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A B S T R A C T  

We prove localization for random perturbations of periodic divergence 
form operators of the form - V  �9 a~ - V near the band edges. Here a~ is 
a matrix function which results from an Anderson type perturbation of 
a periodic matrix function. 

1. Introduction, the model, and the results 

In this article we prove Anderson localization for operators of the form H(w) = 

- V . a ~  .V where a~ is a random perturbation of a periodic matrix function. Note 

that  the diffusion equation for a non-homogeneous, anisotropic medium governed 

by a~ is just 

Otu = H(w)u, 

so that  the spectral properties of H(w) have important  physical consequences. 

The application to localization of acoustic waves is explained in the introduction 

of [4], where the isotropic case (i.e. a~(x) = p - l ( x ) .  I,  I the unit matrix) is 

treated. For periodic aper one expects H(aper) to have purely absolutely con- 

tinuous spectrum consisting of closed intervals, the so-called b a n d s ,  which are 

separated by open intervals called gaps;  see Section 2. For the Anderson-type 

random perturbations we consider here the spectrum will again have band struc- 

ture. The spectral type, however, is completely different near the band edges: 
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there pure point spectrum occurs and the associated eigenfunctions decay expo- 

nentially. In a sense this spectral picture is opposite to the situation without 

the random perturbation, and this despite the fact that the perturbation may 

very well be small compared to the periodic unperturbed H(aper). Our main 

result, Theorem 1.1 below, asserts such a spectral picture for models which can 

be thought of as anisotropic versions of the models investigated by Figotin and 

Klein in [4]. We follow their line of approach as far as the general scheme of 

the proof is concerned. Namely, using an adaption of multi-scale analysis, which 

was designed for the SchrSdinger operator case, it remains to prove estimates for 

restrictions of H(w) to finite boxes. The latter have compact resolvent and can 

thus be analyzed by means of their eigenvalues and eigenfunctions. 

We are now going to introduce the model we are working with: 

A.  Let aper: ~d __} cdxd be measurable, bounded, uniformly elliptic (i.e. 

(aper(X)~[~) ~ ~][~[2 a.e. for a fixed ~? > O) and Zd-periodic. Then 

(1.1) D(h(aper)) = wl'2(]~d), h(aper)[U,V] = fa(aver(X)VU(X)IVV(x))dx 

defines a dosed, symmetric form whose associated self adjoint operator (see [8]) 

we denote by H(aper). 

Around each site i C Z d we choose independently matrices and add them 

to aper. TO make this precise, we work with a suitable parametrization of the 

nonnegative matrices: Let 

S = [0,-~]d x V(d) 

where U(d) denotes the unitary matrices and we identify s = (A1,.. . ,  Ad, u) E S 

with the matrix 

u* cling(A1,..., Ad)U. 

Thus S is a parametrization of all nonnegative matrices with norm less than -A 

(where, of course, some matrices are encoded by different s C S, e .g.A.  I). As a 

probability measure on S we choose 

d# = gl(A1)dA1 x . . .  x gd(Ad)dAd x dg, 

where gi E L ~176 with support [O,A], fig/Ill -- 1 and v is an arbitrary probability 

measure on the unitary group, e.g. the Haar measure. For the measure # we 

assume 

(1.2) #{s E S;A1, . . . ,Ad >_ t} ~ 1 - t  r and#{s  E S;,~I, . . . ,~ d ~ - ~ - t }  ~ 1--t ~ 
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for some T > d and small t > O. Finally, let Xi be the characteristic function of 

the cube of unit sidelength centered at i C Z d �9 We define 

f~ = S z~, equipped with P = ~ #, 
i E Z  d 

a~ = ape: § ~ Xiw(i) for w = (w(i)) �9 12, 
iEZ d 

H(w) = H(a~), 

where the latter is defined as in (1.1). 

An astonishing consequence of the following analysis is the fact that  our results 

depend in no way upon which measure u we choose on the unitary group. For 

instance, one could take the point measure concentrated on ~ .  I or any other 

particular matrix. 

