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1.1 Introduction: Leaving stationarity

One-particle Schrödinger operators with random potentials are used to model
quantum aspects of disordered electronic systems like unordered alloys, amor-
phous solids or liquids.

Starting from periodic potentials to describe perfect crystals, one is in-
terested in the spectral properties of these operators. Periodic Schrödinger
operators usually have absolutely continuous spectrum, which is connected
physically to good conductance properties. The spectrum consists of bands,
that is intervals, where one finds (absolutely continuous) spectrum. Between
the bands there are so called forbidden zones without spectrum.

Anderson, Mott and Twose [0, 0] discovered – based on physical reasoning –
that disordered systems should have a tendency to ”localized states” in certain
regimes of the energy spectrum, which reflects bad conductance properties of
the solid in this energy regime.

In recent years there has been considerable progress concerning mathe-
matically rigorous results on this phenomenon of localization. We refer to
the bibliography where we chose some classics, some recent articles as well
as books on the subject. However, all these results provide only one part of
the picture that is accepted since the ground breaking work [0, 0] by An-
derson, Mott and Twose. The effect of metal insulator transition is supposed
to depend upon the dimension and the general picture is as follows: Once
translated into the language of spectral theory there is a transition from a lo-
calized phase that exhibits pure point spectrum (= only bound states = no
transport) to a delocalized phase with absolutely continuous spectrum (=
scattering states = transport). What has been proven so far is the occurence
of the former phase, well known under the name of localization. The missing
part, delocalization, has not been settled for genuine random models.

There is need for an immediate disclaimer or, put differently, for an expla-
nation of what we mean by “genuine”.
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An instance where a metal insulator transition has been verified rigorously
is supplied by the almost Mathieu operator, a model with modest disorder
for which the parameter that triggers the transition is the strength of the
coupling. As references let us mention [0, 0, 0, 0, 0, 0] where the reader can
find more about the literature on this true evergreen. Quite recently it has
attracted a lot of interest especially among harmonic analysts; see [0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]

The underlying Hilbert space is l2(Z). Consider parameters α, λ, θ ∈ R
and define the selfadjoint, bounded operator hα,λ,θ by

(hα,λ,θu)(n) = u(n + 1) + u(n− 1) + λ cos(2π(αn + θ))u(n),

for u = (u(n))n∈Z ∈ l2(Z).
Note that this operator is a discrete Schrödinger operator with a potential

term with the coupling constant λ in front and the discrete analog of the
Laplacian. For irrational α the potential term is an almost periodic function
on Z.

Basically, there is a metal insulator transition at the critical value 2 for
the coupling constant λ. Since these operators are very close to periodic ones
one can fairly label them as poorly disordered. Moreover, the proof of delo-
calization boils down to the proof of localization for a “dual operator” that
happens to have the same form. In this sense, the almost Mathieu operator is
not a genuine random model.

A second instance, where a delocalized phase is proven to exist is the Bethe
lattice. See Klein’s article [0].

Quite recently, an order parameter has been introduced by Germinet and
Klein to characterize the range of energies where a multiscale scenario provides
a proof of a localized regime, [0]. In their work the important parameter is
the energy.

However, as we already pointed out above, for genuine random models,
there is no rigorous proof of the existence of a transition or even of the
appearance of spectral components other than pure point, so far. This is a
quite strange situation: the unperturbed problem exhibits extended states and
purely a.c. spectrum but for the perturbed one can prove the opposite spectral
behavior only.

In this survey we are dealing with models that are not stationary in the
sense that the influence of the random potential is not uniform in space. The
precise meaning of this admittedly vague description differs from case to case
but will be clear for each of them.

1.2 Sparse Random Potentials

The term sparse potentials is mostly known for potentials that have been
introduced in the 1970’s by Pearson [0] to construct Schrödinger operators on
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the line with singular continuous spectrum. To use similar geometries to obtain
a metal insulator transition can be traced back to Molchanov, Molchanov and
Vainberg [0, 0] and Krishna [0, 0], see also [0, 0, 0]. Let us introduce three
models for operators with sparse random potentials in L2(Rd) taken from [0].

Model I:
H(ω) = −∆ + Vω,

where
Vω(x) =

∑
k∈Zm

ξk(ω)f(x− k),

f ≤ 0 is a compactly supported single site potential and the ξk are independent
Bernoulli variables with pk := P{ξk = 1}.

Model II:
H(ω) = −∆ + Vω,

where
Vω(x) =

∑
k∈Zm

qk(ω)ξk(ω)f(x− k),

with f and ξ as above and independent identically distributed random vari-
ables qk.

Model III:
H(ω) = −∆ + Vω,

where
Vω(x) =

∑
k∈Zm

akqk(ω)f(x− k),

with qi as above and a deterministic sequence ai decaying fast enough at
infinity (see [0] for a discrete analog of this model).

