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Abstract. We consider continuum random Schrödinger operators of the type Hω =
−∆ + V0 + Vω with a deterministic background potential V0. We establish criteria
for the absence of continuous and absolutely continuous spectrum, respectively,
outside the spectrum of −∆ + V0. The models we treat include random surface
potentials as well as sparse or slowly decaying random potentials. In particular, we
establish absence of absolutely continuous surface spectrum for random potentials
supported near a one-dimensional surface (“random tube”) in arbitrary dimension.

1 Introduction

In this article we are concerned with spectral properties of certain non-stationary
random operators. More specifically, we consider Schrödinger operators of the form
Hω = −∆ + V0 + Vω in L2(Rd). Here V0 is a deterministic background potential
and Vω an Anderson-type random potential which is either sparse near infinity, or
concentrated near a lower dimensional surface, or both. This type of models has
attracted considerable interest as it allows to study a transition from pure point to
continuous spectrum. Here, we are mainly concerned with the former phenomenon.

We obtain our results by essentially “deterministic” techniques from [27, 22,
28], establishing conditions on Vω such that Hω has no absolutely continuous spec-
trum or no continuous spectrum outside the spectrum of −∆ + V0. This gives us
considerable flexibility in the choice of our model. In particular, we are able to
avoid some of the typical technical restrictions that come with the usual multi-
scale analysis or fractional moments proofs of localization. E.g., we can allow for
perturbations of changing sign and single site distributions without any continuity.
On the other hand, we need decaying randomness in the sense that near infinity
the random perturbation is not too effective. That excludes identically distributed
random parameters in most cases. An important exception is our result on 1-D
“surfaces” (rather tubes) in arbitrary dimensions, see Theorem 4.1 below.

The paper is organized in the following way: In Section 2 we present the
deterministic techniques we use, recalling the relevant notions and results from
[27, 22, 28]; in fact we will need results that are a little stronger than what is
explicitly stated in the above cited articles. The common flavor of these methods is
that they provide comparison criteria for the absence of continuous and absolutely
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continuous spectra, respectively. These criteria are formulated in the following way:
We consider Schrödinger operators with two potentials that differ only on a set
that is “small near infinity in a certain geometrical sense”. Then the spectrum of
the first operator has no absolutely continuous component on the resolvent set of
the second one. To exclude continuous spectrum one needs a bit more complicated
assumptions involving randomization.

In Sections 3 and 4 we state and prove our main new results, Theorems 3.1,
4.1 and 4.3.

In Section 3 we are dealing with sparse random potentials. The framework we
introduce is fairly general and includes as special cases the sparse random models
considered in [7], e.g., random scatterers are distributed quite arbitrarily in space
and the single site perturbations are assumed to be picked with probabilities that
tend to zero near infinity. Then, throughout the resolvent set of the unperturbed
operator there is no absolutely continuous spectrum (3.1(a)). Since we can treat
quite general unperturbed operators, this includes cases with gaps in the spectrum
of the unperturbed operator, a case that is completely new. In the proof we com-
bine elementary combinatorial arguments, Lemma 3.2, with the methods discussed
above.

In the same fashion, under a bit more incisive conditions concerning the back-
ground and at least one random scatterer but with the same condition concerning
the decay of probabilities near infinity, we can even deduce absence of continuous
spectrum outside the spectrum of the unperturbed operator (3.1(b)). That is, all
the new spectrum generated by the random perturbation is pure point. This is
quite different from what one can obtain with the usual localization proofs, which
require a large disorder condition, or apply to energies near the spectral bound-
aries of the perturbed operator only (with the exception of the one-dimensional
case).

In Section 4 we study surface-like structures. This means we consider po-
tentials that are concentrated near a subset of lower dimension. Our strongest
result, Theorem 4.1, concerns what we call quasi-1D surfaces. There is quite
some literature on surface potentials. Most are dealing with the discrete case
[4, 5, 8, 9, 11, 10, 13, 14] while in [3, 7] and the present paper continuum models
are treated. Here again, our goal was to be able to exclude absolutely continuous
spectrum on all of the unperturbed resolvent set and not just near band edges.
Theorem 4.3 deals with absence of absolutely continuous and continuous spec-
trum, respectively, for m-dimensional surface potentials in R

d under an additional
sparseness assumption.

In the last section we conclude with a discussion of some possible extensions
of our results and a comparison with other works, in particular the results in [10]
and [7].
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2 Comparison criteria for absence of (absolutely)
continuous spectrum

In this section we present our methods of proof, essentially taken from [27, 22,
28]. These methods rely on comparison of the spectral properties of Schrödinger
operators

H1 = −∆ + V1 and H2 = −∆ + V2

whose “difference” is “small” in the sense that the set

{V1 �= V2} := {x ∈ R
d | V1(x) �= V2(x)}

is sufficiently sparse. To this end we introduce the following concept, following [27]:

Definition. A sequence (Sn)n∈N of compact subsets of R
d with Lebesgue measure

|Sn| = 0 (n ∈ N) is called a total decomposition if there exists a family (Ui)i∈I of
disjoint, open, bounded sets such that

R
d \

⋃

n∈N

Sn =
⋃

i∈I

Ui.

