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A dual characterization of length spaces with
application to Dirichlet metric spaces
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Peter Stollmann (Chemnitz)

Abstract. We show that under minimal assumptions, the intrinsic metric induced
by a strongly local Dirichlet form induces a length space. The main input is a dual char-
acterization of length spaces in terms of the property that the 1-Lipschitz functions form
a sheaf.

1. Introduction. The theory of Dirichlet forms originated in the funda-
mental papers [1, 2] and uses the interplay of probabilistic and analytic tech-
niques. Driven by an ever increasing range of applications it has seen exten-
sions in different directions, as witnessed by the monographs [11, 4, 22, 12].
Since the 90’s, the metric geometry of the underlying spaces has been thor-
oughly investigated (cf. [3, 29, 31]). Let us briefly outline some of the main
ideas, referring to the following section for precise definitions. A Dirichlet
form E is, in particular, a closed form on L2(X) and so comes with a selfad-
joint operator H in L2(X). The additional properties needed for a Dirichlet
form can be rephrased in terms of the semigroup (e−tH ; t ≥ 0) and capture
some of the fundamental properties of the heat semigroup that arises in the
most important special case H = −∆. At this point let me mention another
favorite of mine, [27], in which the reader can find a lot about Dirichlet
forms, and the associated operator semigroup, although Dirichlet forms are
not even mentioned. If we start with a local Dirichlet form in a sufficiently
regular setting, the form comes with a measure, the energy measure that
can be used to define a metric dE on the space X itself. This metric captures
some of the properties of E , the operator H and its semigroup, and gener-
alizes Riemannian distances. The general setup can be used for extensions
and a unified treatment of many important aspects of classical analysis:
properties of solutions to the abstract analogue of the Laplace equation and
the heat equation [3, 29], more recently [7, 13], and also spectral properties
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[6, 5, 19]; here we just picked a few particular references and refer to the
literature cited there for a more complete picture.

Here, we contribute to a basic question concerning the metric spaces
that arise in this manner, namely the degree of connectedness of the space
(X, dE). A fundamental result from [31] states that this space is geodesic in
the sense that any two points are connected by a path of length dE(x, y),
provided (X, dE) is complete. Two questions arise: what happens without
this crucial assumption and why should we care? Actually, in several previ-
ous papers I have adopted this completeness property without further ado.
However, as we will see below, this assumption is not valid for the second
most simple class of examples, the classical Dirichlet form on open subsets
of Euclidean space Rd. Therefore, a treatment of the noncomplete case is
more than justified. As we will see in Theorem 5.2, the minimal assumption
that dE is a metric in the wide sense that generates the original topology
on X already guarantees that (X, dE) is a length space. This means that any
two points in this space can be joined by a path with length arbitrarily close
to the distance of these points.

In the investigation of the intrinsic metric of Dirichlet forms it turned
out that a certain dual object of X, Lip1, the space of 1-Lipschitz functions,
plays a central role: more precisely, the question whether Lip1 is a sheaf will
be crucial for the path metric property of a metric space. Here, we say that
Lip1 is a sheaf if every function that is locally 1-Lipschitz is already globally
1-Lipschitz. This leads to an abstract characterization of length spaces that
is of independent interest, Theorem 4.2.

After introducing the necessary notions in the following section, we turn
to open subsets of Euclidean space as a class of examples for which we can
already illustrate the main questions and ideas. Then we prove the above
mentioned dual characterization of length spaces, and the final section is de-
voted to the proof of the fact that Dirichlet metric spaces are length spaces.

2. Basic notions. A metric d on a set X is a symmetric mapping
d : X ×X → [0,∞) such that d(x, y) = 0 if and only x = y, and d satisfies
the triangle inequality d(x, z) ≤ d(x, y) + d(y, z). If d is allowed to take
values in [0,∞] we speak of a metric in the wide sense. We write

B(x, r) := {y ∈ X | d(x, y) ≤ r} and U(x, r) := {y ∈ X | d(x, y) < r}

for the closed and open balls, respectively. A continuous mapping γ : I → X
from an interval I ⊂ R to X is called a path. A metric in the wide sense
induces a length structure in terms of

L(γ) := sup
{ N∑
k=0

d(γ(tk+1), γ(tk))
∣∣∣ t0 < t1 < · · · < tn, t0, . . . , tn ∈ I

}
.
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The path metric induced by d is given by

d`(x, y) := inf{L(γ) | γ : I → X a path x, y ∈ γ(I)} ∈ [0,∞],

with the usual convention that inf ∅ = ∞. See [15] for an axiomatic treat-
ment of length structures that are not based on an a priori given metric.
The triangle inequality gives that d(x, y) ≤ d`(x, y), and we say that (X, d)
is a length space provided that d = d`.

