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Abstract. We prove heat kernel estimates for the ∂̄-Neumann Laplacian � acting in spaces
of differential forms over noncompact manifolds with a Lie group symmetry and compact
quotient. We also relate our results to those for an associated Laplace-Beltrami operator on
functions.

1. Introduction

1.1. Description of the problem and principal results

In this article, we derive bounds on the heat kernel of the ∂̄-Neumann Laplacian
on manifolds with boundary possessing a Lie group symmetry. Heat kernel bounds
are studied intensively and an attempt to describe only the most important works
would go well beyond the scope of the present article. Instead we refer to [28] and
point out the peculiarities of the model we are dealing with before completely intro-
ducing the setup. The operator we deal with is the natural Laplacian coming from
the PDE of several complex variables. It acts on complex-valued differential forms
on a manifold with boundary and has non-coercive boundary conditions. Despite
these differences from the usual situation treated in the theory of Dirichlet forms,
some techniques from that discipline remain applicable in obtaining heat estimates.
Due to the complications in our model, it comes as a nice surprise that these usual
tools (particularly the intrinsic metric) remain useful. Apart from the results that
will soon be described, this surprise is certainly a message we want to pass along.
Since we would like to communicate our results to at least two communities, we
will take our time to explain certain basics that might be familiar to some readers.
We ask those to please bear with us.

Let M be a complex manifold, n = dimC M , and assume that M has a smooth
boundary bM such that M̄ = M ∪ bM . Assume further that M̄ is contained in a
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slightly larger complex manifold ˜M of the same dimension. The space of holomor-
phic functions on M under various complex-geometric conditions on bM ⊂ ˜M
has been investigated from various standpoints, beginning with Hartogs and Levi
[33,42,43] and, with Stein theory and sheaf-theoretic methods, culminating in the
Oka-Grauert theorem, [26].

An approach to problems in several complex variables using partial differen-
tial equations was also developed by Morrey, Spencer, Andreotti–Vesentini, Kohn,
Nirenberg, Hörmander, and others ([20,61,67]) and, for our purposes, bearing
fruit in Kohn’s solution to the ∂̄-Neumann problem, [39–41]. This method heavily
involves the analysis of a self-adjoint Laplace operator � on differential forms in
�p,q , the subject of this article, which we describe here.

For any integers p, q with 0 ≤ p, q ≤ n denote by C∞(M,�p,q) the space of
all C∞ forms of type (p, q) on M . These are the differential forms which can be
written in local complex coordinates (z1, z2, . . . , zn) as

φ =
∑

|I |=p,|J |=q

φI,J dz I ∧ dz̄ J (1)

where dzI = dzi1 ∧ · · · ∧ dzi p , dz J = dz̄ j1 ∧ · · · ∧ dz̄ jq , I = (i1, . . . , i p),
J = ( j1, . . . , jq), i1 < · · · < i p, j1 < · · · < jq , and the φI,J are smooth functions
in local coordinates. For such a differential formφ, the value of the antiholomorphic
exterior derivative ∂̄φ is

∂̄φ =
∑

|I |=p,|J |=q

n
∑

k=1

∂φI,J

∂ z̄k
d z̄k ∧ dzI ∧ dz̄ J ,

so ∂̄ = ∂̄p,q defines a linear map ∂̄ : C∞(M,�p,q) → C∞(M,�p,q+1).
With respect to a smooth measure on M and a smoothly varying Hermitian

structure in the fibers of the tangent bundle, define the spaces L2(M,�p,q). Let us
extend the above ∂̄ to the corresponding maximal operator in L2 (and still call it
∂̄) and let ∂̄∗ be its adjoint operator (the differential forms in the domain of ∂̄∗ will
have to satisfy certain boundary conditions). Then, on

dom(Q p,q) := dom(∂̄) ∩ dom(∂̄∗), (2)

Q p,q(φ,ψ) := 〈∂̄φ, ∂̄ψ〉L2(M,�p,q+1) + 〈∂̄∗φ, ∂̄∗ψ〉L2(M,�p,q−1) (3)

defines a closed form Q p,q on L2(M,�p,q); we will frequently omit the super-
scripts indicating the type of forms and simply write Q and dom(Q) instead. By
standard theory (see details in Sect. 2.3 below) there is a unique self-adjoint operator
� = �p,q corresponding to Q = Q p,q that we can write as

� = �p,q = ∂̄∗∂̄ + ∂̄ ∂̄∗.

This Laplacian � is elliptic but its natural boundary conditions are not coer-
cive, thus, in the interior of M , the operator gains two degrees in the Sobolev scale,
as a second-order operator, while in neighborhoods of the boundary it gains less.
The gain at the boundary depends on the geometry of the boundary, and the best
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such situation is that in which the boundary is strongly pseudoconvex, a condition
already seen to be important in [33,42,43]; see [61]. In that case, the operator gains
one degree on the Sobolev scale and so global estimates including both interior and
boundary neighborhoods gain only one degree. More precisely, one obtains a priori
(called Kohn-type) estimates of the form

‖u‖Hs+1(M,�p,q ) � ‖�u‖Hs (M,�p,q ) + ‖u‖L2(M,�p,q ), (4)

uniformly for u ∈ dom(�) ∩ C∞ when the boundary is strongly pseudoconvex
and q > 0. Such estimates are usually called subelliptic as the gain of the operator
is less than its order. Geometric situations exist in which the gain is less than one
as in the estimate (4); see particularly [9,10].

Assuming for the moment that M̄ is compact, under various well-investigated
conditions on bM , the Laplacian satisfies a pseudolocal estimate with gain ε > 0
in L2(M,�p,q). That is, if U ⊂ M̄ is a neighborhood with compact closure,
ζ, ζ ′ ∈ C∞

c (U ) for which ζ ′|supp(ζ ) = 1, and α|U ∈ Hs(U,�p,q), then ζ(� +
1)−1α ∈ Hs+ε(M̄,�p,q) and there exists a constant Cs,ζ,ζ ′ > 0 such that

‖ζ(� + 1)−1α‖Hs+ε (M,�p,q ) ≤ Cs,ζ,ζ ′
(‖ζ ′α‖Hs (M,�p,q ) + ‖α‖L2(M,�p,q )

)

(5)

uniformly for all α satisfying the assumption. Still assuming that M̄ is com-
pact, Rellich’s theorem provides that (� + 1)−1 is a compact operator and thus
there exists an orthonormal basis of L2(M,�p,q) consisting of eigenforms of �,
[20, Prop. 3.1.11]. With the eigenvalues and eigenforms of �, one can construct
the heat operator and study it directly. In our case of noncompact M , this is not true
and so we will take a different approach.