A typical example would be Sn = ∂B(0, n), where B(x, r) denotes the closed ball of
radius r, centered at x. (Let us stress that the Sn’s need not be pairwise disjoint.)

The sparseness of {V1 �= V2} will be expressed by the existence of a total
decomposition (Sn)n∈N with sufficient distance of Sn to {V1 �= V2} compared with
the size of Sn. An appropriate notion of size is given by the generalized surface
area of a set, a notion introduced in [22] in the following way; here S ⊂ R

d is
compact:

σ(S) := sup
r≥0

|{x ∈ R
d | r ≤ dist(x, S) ≤ r + 1}|

rd + 1
.

It is easily seen that
σ(S) ≤ C ((diamS)d + 1), (2.1)

i.e., σ(S) is at worst a volume, while for sufficiently regular surfaces it is a surface
area measure, for example

σ(∂B(x, r)) ≤ C(rd−1 + 1).

We cite the following result, essentially taken from [27]:

Theorem 2.1 Assume that for each γ > 0 there exists a total decomposition
(Sn)n∈N = (S(γ)

n )n∈N such that

δn = δ(γ)
n := dist({V1 �= V2}, Sn) → ∞ as n→ ∞ (2.2)

and ∑

n

σ(Sn)e−γδn <∞. (2.3)

Then
σac(H1) ∩ �(H2) = ∅.
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The following figure is to help visualizing the geometry one is confronted with
in the Theorem.

Sn

δn

Sn−1

Figure 1. {V1 �= V2} must not intersect the shaded region.

Here, and in what follows, all potentials V are assumed to be locally uniformly
in Lp, where p ≥ 2 if d ≤ 3 and p > d/2 if d > 3, i.e.,

‖V ‖p
p,unif := sup

x

∫

B(x,1)

|V (y)|p dy <∞. (2.4)

Theorem 2.1 is essentially Theorem 4.2 from [27]. We will need the slightly
stronger version provided above in which the decomposition Sn may vary with γ.
The proof provided in [27] goes through under this weaker assumption. This is
roughly seen as follows: It suffices to show that

σac(H1) ∩ J = ∅ (2.5)

for all compact subsets J of �(H2). For fixed J the argument in [27] provides a
γ > 0 (roughly the exponential decay rate in a Combes-Thomas type bound on
the resolvent of H2 for energies in J) such that the validity of (2.2) and (2.3) for
a suitable decomposition will imply (2.5).

Also, in [27] all potentials are assumed to have locally integrable positive
parts and negative parts in the Kato class. Our Lp-type assumptions are a special
case.

The second result we use is taken from [28] and excludes continuous spectrum.
It is clear that a statement of the form of Theorem 2.1 above has to be false, since
dense pure point spectrum is extremely unstable and can be destroyed by “tiny”
perturbations [26]. The geometry is somewhat similar to what we had above but
more restrictive. Namely, consider an increasing sequence (An)n∈N of bounded
open sets with

⋃
nAn = R

d. Then Sn := ∂An is a total decomposition. For the
arguments in [28] it is not necessary that |∂Sn| = 0, but this will be the case in
all our applications.
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We assume that

δ′n := min{dist(Sn, {V1 �= V2}), 1
2 dist(Sn, Sn−1 ∪ Sn+1)} > 0.

Theorem 2.2 Assume that V1 ∈ L
d+1
2

loc (Rd), W ∈ L∞ with compact support, of fixed
sign and such that |W | ≥ cχB(0,s) for suitable c > 0 and s > 0. Moreover, assume
that for every γ > 0 there exist An = An(γ) as above such that δ′n = δ′n(γ) → ∞
and

∑

n

|An+1 \An−1| e−γδ′
n <∞. (2.6)

Then for the family Hλ := H1 + λW , λ ∈ R there exists a measurable subset
M0 ⊂ R such that |R \M0| = 0 and

σc(Hλ) ∩ �(H2) = ∅ for all λ ∈M0.

See [28] for the proof which extends to the case of W as specified above.
Again, as with Theorem 2.1 above, the possible γ-dependence of the sets An

is not explicitly stated in [28], but allowed for by the proof provided there.
The requirement that the summability conditions (2.3), (2.6) have to hold

for all γ > 0 (and suitable decompositions) comes from the fact that we want to
exclude (absolutely) continuous spectrum up to the edges of σ(H2). It is possible
to quantify and refine the results in a way which says that validity of (2.3), (2.6)
for a fixed γ implies absence of (absolutely) continuous spectrum in regions above
a certain (γ-dependent) distance from σ(H2).

