable. Let $X^{\#}, \mu^{\#}$ and G be as above. Then the following conditions on (C, \mathfrak{A}, μ) are equivalent:

- (i) (X, \mathfrak{A}, μ) is strictly localizable.
- (ii) The assertion of Theorem 1.1 holds for (X, \mathfrak{A}, μ) .
- (iii) The operator $G: M_{\infty}(X^{\#}, \mathfrak{B}^{\#}, \mu^{\#}) \to L_{\infty}(X, \mathfrak{A}, \mu)$ is pseudo-integral.

The other implications are clear.

In [13] we also studied the assumptions (in 1.1) concerning (Y, \mathfrak{B}, ν) in detail. With arguments similar to those given above we could show the following:

Measure spaces (Y, \mathfrak{B}, ν) with countably generated \mathfrak{B} for which the assertion of Theorem 1.1 holds are in an appropriate sense, isomorphic to compact spaces with a Radon measure.

ACKNOWLEDGEMENT. This article contains part of my thesis written under the direction of my esteemed teacher Professor Jürgen Voigt. It is a pleasure to acknowledge how much I benefitted from his help and encouragement. Moreover, I want to thank the members of the Oldenburg functional analysis group, Dr. A. Defant, Dr. P. Harmand and Professor K. Floret for many helpful discussions.

References

- 1. W. Arveson, Operator algebras and invariant subspaces, Ann. of Math. 100 (1974), 433-532.
- 2. N. Bourbaki, Intégration. Chap IX. (2nd ed.) Paris, Hermann, 1969.
- 3. N. Dunford and J. T. Schwartz, *Linear Operators*, Part I. New York, Wiley (Interscience), 1958.
- 4. H. Fakhoury, Représentations d'opérateurs à valeurs dans $L_1(X, \Sigma, \mu)$, Math. Ann. 240 (1979), 203-212.
- 5. K. Floret, Maß- und Integrationstheorie, Stuttgart, B. G. Teubner, 1981.
- 6. A& C Jonescu-Tulcea, Topics in the theory of liftings, Berlin [et al], Springer-Verlag, 1969.
- 7. N. J. Kalton, The endomorphisms of $L_p(0 \le p \le 1)$, Indiana Univ. Math. J. 27 (1978), 353-381.
- 8. N. J. Kalton, Linear operators on L_p for 0 , Trans. Amer. Math. Soc. 259 (1980), 317-355.
- 9. M. Métivier, Notions fondamentales de la théorie des probabilités, Dumod, 1968.
- J. Saint-Pierre, Désintégration d'une mesure non bornée, Annales de l'Institut Henri Poincaré, Section B - Vol. XI, 3 (1975), 275-286.
- 11. A. R. Sourour, Pseudo-integral operators, Trans. Amer. Math. Soc. 253 (1979), 339-363.
- 12. A. R. Sourour, Characterization and order properties of pseudo-integral operators, *Pac. J. of Math.* 99 (1982), 145-159.

- 13. P. Stollmann, Darstellung substochastischer Halbgruppen durch stochastische Prozesse, Oldenburg, Dissertation, 1990.
- 14. M. Takesaki, Theory of Operator Algebras I, New York, Springer-Verlag, 1979.
- 15. L. Weis, Kompaktheitseigenschaften positiver Operatoren und ihre Darstellung durch stochastische Kerne, Habilitationsschrift, Universität Kaiserslautern, 1982.