For the first two models it was proven in [0] that [0,∞) belongs to the
absolutely continuous spectrum as long as pk decays fast enough. To under-
stand this appearance of a metallic regime, we recall the following facts from
scattering theory:

We write −∆ = H0 so that the operators we are interested in can be
written as H = H0 + V . By σac(H) we denote the absolutely continuous
spectrum, related to delocalized states.

Theorem 1. (Cooks criterion)
If for some T0 > 0 and all φ in a dense set∫ ∞

T0

‖V e−itH0φ‖dt < ∞ (∗)

then Ω− := limt→∞eitHe−itH0 exists and, consequently, [0,∞) ⊂ σac(H),
i.e., there are scattering states for H and any nonnegative energy.
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The typical application rests on the fact that (∗) is satisfied if

|V (x)| ≤ C(1 + |x|)−(1+ε), (∗∗)

a condition that obviously fails to hold for almost every Vω provided the pk

are not summable. However, in [0] the following result has been proved:

Theorem 2. Assume that

W (x) :=
(
E(Vω(x)2)

) 1
2 ≤ C(1 + |x|)−(1+ε).

Then Vω satisfies Cook’s criterion for a.e. ω.

The proof is short. So we reproduce it here.

Proof.

E
(∫ ∞

T0

‖Vωe−itH0φ‖dt

)

=
∫ ∞

T0

E
(∫

Vω(x)2|e−itH0φ(x)|2dx

) 1
2

dt

=
∫ ∞

T0

(
E
∫

Vω(x)2|e−itH0φ(x)|2dx

) 1
2

dt

≤
∫ ∞

T0

(∫
E(Vω(x)2)|e−itH0φ(x)|2dx]

) 1
2

dt

=
∫ ∞

T0

‖W (x)e−itH0φ‖dt

One can apply this result if the pk decay fast enough to guarantee sufficient
decay of W (x). For Model I and Model II operators (see [0]) with pk ∼ k−α

and f with compact support this condition reads 2 < α.
On the other hand one wants to have that

∑
k pk = ∞, since otherwise Vω

has compact support a.s. by the Borel-Cantelli Lemma. Thus one gets both
essential spectrum below zero and absolutely continuous spectrum above zero
if

2 < α < d.

For fixed d ≥ 3 and pk ∼ k−α one can moreover control the essential spectrum
below 0 as done in [0]: the negative essential spectrum consists of a sequence
of energies that can at most accumulate at 0.

To control the essential spectrum below zero, it is useful to introduce the
model operators Hf := H0 + f and Hn := H0 + f(x − xn) for a sequence of
points {xm}m∈N.
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Theorem 3. (Klaus) Let E denote the set of energies

E = {E < 0 | there exists a sequence nj , and energies
Enj ∈ σ(Hnj ) with Enj → E}.

Then σess(H) = E ∪ [0,∞).

Using the sets

Ak(Λ) := {ω | ∃ at least k distinct points nl ∈ Λ with ξnl
= 1} ,

together with the bound

P[Ak(Λ)] ≤

(∑
i∈Λ

pi

)k

≤ |Λ|k−1
∑
i∈Λ

pk
n,

one gets by a Borel-Cantelli argument, that the event

Ak :=
∞⋃

L=1

Ak(ΛL)

has zero probability. Calling a finite subset F of Zd essential for Hω if

P [F + n ⊂ Ξ for infinitely many n] = 1

with Ξ := {n | ξn = 1} and

HF := H0 +
∑
i∈F

f(· − i),

from Klaus’ theorem one gets the following.

Theorem 4. Let E = {En(F ) ∈ HF |F is essential for Hω}. If
∑

pk
n < ∞

for some k, then

σess(Hω) = E ∪ [0,∞) P-almost surely

Therefore, there exists essential spectrum below zero, if
∑

pi = ∞, and it
is pure point, if

∑
pk

i < ∞ for some k.
For Model III operators the distribution P0 of the i.i.d. random variables

qk has a strong influence on the spectral behaviour in the following sense:
If P0 has a bounded support, every realization of Model III is decaying at
infinity and there is no hope to find essential spectrum below 0. However, if
P0 does not have compact support, the potential Vω(x) may admit a sequence
xi → ∞ such that Vω(xi) → −∞, thus allowing for essential, in fact, dense
pure point spectrum below zero.

For details and more on sparse potentials, especially for models for which
the negative spectrum has a richer structure and contains intervals, we refer
the reader to [0].
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Remarks 5. In [0] absence of (absolutely) continuous spectrum outside the
spectrum of the unperturbed operator for certain random sparse models is
proved reminiscent of Model I above and Model II from [0] but considerably
more general. This is based on the techniques from [0, 0, 0].