A canonical dual object for a metric space is the space of 1-Lipschitz
functions. For U ⊂ X denote

Lip1(U, d) := Lip1(U) := {f :X→R | |f(x)−f(y)|≤d(x, y) for all x, y∈U},
Lip1

loc(U, d) := Lip1
loc(U) := {f :X → R | ∀x ∈ X ∃V open with x ∈ V

such that f |V ∩U ∈ Lip1(V ∩ U)}.
Note that Lip1(U) ⊂ Lip1

loc(U) but they are different in general, as can be
easily seen by considering a disconnected set U . We say that Lip1 is a sheaf
on U if Lip1(U) = Lip1

loc(U). If that holds for X = U we say that Lip1

is a sheaf. Our first main result, Theorem 4.2, says that a locally complete
space is a length space if and only if Lip1 is a sheaf. It is clear that d can
be written as

d(x, y) = sup{f(y)− f(x) | f ∈ Lip1(V )}
for every subset V ⊂ X and all x, y ∈ V . The meaning of this observation
will become clear immediately when we discuss the intrinsic metric.

Dirichlet metric spaces. The main application of our dual character-
ization and the starting point for the present paper are metrics induced by
a strongly local, regular Dirichlet form, a notion we now briefly introduce.
The starting setup is a locally compact metric space X endowed with a
regular Borel measure m and a Dirichlet form E in L2(X,m). We refer to
[4, 11, 12, 22] for a thorough treatment of Dirichlet forms, a notion that
goes back to [1, 2]. The example one should keep in mind is the classical
Dirichlet form

D(E) := W 1,2
0 (Ω), E [u, v] =

�

Ω

∇u(x) · ∇v(x) dx,

where Ω is an open subset of Rd and dx denotes integration with respect
to Lebesgue measure. A Dirichlet form is called regular if its domain is
large enough so that D(E) ∩ Cc(X) is dense both in (Cc(X), ‖ · ‖∞) and in
(D(E), ‖ · ‖E), where the energy norm ‖·‖E is defined by ‖u‖2E := E [u, u]+‖u‖2
and can be thought of as an analogue of the first order Sobolev norm, which
appears for the classical Dirichlet form, as the reader will immediately notice.

If a regular Dirichlet form is strongly local, i.e., if

E [u, v] = 0 for u constant on supp v,
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then E can be represented in a way quite similar to the classical Dirichlet
form. Namely, there exists a bilinear mapping Γ from D(E) × D(E) to the
set MR of signed Radon measures on X such that

E [u, v] =
�

X

dΓ (u, v).

This so called energy measure or Lagrangian can be defined via
�

X

φdΓ (u, u) = E [u, φu]− 1
2
E [u2, φ] for u, φ ∈ D(E) ∩ Cc(X)

and is extended to a bilinear mapping by polarization. In [11, 12], the energy
measure is denoted by

Γ (u, u) = µ〈u〉.

It can be extended to

Dloc := {f ∈ L2
loc(X) | ∀K ⊂ X compact ∃u ∈ D(E) : u|K = f |K}

and inherits several important properties of the underlying Dirichlet form.
E.g., Γ is strongly local as well, meaning that, for open V ⊂ X and f ∈ Dloc,

1V dΓ (f, f) = 0 whenever f is constant on V,
i.e., �

φdΓ (f, f) = 0 whenever f is constant on V, and φ ∈ Cc(V ).

Given the energy measure Γ , we can finally define the intrinsic metric in
the following way: Consider

A1 := {f ∈ Dloc ∩ C(X) | Γ (f, f) ≤ m},
where the inequality signifies that dΓ (f, f) is absolutely continuous with re-
spect to the underlying measurem with Radon–Nikodým boundary bounded
by 1. In analogy with the classical Dirichlet form, A1 can be thought of as
those continuous functions for which the gradient is bounded by 1 in norm.
We set

dE(x, y) := sup{f(y)− f(x) | f ∈ A1} ∈ [0,∞]

and call it the intrinsic metric induced by E (see [3, 29, 31]); some properties
of the set A1 can be found in the appendix of [5]. We will always assume that
E is strictly local, by which we mean that dE is a metric in the wide sense and
induces the original topology on X. In particular, this means that A1 sep-
arates the points of X. Note that dE(x, y) =∞ occurs naturally if x and y
are in different connected components of X, as was also discussed in [31].

