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Abstract: We study spectra of Schrödinger operators on R
d . First we consider a pair of

operators which differ by a compactly supported potential, as well as the corresponding
semigroups. We prove almost exponential decay of the singular values µn of the differ-
ence of the semigroups as n → ∞ and deduce bounds on the spectral shift function of
the pair of operators.

Thereafter we consider alloy type random Schrödinger operators. The single site
potential u is assumed to be non-negative and of compact support. The distributions of
the random coupling constants are assumed to be Hölder continuous. Based on the esti-
mates for the spectral shift function, we prove a Wegner estimate which implies Hölder
continuity of the integrated density of states.

1. Introduction and Results

In this paper we analyze the spectral properties of multi-dimensional Schrödinger opera-
tors. First, we consider a pair of operators H1, H2 which differ by a compactly supported
potential u. The singular values µn of the difference of the corresponding exponentials
Veff := e−H1 − e−H2 are shown to decay almost exponentially in n.

This result allows us to deduce a bound on the Lifshitz-Krein spectral shift function
(SSF) of the operator pair H1, H2. We give a bound on the SSF when integrated over
the energy axis against a bounded, compactly supported function. In turn, the bound
on the SSF is used to prove a Wegner estimate for random Schrödinger operators of
alloy type and Hölder continuity of the integrated density of states (IDS). Our estimates
have a better continuity in the energy parameter than previously known bounds. More-
over, we are able to treat random coupling constants, whose distribution does not have
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a density. In particular, for Hölder continuous distributions we prove that the IDS is
Hölder continuous, too.

We will treat magnetic Schrödinger operators

H = HA + V = (−i∇ − A)2 + V (1)

acting on R
d whose potentials (magnetic and electric) obey the following hypothe-

ses: Each component of A is L2
loc. The positive part of the electric potential, V+ :=

max(0, V ), belongs to L1
loc and the negative part, V− := max(0, −V ), is in the Kato

class. Notice that under our convention, V = V+ − V−.
For a general discussion of the Kato-class, see [15]; for its relevance to the Feyn-

man-Kac formula see, e.g., [2, 6, 49]. In particular, V− is in the Kato-class, if

‖V−‖L
p
loc,unif(R

d ) = sup
x∈Rd

( ∫

|x−y|≤1
|V−(y) dy|

)1/p

< ∞,

where p = 1 if d = 1 and p > d/2 if d ≥ 2. Thus the allowed potentials cover all
physically relevant cases.

Under these hypotheses, one may define H via the corresponding quadratic form
(with core C∞

c ). By the same method, one can define the Dirichlet restriction of H to
the cube �l = [−l/2, l/2]d , l ≥ 1. This will be denoted Hl .

Let H1 be a Schrödinger operator of the form just described and let H2 = H1 + u,

where u = u+ − u− obeys the hypotheses for electric potentials just described.
The starting point for our analysis is an estimate on the singular values of Veff :=

e−H1 − e−H2 and on the corresponding object in the finite volume case, namely V l
eff :=

e−Hl
1 − e−Hl

2 . Recall that the singular values of a compact operator A are the square-
roots of the eigenvalues of A∗A. We will enumerate them as µ1(A) ≥ µ2(A) ≥ · · · ≥ 0
according to multiplicity.

Theorem 1. There are finite positive constants c and C such that the singular values of
the operator V l

eff obey

µn ≤ C e−cn1/d

. (2)

In fact, c may be chosen depending only on the dimension, while C depends on the
Kato-class norms of u−, V− and on the diameter of the support of u+.

The same estimate holds for the singular values of Veff .

Remarks. i) In particular ‖V l
eff‖Jp

:= ∑
n µ

p
n is finite and thus V l

eff is an element of
the operator ideal Jp := {A compact | ‖A‖Jp

< ∞} for any p > 0. Thus our result
can be understood as a sharpening and generalization of norm, Hilbert Schmidt, and
trace bounds on the difference of semigroups, derived e.g. in [7–9, 16–19, 48, 51,
52].

ii) Note that the estimate (2) depends on the positive part of u only through supp u.
Thus, for u = λũ, where ũ ≥ 0 and λ is a non-negative coupling constant, the
estimate is independent of the choice of λ. Moreover