Still, to us, the most important result from the PDE of several complex vari-
ables remains the pseudolocal estimate (5), which holds even without assuming the
compactness of M , as shown relatively recently in [17].

Finer methods have been developed with which to treat the ∂̄-Neumann prob-
lem, originating in [21] and involving various pseudodifferential calculi, but these
do not seem easily to alleviate the difficulty in going from the compact to the non-
compact manifold case. Accordingly, one sees that the literature of the ∂̄-Neumann
problem rarely deals with noncompact manifolds.

Principal results: Though our results hold in somewhat greater generality, we
will assume throughout this article that M is a complex manifold with smooth,
strongly pseudoconvex boundary bM . Assume also that M̄ = M ∩bM is contained
in the interior of a slightly larger complex manifold ˜M , of the same dimension, on
which a Lie group G acts freely and properly by holomorphic transformations.
Finally, assume that restriction of the orbit space X̄ = M̄/G is compact.

The first of our principal results is a Nash-type inequality, cf. [49]:

Theorem 1. (Nash inequality) Let M be a strongly pseudoconvex G-manifold on
which G acts freely by holomorphic transformations with compact quotient M̄/G.
For integer s > dimC M

‖u‖2+ 1
s

L2(M,�p,q )
� Q(u)‖u‖

1
s
L1(M,�p,q )

, (u ∈ dom(Q p,q) ∩ L1(M,�p,q)).
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Defining the heat semigroup by Pt = e−t�, we obtain operator norm estimates in
L p spaces as well as Sobolev spaces:

‖Pt‖L2→L∞ , ‖Pt‖L1→L∞ , ‖Pt‖Hr →Hs ,

valid for t > 0, r, s ∈ R. This last property can be used to obtain that the Sch-
wartz kernel of the heat operator is smooth for t > 0 and that Pt is Fredholm in a
generalized sense, which we will describe later.

We also obtain an off-diagonal estimate for the heat semigroup in terms of the
intrinsic metric d� induced by ∂̄ : C∞(M,R) → C∞(M,�0,1) and a G-invariant
Hermitian structure on �0,1. It turns out that d� is equivalent to the intrinsic met-
ric dL B induced by the Laplace-Beltrami operator of a Riemannian metric simply
related to the metric on �0,1.

The off-diagonal estimate is

Theorem 2. (Off-diagonal heat kernel estimate) Let M be as above. For measur-
able subsets A, B of M it follows that the heat semigroup satisfies

‖ 1B Pt 1A‖L2→L2 ≤ exp

[

−d�(A; B)2

4t

]

.

1.2. Discussion of the assumptions

We take the assumption that M̄ possess a Lie group symmetry and compact quo-
tient M̄/G partly because G-invariant metrics on such M are all equivalent. A
nice consequence is that, in Theorem 2, modulo a constant, we may replace d�
with the ordinary Riemannian distance on M . More importantly, M satisfying our
assumptions possesses natural invariant Hilbert spaces and Sobolev structures and
so our results involving metric properties have natural meaning. Additionally, on
such M , there is a good generalized Fredholm theory for � based on the harmonic
analysis of G, which, together with generalized Paley-Wiener theorems, provides
an effective framework for understanding the solvability of equations involving �.
These are worked out in [14,50–53,71]. In addition, we have recently established
in [54] that the Laplacian in this setting is essentially self-adjoint and possesses
generalized eigenforms with good properties. The treatment there depends heavily
on our present treatment of the intrinsic metric.

For some of our results, the exact symmetries that we assume could be relaxed,
say, to that of bounded geometry with an added assumption guaranteeing that the
estimate (4) stay well-behaved at infinity. Geometric sufficient conditions for this
latter property have not been worked out to our knowledge.

Our assumption that M be strongly pseudoconvex implies that a pseudolocal
estimate holds with gain ε = 1 in L2(M,�p,q) for all q > 0. All the bundles
constructed in [34] and which are treated in [32] are strongly pseudoconvex; we
will briefly describe these later. In our results, one can revert to the more general
setting, in which 0 < ε < 1, making inessential changes.
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1.3. Discussion of the results

When M̄ is compact, as we have suggested, the pseudolocal estimate (5) holds
with the supports of the cutoff functions containing M̄ . Thus, by our method, for
example, one could have demonstrated the validity of a Nash inequality with the
machinery of [41] long before the appearance of [17]. To obtain Nash’s inequality
in the noncompact case, it seems that one would have to use substantially different
methods. We are unaware of previous results like our off-diagonal estimate but
long-distance asymptotics are not very meaningful in the compact case.

Our results contain the following peculiarity: as already pointed out, the ∂̄-Neu-
mann problem is not elliptic in the sense that inverse of � does not gain two degrees
in the Sobolev scale. This is due to the boundary conditions, which, even in the
strong pseudoconvex case, give a gain of only one order of differentiability.

Our method of proof of the Nash inequality does not make use of the better esti-
mates that are valid in the interior, where the gain is two as in [20, Theorem. 2.2.9].
The resulting Sobolev estimates make our Theorem 1 somewhat weaker than what
would be true for an elliptic operator with coercive ( e.g. Dirichlet or Neumann)
boundary conditions. In addition, the pseudolocal estimate that we use is given in
terms of isotropic Sobolev norms while the problem is inherently anisotropic. In
the compact case, finer anisotropic estimates have been worked out [21,27] and
it happens that the Laplacian actually does gain two orders of differentiability in
all directions except for one “bad” direction in the boundary in which it gains
one.

On the other hand, the off-diagonal bound, Theorem 2, is not affected at all by
this. The intrinsic metric gives just the kind of decay that one would expect for an
elliptic problem.

1.4. Related work

The pseudolocal and Kohn-type estimates that we use here were developed in the
noncompact case in [17,50] and applied in [14,51] (with a group symmetry) to
construct L2 holomorphic functions in some cases, in a manner analogous to that
of Kohn and Gromov, Henkin, Shubin, [20,32,39,40]. This last reference contains
other examples (regular covering spaces of compact, strongly pseudoconvex com-
plex manifolds and two nonunimodular G-manifolds) to which our methods here
apply.

The spectral theory of the ∂̄-Neumann problem has been previously investi-
gated in [22,23,47] in the compact situation and in [2–4,62,65], methods involving
pseudodifferential operators are brought to bear on the problem, still in the compact
case. In [56], a weighted ∂̄-operator on C

n is treated and in [7,8] the authors prove
heat kernel estimates for the related but different �b-operator.

Superficially, the work closest to ours is [63,64], in that the manifolds stud-
ied are noncompact and there is a group acting by holomorphic transformations.
In these studies, the ∂̄-Neumann problem and its heat equation have been solved
explicitly in regions in C

n called Siegel domains.
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In [16], heat kernel asymptotics are developed for subelliptic operators on non-
compact groups. In [45], an asymptotic expansion is developed for the heat kernel
of a general elliptic operator with noncoercive boundary conditions.