3. The classical Dirichlet form on open subsets of Rd. Through-
out this section Ω denotes an open subset of Rd. We will consider the usual
Euclidean metric ρ as well as the intrinsic metric dE induced by the classical



A dual characterization of length spaces 5

Dirichlet form defined above. In that case

dΓ (f, f)(x) = |∇f(x)|2 dx for f ∈W 1,2
loc (Ω),

and

A1 = {f ∈W 1,2
loc (Ω) ∩ C(Ω) | |∇f(x)| ≤ 1 a.e.}.

We write ρ(x, y) for the Euclidean metric on Rd to distinguish it from the
other metrics introduced so far.

Remark 3.1. (Ω, ρ) is complete if and only if Ω = Rd.

Clearly, Ω = Rd \ {0} gives an example of a length space that is not
geodesic, as open subsets are geodesic with respect to the Euclidean metric
if and only if they are convex.

Example 3.2. Let Ω = R2 \ ({0}× [−1, 1]). Then (Ω, ρ) is not a length
space. It is also easy to see that Lip1(Ω)  Lip1

loc(Ω). Choose, e.g., f(x, y) :=
(1 − |(x, y)|)+ for (x, y) in the left halfplane and f(x, y) := 0 on the right
halfplane.

Of course, this example does not come as a surprise in view of Theorem
4.2 below. We now relate the intrinsic metric dE to the Euclidean metric
and obtain an explicit formula. We are not aware of any reference for this
simple fact:

Proposition 3.3. For any open subset Ω of Rd we have dE = ρ`, the
length metric coming from Euclidean distance.

Proof. Pick x, y ∈ Ω. If x and y lie in different connected components U
and V of Ω then ρ`(x, y) =∞, since there is no path joining the two points.
But dE(x, y) = ∞ as well, as can be seen from picking fn := n1V ∈ A1 as
trial functions:

dE(x, y) ≥ sup
n∈N

(fn(y)− fn(x)) =∞.

Suppose now ρ`(x, y) < ∞. Since Ω is open, we can find r > 0 such that
B(x, r) ⊂ Ω. Since the ball is convex we see that

|ρ`(x, y0)− ρ`(x, y1)| ≤ |y0 − y1| for y0, y1 ∈ B(x, r),

which implies that f : Ω → R, f(y) := ρ`(x, y) for ρ`(x, y) < ∞ and 0
elsewhere, defines a function in A1. This gives

dE(x, y) ≥ f(y)− f(x) = ρ`(x, y).

Conversely, let f ∈ A1 and γ : [0, 1] → Ω be a polygonal path from x to y.
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Then

f(y)− f(x) = f(γ(1))− f(γ(0)) =
1�

0

f ′(γ(t))γ′(t) dt

≤
1�

0

|γ′(t)| dt = L(γ).

By taking the inf over all paths γ, we see that

f(y)− f(x) ≤ ρ`(x, y).

This gives dE(x, y) ≤ ρ`(x, y).

Closely related is, e.g., Lemma I.1.24 from [28] where divergence forms
are treated, in the case X = Rd, however. Since we have now calculated dE
explicitly, we can record some simple consequences:

Remark 3.4. Like for the Euclidean distance, (Ω, dE) is complete if and
only if Ω = Rd. For arbitrary Ω, (Ω, dE) is a length space, since (ρ`)` = ρ`
for any metric; see [15, 1.6].

This gives a family of natural examples for which Dirichlet metrics are
locally complete but not complete. In particular, our Theorem 5.2 below,
stating that all Dirichlet metrics define length spaces, cannot be obtained
from any Hopf–Rinow type result, as was done in [31] under the additional
assumption of completeness. See also [15, 25].

4. Path metric property and Lip1. In order to find a path with
length close to the distance between x and y in a metric space one has to
manage to find approximate midpoints, i.e., for every x and y and ε > 0
there should be a z such that

d(x, z) ≤ 1
2
d(x, y) + ε and d(z, y) ≤ 1

2
d(x, y) + ε.

We will now see that this property follows from the sheaf property of Lip1.
In this section, (X, d) denotes a metric space.

Proposition 4.1. Let U be an open subset of X such that Lip1(U) =
Lip1

loc(U). Then B(x, r1) ∩B(y, r2) 6= ∅ for d(x, y) < r1 + r2. In particular,
we can find approximate midpoints in U .