(1) u may be taken to +∞ on its support. In this case H2 equals the restriction of
H1 to R

d \ supp u with Dirichlet boundary conditions, provided the boundary
of supp u obeys some mild regularity conditions; see, e.g., [53].
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(2) Similarly, H1 may be defined on a set strictly smaller than R
d : Let D ⊂ R

d be
open, HD

A the Dirichlet restriction of HA on D, and H1 = HD
A + V, where V

satisfies the same conditions as before. In this case Hl
j is the Dirichlet restriction

of Hj , j = 1, 2 to the set �l ∩ D.

iii) The proof of Theorem 1 is surprisingly simple. Morally, the result is an immediate
consequence of Weyl’s law for the eigenvalue asymptotic of Dirichlet Laplacians
on compact domains. This suggests that the decay rate of the singular values of
e−H1 − e−H2 is, in fact, given by exp(−cn2/d). One might ask, however, whether
the singular values could not typically decay at a much faster rate. It turns out that a
decay rate like exp(−cnα) for α > 2/d is impossible, see Remark ii) after Theorem
2 below. This leaves open the cases α ∈ (1/d, 2/d]. We conjecture that, in fact, the
true bound is of the form µn ≤ C exp(−cn2/d).

Our interest in Theorem 1 comes from the fact that it allows us to derive an integral
bound on the the SSF ξ(λ, H2, H1) of the pair of operators H1, H2, which shows that the
SSF can have only very mild local singularities. (See Sect. 2.1 for a precise definition of
the SSF.) The SSF plays a role in different areas of mathematical physics, for instance in
scattering theory, cf. e.g. [59], and the study of surface potentials, see [10, 36]. Various of
its properties are discussed in the literature: monotonicity and concavity in [20, 22, 35],
the asymptotic behaviour in the large coupling constant [43, 46, 44] and semiclassical
limit [42, 40]. See [5, 34] for surveys.

For t > 0 let Ft : [0, ∞) → [0, ∞) be defined by

Ft(x) =
∫ x

0
(exp(ty1/d) − 1) dy. (3)

As the integrand is increasing, Ft is a convex function.

Theorem 2. Let ξ be the spectral shift function for the pair H1, H2 or Hl
1, H

l
2.

i) Let Ft be defined as above. There exisits a constant K1, depending on t , such that
for small enough t > 0,

∫ T

−∞
Ft(|ξ(λ)|) dλ ≤ K1e

T < ∞ (4)

for all T < ∞.
ii) There exist constants K1, K2 depending only on d, diam supp u+ and the Kato class

norms of V−, u−, such that for any bounded compactly supported function f ,

∫
f (λ) ξ(λ) dλ ≤ K1e

b + K2 {log(1 + ‖f ‖∞)}d‖f ‖1 (5)

with b = sup supp(f ).

Remarks. i) Note that the function Ft defined in (3) has the asymptotic behavior

Ft(x) ∼ d x(d−1)/d exp(tx1/d) for large x.

Thus, by part i) of Theorem 2, the spectral shift function can have at most mild
logarithmic local singularities. It is tempting to think that, at least for non-negative
compactly supported perturbations, the spectral shift function should always be
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bounded. However, this is not the case. For a perturbation of the free Schrödinger
operator with a constant magnetic field by a compactly supported potential, Raikov
and Warzel showed that the spectral shift function diverges at each Landau level Eq

like

|ξ(Eq + λ)| ∼
( | ln(λ)|

ln | ln λ|
)d/2

as λ ↓ 0, (6)

see [45] for the case d = 2 and [39] for the generalization to even dimensions. Thus,
setting Ft,α(x) := ∫ x

0 (exp(tyα) − 1) dy, the asymptotic (6) implies that Ft,α(|ξ |)
is locally integrable if and only if 0 ≤ α ≤ 2/d , whereas Theorem 2 guarantees it
only for α ≤ 1/d (and t small enough, if α = 1/d).

ii) The proof of Theorem 2 shows that if Theorem 1 holds in the form µn ≤ c1
exp(−c2n

α), then Ft,α(|ξ |) ∈ L1(−∞, T ) for small enough t (and all finite T ).
Thus the Raikov-Warzel result shows that the estimate in Theorem 1 cannot be
improved beyond C exp(−cn2/d).