Before stating our main result we infer the following formula for the spectrum 

of H(~)  (which is deterministic by standard theory of ergodic operators, e.g. 

[2, 10]) from Proposition 2.3: 

(1.3) a(H(w)) = U a(H(aper) - A. A) =: ~ for ~ a .e .w.  

e [0 ,~] 

Since H(aper) - A. A = H(ape~ + A- I) is periodic, E has band structure. The 

band edges of E are "induced" by band edges of H(ape~) and H(ape~ + A �9 I) 

respectively, and correspond to the rare events that  all the eigenvalues of w(i) at 

all the sites i are extremely small respectively extremely large. At these so-called 

f l u c t u a t i o n  b o u n d a r i e s  one expects localization. This is the content of our 

main Theorem: 

THEOREM 1.1: Assume that H(w) is as above. Then in a neighborhood of 

0~  \ { 0 }  the H(w) have pure point spectrum •-a.s. with exponentially decaying 
eigenfimctions. 

Note that  we excluded inf E = 0 in the Theorem. The reason is that  0 is 

not a fluctuation boundary as this value belongs to the spectrum of all finite 

box hamiltonians with the constant function as eigenfunction and one does not 

expect localization there (see the discussion in [10], Chapter IV, 8). Moreover 

let us point out that  in contrast to [4], for instance, we do not require any small 

coupling constant regime. 

While it is clear from what was said above that  ~ consists of a union of closed 

intervals it is not a priori clear that  there are examples exhibiting gaps in the 
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spectrum of H(aper) and hence in E (for A small enough). Fortunately, such 

kinds of examples were provided by Hempel, [51. 

As we already remarked above, this theorem extends in a sense recent results 

by Figotin and Klein, [4], in whose work the random matrices are scalar multi- 

ples of the unit matrix. In some instances we have given easier proofs, notably 

concerning the location of the spectrum of H(aper) and H(a~). This is mainly 

due to a simple observation stated in Lemma 2.2 below. 

Other related work is the recent joint work [9] of the author together with 

W. Kitsch and G. Stolz, where localization near the band edges is proven for 

random perturbations of periodic SchrSdinger operators. In particular our proof 

of the Wegner estimate is, as in [9], modelled along the arguments of [8]. 

A very nice framework for localization near band edges can be found in the 

article [1] by Barbaroux, Combes and Hislop. We refer the reader to this paper for 

a comprehensive list of results concerning localization for additive perturbations. 

Finally, I thank P.D. Hislop for fruitful discussions and the referee for helpful 

comments. 

2. The  s p e c t r u m  

Here we collect some basic facts concerning the spectrum of H(aper) and use 

them to calculate the deterministic spectrum of H(w). Let us start with Floquet 

theory: consider the unitary 

U: L2(R d) L2[0, 
( ) 

Uf(x,O) = E e-k(x+~ + •)" 
k E Z  d 

It is easy to see that 

UH(aper)V*=- jf[:,2r) a T(O) ) 

where T(tg) is defined by the associated form 

(T(O)ulv) = f[O,2.)d(aPer(X)(V -- iO)ul(V - iO)v) (2~dx  

with form domain 
1,2 W er([0, d) = ([0, 2 )d) W''2 

which can be identified with the Sobolev space over the flat torus. Note that 

basing the calculations on the forms we don't need to assume any smoothness 



Vol. 107, 1998 LOCALIZATION FOR RANDOM PERTURBATIONS 129 

of the matrix ape r. Obviously the T(8) have discrete spectrum; denoting their 

eigenvalues by En (0), n 6 N we have the following representation for the spectrum 

which is well-known in the SchrSdinger operator case (see [11], Section XIII): 

(2.1) a(H(aper)) = U En(8). 
ee[0,2~r) a,neN 

Since T(8) depends analytically and in particular continuously upon O for each 

fixed n the corresponding n-th eigenvalues for different 0 constitute an interval 

called the n-th band.  Again by holomorphic dependence on 8 the spectrum 

of H(aper) will be purely absolutely continuous apart from some discrete eigen- 

values, whose existence we cannot exclude. All this is quite standard in the 

SchrSdinger operator case, giving pure absolutely continuous spectrum under 

mild assumptions concerning the potential; since it is not central to what follows 

here we refer the reader to the monograph [12] and to the article [6] where related 

material can be found. 