3 Sparse random models

In this section we will show how to use the methods from the preceding section
to prove absence of continuous or absolutely continuous spectrum for sparse ran-
dom potentials. As mentioned in the introduction, these models have been set up
to study situations in which a transition from singular to absolutely continuous
spectrum occurs.

This has attracted some interest in the last decade as can be seen in the
articles [15, 16, 19, 20, 21, 23, 24] dealing with discrete Schrödinger operators and
[7] for the continuum case.

We will be concerned mainly with absence of a continuous spectral component
away from the spectrum of the unperturbed operator. For this reason we state our
results in a generality that does include cases in which no absolutely continuous
spectrum survives. As model examples, let us mention two families of models that
have been treated in [7].
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Specific models of sparse random potentials, as considered in [7], are

Model I

Vω(x) =
∑

i∈Zd

ξi(ω)f(x− i), ω ∈ Ω

where f is a compactly supported single site potential and the ξi are independent
Bernoulli variables. Set pi := P(ξi = 1). If pi → 0 as |i| → ∞ the random potential
will no longer be stationary. In fact, it will be sparse in the sense that almost
surely large islands near ∞ will occur where Vω vanishes.

For the second model f and the ξi, pi will have the same meaning and,
additionally, the qi are i.i.d. nonnegative random variables.

Model II

Vω(x) =
∑

i∈Zd

qi(ω)ξi(ω)f(x− i).

Again, Vω is sparse in the above sense. Of course, for pi ≡ 1 we would get the
usual Anderson model. Hundertmark and Kirsch study in [7] the metal insulator
transition for H(ω) = −∆ +Vω in L2(Rd) for the case that pi → 0 as |i| → ∞ but
not too fast in order to make sure that σess(H(ω)) ∩ (−∞, 0) �= ∅.

Our Model

In the following we consider:

(A1) V0 : R
d → R which is locally uniformly Lp with p ≥ 2 if d ≤ 3 and p > d/2

if d > 3.

(A2) Σ ⊂ R
d a set of sites that is uniformly discrete in the sense that

inf{|j − i| | j, i ∈ Σ, j �= i} =: rΣ > 0.

(A3) For each i ∈ Σ a single site potential fi ∈ Lp such that, for finite constants
ρ and M ,

supp fi ⊂ B(0, ρ) and ‖fi‖p ≤M.

(A4)
Vω(x) =

∑

i∈Σ

ωifi(x − i)

where ω = (ωi)i∈Σ ∈ (Ω,P) = (RΣ,
⊗

i∈Σ µi), i.e., the ωi are independent
random variables with distribution µi, and suppµi ⊂ [0, 1] for all i ∈ Σ.
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For our results on absence of continuous spectrum, in order to apply Theorem 2.2,
we will also require

(A5) Let V0, fi ∈ L
(d+1)/2
loc (Rd) for all i ∈ Σ. There exists one k ∈ Σ with fk of

definite sign, bounded, and such that |fk| ≥ cχB(0,s) for some c > 0 and
s > 0.

For further reference denote

pi(ε) := µi([ε, 1]) = P{ωi ≥ ε}. (3.1)

Also, denote by
mk := (µk)ac([0, 1]) (3.2)

the total mass of the absolutely continuous component (µk)ac of µk. We will only
use this for the fixed k ∈ Σ given in (A5).

We consider the self-adjoint random Schrödinger operator

H(ω) = H0 + Vω in L2(Rd) (3.3)

where H0 = −∆ + V0. Our assumptions guarantee that the local Lp-bounds (2.4)
for V0 + Vω are uniform not only in x, but also in ω.

Of course, our model contains Models I and II above as special cases and
pi(ε) ≤ pi for any ε > 0 in these cases. We have the following result:

Theorem 3.1 Let H(ω) be as above, satisfying (A1) to (A4), and assume that for
all ε > 0,

pi(ε) = o(|i|−(d−1)) as |i| → ∞. (3.4)

Then
(a) σac(H(ω)) ∩ �(H0) = ∅ almost surely.
(b) Assume, moreover, that (A5) holds. Then, with k as in (A5),

P{σc(H(ω)) ∩ �(H0) = ∅} ≥ mk. (3.5)

In particular, σc(H(ω)) ∩ �(H0) = ∅ holds almost surely if µk is purely
absolutely continuous, without any assumption on the distribution at the other
sites.

In order to apply the results from Section 2 we need to find sufficiently many
and sufficiently large regions in which the random potential Vω is small and thus
Hω close to H0. We start by showing that these regions appear with probability
one.