Our work is also related to that of [15,57], which treat the Hodge Laplacian
on compact manifolds with boundary. The heat estimates there are derived for
Dirichlet or Neumann boundary conditions on forms of all degrees independent
of the degree, as are ours. But for the ∂̄-Neumann problem, the antiholomorphic
form degree ( i.e. q) influences the boundary condition and the operator’s character
depends strongly on the degree of forms in which it is acting. See particularly the
case of a Z(q) boundary in [20, 3.2]. Still, in the strong pseudoconvex case, we
show the estimates to be insensitive to the type of the form as long as q > 0, perhaps
analogous to the setting in [15,57].

The contents of the rest of this article are as follows. In Sect. 2 we will describe
the basic constructions on M and review the principal properties of the ∂̄-Neumann
problem relevant to our investigation. Also, we will draw the more directly acces-
sible conclusions of these properties. In Sect. 3 we describe the intrinsic geometry
carried by M and derive the heat estimates for the ∂̄-Neumann Laplacian. Sect. 4
provides examples on which our results hold.

2. The ∂̄-Neumann problem

2.1. Invariant structures

We will need to describe smoothness of functions and differential forms using
G-invariant Sobolev spaces which we describe here. We begin with an invariant
Riemannian structure with respect to which all these objects will be given a scale.

Lemma 2.1. There exists a G-invariant Riemannian metric g on M and any two
such metrics are equivalent.

Proof. Let (Ok)
N
1 be an open cover of X̄ such that, for every k, the G-subbundle

G → π−1(Ok) → Ok is trivial. Taking the direct product of a right-invariant met-
ric on G with any metric on Ok , we obtain a G-invariant metric on G×Ok , hence on
π−1(Ok). Let (φk)

N
1 be a partition of unity on X subordinate to the covering (Ok)k

and lift the φk to obtain an invariant partition of unity (ϕk)k with ϕk := φk ◦π . Now
glue the metrics on the trivial bundles π−1(Ok) together with (ϕk)k . The equiva-
lence follows from the fact that any G-invariant metric is uniquely determined by
its restriction to the compact quotient. ��

In �p,q we may thus introduce a G-invariant pointwise Hermitian structure
〈·, ·〉�p,q . We denote by C∞(M,�p,q) the space of smooth (p, q)-forms on M , by
C∞(M̄,�p,q) the subspace of those forms that can be smoothly extended to M̄ ,
and by C∞

c (M̄,�
p,q) the subspace of the latter consisting of those smooth forms

with compact support. In terms of the G-invariant, point wise Hermitian structure

C∞(M̄,�p,q) � u, v �−→ 〈u(x), v(x)〉�p,q
x

∈ C, (x ∈ M̄),
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we define the L p-spaces L p(M,�q,r ) of differential forms as the completions of
C∞

c (M̄,�
q,r ) in the norms

‖u‖L p(M,�q,r ) =
⎡

⎣

∫

M

〈u, u〉p/2
�q,r

⎤

⎦

1/p

,

where the integral is taken with respect to an (invariant) Riemannian volume ele-
ment. As in [29,59] we may construct appropriate partitions of unity and, by dif-
ferentiating componentwise with respect to local geodesic coordinates, assemble
G-invariant integer Sobolev spaces Hs(M,�p,q), for s = 0, 1, 2, . . .. By Lemma
2.1, the spaces Hs(M,�p,q) do not depend on the choices of an invariant metric
on M or of an invariant inner product on �p,q . The usual duality relations for
L p spaces hold (polarizing the above norm) as well as the Sobolev lemma, etc.
Background on this is provided in [25].

2.2. The complexified cotangent space

We will introduce some complex-geometric concepts in this section, basically fol-
lowing [20]; see also [37,38]. On a real, 2n-dimensional C∞ manifold M , an almost
complex structure on M is a splitting of the complexification T M ⊗R C of the real
tangent bundle T M ,

T M ⊗R C = T1,0 M ⊕ T0,1 M,

with the following property; denoting the projections onto T1,0 M and T0,1 M by
�1,0 and �0,1, respectively:

�0,1ζ = �1,0ζ̄ , (6)

where - denotes complex conjugation.
We can also describe an almost complex structure by a fibrewise linear mapping

J : T M → T M with J 2 = − 1. These two descriptions are related via:

T1,0 M = {X − i J X | X ∈ T M} = ker(J − i) (7)

and

T0,1 M = {X + i J X | X ∈ T M} = ker(J + i), (8)

see [37, Chap. I, Sect. 7]. For a vector field X ∈ T M , a complex vector field in
T M ⊗R C of the form X − i J X ∈ T1,0 is called a holomorphic vector field while
one of the form X + i J X ∈ T0,1 is called antiholomorphic.

Dually, the projections �0,1, �1,0 induce a splitting of the exterior powers of
the complexified cotangent bundle, �k T ∗M ⊗R C into holomorphic and antiho-
lomorphic parts so that �k = ⊕

p+q=k �
p,q . The exterior derivative in �k T ∗M

can be combined with the splittings of the complexified cotangent bundle of M
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to obtain holomorphic and antiholomorphic exterior derivatives ∂ and ∂̄ , respec-
tively. The relations among these operators are given by

∂̄ : C∞(M̄,�p,q) → C∞(M̄,�p,q+1), ∂̄φ = �p,q+1dφ

and

∂ : C∞(M̄,�p,q) → C∞(M̄,�p+1,q), ∂φ = �p+1,qdφ

for φ ∈ C∞(M̄,�p,q).
On a complex manifold, it is true that d = ∂ + ∂̄ , see [20, Prop. 1.2.1] and that

∂̄2 = 0, which gives rise to the ∂̄-complex,

0 → C∞(M̄,�p,0)
∂̄→ C∞(M̄,�p,1)

∂̄→ · · · ∂̄→ C∞(M̄,�p,n) → 0

which is the starting point for various cohomology theories due to Dolbeault,
Hodge-Kodaira, and unified by Spencer, cf. [41]. See also [50] for some results
related to our current setting.

2.3. Operators and forms

As we said in the introduction, � will be defined in terms of an associated quadratic
form. Good references for background on the general concept of closed forms and
their associated operators are [18,36,55], among others. Here we will give more
details concerning the case at hand and also describe certain subsets of smooth
forms that belong to the respective form and operator domains. We begin by col-
lecting some information concerning the building blocks of �, the operators ∂̄ and
∂̄∗.

Remark 2.2. Let M be as above.