iii) An example without magnetic fields, where the SSF shows unexpected divergen-
cies, was studied by Kirsch in [28, 29]. It is related to the one with a constant
magnetic field in that the high degeneracy of eigenvalues plays a crucial role.
Let E > 0, u non-negative, bounded with compact support, and not identically
equal to zero, a : [0, ∞) → (0, ∞), and ξl(·) := ξ(·, −�l, (−� + a(l)u)l). Then
lim supl→∞ ξl(E) = ∞, for any E, a and u as above. This result relies on the degen-
eracy of eigenvalues of the pure Dirichlet Laplacian on a cube. There is, however, a
set of full measure E ⊂ R with dense complement such that limN
l→∞ ξl(E) = 0,
for all E ∈ E , if a(l) ≤ l−k, k > 3.

iv) In contrast to the above unboundedness results, Sobolev, [50] showed that for the
pair H1 = −� and H2 = −�+u with |u(x)| ≤ const. (1+|x|)−α and α > d, the
spectral shift function ξ is, indeed, locally bounded. However, this type of result
seems to require very strong hypotheses on H1, for example, a trace class limiting
absorption principle and in particular, that H1 has absolutely continuous spectrum
on the positive real axis.

Theorem 2.ii) has a nice consequence in the theory of random Schrödinger opera-
tors. In this case, we take f to be the derivative of a smooth, monotone switch function
ρ := ρE,ε : R → [−1, 0]. By a switch function we mean that for a positive ε ≤ 1/2
it has the following properties: ρ ≡ −1 on (−∞, E − ε], ρ ≡ 0 on [E + ε, ∞) and
‖ρ′‖∞ ≤ 1/ε. Theorem 2.ii) and the Krein trace identity, see §2.1, then imply that there
is a constant CE such that

Tr [ρ(H2) − ρ(H1)] ≤ CE | log(ε)|d . (7)

The estimate (7) improves upon the bound derived by Combes, Hislop and Nakamura
in [14]. They prove that for any exponent α < 1, there is a constant C̃E(α) depending
only on d, C0, diam supp u, E + ε and α such that

Tr [ρ(H2) − ρ(H1)] ≤ C̃E(α) ε−α. (8)

An alloy type model is a random Schrödinger operator Hω = H0 + Vω, where
H0 = HA +Vper with a periodic potential Vper. The random part of the potential has the
form Vω(x) = ∑

k∈Zd ωk u(x − k). The coupling constants ωk, k ∈ Z
d , are a sequence

of bounded random variables, which are independent and identically distributed with
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distribution µ. The expectation of the product measure
⊗

k∈Zd µ is denoted by E. The
single site potential u �≡ 0 is of compact support. Denote for ε > 0,

s(µ, ε) = sup{µ([E − ε, E + ε]) | E ∈ R}. (9)

With this definition, we have

Theorem 3. Let Hω be an alloy type model and u ≥ κχ[−1/2,1/2]d for some positive κ .
Then for each E0 ∈ R there exists a constant CW such that, for all E ≤ E0 and ε ≤ 1/2,

E{Tr[χ[E−ε,E+ε](H
l
ω)]} ≤ CW s(µ, ε) (log 1

ε
)d |�l |. (10)

In particular, if µ is Hölder continuous with exponent α, then the ε-dependence of
the RHS of (10) is εα(log 1

ε
)d . In [54], Stollmann proved a weaker version of (10) with

RHS equal to CW s(µ, ε) |�l |2.
Bounds like (10) are called Wegner estimates. They were first deduced by physical

reasoning by Wegner in [58] for the Anderson model, the finite difference analogue of
the alloy type model. Wegner estimates are important a priori estimates, used to derive
regularity properties of the integrated density of states (IDS) and to prove localization
for random Schrödinger operators. In this context, localization means the existence of an
energy region where the random operator has almost surely dense pure point spectrum
with exponentially decaying eigenfunctions. See, e.g., [55] for a monograph exposition
and, e.g., [21] (and the references therein) for more recent developments.

The proof of Theorem 3 can be directly applied to Anderson type models, i.e. random
Schrödinger operators on �2(Zd). In this case, a compactly supported potential is a finite
rank operator. For such perturbations the supremum-norm of the induced SSF is bounded
by the rank of the operator, see e.g. [5, 14]. The uniform bound on the SSF yields a bound
like (10) with the RHS side equal to CW s(µ, ε) |�| and the constant CW independent
of the energy E. This gives an easy proof of a Wegner estimate for Hölder continuous
single site distributions µ.

