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Abstract

Let M be a complex manifold with boundary, satisfying a subelliptic estimate, which is also the total
space of a principal G-bundle with G a Lie group and compact orbit space M/G. Here we investigate the
∂̄-Neumann Laplacian � on M . We show that it is essentially self-adjoint on its restriction to compactly
supported smooth forms. Moreover we relate its spectrum to the existence of generalized eigenforms: an
energy belongs to σ(�) if there is a subexponentially bounded generalized eigenform for this energy. Vice
versa, there is an expansion in terms of these well-behaved eigenforms so that, spectrally, almost every
energy comes with such a generalized eigenform.
© 2011 Elsevier Inc. All rights reserved.
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1. Introduction

The approach to the theory of several complex variables via partial differential equations
involves the analysis of a self-adjoint boundary value problem for an operator � similar to the
Hodge Laplacian. This problem, called the ∂̄-Neumann problem, is the subject of this article and
we will give a brief description here.

We will assume that M is a complex manifold, n = dimC M , with smooth boundary bM such
that M = M ∪bM . Assume further that M is strictly contained in a slightly larger complex mani-
fold M̃ of the same dimension. For any integers p,q with 0 � p,q � n denote by C∞(M,Λp,q)

the space of all C∞ forms of type (p, q) on M , i.e. the forms which can be written in local
complex coordinates (z1, z2, . . . , zn) as

φ =
∑

|I |=p,|J |=q

φI,J dzI ∧ dz̄J (1)

where dzI = dzi1 ∧ · · · ∧ dzip , dz̄J = dz̄j1 ∧ · · · ∧ dz̄jq , I = (i1, . . . , ip), J = (j1, . . . , jq), i1 <

· · · < ip , j1 < · · · < jq , with the φI,J smooth functions in local coordinates. For such a form φ,
the value of the antiholomorphic exterior derivative ∂̄φ is

∂̄φ =
∑

|I |=p,|J |=q

n∑
k=1

∂φI,J

∂z̄k
dz̄k ∧ dzI ∧ dz̄J

so ∂̄ = ∂̄|p,q defines a linear map ∂̄ : C∞(M,Λp,q) → C∞(M,Λp,q+1). With respect to a
smoothly varying Hermitian structure in the fibers of the tangent bundle, and a corresponding
volume form, define the spaces L2(M,Λp,q). Let us consider ∂̄ as the maximal operator in L2

and let ∂̄∗ be its Hilbert space adjoint operator (this involves the introduction of boundary condi-
tions). Define the nonnegative form

Q(φ,ψ) = 〈∂̄φ, ∂̄ψ〉L2(M,Λp,q+1) + 〈
∂̄∗φ, ∂̄∗ψ

〉
L2(M,Λp,q−1)

, (2)

with domain dom(Q) = dom(Qp,q) ⊂ L2(M,Λp,q) and denote the associated self-adjoint oper-
ator in L2(M,Λp,q) by

� = �p,q = ∂̄∗∂̄ + ∂̄ ∂̄∗,



J.J. Perez, P. Stollmann / Journal of Functional Analysis 261 (2011) 2717–2740 2719
using + for the form sum of two self-adjoint operators; see [12]. The Laplacian is elliptic but its
natural boundary conditions are not coercive, thus, in the interior of M , the operator gains two
degrees in the Sobolev scale, as a second-order operator, while in neighborhoods of the boundary,
it gains less. The gain at the boundary depends on the geometry of the boundary, and the best
such situation is that in which the boundary is strongly pseudoconvex. In that case, the operator
gains one degree on the Sobolev scale in neighborhoods of bM and so global estimates including
both interior and boundary neighborhoods gain only one degree.

More generally, one says that the Laplacian satisfies a pseudolocal estimate with gain ε > 0
in L2(M,Λp,q) in the following situation.

If U ⊂ M is a neighborhood with compact closure, ζ, ζ ′ ∈ C∞
c (U) for which ζ ′|supp(ζ ) = 1,

and α|U ∈ Hs(U,Λp,q), then ζ(�+1)−1α ∈ Hs+ε(M,Λp,q) and there exists a constant Cζ,ζ ′ >

0 such that

∥∥ζ(� + 1)−1α
∥∥

Hs+ε(M,Λp,q )
� Cζ,ζ ′

(∥∥ζ ′α
∥∥

Hs(M,Λp,q )
+ ‖α‖L2(M,Λp,q )

)
(3)

uniformly for all α satisfying the assumption. See [20–22,13,11] for these results.
Mostly for the simplicity that a group symmetry implies, let us assume in this paper that the

manifolds in consideration satisfy the following requirements.

Definition 1.1. We will say that M satisfies assumption (A) if the following hold. First, assume
that M is a complex manifold which is also the total space of a principal G-bundle with G a Lie
group acting by holomorphic transformations and with compact orbit space M/G:

G −→ M −→ X.

