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ABSTRACT

We prove that differences of order—continuous operators acting between func-
tion spaces can be represented with a pseudo—kernel, proved the underlying
measure spaces satisfy certain (rather weak) conditions.

To see that part of these conditions are necessary, we show that the strict
localizibility of a measure space can be characterized by the existence of a
pseudo—kernel for a certain operator.

1. Introduction

The representation of classes of operators between function spaces by kernels is a
widely used tool in operator theory and functional analysis with an impressive list of
applications. See [1], [3], [4], [7], [8], [10], [11] and [14]. The aim of the present note
is to prove a representation theorem for certain operators between function spaces
under very weak conditions concerning the underlying measure spaces.

Such a generalization seems to be worthwhile for the following reason: The
results available in the literature usually require that one of the measure spaces be
Standard Borel, the Borel space of a second countable topological space or something
similar which, at least, implies that the Borel o—-algebra is countably generated.

Our Theorem 1.1 shows that such a condition is not necessary.
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In the second section we use the Gelfand isomorphism of L. (X,, p) to show
that the assumption of strict localizability of (X,?, ) in Theorem 1.1 is indispens-
able. To be more precise, we construct an operator which has a representation with
a pseudo—kernel iff £,,(X,2, ) has a lifting,.

1. The Representation Theorem

In this section we are going to show that linear operators between spaces of functions
which satisfy a certain “continuity property” can be represented by means of pseudo—
kernels.

First, we have to recall some measure theoretic notions for which there seems
to be no standard terminology. (For detailed information we refer the reader to
[5].) Starting with a measure space (X, 2, ¢), a function f: X — [—o0,00] is called
A-measurable, if {f < a} € A for every a € R (here {f < a} = {z € X; f(z) < a}).
We weaken this condition and call f : X — [—00,00] locally p-measurable, if, for
every A € A4, = {B € U;u(B) < oo} there is an A-measurable function which
coincides with f p-a.e. on A (i.e. on A\N for some N € A with u(N)=0). NC X
is said to be a local p—null set if, for every A € Ql‘;in there is an N4 € 2 with
#(N4) = 0such that NNA C Ny4. By £o(X, 2, 1) we denote the space of all locally
p—measurable functions which are finite locally p—a.e. (i.e. outside some local p—null
set).

For every f € £o(X,%,u) its equivalence class is defined as f := {g €
Lo(X, %, p); f = g locally p—a.e.} and the symbol Lo(X,2, ) is used for the corre-
sponding space of equivalence classes.

An element f € £o(X,%,pu) is said to be essentially bounded, if ||f|leo =
inf{c;|f|] < ¢ locally p—a.e.} is finite (where we use the convention inf = oo).
By £0(X,2, 1) we denote the set of essentially bounded functions in £o(X,2, 1),
while Lo, (X, %2, 1) stands for the corresponding space of equivalence classes.

Given a Hausdorff space Y we say that v is a Radon measure on Y, if v is locally
finite (i.e. each point has a v—integrable neighborhood) and v is inner regular, i.e.
v(B) = sup{v(K); K C B,K compact} for every B € By, where the latter denotes
the Borel o—algebra of Y. We write Mg(Y) for the space of finite signed Radon
measures on Y.

An important condition in our Representation Theorem is the strict localizability
of a measure space (X, 2, x). This means that there is a family D C Ql’;in of disjoint
sets of nonzero measure which satisfies: VA € %;,,u(4) >03D € D : (AN D) >
0. Such a family D is called a p-decomposition. We are going to use that every
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strictly localizable (X,2, 1) admits a linear lifting of £oo(X, U, u), i.e. a positive
A Lo(X, U p1) = Lol E, A, p) with Af € f for all f € Loo(X,U,p) and Al =1
(see [5], [6])-

We use Mo (X, %, 1) for the space of equivalence classes of bounded measurable
functions.

1.1. Representation Theorem

Let (X,2, p) be strictly localizable and v be a Radon measure on the Hausdorff
space Y with B = By. Let T : Moo(Y,B,v) — Lo(X,2U,u) be linear and T =
T4 — T, with order continuous Ty and T_. Then there exists T : X — Mg(Y') such
that

/ f@)r(-)dy) € TF

for every bounded, B—measurable f.

We express this relation between 7 and T by saying that 7 is a pseudo-kernel
for T.

Under more restrictive conditions concerning the underlying measure spaces,
similar results have been proved in [1], [3], [4], [7], [8], [11], [12] and [15]. The
last reference contains more information concerning the relevant literature and an
excellent study of the consequences of theorems of the above kind. We call an
operator T order—continuous, if T'(supJ) = supT(F) for any set F of functions
which is directed under < . Note that if u is finite (as is the case in [15]), it is
sufficient to check this condition for sequences.

1.2. Corollary

With (X,,p) and (Y,B,v) as in 1.1, let T : Li(X,U,u) — L1(Y,B,v) be
linear and bounded. Then there exists a mapping 7 : X — Mpg(Y') such that

[ rrav= [ @) uds)
B
for every f € L1(X,,p) and every B € B.

Proof. Apply 1.1 to T : Loo(Y,B,v) — Loo(X,U, 1) and use that the dual of a
positive operator on L; is order—continuous. [

Note that in all of the above quoted references the o-algebra 9B has to be
countably generated.

Since in [13] we wanted to apply a result like 1.2 in the case where Y is an
uncountable product, we were forced to prove the above generalization.
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Proof of 1.1. Without restriction we may assume T > 0. Since T1 € Lo(X, 2, p),
we find a finite representative g € T1. The locally y-measurable sets X, := {g €
[n — 1,n)} cover X as n runs through N. Note that 0 < T'f < n||f||cc on X, for
every n € N and f € Loo(Y,B,v).