Definition. Call a set U ε-free for ω if ωi ≤ ε for all i ∈ Σ ∩ U .
Denote by

Ar,R = B(0, R) \B(0, r) (3.6)

the annulus with inner radius r and outer radius R.
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Lemma 3.2 Fix ε > 0 and a > 1. For n ∈ N let

an := P
(
Ar,r+n is not ε-free for all r ∈ [an, an+1 − n]

)
. (3.7)

Then
∑

n an <∞.

Proof. Choose η > 0 such that a(1 − η) > 1. Using uniform discreteness of Σ we
get that for all n ∈ N and r ≥ 1,

#(Ar,r+n ∩ Σ) ≤ Cnrd−1, (3.8)

where C depends on d and rΣ. Here #A is the cardinality of a set A. With C
from (3.8) choose δ ∈ (0, η/(Cad−1)).

By (3.4), pi(ε) ≤ δ|i|−(d−1) for i sufficiently large. Thus, for sufficiently large
n and each r ∈ [an, an+1 − n],

P(Ar,r+n is ε-free) =
∏

i∈Ar,r+n∩Σ

(1 − pi(ε))

≥ (1 − δ|i|−(d−1))#(Ar,r+n∩Σ)

≥ (1 − δa−n(d−1))Cna(n+1)(d−1)

≥ (1 − Cδad−1)n ≥ (1 − η)n. (3.9)

Aan,an+1 contains at least 1
n (an+1 − an)− 1 disjoint annuli Aj := Arj ,rj+n of

width n. Thus, using independence and (3.9),

an ≤ P(no Aj is ε-free)

=
∏

j

P(Aj is not ε-free)

≤ (1 − (1 − η)n)n−1(an+1−an)−1

≤ e−(1−η)n(n−1an(a−1)−1). (3.10)

As (1 − η)a > 1, the an are summable. �
By the Borel-Cantelli lemma we conclude P(Ωε,a) = 1, where

Ωε,a :=
{
ω ∈ Σ : For each sufficiently large n the annulus Aan,an+1

contains a sub-annulus Arn,rn+n which is ε-free for ω
}
. (3.11)

Therefore
Ωε =

⋂

�∈N

Ωε,1+1/� (3.12)

also has full measure.
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Based on this we can now complete the

Proof of Theorem 3.1. Fix a compact K ⊂ �(H0). Since �(H0) can be exhausted
by an increasing sequence of compact subsets, it suffices to prove that

σac(H(ω)) ∩K = ∅ almost surely. (3.13)

It can be shown, using the general theory of uniformly local Lp potentials,
e.g., [25], that there is an ε′ > 0 such that

σ(H0 + V ) ∩K = ∅, (3.14)

for each V with ‖V ‖p,unif ≤ ε′. Thus, by the properties of Σ and fi, there is an
ε > 0 such that

σ
(
H0 +

∑

i∈Σ

δifi(x− i)
)
∩K = ∅ (3.15)

if |δi| ≤ ε for all i ∈ Σ.
Fix this ε > 0 and let Ωε be the full measure set found above. For given

ω ∈ Ωε let ω̃i := min{ωi, ε}, i ∈ Σ, and

V2(x) :=
∑

i∈Σ

ω̃ifi(x− i).

By (3.15) we have σ(H0 + V2)∩K = ∅. Thus, in order to apply Theorem 2.1 and
conclude (3.13), it suffices to find for every γ > 0 a total decomposition (S(γ)

n ) of
{Vω �= V2} which satisfies (2.2) and (2.3).

For given γ > 0 choose an integer  > 2(d− 1)/γ. This implies (d− 1) log a <
γ/2, where a := 1 + 1/. As ω ∈ Ωε,a, for each sufficiently large n the annulus
Aan,an+1 contains an ε-free annulus Arn,rn+n.

Choose S(γ)
n := ∂B(0, rn + n

2 ). Then

δ(γ)
n := dist({Vω �= V2}, S(γ)

n ) ≥ n

2
− ρ

since Arn,rn+n is ε-free (recall that supp fk ⊂ B(0, ρ)). Thus δ(γ)
n → ∞. Also using

that σ(S(γ)
n ) ≤ Can(d−1), we conclude

∑

n

σ(S(γ)
n )e−γδ(γ)

n ≤ Ceγρ
∑

n

en((d−1) log a−γ/2) <∞.

