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Abstract. It is shown that the closed lattice ideals of Dirichlet spaces and of the Sobolev spaces W I'p are 
those subspaces which consist of all functions which vanish on a prescribed set. 
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1. Introduction 

In function spaces it is sometimes possible to describe explicitly all closed ideals, by 
which we mean subspaces I with the property that f ~ l ,  igl ~< Ifl implies g e l  E.g., 
every dosed ideal in C(K) can be written as 

Co(U ) = { f  eC(K); f = 0 on UC}, 

with an open set U, and every closed ideal in Lp(X), 1 <~ p < o% is of the form 

Lp(Y) = { f  eLp(X) ; f  = 0 on Y~} 

for a suitable Y~ X (see [11], Examples, p. 157f). 
In this note we present an analogous result for spaces (D, I1" II0, where (D, b) is a 

regular Dirichlet form and for Sobolev spaces W I"p. To be precise, we prove that the 
closed ideals of D are exactly the subspaces 

Do(M ) = { f  ~ D ; f  vanishes outside M}. 

Despite the fact that Dirichtet forms are defined by their order properties, it seems 
that the structure of its closed ideals has not been studied so far. We close this gap 
in the following section by proving the above mentioned characterization. 

In the rest of this section we shall describe the general framework of the present 
article. At the same time we recall some notions and fix the notation. Our standard 
references for Dirichlet forms and Banach lattices are [6] and [11], respectively. The 
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necessary background concerning Sobolev spaces can be found in [1] as well as in 
the survey article [8]. 

In what follows, X will denote a locally compact, second countable Hausdorff 
space, ~B the a-field generated by the open subsets of X, and m a Radon measure on 
X with supp(m) = X. We use I1"11 for the norm on L2(X,m ). We denote the positive 
cone of a subspace L by L+ = {feL;f>>.O}. For fgeL2(X,m), f ^ g(x):= 
min {f(x), g(x)}, f v g(x) := max {f(x), g(x)}, and f + := f v 0 denotes the positive part 
of f. 

Recall that a closed, regular Dirichlet form in L:  (X, m) is a pair (D, [~) consisting of 
a dense subspace D c L :  (X, m) and a symmetric, sesquilinear mapping b: D x D ~ 
which satisfies the conditions given in [6] (see [10], Appendix 1 to section XIII.12 
for the complex case). In particular, Ilfll~:= ([9If, f ]  + llfl12) 1/2 defines a norm on D 
under which it is complete. The closed, regular Dirichlet form I~ induces a monotone, 
countably sub-additive set-function, the capacity, by 

cap(U):= inf{llfll~;f eD, f >t Zv} 

for U c X, U open, 

cap(A):= inf{cap (U); U open, U = A} 

for arbitrary A c X (see [6], p. 61f). 
Sets of capacity zero are called polar and a property is said to hold q.e. 

(quasi-everywhere) if it holds outside some polar set. 
It is a key fact that every element f e D admits a quasi-continuous version, i.e. there 

exists a function f in the equivalence class f with the following property: Ve > 0 S U 
open:cap(U) < e, f '~  C(X\U) (cf [6], p. 64f) which is unique q.e. 

2. Ideals in Dirichlet Spaces 

To motivate the results of this section, let us start with the standard example, the 
classical Dirichlet form on R': It is defined by 

D = WI'2(R"), D[fg] = ,=I ~ .[ oif(x)a'o(x)dx" 

Typical ideals are the subspaces Wol'2(U), where U is an open subset of R": 

Wol,2(U):= ~ w l . 2  = { f~  w i , 2 ; f =  0 q.e. on UC}; 

the equality sign is proved in [8]. We shall see below that using the second description 
we already obtain all closed ideals in W ~'2, provided we drop the assumption that 
U is open. The corresponding result will hold true for general regular Dirichlet forms 
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and for the spaces W I'p, as we will show in Theorem 1 and Theorem 3. Speaking of 
ideals, we refer to the natural order on D which is induced by Lz; from [6], Lemma 
3.1.4 we infer f ~< g ¢e,f~< 0 q.e. The main result of this note is the surjectivity of the 
mapping 

~---, {closed ideals of D}, M~--~Do(M):= { f ~ D ; f ' =  0 q.e. on Me}. 