The IDS N(E) is defined as the limit of the distribution functions,

Nl
ω(E) := |�l |−1 #{ eigenvalues of Hl

ω not greater than E},
as l tends to infinity. For almost all ω ∈ � the limit exists and is independent of ω. As a
consequence of Theorem 3, the IDS of the above alloy-type model satisfies

|N(E1) − N(E2)| ≤ CI s(µ, |E1 − E2|)
(

log
1

|E1 − E2|
)d

, |E1 − E2| ≤ 1/2,

where the constant CI may be chosen uniformly if E1 and E2 vary in a compact inter-
val I . Note that this continuity result cannot be obtained from a Wegner estimate with
quadratic dependence on the volume of the box �l . It also shows that, up to a logarith-
mic correction, the IDS enjoys the same regularity properties as the distribution of the
random potential.

Let us return to the discussion of the regularity of the SSF. Denote by H1 = Hω−ω0u

and H2 = H1 + u the alloy type operators where the value of the coupling constant at
k = 0 is frozen and equal to 0 and ω0 respectively. The other coupling constants are still
random. Despite the examples given above it is still possible that the average of the SSF
ξ̄ (λ) := E{ξ(λ, H1, H2)} over the random background environment is locally bounded.
This then implies no logarithmic loss in the Wegner estimate, and thus the Lipschitz
continuity of the integrated density of states.
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Indeed, such a bound on ξ̄ for d ≤ 3 has recently been announced by Combes and
Hislop, [23]. They have to assume that the single site distribution has a bounded density
with respect to Lebesgue measure. So far, the averaging techniques at our disposal do
not seem to be sufficient enough to prove that ξ̄ (λ) is locally bounded for rough single
site distributions, even if they are Hölder continuous.

In this context we would like to mention bounds on averaged fractional powers of
the SSF derived in [1].

As a final remark, we discuss how Theorem 2 can be used to improve Wegner esti-
mates for alloy type models with somewhat different properties than in Theorem 3. First
we present an improvement of a recent Wegner estimate by Combes, Hislop and Klopp
[12] for single site potentials with small support.

Theorem 4. Let Hω be an alloy type model as defined in the paragraph following (8).
Assume that Vper has the unique continuation property and is bounded below, ω is dis-
tributed according to a bounded density and 0 ≤ u ∈ L∞ is strictly positive on an open
set. Then for each E0 ∈ R there exists a constant CW such that

E{Trχ[E−ε,E+ε](H
l
ω)} ≤ CW ε

(
log

1

ε

)d

|�| (11)

for all E ≤ E0 and ε ≤ 1/2.

This follows directly if one uses Theorem 2 instead of the Lp-estimates on the SSF
in the Appendix of [12].

We mention three more disorder regimes where Theorem 2 may be used to simplify
proofs of earlier Wegner estimates and to improve the dependence of the estimate in the
energy interval length.

(1) Single site potentials with small support and singular coupling constants. Using the
perturbation technique of Kirsch, Stollmann and Stolz in [32], we can extend the
result from Theorem 3 to single site potentials u ≥ κχ[−s,s]d for some κ, s > 0
in the case of zero magnetic field for energies near spectral edges. In this case no
assumption on the unique continuation property is needed.

(2) Coupling constants whose distribution is continuous merely at the extreme values.
In [33], Kirsch and Veselić prove a Wegner estimate for alloy type potentials with
non-positive single site potentials and coupling constants which have merely in a
neighborhood of their maximal value a continuous distribution with bounded den-
sity. The estimate applies to energies at the bottom of the spectrum. Using Theorem
2 in the present paper, one can improve the Wegner estimate in [33].

(3) Single site potentials with changing sign. In [24], Hislop and Klopp studied alloy
type models with continuous, compactly supported single site potentials, which
may take values with both signs, and bounded coupling constants which are distrib-
uted according to a bounded, piecewise absolutely continuous density. They prove
a Wegner estimate which is Hölder continuous in the energy variable and applies
to energies below the spectrum of the non-random, unperturbed operator H0. The
result extends to internal spectral boundaries in the weak disorder regime. An exten-
sion of Theorem 2 in the present paper to the case where the perturbation is equal
to a potential sandwiched between the square roots of the resolvent would make it
possible to improve the Wegner estimate in [24] with regards to the energy interval
length.
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Further results on Wegner estimates for alloy type Schrödinger operators can be
inferred from [4, 13, 27, 30, 31, 36, 56, 57] and the references therein. Let us mention
specifically, that if µ has bounded density and u ≥ κχ�1 the IDS is actually Lipschitz-
continuous, see [37, 11]. However, the proof of this result is based on quite different
methods than ours. It does not use estimates on the SSF; instead the residue theorem is
applied to obtain an uniform bound on averaged resolvents. Due to the use of complex
analysis it is not clear whether this method can be extended to the case when the single
site distribution µ does not have a density.