Writing A = Az(i) for an open cube with sidelength l centered at i C Z d we 

denote by HA(a) the operator in L2(A) associated with the form h(a) defined 

W 1,2 by the analog of (1.1). It is clear that periodic boundary conditions are o n  ,, per 

best suited to our model. We have: 

PROPOSITION 2.1: For any measurable, bounded, uniformly elliptic matrix- 
valued function a we have 

(2.2) a(H(a)) C U a(Hh.(o)(a)). 
mEN 

Ira is Zd-periodic, equality holds in (2.2). 

One possibility to deduce (2.2) is by using Floquet theory and convergence 
results for operators. We prefer an elementary argument which will be of use 
later on. It is based upon 

LEMMA 2.2: Let S be a nonnegative operator on some Hilbert space; denote 

by s the form associated with S and let D C D(s) be dense with respect to the 

form norm [[ �9 IIs. Then the following are equivalent for E E R: 

(i) E 6 a(S) 

(ii) There exJst normalized f~ E D such that 

sup (s - E)[fn, g] --+ 0 as n -~ oo. 
geD(s),llglls=l 
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Proo~ ( i ) ~ ( i i ) :  We find a normalized sequence (gn) in D(S) with (S-E)g~ --+ 
0 (either E is an eigenvalue in which case we take the gn to be a fixed eigenfunction 

or E is in the essential spectrum and there exists a singular sequence, see [15], 

Thm. 7.24, p. 203). Taking normalized fn in D which approximate gn with 

respect to the form norm we arrive at (ii). 

(ii)==*(i): Assume E f f  a(S). Then supn~N [[(S - E)-lfn[[s =: c < co. This 

gives 

IIAH 2 = ( s - E ) [ f n , ( S - E ) - l f n ]  <_c. sup (s - E)[,fn,9] --~0 
9~D(8),IIgII.=I 

a contradiction. | 

Note that  in the implication ( i i ) ~ ( i )  above we can even consider sequences 

of operators and find respectively that  E �9 U a(Sn). In fact, we will use such an 

argument in the following proof. 

Proof o[ Proposition 2.1: "C": Let E E a (H(a ) ) .  By Lemma 2.2 we find a 

sequence (f,~) in Cc ~ such that  

sup (h(a) - E)[fn,g] -~ 0 as n --+ oo 
gew1.2,tlglIw1.2=l 

using tha t  the form norm of h(a) is equivalent to the Sobolev norm. For In e N 

large enough the support  of f,~ is contained in Al, (0) and consequently fn lies 

in the form domain of HA,, (0). Assume now that  E r [.J,~eN a(HA,(0)(a)).  Then 

there is a minimal positive distance of E to [-JneN a(HA,,(0)(a)) which implies 

that  the corresponding resolvents are uniformly bounded. This gives 

I]f,~]l ~ = (h(a) - E)[fn,  (HA,, (0) -- E ) - l f , ]  

< c. sup (h(a) - E)[fn,g] --+ O, 
9EW1,2,HgIIw1,2=l 

a contradiction. For the last inequality we use that  each (Ha, ,  (0) - E ) - l f , ~  which 

is a priori defined only on the cube can be extended to a wl '2-funct ion on all of 

l~ d in such a way that  the norms stay bounded. The norms of (Hh~,(o) - E ) - l f n  
are bounded in n because of the uniform boundedness of the resolvents mentioned 

above. 