This proves part (a) of Theorem 3.1.
In order to apply Theorem 2.2 to prove part (b) we slightly modify the above

construction, essentially replacing Σ by Σ \ {k}.
Let Ω′ := R

Σ\{k} with measure P
′ = ⊗i∈Σ\{k}µi. As the property defining

Ωε,a in (3.11) does not depend on the value of ωk, we get that also P
′(Ω′

ε,a) =
P
′(Ω′

ε) = 1, where Ω′
ε,a and Ω′

ε are defined as in (3.11) and (3.12), but as sub-
sets of Ω′.
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For compact K ⊂ �(H0) choose ε > 0 as in the proof of part (a). For ω′ ∈ Ω′
ε

let ω̃′
i := min{ω′

i, ε} (i ∈ Σ \ {k}). Also let Vω′(x) =
∑

i∈Σ\{k} ω
′
ifi(x − i) and

V ′
2(x) =

∑
i∈Σ\{k} ω̃

′
ifi(x − i). As before, σ(H0 + V ′

2) ∩K = ∅.
For γ > 0 choose  > 2d/γ, a = 1 + 1/. With rn from (3.11), let An =

B(0, rn + n
2 ) and Sn = ∂An. This yields

|An+1 \An−1| ≤ cda
(n+2)d

and

δ′n = min
{

dist(Sn, {Vω′ �= V2}),
1
2

dist(Sn, Sn−1 ∪ Sn+1)
}

≥ n

2
− ρ.

The choice of a guarantees that
∑

n |An+1\An−1| e−γδ′
n <∞. By Theorem 2.2

this proves the existence of a measurable subset M0,ω′ ⊂ R with |R \M0,ω′ | = 0
and such that

σc(H(λ, ω′)) ∩K ⊂ σc(H(λ, ω′)) ∩ �(H0 + V ′
2) = ∅

for all λ ∈M0,ω′ , where H(λ, ω′) = H0 + λfk(x− k) + Vω′(x).
As µk(M0,ω′) ≥ (µk)ac(M0,ω′) = (µk)ac(R) = mk it follows by Fubini that

P{ω ∈ Ω : σc(H(ω)) ∩K = ∅} ≥ mk. Since this bound is independent of K and
we can exhaust �(H0) by an increasing sequence Kn we arrive at the assertion.
This completes the proof of Theorem 3.1. �
Remarks. (1) While the “volume” term |An+1 \An−1| in (2.6) has to be considered
larger than the “surface” term σ(Sn) in (2.3), this did not make a significant dif-
ference in the above proof. The same total decomposition Sn can be used to prove
absence of absolutely continuous spectrum and absence of continuous spectrum.
The difference will become more significant for the quasi-1D surfaces considered
in the next section.
(2) Crucial for our method to apply is the almost sure appearance of a sequence
of ε-free annular regions which must (i) grow in thickness and (ii) not be too
far apart, as found in Lemma 3.2. In Theorem 3.1 this was enforced through the
assumptions on the distribution of the coupling constants. In Section 4 it will
follow from sparseness of the single site set Σ.
(3) Note that our methods are sufficiently “soft” to allow for considerable flexibility
of the model. The single site potentials fi may depend on the site, do not need
to be sign definite, and may include Lp-type singularities. We can deal with quite
arbitrary single site distributions. Only for the proof of absence of continuous
spectrum we need one of the distributions to be absolutely continuous. These
assumptions are weaker than what usually enters into the proof of localization
properties through the multiscale analysis or fractional moment methods.
(4) The assumption suppµj ⊂ [0, 1] is just a normalization. For our methods to
apply, the random potentials have to obey uniform bounds, e.g., in the sense of
‖ · ‖p,unif from (2.4).
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Let us finally state the following result for our model which easily follows
from the “Almost surely free lunch Theorem” in [7]. For the case V0 = 0 it can be
combined with Theorem 3.1 to provide examples with purely singular or pure point
(while not discrete) spectrum below zero and an absolutely continuous spectral
component above zero.

Theorem 3.3 Let µk, fk, V0 be as above, V0 = 0 and assume that, additionally,
the ‖fk‖∞ are uniformly bounded and that the second moments of the ηk obey

E(η2
k) =

∫ 1

0

x2dµk ≤ C|k|−β

for some β > 2. Then
σac(H(ω)) ⊃ [0,∞) P -a.s.

Proof. The assumptions clearly make sure that

W (x) := E(Vω(x)2)
1
2 ≤ C(1 + |x|)−(1+ε)

so that we can apply Theorem 2.4 from [7] to see that Cook’s criterion is applicable
for P -a.e. ω ∈ Ω. �

For general V0 the corresponding result, namely that σac(−∆+V0) ⊂ σac(Hω)
almost surely, is probably false. It should be true for certain periodic potentials,
see [2, 6, 29].