Proof. Assume that B(x, r1) ∩ B(y, r2) = ∅. Let δ > 0 be such that
B(x, r1 − δ) ∩B(y, r2 − δ) = ∅. Consider the function

f(z) := −((r1 − δ)− d(x, z))+ + ((r2 − δ)− d(z, y))+.

It is clear that f(y) = r2 − δ, f(x) = −(r1 − δ). Moreover, f ≡ 0 on
W := U \(B(x, r1−δ)∪B(y, r2−δ)). Using the covering U(x, r1), U(y, r2),W
we see that f ∈ Lip1

loc(U). Since Lip1(U) = Lip1
loc(U), we find that d(x, y) ≥
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f(y) − f(x) = r1 + r2 − 2δ. As δ was arbitrary, this proves that d(x, y) ≥
r1 + r2, as we wanted to show.

Although the proof is clearly inspired by the proof of Lemma 3 in [31],
both the assumption and the assertion are in fact quite different. It could
also and will be used for Dirichlet metric spaces, where the defining function
class A1 is a sheaf. Here is our first main result:

Theorem 4.2. If (X, d) is a length space then Lip1 is a sheaf. Con-
versely, if (X, d) is locally complete and Lip1 is a sheaf then (X, d) is a
length space.

Proof. Assume that (X, d) is a length space and let f ∈ Lip1
loc. Let

x, y ∈ X and ε > 0. Then there is a path γ : [0, 1]→ X such that γ(0) = x
and γ(1) = y and L(γ) ≤ d(x, y) + ε. For every t ∈ [0, 1] there is an open
neighborhood Uγ(t) of γ(t) such that f |Uγ(t) ∈ Lip1(Uγ(t)), since f ∈ Lip1

loc.
By continuity of γ, there is an open (in [0, 1]) interval It containing t such
that γ(It) ⊂ Uγ(t). Compactness of [0, 1] yields finitely many 0 = t1 < · · · <
tm = 1 such that

[0, 1] ⊂ It1 ∪ · · · ∪ Itm ,

and we may assume that this covering is minimal. Observe that consequently
Itj ∩ Itj+1 6= ∅ for j = 1, . . . ,m− 1.

Pick s1, . . . , sm−1 ∈ [0, 1] such that

0 ≤ t1 < s1 < t2 < · · · < sm−1 < tm = 1
with sj ∈ Itj ∩ Itj+1 for j = 1, . . . ,m− 1.

Then
γ(sj) ∈ Uγ(tj) ∩ Uγ(tj+1).

Using the triangle inequality and the 1-Lipschitz property in the appropriate
neighborhoods, we get

|f(x)− f(y)| ≤
m−1∑
j=1

(|f(γ(tj))− f(γ(sj))|+ |f(γ(sj))− f(γ(tj+1))|)

≤
m−1∑
j=1

(d(γ(tj), γ(sj)) + d(γ(sj), γ(tj+1)))

≤ L(γ) ≤ d(x, y) + ε.

Since ε > 0 was arbitrary, |f(x)− f(y)| ≤ d(x, y).
To prove the converse, we want to show that, for fixed x ∈ X, the

function
f : X → R, f(y) = d`(x, y),
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is finite everywhere (!!) and belongs to Lip1
loc. (Note that, at the moment,

it is not even clear that X is pathwise connected.) If this is accomplished,
we deduce that f ∈ Lip1 using our assumption that Lip1 is a sheaf, and
f ∈ Lip1 gives the desired inequality:

d(x, y) ≥ |f(y)− f(x)| = d`(x, y).

The first thing we check is the following:

Claim. For every y ∈ X there exists r > 0 such that for all y0, y1 ∈
B(y, r),

|d`(x, y0)− d`(x, y1)| ≤ d(y0, y1).

We have to find r > 0 such that any two points y0, y1 ∈ B(y, r) can
be joined by a path with length arbitrarily close to d(y0, y1), since this
obviously implies the claim. The existence of approximate midpoints settled
in the preceding proposition plus completeness (which we do have locally)
will allow us to construct the desired path. This argument is well established:
see [15, Theorem 1.8]. Here are the details:

Take r > 0 so small that B(y, 3r) is complete; let y0, y1 ∈ B(y, r) and
δ := d(y0, y1). Fix 0 < ε < δ. Denote

Dn := {k2−n | k = 0, . . . , 2n} for n ∈ N0,

D :=
⋃
n∈N0

Dn = {dyadic rationals in [0, 1]}.