Let us now prove the converse inclusion in case that  a is periodic. Here we use 

a well-known strategy of constructing singular sequences. It  suffices to prove that  

every E �9 a(HAk(0)(a)) is contained in a (H(a ) ) ,  since the latter is a closed set. 

Take f ,  a normalized eigenfunction of Hhk(0)(a) with eigenvalue E and extend 



Vol. 107, 1998 LOCALIZATION FOR RANDOM PERTURBATIONS 131 

it periodically to A=.k(0). Note that this shows that 

a(Hik(o) (a)) C a(HA,~.~(o)(a)). 

Use a C I cut-off function Cn which takes values in the unit interval, has support 

in A,~.k(O) and is 1 on the cube A(n-2).k(O). Consider gn := r f and note that  

( n -  2) d _< Iig,~ll 2 _< n d and C ( n -  2) d < Ilgnl]~z~,2 <- C .  n d, 

and that  the gradient of Cn is supported on a set of measure proportional to 

n d-1. Using these properties and plugging f~ := llgnl1-1 �9 g~ into the definition 

of h(a) one verifies in a straightforward calculation that f~ obey the condition 

required in Lemma 2.2 (ii). | 

PROPOSITION 2.3: Assume A.  Then 

(1.3) a(H(w))  = U a(H(aper) - A" A) for P a.e.w. 

Proof: "C" follows from the min-max principle and Proposition 2.1 since 

gA(apor) < HA(a~) < H^(a,r +X. I) 

for all cubes A. 

"D": Given a A �9 [0,A] and an E �9 a(H(aper+)~'I) we find a singular sequence 

r in C ~  for E by Lemma 2.2. Let In �9 N be such that  supp(r c Al.(0), and 

for x �9 Z d consider 

~n(x) := {~ c ~ ; ~ ( k ) j  e [~ - 1 / n , ~ +  1/~] for all k e h ,o(x) , j  = 1, . . .  ,d}. 

Then P(t2n (x)) is independent of x and strictly positive. Also, if Al~ (x)NAe~ (y) -- 

0, then f/~(x) and f/,~(y) are independent. Thus, for a.e. w �9 fl there exists an 

xn(w) such that  w �9 fl,~(xn(w)). This implies 

sup (h(a~) - E)[r - x,~(w)),g] -4 0 as n -9 oo, 
geW~'2,llg[]l,2<~l 

i.e. C n ( " -  xn(w)) is a singular sequence for E to h(a~) in the sense of 

Lemma 2.2. This concludes the proof of (1.3). | 

The simple formula (1.3) can be extended to the case where Xi is replaced by 

a more general cut-off function. In fact, for 0 < r _< 1, r := r - i) instead of 

Xi one has 

a(H(w))  = U a(H(aper + A- ~ r  
~e[0,~] iezd 



132 P. S T O L L M A N N  Isr. J. Math .  

without any significant change in the proof. Note, however, that in the sequel 

we would need 

~-~ r _> ~ > 0. 
i~Z d 

3. The Wegner estimate 

The estimate we are aiming at is one of the basic ingredients of multi-scale 

analysis. It is again phrased in terms of the box hamiltonians HA(a~) and states 

that it is quite unlikely to hit a fixed energy with the spectrum of the box 

hamiltonian when varying the w. The precise interplay of probability estimates 

and size of the box is, however, crucial. 

THEOREM 3.1 (Wegner's estimate): For every a > 0 there exists ca such that 

for aJl E , e  > 0 satisfying E - r > a and all h = Al(k) with 1E N, k C •d: 

?{dist(a(HA(a~)), E) < r < ca. ~-[A[ 2. 

The proof given here is very similar to the one in [8], which was also employed 

in [9]. In the latter article we allow for random perturbations with small support 

which requires considerably more effort. Moreover, in the latter case the Wegner 

estimate only holds in a neighborhood of the boundary of ~, quite in contrast to 
our theorem above which provides an estimate away from the stable boundary 0. 

Unfortunately, we only obtain a bound quadratic in the volume of the cube 

and therefore no information about the integrated density of states. 