1.3 Sparse Random Potentials and the Integrated
Density Of States

A useful object in studying random Schrödinger operators is the (integrated)
density of states N(Hω, E). For ergodic random Schrödinger operators it can
be defined as the thermodynamic limit of the eigenvalue counting function up
to energy E, that is

N(Hω, E) := lim
L→∞

1
|ΛL|

N(HD
ω,L, E)

and
N(HD

ω,L, E) := #{λi ≤ E |λi ∈ σ(HD
ω,L)},

where HD
ω,L denotes the operator Hω restricted to a box ΛL of side length

L with Dirichlet boundary conditions. Under appropriate conditions on the
random potential this limit exists and is non-random. Also this limit tends
to be independent of the boundary conditions used in the definition, that is,
using Neumann boundary conditions on the boxes ΛL gives the same limit.

It is not immediately clear, how to define an analogous object for sparse
random potentials, because on the one hand there is nothing like ergodicity
around them, on the other hand one has to guess the right normalisation
substituting the volume |ΛL|.

At least for sparse random potentials with
∑

pn = ∞, but
∑

p2
n < ∞ it

is possible to define a modified integrated density of states for energies E < 0
as

N(Hω, E) := lim
L→∞

1
PL

N(HD
ω,L, E)

with
PL :=

∑
i∈ΛL

pi.

For Model I operators this gives

Theorem 6. Let Vω be a sparse random potential as in Model I with
∑

pn =
∞ and

∑
p2

n < ∞. Then the limits

N(Hω, E) := lim
L→∞

1
PL

N(HD
ω,L, E)

and
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Ñ(Hω, E) := lim
L→∞

1
PL

N(HN
ω,L, E)

exist for E < 0 and are non-random. Moreover

Ñ(Hω, E) = N(Hω, E) = N(H0 + f,E)

at every point of continuity of N(H0 + f,E) with E < 0.

An analogues proof works for Model II operators and gives:

Theorem 7. Let Vω be a sparse random potential as in Model II with∑
pn = ∞ and

∑
p2

n < ∞. Then the limits

N(Hω, E) := lim
L→∞

1
PL

N(HD
ω,L, E)

and
Ñ(Hω, E) := lim

L→∞

1
PL

N(HN
ω,L, E)

exist for E < 0 and are non-random. Moreover

Ñ(Hω, E) = N(Hω, E) = E [N(H0 + q0(ω)f,E)]

at every point of continuity of E [N(H0 + q0(ω)f,E)] with E < 0.

Remarks 8. Since
∑

p2
n < ∞, by a Borel-Cantelli argument the essential set

for Hω consists of only one point. So the theorem tells us, that the modified
integrated density of states ”sees” exactly the essential spectrum below zero
which is located at the eigenvalues of the model operator H0 + f .

Since these operators are not ergodic in any sense, one has to look for
a substitute for the ergodic theorems used to proof the existence and non-
randomness of the integrated density of states. In [0] a strong law of large
numbers has been proven to cover also these cases of sparse random potentials.

For details on the integrated density of states for sparse random potentials
see [0].

1.4 Random surface models

Consider the following self-adjoint random operator in L2(Rd) or `2(Zd), Rd =
Rm × Rd−m:

H(ω) = −∆ + Vω,

where
Vω(x) =

∑
k∈Zm

qk(ω)f(x− (k, 0)),
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the qk are i.i.d. random variables and f ≥ 0 is a single site potential that satisfy
certain technical assumptions. This leads to the following geometry charac-
terizing random surface models. Sometimes the upper half plane is considered
only.

There is a lot of literature, mostly on the discrete case, using a decompo-
sition into a bulk and a surface term see [0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

The moral of the story is the appearance of a metal insulator transition
at the edges of the unperturbed operator. We now concentrate on the con-
tinuum case, where we only know of [0, 0] as references. The existence of
an a.c. component is proven in [0]. In the following, we present the result
from [0], giving strong dynamical localization. Similar but somewhat different
results have been announced in [0]. As discussed there, an additional Dirich-
let boundary condition “stabilizes” the spectrum so that the appearance of
negative spectrum requires a certain strength of the random perturbation.
Therefore, proving localization at negative energies is easier (compared to the
case without Dirichlet boundary conditions) since one is automatically dealing
with a “large coupling” regime.

It is not hard to see that

σ(H(ω)) = [E0,∞) where E0 = inf σ(−∆ + qmin · fper),

and

fper =
∑

k∈Zm

f(x− (k, 0))

denotes the periodic continuation of f along the surface. Near the bottom of
the spectrum E0 one expects localization, i.e. suppression of transport as is
typical for insulators. For nonnegative energies one expects extended states.
To stress the existence of a metallic phase let us cite Theorem 4.3 of [0]

Theorem 9. Let H(ω) be as below. Then we have, for every ω ∈ Ω: [0,∞) ⊂
σac(H(ω)).