Let us sketch the outline of the paper: The next section contains the definition of the
SSF and the proofs of Theorems 1 and 2. In Sect. 3 we prove a lemma which is needed
to deal with singular coupling constants and complete the proof of the Wegner estimate,
Theorem 3.

2. Bounds on the SSF

2.1. Definition of the SSF. We define the SSF in three steps. Each of them extends the
definition to a larger class of operators. For proofs see, e.g., [5 or 59].

Assume first that H1, H2 are selfadjoint, lower-semibounded with purely discrete
spectrum. Then the SSF is defined as the difference of the eigenvalue counting func-
tions,

ξ(λ) := #{n | λn(H2) ≤ λ} − #{n | λn(H1) ≤ λ},
where λn(H) enumerates the spectrum of H , including multiplicity, in increasing order.
Consider now a pair of selfadjoint, lower-semibounded operators such that the difference
H2 −H1 is trace class. Then there is a unique function ξ such that Krein’s trace identity

Tr [ρ(H2) − ρ(H1)] =
∫

ρ′(λ) ξ(λ, H2, H1) dλ (12)

holds for all ρ ∈ C∞ with compactly supported derivative (actually, ρ can be taken
to lie in a certain Besov space, see [41]). If the operators have discrete spectrum, this
definition of ξ coincides with the previous one. It can be recovered choosing a sequence
of switch functions ρε which converges to a step function as ε → 0.

Finally, we weaken the trace class assumption on the operator difference. Let g : R →
[0, ∞) be a monotone, smooth function such that g(H2)− g(H1) is trace class. Assume
that g is bounded on the spectra of H1 and H2. Then the SSF for the operator pair
g(H1), g(H2) is well defined and we may set

ξ(λ, H2, H1) := sign(g′) ξ
(
g(λ), g(H2), g(H1)

)
. (13)

This definition is independent of the choice of g. Formula (13) is called the invari-
ance principle. This last definition will be sufficiently general to cover the Schrödinger
operators we are considering. In the sequel we will choose g(x) = e−x .

Alternatively, the SSF can be defined via the perturbation determinant from scattering
theory by

ξ(λ, H1, H2) := 1

π
lim
ε↘0

arg det
[
1 + (H1 − H2)(H2 − λ − iε)−1)

]

if (H1 − H2)(H2 + i)−1 is trace class.
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2.2. Decay of singular values. Weyl’s asymptotic law gives the asymptotic behaviour of
the nth eigenvalue of the Laplacian on an open ball B for large n. The following simple
lemma provides a robust lower bound, very much in the spirit of Weyl’s law, but valid
for all n and for general magnetic Schrödinger operators. It is the starting point for our
proof of Theorem 1.

As it costs us nothing in clarity, the lemma will be presented under weaker hypotheses
than those described in the introduction.

Lemma 5. Let H = HA + V = (−i∇ − A)2 + V as in the introduction (cf. (1)),
except that we now require that V− is merely −� bounded with relative bound δ < 1.
Furthermore, let HU be the Dirichlet restriction of H to an arbitrary open set U with
finite volume |U | (also defined via the corresponding quadratic forms). Then, for some
constant C, the nth eigenvalue of HU satisfies

En ≥ 2π(1 − δ)d

e

( n

|U |
)2/d− C for all n ∈ N. (14)

Proof. Since the Dirichlet Sobolev space H 1
0 (U) is a natural subset of H 1(Rd), V− is

also relatively form bounded w.r.t. −�U , the Dirichlet Laplacian on U with relative
bound δ. The diamagnetic inequality, [48], then implies that V− is also relative form
bounded w.r.t. to the Dirichlet restriction of HA to U . That is, there exists a C ∈ R such
that, as quadratic forms,

V− ≤ δHA + C.