Proof." Choose a monotone Cl-function p: R -4 [0, 1] which is 1 on It, c~) and 0 

on ( - c~ , - r  We can estimate 

~{dist(a(Hh(a~)),  E) < r < E{tr X[E-~,E+~](HA(a~))} 

E{tr[p(Hh(a~) -- E + 2~)-  p (Hh(a~) -  E -  2r 

F < g{tr[  p ' ( H A ( ~ )  - E + t)dtl}  
2e 

3EA S 

where E,~ denotes the n-th eigenvalue (counted with multiplicity) of an appro- 

priate operator. In order to calculate this expression further, let us introduce a 

more convenient notation; since Hh(a~) only depends upon the w(k) with k e A 
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we wri te  (W(k))keh ---- (x(k),U(k))keh, where x (k) e [0,A] d and u (k) is a un i ta ry  

mat r ix .  W i t h  the  obvious nota t ion  let us regard 

0 
Oxlk) E~(H(x, u)) 

for k E A, i 1 , . . . , d .  Wri t ing eii for the ma t r ix  d = (6ki6a)k,Z=l and using the  

H e l l m a n n - F e y n m a n  theorem [14], p. 151, we get 

0 En(H(x,u)) = (XkU(k)eiiu(k)*V~blVr 
Ox~ ~) 

where ~b is a normal ized eigenfunction of H(x,u) with eigenvalue En(x,u). 
Denote  

M := sup{Ha~(x)H; x e ~d ,w e ~'~}, 

where Ha~(x)II s tands  for the  opera tor  norm of the matr ix ,  so t ha t  

(H(w)r162 = ( a ~ V r 1 6 2  <_ U .  ]IVr 2. 

Consequently,  

d 
Z Z ~0_--~ En(H(x' u)) = IIVr 2 >_ M-I(H(x, u)~b[r > M - 1 .  E~(H(x, u)). 
kEA i=1 ux-~ 

Since the  eigenvalues in the  last inequality are all bounded  below by a we 

arrive at  

d 
a. M -1. p'(En(')) 4_ p'(En(')) " ~_, ~ -~-~En(H(x,u)) 

kEA i=l u x ~  

d 
= ~ ~ O--~p(E~(H(x,u))- E + t) 

kEA i----1 ux~ 

SO we can proceed to es t imate  the rhs of(3.1)  by 

) �9 -._< Mo-~ Z: / , , ,  11/, , , ( ~ ( , ) )  , ( ~ ( - ( ~ ,  ~)) - ~ + ,) 
n - e jEA "= 

= Ma-1 Z f_::dt ~ f dv(u (`,, ~l f~ 
n - ~ - a U ( d )  
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2e d 

:Ma- Z f_ dtEZ... 
n 2e kEA i----1 

j JU(d)  l 0 (2X i 

For fixed k, i we can estimate the inner integral by 

fXdx(J  ) l,xU)~ 

(j,l)r 

+ t ) ) ) .  

E + t)))II0~ I1~) 

since p was supposed to be monotone. The inner integral can be calculated as 

p(En(H(x ' ,  xl k) = -A, u)) - E + t) - p(En(H(x ' ,  xl ~) = 0, u)) - E + t) 

where the I indicates the x-coordinates different from xl k). Observe that we have 

d.  IA] terms in the sum over k, i. The assertion of the Theorem is proved, if we 

can check that  

etp(E~(H(~', x} k~ = ~, ~)) - E + t )  -p(E,(H(x', x} k~ = O, ~)) -E+t)... 
n 

�9 .. <_ c~ .  Ihl, 

but this follows from Weyl's law as p < 1 and only those n with energy below 

E + 2~ give a nonzero contribution. | 

4. In i t ia l  l eng th  scale est imates  

In this section we provide the initial length scale estimate which constitute the 

second main ingredient (along with Wegner's estimate) needed for a multi-scale 

analysis. 