4 Quasi-1D surfaces

In Section 3 sparseness of the potential Vω in (A4) resulted from an assumption on
decaying randomness, e.g., (3.4). In the present section we will modify our methods
and results for the case where sparseness of Vω arises directly through sparseness of
the deterministic set Σ. By this we mean situations where Σ does not have positive
d-dimensional density in R

d, i.e., #(Σ ∩ B(0, R)) = o(Rd) as R → ∞. A special
case would be an m-dimensional sublattice, e.g., Σ = Z

m × {0} ⊂ R
m × R

d−m,
0 < m < d, in which case Vω would model a random surface potential. Our most
interesting result holds for m = 1, where our methods cover the following more
general situation:

Definition. A uniformly discrete subset Σ of R
d is called quasi-one-dimensional

(quasi-1D) if there exists C <∞ such that

#(Σ ∩AR,R+1) ≤ C (4.1)

for all R ≥ 0.

Theorem 4.1 Let H(ω) = H0 + Vω satisfy (A1) to (A4). In addition, assume that
Σ is quasi-1D and that

sup
i∈Σ

pi(ε) < 1 (4.2)

for every ε > 0. Then σac(H(ω)) ∩ �(H0) = ∅ almost surely.
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If Σ is quasi-1D, then by Theorem 4.1, no spatial decay in the randomness of
the ηi is required to conclude absence of absolutely continuous spectrum in gaps
of σ(H0). For example, (4.2) is satisfied for independent, identically distributed
random variables ηi such that 0 ∈ suppµ for their common distribution µ. In
particular, as every uniformly discrete Σ ⊂ R is quasi-1D, this strengthens The-
orem 3.1(a) in the case d = 1, which would require pi(ε) = o(1) as k → ∞. Of
course, in the case d = 1 our result is hardly new as (essentially) much stronger
results are known for one-dimensional random potentials.

More interesting is the case d > 1, where special cases of quasi-1D sets include
discrete tubes of the form Σ = Z×S, with S a bounded subset of Z

d−1. Theorem 4.1
shows the absence of absolute continuity in the “surface spectrum” generated by
the random (1D) surface potential V (ω). Also, within certain limitations, we can
allow for curvature in the tubes Σ, thus covering rather general “random sausages”.

Proof. We start with a modification of Lemma 3.2.

Lemma 4.2 Fix ε > 0. Let δ = supi pi(ε) < 1, C as in (4.1) and a > 1
(1−δ)C . Then

the an, as defined in (3.7), are summable.

Proof. This follows with the same argument as in the proof of Lemma 3.2, using
that now P(Ar,r+n is ε-free) ≥ (1 − δ)Cn. Thus the set Ωε,a, defined as in (3.11),
has full P-measure. �

Fix K ⊂ �(H0) compact and argue as in the proof of Theorem 3.1 to find
ε > 0 such that σ(H0 + V2) ∩ K = ∅, where V2(x) =

∑
i∈Σ ω̃ifi(x − i), ω̃i =

min{ωi, ε}. Choose a > 1 as in Lemma 4.2 and ω ∈ Ωε,a, i.e., Aan,an+1 contains
ε-free Arn,rn+n for all sufficiently large n.

As before, the spheres Sn = ∂B(0, rn + n
2 ) give a total decomposition with

dist({Vω �= V2}, Sn) ≥ n
2 − ρ. But, as Lemma 4.2 prevents us from choosing a

arbitrarily close to 1, this will not yield convergence of (2.3) for all γ > 0. We
will therefore refine our construction by splitting the Sn in two parts. One part
is a union of spherical caps for which, due to points of Σ close to Arn,rn+n, the
distance n

2 −ρ from {Vω �= V2} can’t be improved. The second part (the remaining
“Swiss cheese”) has much bigger distance to {Vω �= V2} and, due to the sparseness
of Σ, contains most of Sn. The details of this construction are as follows:

Fix α > 1. Let

Pn := (Arn−nα,rn ∪Arn+n,rn+n+nα) ∩ Σ (4.3)

be the points of Σ in the nα-neighborhood of Arn,rn+n (but outside Arn,rn+n). For
each j ∈ Pn define the spherical cap

Sn,j := Sn ∩B
((
rn +

n

2
) j
|j| , n

α
)
. (4.4)

Also let
S′

n := Sn \
⋃

j

Sn,j.
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Sn j ∈ Pn

Arn,rn+n Sn,j := Sn ∩B
((
rn + n

2

)
j
|j| , n

α
)

Figure 2. The geometry in the proof of Lemma 4.2: the bold face line shows a part
of Sn, the shaded region is Arn,rn+n, the point in the small circle a j ∈ Pn and
the small circle the boundary of B((rn + n

2 ) j
|j| , n

α).