In particular, since V+ is non-negative,

HU ≥ HA − V− ≥ (1 − δ)HA − C,

which implies the bound

Tr(e−2tHU
) ≤ e2tCTr(e−2t (1−δ)HA) = e2tC‖e−t (1−δ)HA‖2

HS

= e2tC

∫∫

U×U
|e−t (1−δ)HA(x, y)|2dx dy,

where ‖·‖HS denotes the Hilbert-Schmidt norm.Again, using the diamagnetic inequality
for the Schrödinger semigroup, e.g., [48, 26], one has the pointwise bound
|e−t (1−δ)HA(x, y)| ≤ et(1−δ)�U

(x, y). In particular,

‖e−t (1−δ)HA‖2
HS ≤ ‖et(1−δ)�U ‖2

HS = Tr(e2t (1−δ)�U
) ≤ |U | (8πt(1 − δ)

)−d/2
.

In the last line we used the fact that the kernel of the Dirichlet semigroup eβ�U
on the

diagonal is bounded by the free kernel, i.e.,

eβ�U
(x, x) ≤ eβ�(x, x) = (4πβ)−d/2 for all β > 0 and x ∈ U,

which follows immediately from the probabilistic representation of the Dirichlet semi-
group [3, 47]. Thus

Tr(e−2tHU
) ≤ |U | (8πt(1 − δ)

)−d/2
.

Let NU (E) be the number of eigenvalues of HU smaller or equal to E. By Čebyšev’s
inequality and the above bound,
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NU (E) ≤ e2tE

∫ E

−∞
e2tsdNU (s) ≤ e2tETr(e−2tHU

)

≤ |U | (8π(1 − δ))−d/2 t−d/2e2t (E+C) = |U |
( e(E + C)

2π(1 − δ)d

)d/2
,

where, in the last equality, we choose t := d
4(E+C)

. Since n ≤ NU (En), this, in turn,
implies the lower bound

En ≥ 2π(1 − δ)d

e

(
n

|U |
)2/d

− C

on the eigenvalues. ��
Proof of Theorem 1. We give the proof for Veff , the adaption to V l

eff requires only minor
changes. We will use the symbols c and C for constants that vary from line to line;
however, their dependence on H1 and H2 will always be as stated in the theorem.

Without loss of generality, we can assume that the origin is contained in the support
of u. We will estimate the nth singular value by Dirichlet decoupling at an n-dependent
radius R. To this end, let R be sufficiently large that supp(u) is contained strictly inside
the ball of radius R centered at the origin, which we will denote by BR .

Let HR
j (j = 1 or 2) be the Dirichlet restriction of Hj to the BR , and let

AR := e−HR
2 − e−HR

1 and DR := Veff − AR. (15)

As any Kato-class potential is relatively form bounded with respect to the Laplacian
with relative bound zero, we may apply Lemma 5 to deduce that µn(e

−Hn
j ) ≤ C

exp(−cn2/dR−2) for both j = 1 and j = 2. Since AR is the difference of two non-
negative operators by the min-max theorem its singular values obey the same type of
bound:

µn(AR) ≤ C exp(−cn2/dR−2). (16)

If Dn is bounded, then µn(Veff) ≤ µn(AR) + ‖Dn‖. We now proceed to estimate
the norm of Dn by using the Feynman-Kac-Itô formula for magnetic Schrödinger semi-
groups with Dirichlet boundary conditions, see [6, 48].

Let Ex and Px denote the expectation and probability for a Brownian motion, bt

starting at x. If τR = inf{t > 0|bt �∈ BR} denotes the exit time from the ball BR and
τn := τRn , then

(Dnf )(x) = Ex

[
e−iSA(b)

(
e− ∫ 1

0 (V +u)(bs)ds − e− ∫ 1
0 V (bs)ds

)
χ{τn≤1}(b)f (b1)

]
,

where St
A is real valued stochastic process corresponding to the purely magnetic part of

the Schrödinger operator. To be precise, one has to fix a suitable gauge, e.g., Coulomb
gauge, i.e., divA = 0, for this and then use gauge invariance for the general case, see
[38].