PROPOSITION 4.1: Assume A and let E E 0E \{0}.  Then for ~ < 7 - d there 

is fl > 0 and 1o = lo(d,~, T,~) such that 

(4.1) ~{dist(a(HA,), E) _< l ~-1} < l -~ 

for M11 _> 10. 

Proof'. For definiteness, let E E 0E \{0}  be a lower band edge. We fix h > 0 

and consider 

f l l , h  : :  {O) E ~ ; 0 2 j , 1 , . . .  ,02j, d ___~ h '(j E Al(0))}. 
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Since E C 0E we find 5 > 0 such that for A = Az (0) 

a(H^(w)) n [E - 5, E) = O. 

Obviously, for w E 121,h we have 

HA(w) >_ HA(a) -- hhA 

so that  

inf (a(Hh(w)) N [E - 5, oc)) > inf (a(HA(a) -- hAA) n [E - 5, oc)) > E. 

As a( H A (w) ) N [E - 5, E) --- 0 this means that  the distance from E to a( H A (w) ) is 

just the distance of E to the part of the spectrum which lies right to E (whenever 

it is less then 5), i.e. dist(a(HA(w)) N [E, oc), E) and thus 

(4.2) dist(a(HA(W)), E) >_ inf (a(HA(a) - hAA) N [E - 5, oo)) - E 

for h > 0 small enough. We will now show that the rhs of inequality (4.2) is 

bounded below by h .  M -1 �9 E where M is the upper bound of a~ as defined in 

the proof of Theorem 3.1. In fact, consider 

[0, h] ~ t ~ HA(a) -- tAA 

which constitutes an increasing analytic family of type (a) in the sense of Kato 

(see [7], VII, w Hence, for any eigenvalue En(HA(a) - hAh) of HA(a) - hAh 

above E the n-th eigenvalue E(t) = En(HA(a) - tAA) is an increasing, piecewise 
analytic function with E(0) >_ E. For s E [0, hi we have by the Feynman- 
Hellmann theorem, [14], p. 151, that  

(4.3) cOE(t) 
I --s = 

where O(s) is a suitable normalized eigenfunction of HA (a) - sAA with eigenvalue 

E(s). Consequently, in inequality (4.3) we may estimate 

(4.4) . . .  >_ M-I((HA(a)  - sAA)~2(s)lg2(s)) > M-1E(s ) .  

Writing E(t) as the integral over its derivative and using the last estimate we get 

E(h) >_ E +  U - I W  �9 h 

and this implies 

(4.5) dist(a(HA(w)),E) >_ i - l E  �9 h 
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for w E Ol,h- On the other hand, 

?(Yh,h) = 1 - [A[p{(A~,..., Aa); 3j = 1 , . . . ,  d :  Aj < h} 

> 1 - 1 d.  h ~ 

by our assumption concerning the single site measure #. Since r - d > ~ we can 

choose/3 > 0 small enough to have T- (1 --/3) -- d > ~. For h = M E - 1 1  ~ - i  we 

arrive at 

ld . h ~ = (ME-~)~-  . / - ( ~ . 0 - # ) - d ) ,  

so that  

l?(~l,h) _> 1 -  l -~ 

for large enough I. 

If  E is an upper  band edge we use the same basic idea, this t ime with an event 

of the form 

fh,n := {w E ~;wj ,1 , . . . ,wj ,d  ~ A -  h (j E Al)}. | 

With s tandard Combes-Thomas  methods ([3]) one finds that  for suitable 

A, B C A one has 

I[xA(HA(W) -- Z ) - I x B I I  <_ C .  e x p ( -  7 �9 dist(A, B)) 

with 7 proportional to dist(z, a(HA(w))). For A = Az(x) denote 

The notation is meant to express that  one localizes near the center and the 

boundary  of the cube, respectively. From what was said above and Proposition 

4.1 one has immediately: 

THEOREM 4.2: A s s u m e  A and  let  E E 0E \{0} .  T h e n  for ~ < T -- d there is 

fl > 0 and  lo = lo(d, ~, r,/3) such tha t  for I > lo and  I := [E - l ~-1 , E + l #-1] 