(1) The maximal operator ∂̄ in L2(M,�p,q) is given by: α ∈ dom(∂̄) whenever
∂̄α ∈ L2(M,�p,q+1) in the distributional sense. It acts from L2(M,�p,q) to
L2(M,�p,q+1) and is a closed operator.

(2) The operator ∂̄∗ in L2(M,�p,q) is the adjoint of ∂̄ (in L2(M,�p,q−1)); it is
given by: α ∈ dom(∂̄∗) whenever there exists β ∈ L2(M,�p,q−1) so that

〈∂̄γ , α〉L2(M,�p,q ) = 〈γ, β〉L2(M,�p,q−1)

for all γ ∈ L2(M,�p,q−1) and ∂̄∗α = β.
(3) Since ∂̄ is closed, the form

dom(∂̄)× dom(∂̄) � (α, β) �→ 〈∂̄α, ∂̄β〉L2(M,�p,q+1)

is a closed form in L2(M,�p,q); cf [18,36].
(4) Since ∂̄∗ is closed, the form

dom(∂̄∗)× dom(∂̄∗) � (α, β) �−→ 〈∂̄∗α, ∂̄∗β〉L2(M,�p,q−1)

is a closed form in L2(M,�p,q), provided, q ≥ 1.
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(5) Q = Q p,q is the sum of the closed forms defined in (3), (4) above and, there-
fore, a closed form as well for q ≥ 1. Q p,0 is the form defined in (3).

Recall that a closed operator is one whose graph is closed, while a form Q is closed
whenever its domain dom(Q) is a Hilbert space with respect to the form inner
product (· | ·)Q := Q(·, ·)+ 〈·, ·〉.

The stage is now set for the first form representation theorem, cf. [36], that
asserts that for every semibounded closed form there is a unique self-adjoint oper-
ator associated with the form. In our case, there is a unique self-adjoint operator
�p,q associated with Q p,q , meaning that

dom(�p,q) ⊂ dom(Q p,q)andQ(α, β) = 〈�α, β〉,
whenever α ∈ dom(�p,q) and β ∈ dom(Q p,q). In fact, more is known:

dom(�p,q) = {α | ∃γ ∈ L2(M,�p,q)∀β ∈ dom(Q p,q) : Q p,q(α, β) = 〈γ, β〉}
and, obviously, γ = �p,qα is uniquely determined. Moreover, defining the square

root �
1
2
p,q by the functional calculus, we have that

dom(Q p,q) = dom(�
1
2
p,q) and Q(α, β) = 〈� 1

2 α,� 1
2 β〉.

We note that � can be seen as the form sum of the operators ∂̄∗∂̄ and ∂̄ ∂̄∗. In
fact, the former operator is the self-adjoint operator associated with the form in
part (3) of the preceding remark and the latter is the self-adjoint operator associated
with the form in part (4) of the preceding remark. In that sense, the formula

� = ∂̄∗∂̄ + ∂̄ ∂̄∗

has now a precise meaning, interpreting the plus sign as the form sum, cf. [18,36].
In principle, all domain questions are settled now and we have defined the

forms and operators we will be dealing with. However, the results above give a
rather implicit description so it is quite useful to have explicit subspaces of the
operator and form domains given above.

We speak of a core of a form meaning a subspace of its domain that is dense
in the domain with respect to the form norm. Similarly, a core of an operator is a
subspace of its domain that is dense with respect to the graph norm.

The following lemma is from [32, Lemma 1.1] and [20, Lemma 2.3.2]. It serves
to get our hands on the smooth elements of certain form and operator domains.

Lemma 2.3. Let M be as above, let ϑ be the formal adjoint operator to ∂̄ , and
denote by σ = σ(ϑ, ·) its principal symbol.

(i) {u ∈ C∞
c (M̄,�

•) | σ(ϑ, dρ)u|bM = 0} is a core for ∂̄∗ and on this space ∂̄∗
agrees with ϑ .

(ii) D p,q := {u ∈ C∞(M̄,�•) | σ(ϑ, dρ)u|bM = 0} is a core for Q p,q .
(iii) The domains of ∂̄∗ and Q are preserved by multiplication by cutoff functions.

Remark 2.4. In [54] we go into much more detail about the domains of Q and �,
so we abbreviate the discussion here.
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2.4. Estimates for the Laplacian

In this section we give our requirements on the boundary geometry and state the
pseudolocal estimate in more precise language than in the introduction. As before,
assume M to be a complex manifold with nonempty smooth boundary bM , M̄ =
M ∪ bM , so that M is the interior of M̄ , and dimC(M) = n. Recall that we also
assume that M̄ is a closed subset in ˜M , a complex neighborhood of M̄ so that the
complex structure on ˜M extends that of M , and every point of M̄ is an interior point
of ˜M . Let us choose a smooth function ρ : ˜M → R so that

M = {z | ρ(z) < 0}, bM = {z | ρ(z) = 0},
and for all x ∈ bM , we have dρ(x) �= 0.

In local coordinates near any x ∈ bM define the holomorphic tangent plane to
the boundary at x by

T C
x (bM) = {w ∈ C

n |
n
∑

k=1

∂ρ

∂zk

∣

∣

∣

∣

x
wk = 0}

and define the Levi form Lx by

Lx (w, w̄) =
n
∑

j,k=1

∂2ρ

∂z j∂ z̄k

∣

∣

∣

∣

x
w j w̄k, (w ∈ T C

x (bM)).

Then M is said to be strongly pseudoconvex if for every x ∈ bM , the form Lx

is positive definite.
The following theorem will be our principal tool from the PDE of several com-

plex variables.

Theorem 2.5. (Pseudolocal estimate) Let M be strongly pseudoconvex, U an open
subset of M̄ with compact closure, and ζ, ζ ′ ∈ C∞

c (U ) for which ζ ′| supp (ζ ) = 1. If
q > 0 and α|U ∈ Hs(U,�p,q), then ζ(� + 1)−1α ∈ Hs+1(M̄,�p,q) and there
exist constants Cs > 0 so that

‖ζ(� + 1)−1α‖Hs+1(M,�p,q ) ≤ Cs(‖ζ ′α‖Hs (M,�p,q ) + ‖α‖L2(M,�p,q )). (9)

Proof. This is [20, Prop. 3.1.1] extended to the noncompact case in [17]. ��
Remark 2.6. Boundary geometries giving more general subelliptic estimates than
does strong pseudoconvexity are harder to define, so we refer the interested reader to
[20, 3.2], [9,10] instead of pursuing this issue here. For completeness, we mention
that the theorem holds when M satisfies these weaker estimates, mutatis mutandis
[17].

A word on notation: For two functions A and B on a set S, we write A � B to
mean that there exists a constant C > 0 such that |A(φ)| ≤ C |B(φ)| for φ in S.