Since S′
n ∪

⋃
j Sn,j = Sn, we have that

{Sn,j : n ∈ N, j ∈ Pn} ∪ {S′
n : n ∈ N} (4.5)

is a total decomposition of R
d. As above, since Arn,rn+n is ε-free,

δn,j := dist({Vω �= V2}, Sn,j) ≥
n

2
− ρ. (4.6)

If x ∈ S′
n and j ∈ Σ ∩ (Arn,rn+n)c, then, by elementary geometric considerations,

dist(x, j) ≥ nα for sufficiently large n. Using this and again that Arn,rn+n is ε-free,
we find

δ′n := dist({Vω �= V2}, S′
n) ≥ nα − ρ. (4.7)

From the simple volume bound (2.1) on the generalized surface area one gets

σ(Sn,j) ≤ Cndα, (4.8)

σ(S′
n) ≤ Cadn. (4.9)

Checking (2.3) for the partition (4.5) amounts to proving that
∑

n

σ(S′
n) e−γδ′

n <∞ (4.10)

and ∑

n

∑

j∈Pn

σ(Sn,j) e−γδn,j <∞ (4.11)
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for each γ > 0. (4.10) follows from (4.7) and (4.9) since α > 1. (4.11) follows from
(4.6) and (4.8), noting that #Pn ≤ 2nα +2 since Σ is quasi-1D. From Theorem 2.1
we conclude σac(H(ω)) ∩K ⊂ σac(H(ω)) ∩ �(H0 + V2) = ∅. �
Remark. It is possible to prove Theorem 4.1 under a slightly weaker assumption
on the set Σ, namely that there exists C <∞ such that

#(Σ ∩B(0, R)) ≤ CR (4.12)

for all R ≥ 1. (4.12) is weaker than (4.1) in that it allows the number of points
in Σ ∩AR,R+1 to be unbounded with respect to R. (4.12) is also somewhat more
natural as it doesn’t depend on the norm used to define B(0, R) nor on the choice
of the center of the ball.

A simple counting argument shows that, under the assumption (4.12), for
each annulus of the form Aan,an+1 most sub-annuli AR,R+n satisfy a bound #(Σ∩
AR,R+n) ≤ Cn. Here “most” means at least a non-vanishing fraction. One finds
sufficiently many disjoint such annuli to construct ε-free regions as before. More-
over, by an additional counting argument, one argues that most of these annuli
do not have more than C′nα points of Σ in their nα-neighborhoods. Based on this
one can construct a partition {S′

n, Sn,j} as above and carry through the proof. We
skip the somewhat tedious details of this generalization.

We are not able to prove a result like Theorem 3.1(b), i.e., absence of con-
tinuous spectrum in �(H0) with positive probability, under the assumptions of
Theorem 4.1 (plus (A5)). For the partition Sn = ∂An, An = B(0, rn + n

2 ) the vol-
umes |An+1 \An−1| grow too fast to get validity of (2.6) for all γ > 0. A trick like
the introduction of {S′

n, Sn,j} as above is not applicable here since in Theorem 2.2
the Sn need to arise as boundaries of a growing sequence An.

However, if one replaces (4.2) by pi(ε) = o(1) as |i| → ∞ for all ε > 0, then
Lemma 4.2 will hold for any a > 1, which allows for an application of Theorem 2.2
with a γ-dependent choice of the Sn, as in the proof of Theorem 3.1(b). Sparseness
of the random potential is achieved here through a combination of sparseness of
Σ and decaying randomness pi(ε) = o(1), as opposed to Theorem 3.1, where
sparseness follows exclusively from stronger decay pi(ε) = o(|i|−(d−1)).

In fact, the correlation between the degree of sparseness of Σ and the rate
of decay of pi(ε) can be made more specific. For this, call a uniformly discrete
set Σ ⊂ R

d quasi-m-dimensional (1 ≤ m ≤ d, not necessarily integer) if for some
C <∞ and all R ≥ 0,

#(Σ ∩AR,R+1) ≤ CRm−1. (4.13)

Then the following result is found with the same methods as above:

Theorem 4.3 Let H(ω) satisfy (A1) to (A4), Σ be quasi-m-dimensional and, for
all ε > 0,

pi(ε) = o(|i|−(m−1)) as |i| → ∞, (4.14)

then σac(H(ω)) ∩ �(H0) = ∅ almost surely.
If, moreover, (A5) holds, then P{σc(H(ω)) ∩ �(H0) = ∅} ≥ mk.
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5 Concluding remarks

Among the known results for discrete surface models, the one most closely related
to Theorem 4.1 above is the result of Jakšić and Molchanov [10]. They consider
the discrete Laplacian on Z × Z+ with random boundary condition ψ(n,−1) =
Vω(n)ψ(n, 0), where the Vω(n) are i.i.d. random variables. They show that the
spectrum outside [−4, 4], i.e., outside the spectrum of the two-dimensional dis-
crete Laplacian, is almost surely pure point. This is stronger than our continuum
analogue in the sense that we can only prove absence of absolute continuity outside
the spectrum of the deterministic background operator H0.