~ ' { ] l x ~ ( U , , . ( o . , )  - z)-XxXll _< exp(-/~) f o r  a l l  z E I }  7> 1 - 1 -r  



Vol. 107, 1998 LOCALIZATION F O R  R A N D O M  P E R T U R B A T I O N S  137 

5. Multi-scale analysis and localization 

In this section we outline the proof of Theorem 1.1 which is analogous to the 

one given by Figotin and Klein in [4]. Since it is merely a notational adaption 

of what can be found in the latter article we sketch the line of reasoning rather 

than supplying all the details. 

An induction on increasing length scales, the so-called multi-scale analysis, 

is the heart of the matter: in this induction argument one needs the Wegner 

estimate and the starting point is the initial length scale estimate, Theorem 4.2. 

The multi-scale analysis then provides exponential decay for the resolvents of 

the box hamiltonians on larger and larger boxes which can be used to prove 

exponential decay for generalized eigenfunctions of the operator H(a~) for a.e. 

w and energies near 0E \{0}.  This ends the proof since second-order divergence- 

form operators of the type considered here admit an expansion in generalized 

eigenfunctions by the arguments in [4], B.2. 

The only other point we have to check is, whether a basic tool, called Simon- 

Lieb inequality in [4], extends to the more general framework considered in the 

present paper. More precisely one has to obtain the following estimate: 

(SLI). For any bounded I0 C R there is C = C(Io) such that  for all cubes 

A C A t and subsets A C AL/3(x),Bc A ' \  A we have 

IIxB( HA (~d) -- Z ) - I~AI I  ~ C . I [~B(HA,(02)  --  Z ) - - I x ~ H  �9 HX~ ( H^ (w) -- Z)-IXAII 

for all z C I0 and w C ft. 

By standard estimates for weak solutions (see [4], Section B.1) of second-order 

pde this follows rather straightforwardly. 

We end by collecting some remarks: 

In contrast to [4] we stated our main result without an additional 

coupling constant in front of the random perturbation. To see that  we 

can nevertheless use the multi-scale technique from [4] we just have to 

notice that  the small coupling constant regime is not needed in that  re- 

spect. In [4] it is rather used to force gaps of H(aper) to remain open. Our 

formulation using the formula for E follows a somewhat different philoso~ 

phy which seems to be advantageous. Once you have gaps in E you can 

apply Theorem 1.1; if not, you can modify the underlying model using a 

coupling constant to produce gaps (whenever you started with H(aper) 

which exhibits gaps). 
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�9 There is a special situation not covered by Theorem 1.1 in which our 

method gives localization. Namely, if H(aper) has a gap which is just 

filled by the random perturbation, i.e. if there is 

E E E " .  U a(H(aper+A'I)). 
;,~(o,~) 

In this case it is not hard to prove the initial length scale estimate 

near E. 

In our framework as described in A the different eigenvalues of the 

randomly chosen perturbing matrices are required to be independent. 

Thus, on a formal level, the isotropic case considered in [4] is not cov- 

ered by the above results. To do so, one has to look at the simpler model 

S = [0, A] �9 I to which our methods apply. 

During the induction process in which one proves the existence of a small 

interval of localization one unfortunately looses control over the length of 

this interval so that  quantitative results in this direction seem to be out 

of reach at the moment.  

Very recently I obtained an easy geometric proof [13] of a substantial 

generalization of Theorem 3.1 above. It  gives, in particular, localization 

for the model introduced in A with much more general distribution of the 

eigenvalues. For instance, it can be applied to the case where # is merely 

required to be of the form 

/A----9' 1X . . .  X'yd X D' 

where the 9'i, i = 1 , . . .  ,d are probability measures with support  [0, A] 

which satisfy a H61der condition, i.e. are such that  q~i(I) < [ I I  ~ for some 

positive a and every interval I .  Details will appear elsewhere. 
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