Corollary 2.7. For s ∈ N, q > 0, and ζ ∈ C∞
c (M̄),

‖ζ(� + 1)−sα‖Hs (M,�p,q ) � ‖α‖L2(M,�p,q ), (α ∈ L2(M,�p,q)). (10)
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Proof. By induction. Putting s = 0 in the theorem, we have

‖ζ(� + 1)−1α‖H1 � ‖ζ ′α‖L2 + ‖α‖L2 � ‖α‖L2 , (α ∈ L2(M)).

Assuming the result for s − 1, it follows that (� + 1)1−sα ∈ Hs−1
loc (M) for all

α ∈ L2(M). Applying the theorem to this form, we have

‖ζ(� + 1)−1(� + 1)1−sα‖Hs � ‖ζ ′(� + 1)1−sα‖Hs−1 + ‖(� + 1)1−sα‖L2 ,

and ‖ζ(� + 1)−sα‖Hs � ‖(� + 1)1−sα‖L2 � ‖α‖L2 . ��
Corollary 2.8. Let M be a strongly pseudoconvex G-manifold on which G acts
freely by holomorphic transformations with compact quotient M̄/G. For integer
s > dimC M and q > 0 we have the estimate

‖(� + 1)−sα‖L∞(M,�p,q ) � ‖α‖L2(M,�p,q ), (α ∈ L2(M,�p,q)). (11)

Proof. Choose B ⊂ M̄ compact and sufficiently large so that B · G covers M̄ . This
is possible since X̄ is compact. Choose ζ ∈ C∞

c (M̄) such that supp ζ ⊃ B in (10).
Now, the Sobolev lemma provides that if s > k + m/2, then Hs(Rm) ⊂ Ck(Rm)

and there is a constant C = Cs,k such that

sup
|α|≤k

sup
x∈Rm

|∂αu(x)| ≤ C‖u‖Hs (Rm), (12)

thus, if we take s > k + 1/2 dimR M = k + dimC M , we have

‖(� + 1)−sα‖Ck (M̄) � ‖ζ(� + 1)−sα‖Hs � ‖α‖L2 , (α ∈ L2(M))

by the G-invariance of M and our choice of local geodesic coordinates. ��
Remark 2.9. The exact invariances furnished by the group action assumed here are
not essential and can be relaxed to assumptions on the uniformity of the estimates
in (5), etc.

3. Heat kernel estimates and intrinsic geometry

Definition 3.1. Let � = ∫∞
0 λd Eλ be the spectral resolution of the Laplacian and

for t > 0 put

Pt =
∞
∫

0

e−tλd Eλ.

That is, Pt = e−t�, and we would write P p,q
t = e−t�p,q to be completely

explicit.

Remark 3.2. The semigroup (e−t H ; t ≥ 0) of a self-adjoint operator H contains a
wealth of information about its generator H and satisfies the semigroup property
e−(t+s)H = e−t H e−s H ; see [11,24] for the general theory and [60] for the case of
Schrödinger operators. In the case at hand, where H ≥ 0, the semigroup consists of
contractions, i.e., ‖e−t H ‖L2→L2 ≤ 1. The symbol ‖ · ‖L2→L2 denotes the operator
norm of an operator from L2 to L2. Similar to what is known for the Laplacian, the
semigroup of the ∂̄-Neumann Laplacian � is ultracontractive. That is, it maps L2

into L∞ continuously. This is equivalent to the validity of a Nash-type inequality
and will be discussed below.
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3.1. Ultracontractivity and Nash inequalities

The heat operator’s ultracontractivity (i.e. boundedness from L2 → L∞) follows
immediately from the Sobolev estimate in Cor. 2.8 above. The proof is formally
very similar to that from Davies [12]. The difference between the two cases is
that our basic spaces consist of vector-valued functions and so certain concepts
and manipulations are not available. For example, we cannot identify nonnegative
elements or take the absolute value in a naive way.

Proposition 3.3. Let M be a strongly pseudoconvex G-manifold on which G acts
freely by holomorphic transformations with compact quotient M̄/G. For integer
s > dimC M and q > 0, we have

‖Ptα‖L∞(M,�p,q ) � max(1, t−s)‖α‖L2(M,�p,q ), (α ∈ L2(M,�p,q)). (13)

Proof. We plug (� + 1)s Ptα into the inequality (11) and obtain:

‖Ptα‖L∞ = ‖(� + 1)−s(� + 1)s Ptα‖L∞

� ‖(� + 1)s Ptα‖L2

� t−s‖α‖L2

for any 0 < t ≤ 1, by functional calculus, since the maximum of the function
λ �→ (λ+ 1)se−λt goes like t−s for t > 0. This gives the result for arbitrary t ≥ 0,
as the semigroup is a contraction on L2. ��
Recall that the usual duality properties of the L p spaces hold in our setting, Sect.
2.1.

Corollary 3.4. Let M be as in the previous proposition. Then, for integer s >

dimC M and q > 0 we have

‖Ptα‖L∞(M,�p,q ) � max(1, t−2s)‖α‖L1(M,�p,q ), (14)

uniformly for α ∈ L1 ∩ L2(M,�p,q).

Proof. Since Pt is symmetric, ‖Pt‖L2→L∞ = ‖Pt‖L1→L2 by duality, and

‖Pt‖L2→L∞ � max(1, t−s),

from the previous statement, we have

‖Pt‖L1→L∞ ≤ ‖Pt‖L2→L∞‖Pt‖L1→L2 ≤ ‖Pt/2‖2
L2→L∞ � 1

t2s

by the semigroup property. ��
Remark 3.5. The basic tool in the estimates to come is the fundamental theorem of
calculus applied to the function t �→ ‖Pt u‖2

L2 or variants thereof. This rests on the
following immediate consequence of functional calculus: For any u ∈ dom(�),

Pt u ∈ dom(�) and
d

dt
[Pt u] = −�Pt u.
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Proposition 3.6. Let M be as in the previous proposition. For any real-valued
function w ∈ C∞(M̄) ∩ L∞(M) for which 〈∂̄w, ∂̄w〉�0,1 is bounded in M and
u ∈ L2(M,�p,q),

d

dt
‖ewPt u‖2

L2(M,�p,q )
= −2Re Q(Pt u, e2wPt u).

In particular, for w = 0 we get:

d

dt
‖Pt u‖2

L2(M,�p,q )
= −2Q(Pt u).