By taking the modulus and using the triangle inequality, one sees that the magnetic
vector potential drops out:

|Dnf |(x) ≤ Ex

[
e− ∫ 1

0 V (bs)ds
∣∣e− ∫ 1

0 u(bs)ds − 1
∣∣χ{τn≤1}(b)|f (b1)|

]
.
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Moreover, only Brownian paths which both visit supp u and leave BRn within one unit
of time contribute to the expectation. Thus if τu is the hitting time for supp(u) and
B = {τR ≤ 1, τu ≤ 1}, where we abbreviate R = Rn, then

|Dnf |(x) ≤ Ex

[
e− ∫ 1

0 V (bs)ds
∣∣e− ∫ 1

0 u(bs)ds − 1
∣∣χB(b)|f (b1)|

]
,

so, applying Hölder’s inequality,

|Dnf |(x) ≤
(

Ex

[
e−8

∫ 1
0 V (bs)ds

])1/8(
Ex

[∣∣e− ∫ 1
0 u(bs)ds − 1

∣∣8
)1/8

×
(

Ex

[
χB(b)

])1/4(
Ex

[|f (b1)|2
])1/2

.

By Kashminskii’s lemma, the Kato-class condition on V− and u− implies that the first
two terms are bounded uniformly in x, [2, 49].

Levy’s inequality combined with elementary estimates imply Px=0{τR ≤ 1} ≤
2Px=0{|b1| ≥ R} ≤ Ce−R2/4. As any path in B must cover the distance r between
supp u and the complement of the ball BR , we can deduce that Px(B) ≤ Ce−r2/4 ≤
Ce−R2/8, where we chose without loss of generality r ≥ R/

√
2. Thus

|Dnf |(x) ≤ Ce−R2/32{Ex |f (b1)|2
}1/2 = Ce−R2/32{(e�|f |2)(x)

}1/2
,

in particular, using the fact that e� is an L1 contraction,

‖Dnf ‖2 ≤ Ce−R2/32
∥∥(e�|f |2)∥∥1/2

1 ≤ Ce−R2/32‖f 2‖1/2
1 = Ce−R2/32‖f ‖2.

To balance the two bounds obtained for µn(AR) and ‖Dn‖ one chooses Rn := n1/2d ,
which leads to (2). ��

2.3. Singular value decay implies SSF estimate.

Proof of Theorem 2. Let Ft and the two Schrödinger operators H2 = H1 + u be as in
the theorem. Using the invariance principle and a change of variables, we have

∫ T

−∞
F(|ξ(λ, H2, H1)|) dλ =

∫ T

−∞
F(|ξ(e−λ, e−H2 , e−H1)|) dλ

≤ eT

∫ ∞

e−T

F (|ξ(s, e−H2 , e−H1)|) ds.

By an estimate of Hundertmark and Simon [25], the integral on the RHS is bounded by
∫ ∞

−∞
F(|ξ(s, e−H2 , e−H1)|) ds ≤

∞∑
n=1

µn(Veff)(F (n) − F(n − 1))

≤
∞∑

n=1

µn(Veff)

∫ n

n−1
(ets1/d − 1)ds

≤ C

∞∑
n=1

e(t−c)n1/d

which is finite, if we chose t smaller than the constant c from Theorem 1. This proves (4).
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To prove (5), we dualize the bound (4) with the help of Young’s inequality for an
appropriate pair of functions. Note that Ft is non-negative, convex with F ′

t (0) = 0 and
hence its Legendre transform G is well defined and satisfies

G(y) := sup
x≥0

{xy − F(x)} ≤ y
( log(1 + y)

t

)d

for all y ≥ 0.

Thus, by the very definition of G, Young’s inequality holds: yx ≤ F(x) + G(y). So,
with b = sup supp(f ),

∫
f (λ)ξ(λ) dλ ≤

∫ b

−∞
F(|ξ(λ)|) dλ +

∫
G(|f (λ)|) dλ. (17)

Using the estimate (4), the first integral is bounded by K1e
b. For the second integral in

(17), we estimate
∫

G(|f (λ)|) dλ ≤
∫

|f (λ)|
( log(1 + |f (λ)|)

t

)d

dλ ≤ t−d | log(1 + ‖f ‖∞)|d ‖f ‖1.

This finishes the proof of Theorem 2. ��

3. Proof of the Wegner Estimate

3.1. A partial integration formula for singular distributions. The main new idea to deal
with single site distributions that are not absolutely continuous, is the following simple

Lemma 6. Let µ be a probability measure with support in (a, b)) (or (a, ∞), if its sup-
port is unbounded from above) and φ ∈ C1(R) be non-decreasing and bounded. Then
for any ε > 0,

∫

R

[φ(λ + ε) − φ(λ)] dµ(λ) ≤ s(µ, ε) · [φ(b + ε) − φ(a)],

where s(µ, ε), the modulus of continuity of µ, is defined in (9). (If b = ∞, φ(b + ε)

means limx→∞ φ(x), which exists by the properties of φ.)