The idea of the Proof is that a wave packet with velocity pointing away
from the surface will escape the influence of the surface potential and is asymp-
totically free. The rigorous implementation of this idea uses Enss’ technique
from scattering theory.

The model. (1) 0 < m < d and points in Rd = Rm × Rd−m are written as
pairs, if convenient;

(2) The single site potential f ≥ 0, f ∈ Lp(Rd) where p ≥ 2 if d ≤ 3 and
p > d/2 if d > 3, and f ≥ σ > 0 on some open set U 6= ∅ for some σ > 0.

(3) The qk are i.i.d. random variables distributed with respect to a prob-
ability measure µ on R, such that suppµ = [qmin, 0] with qmin < 0.

We will sometimes need further assumptions on the single site distribution
µ:
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(4) µ is Hölder continuous, i.e. there are constants C,α > 0 such that

µ[a, b] ≤ C(b− a)α for qmin ≤ a ≤ b ≤ 0.

(5) Disorder assumption: there exist C, τ > 0 such that

µ[qmin, qmin + ε] ≤ C · ετ for ε > 0.

What follows is the main result of [0].

Theorem 10. Let H(ω) be as above with τ > d/2 and assume that E0 < 0.
(a) There exists an ε > 0 such that in [E0, E0 +ε] the spectrum of H(ω) is

pure point for almost every ω ∈ Ω, with exponentially decaying eigenfunctions.
(b) Assume that p < 2(2τ −m). Then there exists an ε > 0 such that in

[E0, E0 + ε] = I we have strong dynamical localization in the sense that for
every compact set K ⊂ Rd:

E{sup
t>0

‖|X|pe−itH(ω)PI(H(ω))χK‖} < ∞

A consequence is pure point spectrum in the interval [E0, E0 + ε] = I.
Together with the previous result on extended states we get the picture from
Figure 4 that still leaves open some important questions.

1.5 The density of surface states

For random surface models it is also possible to define an appropriate analogue
of the density of states, the density of surface states (see [0, 0, 0]).

Since one has to get rid of the bulk spectrum to recover properties of
the surface potential (see [0]), one defines the density of surface states as the
following limit.

νS [f ] := lim
L→∞

1
Lm

tr {χL (f(Hω)− f(H0))}

for sufficiently smooth functions f , where χL is the characteristic function of a
cube ΛL. In [0] it was proven, that one needs f ∈ C3

0 (R) at most. [0, 0] showed,
that one needs f ∈ C1

0 (R), but they used sign definite surface potentials.
This definition doesn’t make use of boundary conditions, because one

might guess, that the introduction of boundary conditions may have an effect
on the density of surface states since they are at least of the same order as
the perturbation by the potential.

So it may be surprising that it is also possible to define the density of
surface states as the limit

νS,D[f ] := lim
L→∞

1
Lm

tr
{
f(HD

ω,L)− f(HD
0 )
}
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with Dirichlet boundary conditions or as the limit

νS,N [f ] := lim
L→∞

1
Lm

tr
{
f(HN

ω,L)− f(HN
0 )
}

with Neumann boundary conditions. In [0] it has been proved, that for a
wider class of random surface potentials (that allows also for sign indefinite
random potentials) all these definitions give the same limit. This limit is also
non-random and gives a distribution of order 1 (in fact it is the distributional
derivative of a signed measure).

To prove this we strongly used Feynman-Kac representations of the La-
place transforms of the finite volume measures and showed that the difference
of these Laplace transforms converge to 0 as L → ∞. Together with the
regularity of the density of surface states this gives also their independence of
boundary conditions.

Using this Laplace transforms it was also possible to calculate the asymp-
totic behaviour of the integrated density of surface states for random Gaussian
surface potentials (for details see [0]).

1.6 Lifshitz tails & Localization

Below the energy E = 0, the bottom of the spectrum of the unperturbed
(free) operator the density of surface states is easily seen to be a positive
Borel measure. Hence, we may speak of its distribution function

NS(E) = νs ((−∞, E)) for E < 0.

Very recently, it was proved in [0] that NS(E) shows a very characteristic
decay at E0, the bottom of the spectrum. This behavior, known as Lifshitz
behavior in the case of stationary random potentials, is given by:

NS(E) ∼ e−c(E−E0)
−m/2

(∗)

as E ↘ E0. This result is then used in [0] to prove Anderson localization for
surface models without assuming the disorder assumption (5). [0] modify the
proof in [0] replacing (5) by estimates that follow from (∗).
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