Proof. For any t > 0 we have

d

dt
‖ewPt u‖2

L2 = lim
h→0

1

h

[

〈Pt+hu, e2wPt+hu〉 − 〈Pt u, e2wPt u〉
]

= lim
h→0

[〈

1

h
(Pt+hu − Pt u), e2wPt+hu

〉

+ 〈e2wPt u,
1

h
(Pt+hu − Pt u)〉

]

= 〈−�Pt u, e2wPt u〉 + 〈e2wPt u,−�Pt u〉
= −Q(Pt u, e2wPt u)− Q(e2wPt u, Pt u),

where, in the last step we used that e2wu is in the domain of Q, by part (i i i) of
Lemma 2.3. ��

Proof of Theorem 1. From Prop. 3.3 and duality we get

t−2s‖u‖2
L1 ≥ 〈Pt u, Pt u〉L2 = ‖Pt u‖2

L2 .

We use the fundamental theorem of calculus and the above Prop. 3.6 in

. . . = ‖u‖2
L2 − 2

t
∫

0

Q(Psu)ds

≥ ‖u‖2
L2 − 2t Q(u) (15)

where, in the last inequality we use the following straightforward consequence of
functional calculus:

Q(Psu) = ‖� 1
2 e−s�u‖2

L2 ≤ ‖� 1
2 u‖2

L2 .

Putting t = Q(u)−
1

2s+1 ‖u‖
2

2s+1

L1(M,�p,q )
in (15) gives the assertion. ��
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3.2. The intrinsic metric

We will measure the bounds on off-diagonal terms in the heat kernel with respect
to the metric given by

Definition 3.7. We define the G-invariant pseudo-metric d� on M by

d�(x, y) = sup{w(y)− w(x) | w ∈ L∞ ∩ C∞(M̄,R), 〈∂̄w, ∂̄w〉�0,1 ≤ 1}.

The distance between sets is given by

d�(A; B) := sup{inf
B
w − sup

A
w | w ∈ L∞ ∩ C∞(M̄,R), 〈∂̄w, ∂̄w〉�0,1 ≤ 1}

for arbitrary A, B ⊂ M̄ .

The definition above is geared to the intrinsic metric of Dirichlet forms, as used
in slightly different versions, e.g. in [6,13,70,66,68,69] as well as the metrics con-
sidered in [19,35,48] and see [30,31] as well. Note however, that our application
of this concept is somewhat nonstandard. We use this metric, defined on functions,
to estimate the heat kernels acting on forms! We now show that the metric above
is equivalent to an associated Riemannian distance. To this end, let us describe the
metric structure of M in more detail, in the notation of Sect. 2.2 above.

On the tangent bundle T M of the 2n-dimensional real G-manifold underlying
M , we have a G-invariant almost complex structure J : T M → T M , induced by
the complex structure on M . Assume that we also have a G-invariant Riemannian
metric g on T M so that J is an isometry with respect to g; g(X,Y ) = g(J X, JY ).
Such a metric exists because a metric obtained from Lemma 2.1 can be averaged
over the action of J . Note that with respect to any such metric, X ⊥ J X . Indeed,

g(X, J X) = g(J X,−X) = −g(J X, X) = −g(X, J X) = 0.

We may extend any Riemannian structure for which J is an isometry by com-
plex sesquilinearity (linear in the first slot, conjugate-linear in the second slot) to
obtain Hermitian inner products which we say are associated to g in T1,0, T0,1 ⊂
T M ⊗R C:

〈X − i J X,Y − i JY 〉T1,0 := g(X,Y )+ ig(X, JY ),

〈X + i J X,Y + i JY 〉T0,1 := g(X,Y )+ ig(J X,Y ).

By duality, these structures extend naturally to�1,0 and�0,1 and by tensoriality
to each of the spaces�p,q . We will also metrize the bundle of complex k-forms as
an orthogonal sum

�k =
⊕

p+q=k

�p,q , (k = 0, 1, . . . , n). (16)
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Let us describe the (0, 1)-forms in terms of J analogously to our vector fields in
7 and 8. Since �0,1 is the dual of T0,1 in the Hermitian metric above, we have
ξX ∈ �0,1, the dual of X + i J X ∈ T0,1, naturally of the form

ξX (Y + i JY ) = 〈Y + i JY, X + i J X〉T0,1

= g(Y, X)+ ig(JY, X) = g(X,Y )− ig(J X,Y ). (17)

We compute the last term in coordinates. Since by assumption we have
g(X,Y ) = g(J X, JY ), it is true that

gkl J k
i J l

j = gi j ,

with the convention that repeated indices be summed over. Multiplying this identity
by J and using J l

j J j
k = −δl

k , the Kronecker δ, we get

gkj J j
i = −gi j J j

k ,

from which it follows that g(J X, ·) = −Jg(X, ·) since

g(J X, ·) = gi j J j
k Xkdxi and Jg(X, ·) = J j

i g jk Xkdxi .

Going back to (17) and writing Jg(X, ·)|Y too simply “Jg(X,Y ),” we see that

ξX (Y + i JY ) = g(X,Y )+ i Jg(X,Y )

thus �0,1 � ξX = φX + i JφX for the real 1-form φX = g(X, ·). Similarly, a form
�1,0 � ξX = φX − i JφX again for the real 1-form φX = g(X, ·)

Now we return to the description of the intrinsic metric. For w ∈ C∞(M̄,R),
consider the following computation:

〈dw, dw〉�1 = 〈(∂̄ + ∂)w, (∂̄ + ∂)w〉�1 = 〈∂̄w, ∂̄w〉�0,1 + 〈∂w, ∂w〉�1,0

since ∂̄w ∈ �0,1 and ∂w ∈ �1,0 are orthogonal by the decomposition (16).
Now, w is real so ∂̄w is the complex conjugate of ∂w by (6), thus there is a

single real 1-form φ such that ∂̄w = φ+ i Jφ and ∂w = φ− i Jφ. In fact, φ = 1
2 dw

since d = ∂ + ∂̄ . Computing the inner products,

〈∂̄w, ∂̄w〉�0,1 = 〈∂w, ∂w〉�1,0 = 2g(φ, φ)

since g(φ, Jφ) = 0. Thus, 〈dw, dw〉�1 = 2〈∂̄w, ∂̄w〉�0,1 = 4g(φ, φ) in our
metric.

Since the Laplace-Beltrami operator on functions is induced by the quadratic
form w �→ ∫ 〈dw, dw〉�1 , cf. [58,69], we have shown

Proposition 3.8. For a J-invariant Riemannian structure g, let �L B be the corre-
sponding Laplace-Beltrami operator. Given the Hermitian structure on�0,1 asso-
ciated to g, the intrinsic metric d� is equivalent to the one induced by the intrinsic
metric of −�L B on functions.
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Remark 3.9. (1) At least in the case of complete manifolds without boundary it
is well-known, cf. [69] that the intrinsic metric dL B of the Laplace-Beltrami
operator coincides with the Riemannian distance, i.e.,

dL B(x, y) = inf{L(γ ) | γ : I → M a curve joining x, y ∈ M}.
In view of [1,66], the presence of a boundary should not change this picture and
Lemma 2.1 together with the intrinsic metric’s manifest G-invariance provide
the equivalence of all these structures.