The proof in [10] requires a technical tour de force. The two-dimensional
problem can be reduced to a one-dimensional problem with long range interactions.
Anderson localization for the latter has been proven in [12] with methods based on
an approach developed in [17] (which is also behind Theorem 2.2 above). The one-
dimensional problem depends nonlinearly on the spectral parameter, a difficulty
which is resolved by adapting some ideas from the Aizenman-Molchanov fractional
moment method [1].

Our methods are comparatively soft. In particular, they work directly in
the multi-dimensional PDE setting and do not require a reduction to d = 1.
One-dimensionality of the random surface only enters through its probabilistic
consequences (Lemma 4.2) for the frequency of the appearance of ε-free regions,
which constitute the “potential barriers” required in Theorem 2.1.

This makes our methods very flexible. In addition to the extension to contin-
uum models, they allow for rather general quasi-1D surfaces (e.g., curved tubes,
unions of tubes), work in arbitrary dimension d and allow for the presence of
an additional deterministic background potential V0. It is possible to adapt our
methods to lattice operators and prove absence of absolutely continuous spectrum
outside the spectrum of the discrete Laplacian for much more general geometries
than the half-plane considered in [10].

Also, our methods can easily be adjusted to work for operators of the type
(3.3) on L2(Ω), Ω �= R

d. For example, for H(ω) = −∆ + Vω in L2((0, a) × R
d−1)

with Dirichlet boundary conditions and Vω given through (A2) to (A4) with i.i.d.
coupling constants ωi, we would get that σac(H(ω))∩ (−∞, 0) = ∅ almost surely.
Of course, for this physically one-dimensional operator (with no bulk space), one
would expect the much stronger result that σc(H(ω)) = ∅. But the corresponding
result for discrete strips, e.g., [18], does not seem to extend easily to the continuum.

Finally, we mention that Hundertmark and Kirsch [7] announce some results
on pure point spectrum for continuum models similar to the ones studied here.
They will use suitable adaptations of multiscale analysis to show that the negative
spectrum of −∆ + Vω is almost surely pure point. Here Vω is either of the type of
Model II above or a random potential at the surface of a half space Schrödinger
operator. In situations where the multiscale analysis can be carried out, their
results should be stronger than ours.
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[14] V. Jakšić, S. Molchanov and L. Pastur, On the propagation properties of
surface waves, in “Wave propagation in complex media (Minneapolis, MN,
1994),” IMA Math. Appl., Vol. 96, Springer, New York, 1998, pp. 143–154.

[15] W. Kirsch, Scattering theory for sparse random potentials, Random Oper.
Stochastic Equations 10, no. 4, 329–334 (2002).

[16] W. Kirsch, M. Krishna and J. Obermeit, Anderson model with decaying ran-
domness: Mobility edge, Math. Z., 235, 421–433 (2000).

[17] W. Kirsch, S. Molchanov and L. Pastur, One-dimensional Schrödinger oper-
ators with high potential barriers, Operator Theory, Adv. Appl. 57, 163–170
(1992).

[18] A. Klein, J. Lacroix and A. Speis, Localization for the Anderson model on a
strip with singular potentials, J. Funct. Anal. 94, no. 1, 135–155 (1990).

[19] M. Krishna, Anderson model with decaying randomness: Existence of ex-
tended states, Proc. Indian Acad. Sci. Math. Sci. 100, no. 3, 285–294 (1990).

[20] M. Krishna, Absolutely continuous spectrum for sparse potentials, Proc. In-
dian Acad. Sci. Math. Sci. 103, no. 3, 333–339 (1993).

[21] M. Krishna and K.B. Sinha, Spectra of Anderson type models with decaying
randomness, Proc. Indian Acad. Sci. Math. Sci. 111, no. 2, 179–201 (2001).

[22] I. McGillivray, P. Stollmann and G. Stolz, Absence of absolutely continuous
spectra for multidimensional Schrödinger operators with high barriers, Bull.
London Math. Soc. 27, no. 2, 162–168 (1995).

[23] S. Molchanov, Multiscattering on sparse bumps, In “Advances in differential
equations and mathematical physics” (Atlanta, GA, 1997), Contemp. Math.
217, Amer. Math. Soc., Providence, RI, 1998, pp. 157–181.

[24] S. Molchanov and B. Vainberg, Multiscattering by sparse scatterers, In
“Mathematical and numerical aspects of wave propagation” (Santiago de
Compostela, 2000), SIAM, Philadelphia, PA, 2000, pp. 518–522.

[25] M. Reed and B. Simon, Methods of Modern Mathematical Physics IV: Anal-
ysis of Operators, Academic Press, New York, 1978.

[26] B. Simon, Spectral analysis of rank one perturbations and applications, CRM
Proc. Lecture Notes, 8, 109–149 (1995).



326 A. Boutet de Monvel, P. Stollmann and G. Stolz Ann. Henri Poincaré
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Institut de Mathématiques de Jussieu
Université Paris 7
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