(See [5], where the corresponding spaces HI(M ) are introduced and studied.) This is 
the content of the following 

THEOREM 1. Let I be a closed ideal in D. Then there exists an M ~ ~8 such that I = Do(M ). 

It will be clear from the proof that the set M in the above theorem can be chosen 
quasi-open which means, that it is of the form {F > 0} for some quasi-continuous 
function F. As a preparation we now show that every closed ideal is generated by a 
single element (see [4], especially Section IX, for related information). 

LEMMA 2. Let I be a closed ideal. Then there exists F ~ I such that I = (F ) ,  where 
( F )  denotes the closed ideal generated by F. 

Proof. Fix a sequence (f,) in I+,  such that the closure of its linear hull is dense; 
without restriction, we may assume f ,  to be quasi-continuous. Define 

F : =  Z (2"llf.ll) -1 "f.. 
n~N 

Then F E I, which implies ( F )  c I. 
On the other hand, I = ( { f , ; n e  N}) c (F) .  [] 

Proof of Theorem 1. We already have a candidate for M, namely 

M := {V > 0}, 

where F is as in Lemma 2. From there we also deduce that I c Do(M ). To prove the 
converse, let f eDo(M ). Without restriction f is quasi-continuous, 0 ~<f ~< 1, and 
f = 0 q.e. outside some fixed compact set K c X. 

Changing f on a polar set, if necessary, we may assume 

{ f >  O} c {F > 0}. 

It remains to prove that this inclusionimplies that f is in the closed ideal generated by F. 
Since ( f - -  1/n)+--+f in D, for n---~ ~ ,  it suffices to show g:=  ( f -  1/n)+~l, for 

fixed n ~ N. This will be accomplished, if we verify the 
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CLAIM. Ve > 03U~ open, cap(U,) < e3c% > 0: 

In fact, for quasi-continuous ~b, eD,  q~,~>Xv,, Ir~b,[[~<2~ 
0(1 - q~)+ ~< (1/e~)F, which implies 9 , := O(1 - ~b~) + eI .  

Note that 

it follows that 

supllo, ll~ < ~ ,  o ~ o  in L 2 for e---,O. 
. > 0  

(The boundedness follows since g, = g(l - 1 ^ ~b~), so that IIg~ll~ ~ Ilgll~ -t- [[g(1 ^ qb,)lh ~ 

Ilgll~ + Ilgll~ll~b~llo0 + Ilgll~ll~ll~, where we have used [6], Theorem 1.4.2(ii) for the 
second inequality sign.) 

It now follows by standard arguments that g, ~ g weakly in D so that g is in the 
weak closure of I, which equals I. 

To prove the claim, we use the existence of quasi-continuous representatives: There 
exist open sets V, W with capacity less than e such that 

f eC(VC), FeC(WC). 

Hence {f~> 1/n}\V is a compact subset of {F > 0}. 
Moreover, 

{F>0}c U {F>a}uW, 
a > O  

and {F > a) w W is open for all a > 0. Therefore we find an a > 0 such that 

which implies that 

{f  >~ ~} c {F > a} u Vu W; 

since cap(Vu W) < 2e, the proof of the claim and hence the proof of the theorem is 

complete. []  

As a first application, let us give a partial answer to a question of W. Arendt which 
was communicated to us by J. Voigt: 

What do the closed ideals between Wol'2(U) and WI"2(U) look like, where U c ~" 
is an open subset? 
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We are going to consider relatively compact U only. If the boundary of U is sufficiently 
smooth (cf. [1], Theorem 3.18), then W~'2(U) is the domain of a regular Dirichlet 
form on U. Hence, the ideals Do(M) = { f ~  WI '2 (U) ; f  = 0 q.e. on Me}, U = M = 
are those we are looking for. 