(2) For Kähler manifolds, � = 1
2�, cf. [37, Chap. III, 2], acting componentwise

on forms, therefore it is clear in this case that we recover the intrinsic metric
of the Laplacian up to a factor of

√
2.

(3) These properties of d� are important for the method of [54].

3.3. Off-diagonal heat kernel estimates

Here, we basically use the proof from [70], pointing out once more that our setup
is substantially different as our spaces are spaces of differential forms rather than
functions. Let us also remind the reader that multiplication by functions preserves
the domain of Q and this is crucial to our treatment.

Lemma 3.10. For w ∈ L∞ ∩ C1(M̄,R), we have

Q(u, u) = Q(e−εwu, eεwu)− 2iε Im
{〈∂̄u, ∂̄w ∧ u〉L2 + 〈�(∂w ∧ �u), ∂̄∗u〉L2

}

+ ε2
{

‖∂̄w ∧ u‖2
L2 + ‖∂w ∧ �u‖2

L2

}

for all u ∈ dom(Q).

Proof. By definition,

Q(e−εwu, eεwu) = 〈∂̄e−εwu, ∂̄eεwu〉 + 〈∂̄∗e−εwu, ∂̄∗eεwu〉.
The first term simplifies as follows

〈∂̄e−εwu, ∂̄eεwu〉 = 〈∂̄u, ∂̄u〉 + 2iε Im〈∂̄u, ∂̄w ∧ u〉 − ε2〈∂̄w ∧ u, ∂̄w ∧ u〉.
For the second term, note that ∂̄∗ = − � ∂� where � is the Hodge operator and
∂ = d − ∂̄ , (cf. Prop. 5.1.1, [20]). Thus

∂̄∗e−wu = − � ∂ � (e−wu) = − � [∂e−w(�u)] = − � [∂e−w ∧ �u + e−w∂ � u]
= − � [∂e−w ∧ �u] + e−w∂̄∗u = e−w � [∂w ∧ �u] + e−w∂̄∗u.

With the corresponding expression

∂̄∗ewu = −ew � [∂w ∧ �u] + ew∂̄∗u,

we obtain

〈∂̄∗e−wu, ∂̄∗ewu〉 = 〈∂̄∗u, ∂̄∗u〉 + 2i Im 〈�(∂w ∧ �u), ∂̄∗u〉
−〈(∂w ∧ �u), (∂w ∧ �u)〉,

where we have used the fact that the Hodge � is an isometry. ��
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Corollary 3.11. Assuming 〈∂̄w, ∂̄w〉�0,1 ≤ 1, we have

−Re Q(e−wu, ewu) ≤ 2‖u‖2
L2(M,�p,q )

.

Proof. The previous assertion implies

−Re Q(e−εwu, eεwu) = ε2
{

‖∂̄w ∧ u‖2 + ‖∂w ∧ �u‖2
}

− Q(u, u)

and since we have assumed 〈∂w, ∂w〉�1,0 = 〈∂̄w, ∂̄w〉�0,1 ≤ 1, (see Sect. 3.2)
we have the result by Cauchy-Schwarz and again the fact that the Hodge � is an
isometry. ��
Proof of Theorem 2. For arbitrary f ∈ dom(Q), the computation in Prop. 3.6 gives

‖ewPt f ‖2
L2 − ‖ew f ‖2

L2 =
t
∫

0

d

ds
‖ewPs f ‖2

L2 ds

= −2Re

t
∫

0

ds Q(Ps f, e2wPs f ). (18)

Writing

Q(Ps f, e2wPs f ) = Q(e−wewPs f, ewewPs f )

and applying Cor. 3.11, the integrand in (18) satisfies

− Re Q(Ps f, e2wPs f ) ≤ ‖ewPs f ‖2
L2 , (19)

as usual, assuming that 〈∂̄w, ∂̄w〉�0,1 ≤ 1. It follows that

‖ewPt f ‖2
L2 − ‖ew f ‖2

L2 ≤ 2

t
∫

0

ds ‖ewPs f ‖2
L2 .

Gronwall’s inequality implies that

‖ewPt f ‖2
L2 ≤ e2t‖ew f ‖2

L2

and replacing w by δw we obtain ‖eδwPt f ‖L2 ≤ eδ
2t‖eδw f ‖L2 by inspection in

(19). This implies that

‖eδwPt e
−δw‖L2→L2 ≤ eδ

2t

since f was arbitrary in the domain.
Now, for arbitrary α, β ∈ L2

|〈 1B Pt 1Aα, β〉| = ∣

∣〈eδwPt e
−δweδw 1Aα, e−δw 1Bβ〉∣∣

≤ ‖eδwPt e
−δweδw 1Aα‖L2(M)‖e−δw 1Bβ‖L2(M)

≤ ‖eδwPt e
−δw‖L2→L2‖eδw 1Aα‖L2(M)‖e−δw 1Bβ‖L2(M).

≤ eδ
2t‖eδw 1Aα‖L2(M)‖e−δw 1Bβ‖L2(M).
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For ε > 0 choose a weight function w as in the definition of d�(A; B) above,
with 〈∂̄w, ∂̄w〉�0,1 ≤ 1 and so that

d�(A; B)− ε ≤ inf
B
w − sup

A
w and sup

A
w = 0

(we can achieve the latter by adding a suitable constant). This gives

inf
B
w ≥ d�(A; B)− ε.

Inserting gives

|〈 1B Pt 1Aα, β〉| ≤ eδ
2t e−δ(d� (A;B)−ε)‖α‖‖β‖

so that (since ε is arbitrary)

‖ 1B Pt 1A‖ ≤ eδ
2t e−δd� (A;B).

For d�(A; B) < ∞, choose δ = d�(A; B)/(2t).

Remark 3.12. In light of Prop. 3.8, we may replace d� with dL B , making the nec-
essary changes.

3.4. Sobolev estimates for the heat operator

Here we extend some L p results from the preceding treatment to Sobolev spaces.
First note that for t > 0 and k ∈ N arbitrary, we have Pt : L2 → dom(�k).

Proposition 3.13. For t > 0 and q > 0 we have

Pt : L2(M,�p,q) → C∞(M̄,�p,q).

Proof. We will proceed by induction and use the Sobolev lemma, (12) above. Fix
t > 0. For any α ∈ L2, since im(Pt ) ⊂ dom(�), and (� + 1)−1 : L2 → dom(�)
is onto, we may apply Thm. 2.5 to the form α = (� + 1)Ptβ, β ∈ dom(�), to
obtain

‖ζ Ptβ‖H1 � ‖ζ ′(� + 1)Ptβ‖L2 + ‖(� + 1)Ptβ‖L2 � ‖β‖L2 ,

and conclude that im(Pt ) ∈ H1
loc. Furthermore, since Pt is a function of �, they

commute and we also have

(� + 1)Ptβ = Pt (� + 1)β ∈ H1
loc (α ∈ L2).