Assume also that M has a smooth pseudoconvex boundary and that � = �p,q satisfies a pseu-
dolocal estimate with gain ε > 0 in L2(M,Λp,q).

Though our results hold in substantially greater generality, which we will indicate where we
feel necessary, we keep our setting as above, with exact invariances. We note that in the case in
which G is unimodular, there is a good generalized Fredholm theory for the � as well as gen-
eralized Paley–Wiener theorems for G-bundles which together provide an effective framework
for understanding the solvability of equations involving �. These are worked out and applied in
[30,31,9]. In [32], the unimodularity condition is dropped, as in our setting here.

We will in this article be concerned with the following fundamental properties of the opera-
tor �, whose domain is denoted dom(�).

Theorem 1. Assume (A) from 1.1. Then � is essentially self-adjoint on C∞
c (M,Λp,q) ∩ dom�.

This type of result is very common for many natural partial differential operators on manifolds
without boundary. It is important because it provides that there is only one way to extend the op-
erator from a domain consisting of smooth, compactly supported forms to a self-adjoint operator.
The case at hand is more complicated due to the boundary, which moreover plays an important
role and comes with noncoercive boundary conditions. We prove Theorem 1 in Section 7 by a
cutoff procedure that requires taking the boundary condition into account. We borrow from [3]
and from discussions of the first-named author with E. Straube.
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The reader will notice that we state this theorem first and prove it last. The reason for this is
that we base the following two results on quadratic form methods for which we do not need the
more precise description of the domain of the operator.

Theorem 2 (Schnol-type theorem). Assume (A) from 1.1. The existence of a generalized eigen-
form for � with eigenvalue λ satisfying certain growth conditions implies that λ ∈ σ(�).

This type of result is often called Schnol’s theorem in the literature. The precise statements
are Theorem 5.2 and Corollary 5.4 below. Actually, the original result of Schnol’s paper [38] is
an equivalence, so Theorem 2 and the following Theorem 3 together give results reminiscent of
Schnol’s theorem from Schrödinger operator theory; see [38] and the discussion in [5,25,26] for
a list of references and recent results in the Dirichlet form context. See also [39,40] for results on
general elliptic operators on sections of vector bundles over complete manifolds.

Theorem 3 (Eigenfunction expansion). Assume (A) from 1.1. Let ω ∈ L2(M,R) with ω−1 � 1.
Then, for spectrally a.e. λ ∈ σ(�) there is a generalized eigenform ελ for � with eigenvalue λ

so that ωελ ∈ L2(M,Λp,q).

For the proof of Theorem 2 we follow the strategy from [5], see also [25]: starting from the
well-behaved generalized eigenform u we construct a singular sequence uk = ηku for the form
Q of �. The cutoff functions have to be such that the product ηku belongs to the domain of the
form Q. That is achieved by using the intrinsic metric of � to define ηk . The intrinsic metric for
� was introduced in our previous work [33] and turned out to be useful in estimating the heat
kernel of �. Here we provide some more results and a useful characterization of the intrinsic
metric in Section 3. That the cutoff does provide a singular sequence is a consequence of a
Caccioppoli type inequality, which is the subject of Section 4. In Section 5 we prove two variants
of Theorem 2, making precise what “certain growth conditions” means.

Expansion in generalized eigenelements is typically based on strong compactness proper-
ties. Here we use the method developed in [4] for Dirichlet forms, based on an abstract result
from [34]. The main input is from [33], where we showed ultracontractivity of the heat semi-
group corresponding to �; we also refer to this paper for more pointers to related literature.

2. Preliminaries and examples

2.1. Invariant structures

We will have to describe smoothness of functions, forms, and sections of vector bundles using
G-invariant Sobolev spaces which we define here.

We denote by C∞(M,Λp,q) the space of smooth (p, q)-forms on M , by C∞(M,Λp,q) the
subspace of those forms that can be smoothly extended to M and by C∞

c (M,Λp,q) the subspace
of the latter, consisting of those smooth forms with compact support. Given any G-invariant,
pointwise Hermitian structure

C∞(
M,Λp,q

) � u,v �−→ 〈
u(x), v(x)

〉
Λ

p,q
x

∈ C (x ∈ M),

and its volume form μ, we define the Lp-spaces Lp(M,Λq,r ) of forms, for 1 � p � ∞, as those
forms u, for which the norm
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‖u‖Lp(M,Λq,r ) =
[∫

M

〈u,u〉p/2
Λq,r dμ

]1/p

is finite, with the obvious modification for p = ∞. We will sometimes abbreviate 〈u,u〉Λq,r by
writing |u|2Λq,r instead. Also, we will write 〈·,·〉Λp to mean the Hermitian structure on C⊗Λp =⊕

S Λq,r with S = {(q, r) | q + r = p} as well as the Riemannian metric on Λ1 associated, see
[33, §3.2].