By induction on n we prove

Assertion A(n). For all s ∈ Dn there is ys ∈ B(y, 3r) such that

(?) d(yk2−n , y(k+1)2−n) ≤ 2−n
(
δ + ε

n∑
k=1

2−k
)
.

For n = 0, the given points y0, y1 satisfy the inequality (the empty sum
is interpreted as 0 as usual).

Assume that A(n) holds and take s ∈ Dn+1, s = k2−(n+1). For k even,
s ∈ Dn, so that ys is already defined. Therefore assume that k is odd, so
that y(k−1)2−(n+1) and y(k+1)2−(n+1) are defined, with distance

d(y(k−1)2−(n+1) , y(k+1)2−(n+1)) ≤ 2−n
(
δ + ε

n∑
k=1

2−k
)
,

by what A(n) gives us. Choose

r1 = r2 =
1
2

2−n
(
δ + ε

n∑
k=1

2−k
)

+ ε4−(n+1)
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so that r1 + r2 > d(y(k−1)2−(n+1) , y(k+1)2−(n+1)). From Proposition 4.1 we get
a point yk2−(n+1) ∈ B(y(k−1)2−(n+1) , r1) ∩B(y(k+1)2−(n+1) , r2); in particular,

d(y(k−1)2−(n+1) , yk2−(n+1)) ≤ r1 = 2−(n+1)
(
δ + ε

n+1∑
k=1

2−k
)
,

and an analogous bound on d(yk2−(n+1) , y(k+1)2−(n+1)), so that A(n + 1) is
proven, since ys ∈ B(y, 3r) follows from (?). Now

γ0 : D → B(y, 3r), s 7→ ys,

is easily seen to be Lipschitz continuous with Lipschitz constant δ+ ε; note
that (?) gives the coresponding estimate for successive points in Dn. Since
D is dense in [0, 1] and B(y, 3r) is complete, γ0 extends to a Lipschitz
continuous γ : [0, 1]→ B(y, 3r) with Lipschitz constant δ+ ε and γ(0) = y0,
γ(1) = y1. The length (as for all Lipschitz continuous paths) can easily be
estimated by δ + ε, settling the claim.

We now show that f is properly defined, that is, d`(x, y) < ∞ for all
y ∈ X; denote X0 := {y ∈ X | d`(x, y) <∞}.

As we already observed above, X is connected since Lip1 is a sheaf. From
the claim we infer that X0 is open and closed. Since x ∈ X0, X0 is nonempty
and so must coincide with X.

5. Strictly local Dirichlet spaces are length spaces. We now con-
sider the setup introduced in Section 1 above: X is a locally compact space,
E a strictly local Dirichlet form and so comes with an energy measure Γ for
which

A1 = {f ∈ Dloc ∩ C(X) | Γ (f, f) ≤ m}

separates the points of X and

d(x, y) = dE(x, y) = sup{f(y)− f(x) | f ∈ A1} ∈ [0,∞]

defines a metric in the wide sense that induces the original topology on X.
In particular, under these assumptions, small enough balls will be compact
and hence complete. Clearly,

A1 ⊂ Lip1.

The converse is also true, as was established in [10]. Since this work is not
yet available, we give a proof in the appendix:

Theorem 5.1 (Rademacher’s Theorem). If d is the intrinsic metric of
a strictly local Dirichlet form E on X, then

Lip1 = Lip1
loc = A1.
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The name is due to Rademacher’s work [24], who established, for Eu-
clidean space, that a Lipschitz continuous function has bounded weak deriva-
tives. See the lecture notes [16] for more references and [26] for a special case,
the configuration space.

Theorem 5.2. If d is the intrinsic metric of a strictly local Dirichlet
form E on X, then (X, d) is a length space.

Proof. The only difficulty we have to overcome is that both d and the
corresponding path metric d` may take the value ∞. But, as we see, that
happens simultaneously. We fix x ∈ X.

Step 1. d admits approximate midpoints.

This follows from Proposition 4.1, keeping in mind that the property
defining A1 is local and so A1 is a sheaf (see the Lemma in the Appendix).

Step 2. For every y ∈ X there is r > 0 such that

d(y0, y1) = d`(y0, y1) for all y0, y1 ∈ B(y, r).

This follows from local completeness and the existence of approximate
endpoints exactly as in the proof of Theorem 4.2. Again as in that proof
we get

Step 3. The set Y := {y ∈ X | d`(x, y) <∞} is open and closed.