Assuming now that (� + 1)Ptβ ∈ Hs−1
loc , the same theorem provides

‖ζ Ptβ‖Hs � ‖ζ ′(� + 1)Ptβ‖Hs−1 + ‖(� + 1)Ptβ‖L2 ,

so Ptβ ∈ Hs
loc. ��
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We will need the following a priori estimate for �, proven in our setting by a
small variation on the methods of [20,41], in [50, Thm. 4.5].

Lemma 3.14. (Kohn inequality) If M is a strongly pseudoconvex G-manifold on
which G acts freely by holomorphic transformations with compact quotient M̄/G
and q > 0, then for every integer s ≥ 0 there exists a positive constant Cs so that

‖u‖Hs+1 ≤ Cs(‖�u‖Hs + ‖u‖L2), (u ∈ dom(�) ∩ C∞(M̄,�p,q))

uniformly.

Corollary 3.15. For t > 0 and q > 0 we have im(Pt ) ⊂ H∞(M,�p,q).

Proof. Combining the results of Prop. 3.13 and Lemma 3.14, we have

‖u‖Hs+1 ≤ Cs(‖�u‖Hs + ‖u‖L2) (u ∈ im(Pt ))

but im(Pt ) ⊂ dom(�k) for all powers of the Laplacian, so this estimate can be
iterated. Thus the estimates

‖�k−su‖Hs+1 � ‖�k−s+1u‖Hs + ‖�k−su‖L2 , (s = 1, 2, . . . , k) (20)

hold for u ∈ im(Pt ) and these imply the result. ��
Proposition 3.16. If M is as above, t > 0, and q > 0, then the heat operator Pt is
bounded from H−s(M̄,�p,q) → Hs(M,�p,q) for any positive integer s.

Proof. First recall the following fact about Sobolev spaces on manifolds with
boundary from Remark 12.5 of [44]. For s > 0, the dual space of Hs(M),
denoted H−s(M̄), consists of elements of H−s(˜M) whose support is in M̄ .
Now, from Cor. 3.15 we have that for all s > 0, Pt : L2 → Hs(M) con-
tinuously. Since Pt is self-adjoint, its domain can be extended to the dual of
Hs(M) so that Pt : H−s(M̄) → L2(M). The semigroup law P2

t = P2t holds
on C∞

c (M̄) ⊂ L2(M), a dense subspace of all the Hs(M̄), (s ∈ R) so we may
conclude that Pt : H−s(M̄) → Hs(M) for all s > 0. ��
Remark 3.17. These results have three easy consequences.

(1) For an operator norm estimate, we can put u = Ptα in the estimates (20) and
telescope them to find that for s ∈ N,

‖Ptα‖Hs �
s
∑

k=0

‖�k Ptα‖L2 �
s
∑

k=0

t−k‖α‖L2 ,

which yields an estimate analogous to that in Prop. 3.3.
(2) Combining Cor. 3.15 with Gagliardo-Nirenberg-Sobolev embeddings, e.g.

Hs(Rn) ⊂ L p(Rn), p = 2n

n − 2s
, 0 ≤ s <

n

2
,

[5], one obtains results overlapping those of the previous sections in L p spaces.
With other such embeddings can obtain results for L p-Sobolev spaces.
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(3) One can continue the treatment in Sect. 6 of [50] to obtain that, for t > 0, the
heat operator’s Schwartz kernel Kt ∈ C∞(M̄ × M̄) and

∫

M×M
G

|Kt |2 < ∞, (t > 0), (21)

noting that � and thus Kt are G-invariant. When G is unimodular, (21) means
that von Neumann’s G-trace of P2t is finite.

4. Examples

Let us describe some classes of complex manifolds to which our results apply. As
in [32], let X be a strongly pseudoconvex, complex manifold with compact closure
X̄ = X ∪ bX . Assume also that the fundamental group π1(X) is infinite. It follows
that π1(X) acts properly discontinuously on the universal cover ˜X = M of X by
deck transformations, and estimates involving the boundary are uniform as they are
determined on the compact X̄ . Covers of X corresponding to subgroups of π1 will
share this uniformity property.

For Lie group symmetries, in [34] a large class of manifolds was constructed
which also satisfy our assumptions: Suppose that a Lie group G acts freely and
properly by Cω transformations on a Cω manifold Y , for example the underlying
manifold of G itself. It turns out that the action of G on Y can be extended to a
complexification Y C of Y in such a way that the action of G on Y C is by holomor-
phic transformations. In addition, there exists a strictly plurisubharmonic function
ϕ in a neighborhood of Y in Y C such that ϕ is constant on the orbits of G. It follows
that for ε > 0 sufficiently small, the tube M = {ϕ < ε} is a strongly pseudoconvex
complex G-manifold and if Y/G is compact, then M̄/G is too.

Whenever the group in the setting of [34] contains a cocompact lattice, of
course the present situation reduces to (roughly) that of [32]. However, even for the
restricted class of unimodular Lie groups, it is generically not the case that a Lie
group G possess such a subgroup, [46]. We should note that the methods of [34]
are predominantly Stein-theoretic and their results extend to proper actions.

A concrete example of a tube of a matrix group can be found in [14], con-
structed explicitly by the abstract technique of [34]. For K = R or C, define the
three-dimensional Heisenberg group

H3(K) =
⎧

⎨

⎩

⎛

⎝

1 z1 z3
0 1 z2
0 0 1

⎞

⎠ | zk ∈ K

⎫

⎬

⎭

.

The function ϕ : H3(C) → R given by

ϕ(Z) = (Imz1)
2 + (Imz2)

2 + (Imz3 − Rez2 Imz1)
2

is invariant under right multiplication by matrices in H3(R). An easy calculation
shows that Mε = {ϕ < ε} ⊂ C

3 is strongly pseudoconvex as long as ε < 1, and it
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is true that M1 satisfies a pseudolocal estimate though it is not strongly pseudocon-
vex. Since H3(R) contains lattices, the manifolds Mε are examples of the setting
of the discrete structure group as well as that of a bundle.

Finally, [32, Sect. 3] contains a remarkable example of a G manifold (G is a
nonunimodular matrix group here) in C

2 which is not a tube but satisfies all of our
requirements. This manifold has a trivial Bergman space though the ∂̄-Neumann
problem is somewhat tractable, as shown in [52]. Our present treatment is valid
there as well.
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