Let A @ Loo(X, U p) —» £0(X,%Up) be a linear lifting. Denote the set of
compact subsets of Y by &.

For K € & and ¢ € C(K) let ¢° be the function which is 0 on Y\ K and equals
pon K.

Set

(r(2),0) = A((T@")xx,) (2)

forn e N,z € X,,, K € & and ¢ € C(K).

Clearly, 7(z) € C(K)' for every z € X, K € £ and () is a measure in the sense
of [2; §1, N3, déf. 5); see [2; §3, N°2, Thm 2] for the relation with the notion of a
Radon measure as given above. Note that we simply write 7 instead of Bourbaki’s
T .

From the properties of A, we have

(r(*),9) € T‘IBO

for all K € R, ¢ € C(K).
It follows that

7(-)(U) € Txv

for all open U C Y.
By its very definition,

r(@)(U) = sup {{r(z), 0); K € %, K C U0 € C(RI < 9 < X0 }
For B C X,,u(B) < oo,
[ r@@mtdn) = [ sup(r(e), elucde)
; | su
=sup [ A[T)xs, ] (@)u(da)
= sup /B T@dp = /B Txndp

where we used [6; Chap. III, Thm. 3, p. 40] for the crucial second equality sign and
the order continuity of T for the last equation.
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Now consider § := {g bounded, measurable; [ g(y)7(-)(dy) € Tﬁ}. Then xy €
J for all open U C Y by the last inclusion and the continuity of 7" implies that § is
closed under monotone limits.

An appeal to a monotone class theorem (eg. [9; App. 1, Lemma 3, p.241])
finishes the proof. O

Some of the ideas in the above proof were inspired by [10].

2. Pseudo—Kernels related to the Gelfand isomorphism

In this section we prove that the use of a lifting in Theorem 1.1 was, in fact, necessary.
To be more precise, we show in 2.2 that a certain operator defined with the help
of the Gelfand isomorphism of Lo (X, 2, ) admits a pseudo-kernel iff (X, %A, p) is
strictly localizable.

By its very definition Lo (X,,u) is isometrically imbedded in L;(X, 2, u)'.
From now on we assume that the measure space (X,2,u) is localizable, i.e. this
canonical mapping is surjective. As Loo(X,%, ) is an abelian C*-algebra, there is
an isomorphism

T:Lo(X,%,u) — CX),

called the Gelfand isomorphism, where X denotes the maximal ideal space of
Loo(X, %, p).

To simplify notation, we sometimes write f instead of I'f. For A € A} :=

{B CX:xB € £(X,U,p)} the function 'y 4 is a continuous idempotent; hence
there is a compact open A C X such that

I'xa=xj4-

2.1. Lemma
Let A€ Ql’;in and set

(Ba,p) = /AF‘lsodu -

Then fi4 defines a measure on X, fi4(X) = p(A) and the embedding
C(A) = Loo(A,B 4,/i4)

is surjective.
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Proof. See e.g. [14; Prop. 1.12, p.107]. O

By Zorn’s lemma we find a family § C 2%, such that u(EN F) = 0 for
different E, F' € § which is maximal with respect to the order given by sup{xr; F €
3}, (Loo(X, 2, 1) is order complete as (X, %, u) is localizable, cf [6; 16.6.4, p.282]).

Let X# := |J{F; F € 3}, which is open and dense in X. For every F € § the
measure fir from 2.1 defines a finite Radon measure on X# with support F'. Hence

## = E AF
Feg

defines a Radon measure on X#.
Let B# denote the Borel o-algebra and set

G : Moo (X#,8%, u#) — Lo(X, U, p)
Gf := sup F'l(fxﬁ)
Feg

which is defined since, by 2.1, fxz € Loo(ﬁ' ) has a continuous representative.
Gx i = sup T (X inp) = suP(XanF) = X4 -
Feg Feg
Again, the localizability of (X,?, 1) ensures the existence of this supremum.
It remains to check the order continuity of G. To this end it suffices to note that
G* : LI(X,QLII') - LI(X#aB#JL#)’
G.f:=(TH"~
is a positive contraction with (G.)' D G.
Assume that G has a pseudo—kernel v : X — Mpg(X#). Changing v on a local

p—null set, if necessary, we may restrict ourselves to the case that v(z,X#) = 1 for
all z € X. For f € Loo(X, U, 1) set

Af(z) = {v(z),Tf) .
Then Al = 1 by what we just assumed and
AxX 4 = x4 locally u—a.e.
for all locally measurable A C X.
To prove this last claim, observe that
G x4 = sup{Xanr; F € §} = Xa,
where we used the maximality of ¥ for the last equation.
Linearity and density imply
Af e fforall f€ Loo(X, U, 1)

As A is clearly positive, it defines a linear lifting. Thus we have proven (ii¢) = (7)
of the following:
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2.2. Theorem

Let (X,,u) be complete and localizable. Let X# u# and G be as above.
Then the following conditions on (C,, p) are equivalent:
(i) (X, p) is strictly localizable.
(ii)  The assertion of Theorem 1.1 holds for (X,, p).
(iii) The operator G : Moo(X#,B%#, u#) — Loo(X, U, 1) is pseudo—integral.

The other implications are clear.

In [13] we also studied the assumptions (in 1.1) concerning (Y, B, v) in detail.
With arguments similar to those given above we could show the following:

Measure spaces (Y, B, v) with countably generated B for which the assertion of
Theorem 1.1 holds are in an appropriate sense, isomorphic to compact spaces with
a Radon measure.
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