Step 4. If d(x, y) <∞ then d`(x, y) <∞ as well.

In fact, if d`(x, y) = ∞, we have y 6∈ Y and x ∈ X0. Since X0 is open
and closed, it follows that n1Y ∈ A1 (since dΓ (1Y ,1Y ) = 0 by locality) for
all n ∈ N. Therefore,

d(x, y) ≥ n1Y (x)− n1Y (y) = n for all n ∈ N.

Step 5. Let f : X → R, f(y) := d`(x, y) for y ∈ Y and 0 elsewhere.
Then f ∈ A1.

By what we saw in the second step, f ∈ Lip1
loc. Since Lip1

loc ⊂ A1 as
mentioned above, we get the desired property of f .

We can now finish the proof as follows: The estimate d(x, y) ≤ d`(x, y) is
clear. If d`(x, y) =∞, we know from Step 4 that d(x, y) =∞ as well. Thus
it remains to consider d(x, y) <∞, in other words y ∈ Y . But this gives

d(x, y) ≥ f(y)− f(x) = d`(x, y)

for f as above.

Remark 5.3. In Step 1 of the preceding proof we could also have used a
local version of Sturm’s Lemma 3 from [31]. Conversely, the property proved
in the first step combined with compactness easily gives midpoints and this
implies that one gets local minimizing geodesics.



A dual characterization of length spaces 11

Apart from the examples coming from the classical Dirichlet form, there
are many further classes of examples that fall into the framework covered by
the preceding result. We mention second order elliptic operators [3, 22, 30],
subelliptic operators [8, 9, 17, 18, 23] and Laplace–Beltrami operators on
manifolds.

The above results were obtained in connection with a joint work on
connectedness and irreducibility properties of Dirichlet forms with D. Lenz
and I. Veselić [21].

Appendix. Let us first record some consequences of strict locality; see
[19, 20] for background material. Denote, for open U ⊂ X,

A1(U) := {v ∈ Dloc(U) ∩ C(U) | Γ (u, u) ≤ m}.
Lemma 5.4.

(1) A1 is a sheaf, i.e., f ∈ A1 if and only if for all x ∈ X there is an
open neighborhood U such that f |U ∈ A1(U).

(2) If (un)n∈N is a sequence in A1(U) that converges uniformly to u,
then u ∈ A1(U).

Proof. Since the continuous functions are a sheaf and Γ is local, (1) is
evident.

For the proof of (2), we have to show that u ∈ Dloc(U) and Γ (u, u) ≤ m.
Both assertions are local. So let K ⊂ U be compact. Take a compact neigh-
borhood V ⊂ U of K and use the regularity of E to find η ∈ D(E) ∩ Cc(U)
that is 1 on V . Locality of Γ gives Γ (unη, unη) ≤ m on the interior of V .
The Leibniz rule guarantees that E(unη, unη) remains bounded in n ∈ N.
As the balls in (D(E), ‖ · ‖E) are weakly compact, there is a subsequence of
(unη)n∈N converging weakly to some v ∈ D(E). Uniform convergence of the
un gives v = uη, so that there is v ∈ D(E) that agrees with u on K. The
estimate Γ (unη, unη) ≤ m on the interior of V carries over to the limit, so
that Γ (u, u) ≤ m on the interior of V . As K was arbitrary, that settles the
assertion.

The following proof is essentially taken from [10], where a more general
result is proven in the sense that certain non-local forms are allowed.

Proof of Theorem 5.1. Fix f ∈ Lip1
loc. We use the preceding lemma. So

it suffices to find, for every point x, an open neighborhood U with f |U ∈
A1(U). Pick U so that f ∈ Lip1(U), which is possible by the local Lipschitz
property. Furthermore, we can assume that U is relatively compact, since X
is locally compact. It follows that f is bounded on U , say supU |f | ≤M ∈ N.
We now define an approximating sequence for u := f |U in the following way:
for n ∈ N and m = −Mn, . . . ,Mn denote Fn,m := {y ∈ X | f(y) ≥ m/n}
and un,m := (m/n− d(·, Fn,m))+, restricted to U . The distance d(·, F ) is in
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A1 for every closed set (see the appendix of [5]). Therefore, un,m is in A1(U)
as also is

un := max
m=−Mn,...,Mn

un,m.

Since f ∈ Lip1(U) it is easy to see that un → u uniformly. An appeal to
part (2) of the preceding lemma finishes the proof.
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