Proof. The proof of this lemma follows immediately from the well-known integration-
by-parts formula for Stieltjes integrals. We include it for the convenience of the reader.
We write dµ = dM , where M is the distribution function of µ. In the following, all
integrals are defined as Stieltjes integrals. Shifting variables and using that M is constant
outside of [a, b] gives

∫
[φ(λ + ε) − φ(λ)] dµ(λ) =

∫ b+ε

a

φ(λ) d[M(λ − ε) − M(λ)].

Integrating by parts gives
∫

[φ(λ + ε) − φ(λ)] dµ(λ) =
[
φ(λ)[M(λ − ε) − M(λ)]

]b+ε

a

−
∫ b+ε

a

φ′(λ)[M(λ − ε) − M(λ)] dλ.
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The first term is zero, since M is constant outside of [a, b] (in case b = ∞, one uses
boundedness of φ and limλ→∞[M(λ−ε)−M(λ)] = 0). The second term is bounded by

∫ b+ε

a

φ′(λ)[M(λ) − M(λ − ε)] dλ ≤ sup
λ

[M(λ) − M(λ − ε)] ·
∫ b+ε

a

φ′(λ) dλ

≤ s(µ, ε) · (φ(b + ε) − φ(a)),

since φ′ ≥ 0. ��

3.2. Proof of the Wegner estimate. Let ρ be a switch function adapted to the interval
[E − ε, E + ε]; see the discussion preceding (7). Then

χ[E−ε,E+ε](x) ≤ ρ(x + 2ε) − ρ(x − 2ε).

We may assume without loss of generality
∑

k u(· − k) ≥ 1. By the mini-max principle
for eigenvalues, we conclude

Tr[ρ(H l
ω + ε)] ≤ Tr

[
ρ(H l

ω + ε
∑

k

u(· − k))
]
.

Assume without loss of generality that l ∈ N. Then �l is decomposed in L := ld unit
cubes. We enumerate the lattice sites in �l by k : {1, . . . , L} → �̃ = �∩Z

d , n �→ k(n)

and set

W0 ≡ 0, Wn =
n∑

m=1

u(· − k(m)), n = 1, 2, . . . , L.

Thus

E{Tr[χ[E−ε,E+ε](H
l
ω)]} ≤ E{Tr[ρ(H l

ω + 2ε) − ρ(H l
ω − 2ε)]}

≤ E{Tr[ρ(H l
ω + 2ε) − ρ(H l

ω + 2ε − 4εWL)]}

≤ E

{
L∑

n=1

Tr[ρ(H l
ω + 2ε − 4εWn−1)−ρ(H l

ω+2ε−4εWn)]

}
.

(18)

We fix n ∈ {1, . . . , L}, denote k0 = k(n),

ω⊥ := {ω⊥
k }k∈�̃, ω⊥

k :=
{

0 if k = k0,

ωk if k �= k0,

and set

φ(ωk0) = Tr
[
ρ(H l

ω⊥ − 2ε + 4εWn−1 + ωk0u(· − k0))
]
, ωn ∈ R.

The function φ is continuously differentiable, monotone increasing and bounded. By
definition of φ,

E {Tr[ρ(H l
ω + 2ε − 4εWn)) − ρ(H l

ω + 2ε − 4εWn+1)]}
≤ E{

∫
[φ(ωk0 + 2ε) − φ(ωk0)] dµ(ωk0)}.
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Let a = inf supp(µ) − 1 and b = sup supp(µ) + 1. Using Lemma 6 and the Krein trace
identity (12) together with the second part of Theorem 2, we have

∫
[φ(ωk0 + 2ε) − φ(ωk0)] dµ(ωk0) ≤ s(µ, 2ε)[φ(b + 2ε) − φ(a)]

≤ CE s(µ, 2ε) (log(1/ε))d ,

which implies that (18) is bounded by

CE

L∑
n=1

s(µ, 2ε) (log(1/ε))d ≤ CE s(µ, 2ε) (log(1/ε))d ld .

Note that we apply Theorem 2 successively L times. However, the constant CE depends
only on the diameter of u and a local norm of the negative part of the background
potential. For this local norm there exist an uniform estimate independent of �l and the
configuration of the coupling constants ωk, k �= k0.
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