In case of a non-smooth boundary, one can use certain compactification U*, see 
[7] for details, and obtain an analogous result. 

We now turn to the spaces W ~'p, where 1 ~< p < ~ .  To prove the analog of Lemma 
2 and Theorem 1 for these spaces, it suffices to check two basic facts: 

- W I'p is closed under truncation, i.e. 

f ~ W l ' P ~ f + , f  A I ~ W  I'p. 

- f ,  g~ W I'p c~ Z~ ~ Ilfg lll,p ~ llflll,ptlgll~ + Ilflt®Hglil,p. 

Hence the same proof as for Dirichlet spaces yields: 

THEOREM 3. Let I be a closed ideal in W 1,p, 1 <<, p < ~ ,  Then there exists an M ~ 

such that I = Wol'P(M). 

REMARK 4. (1) We have treated above regular Dirichlet forms within the framework 
of Fukushimas monograph [6]. With the notion of quasi-regular forms (see the 
forthcoming book [9]) there is now a well-established potential theory for certain 
forms, for which D ~ Cc(X ) does not need to be dense. Using the results of [2] it is 
not hard to obtain the analog of Theorem 1 for quasi-regular forms, as was noted by 
M. R6ckner. 

(2) In a previous version of this note we used Theorem 1 to obtain the following 
generalization of results of Baxter, DalMaso and Mosco [3] and Sturm [12]: 

I f  ~ is a regular Dirichlet form, and #:~B--~[O,o~] a measure which is absolutely 
continuous with respect to cap, then there exists a measure v~D* and q:X---~ [0, oo] 

such that (#, f ~ = ( qv, f ~ for every quasi-continuous f 

A referee kindly communicated a nice direct proof (due to Ancona, unpublished) for 
this result. 

Acknowledgements 
It is a pleasure to acknowledge enlightening discussions with J. Brasche and to thank 
M. R6ckner for pointing out References [2, 7] to me. I am grateful to a referee who 
brought [4, 5] to my knowledge. This note has been influenced by a fruitful 
collaboration with J. Voigt, to whom I would like to express my sincere gratitude. 



268 PETER STOLLMANN 

References 

I. Adams, R.: Sobolev Spaces, Academic Press, New York, 1975. 
2. Albeverio, S., Ma, Z., and Rrckner, M.: Regularization of Dirichlet spaces and applications, C. R. 

Acad. Sci. 314 (1992), 859-864. 
3. Baxter, J., DalMaso, G., and Mosco, U.: Stopping times and F-convergence, Trans. Amer. Math. Soc., 

303 (1987), 1-38. 
4. Feyel, D.: Ensembles singuliers assoeires aux espaces de Banach rrticules, Ann. Inst. Fourier 31(1) 

(1981), 192-223. 
5. Feyel, D. and de la Pradelle, A.: Espaces de Sobolev sur les ouvert fins, C. R. Acad. Sci. 280, srrie A 

(1975), 1125-1127. 
6. Fukushima, M.: Dirichlet Forms and Markov Processes, North Holland, Amsterdam, 1980. 
7. Fukushima, M.: A construction of reflecting barrier brownian motions for bounded domains, Osaka 

J. Math. 4 (1967), 183-215. 
8. Hedberg, L. I.: Spectral synthesis and stability in Sobolev spaces. In: Euclidean Harmonic Analysis, 

Proceedings Maryland, J. J. Benedetto (ed.), Lect. Notes in Math. 779 (1980), 73-103. 
9~ Ma•Z.andR6•kner•M.:An•ntr•ducti•nt•the The•ry•f (N•n-Symmetric)Dirichlet F•rms•S•ringer••992. 

10. Reed, M. and Simon, B.: Methods of Modern Mathematical Physics. 1V: Analysis of Opertators, 
Academic Press, New York, 1978. 

t 1. Schaefer, H. H.: Banach Lattices and Positive Operators, Springer, Berlin, 1974. 
12. Sturm, T.: Measures charging no polar set and additive functionals of Brownian motion, Forum Math. 

4 (1992), 257-297. 