As we have a manifold with bounded geometry, there exist partitions of unity with bounded
multiplicity and derivatives, [15,16,23,24,37,40] and, by differentiating componentwise with
respect to local geodesic coordinates, we may assemble G-invariant integer Sobolev spaces
Hs(M,Λp,q), for s = 0,1,2, . . . .

Because M/G is compact, the spaces Hs(M,Λp,q) do not depend on the choice of an invari-
ant Hermitian structure on Λp,q . The usual duality relations for Lp spaces hold (polarizing the
above norm) as well as the Sobolev lemma, etc. Background on this is provided in [14]. We will
also need the Lp-Sobolev spaces

Ws,p
(
M,Λq,r

) := {
u ∈ Lp

(
M,Λq,r

) ∣∣ Dαu ∈ Lp for |α| � s
}
,

for 1 � p � ∞, s ∈ N, where the differentiation D is understood componentwise, with respect
to local geodesic coordinates, and in the distributional sense.

As mentioned above, the group invariance and the compactness of the quotient provide us
with a number of useful uniformities. This applies, e.g. to the pseudolocal estimates required in
assumption (A) from 1.1 above in that all we will ever need will be derivable from the estimate
for a single neighborhood U and a fixed pair of cutoffs ζ, ζ ′, yielding a universal ε > 0 and
constant Cζ,ζ ′ , as in [33]. We refer the reader to [7,6,11] for a discussion of this type of estimates
as well as sufficient geometric properties.

2.2. Examples

Complex manifolds satisfying our assumptions fall into two major categories. Manifolds in
the first category, treated in [17] and corresponding to zero-dimensional structure groups, are
most naturally obtained as follows. Let X be a strongly pseudoconvex, complex manifold with
compact closure X̄ = X ∪ bX. Assume also that the fundamental group π1(X) is infinite. It fol-
lows that π1(X) acts on the universal cover X̃ = M of X by deck transformations, and estimates
involving the boundary are uniform as they are determined on the compact X̄. Covers of X cor-
responding to subgroups of π1 will share this uniformity property.

For the second, in [18] a large class of manifolds was constructed which are also amenable
to our treatment. These are obtained as follows. Suppose that a Lie group G acts properly by
Cω transformations on a Cω manifold Y . The most natural example to take here is Y as the
underlying manifold of G itself. It turns out that the action of G on Y can be extended to a
complexification YC of Y in such a way that the action of G on YC is by holomorphic transforma-
tions. In addition, the authors construct a strictly plurisubharmonic function ϕ in a neighborhood
of Y in YC such that ϕ is constant on the orbits of G. It follows that for ε > 0 sufficiently small,
the tube M = {ϕ < ε} is a strongly pseudoconvex complex G-manifold and if Y/G is compact,
then M/G is too. Defining invariant structures as above, we obtain uniform estimates for �, as
required by our techniques.
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Whenever the group in the setting of [18] contains a cocompact lattice, of course the present
situation reduces to that of [17]. However, even for the restricted class of unimodular Lie groups,
it is generically not the case that a Lie group G possess such a subgroup, [29].

Concrete examples of tubes of matrix groups can be found in [9,27]; one is given as follows,
constructed by the technique of [18]. For K = R or C, define the three-dimensional Heisenberg
group

H3(K) =
⎧⎨
⎩
⎛
⎝ 1 z1 z3

0 1 z2
0 0 1

⎞
⎠ ∣∣∣ zk ∈ K

⎫⎬
⎭ .

The function ϕ : H3(C) → R given by

ϕ(Z) = (Im z1)
2 + (Im z2)

2 + (Im z3 − Re z2 Im z1)
2

is invariant under right multiplication by matrices in H3(R). An easy calculation shows that
Mε = {ϕ < ε} ⊂ C

3 is strongly pseudoconvex as long as ε < 1, and it is true that M1 satisfies
a pseudolocal estimate though it is not strongly pseudoconvex. Since H3(R) contains lattices,
the manifolds Mε are examples of the setting of the discrete structure group as well as that of a
bundle.

Finally, [17, §3] contains a remarkable example of a G manifold in C
2 which is not a tube

but satisfies all of our requirements. This manifold has a trivial Bergman space though the ∂̄-
Neumann problem is somewhat tractable, as shown in [32]. Our treatment is valid there as well.

Let us end this section with a final word on forms and forms: Unfortunately we need to use
these completely different concepts that bear the same name in this paper. From Hilbert space
theory we need sesquilinear forms that are bounded below, e.g., the Q = Qp,q above. See Kato’s
[19] and Reed and Simon’s [35] classics and Faris’ excellent lecture notes [12] for background.
These forms are defined on L2-spaces of differential forms, as we already mentioned. The stan-
dard reference for the relevant notions of differential forms related to the ∂̄-Neumann problem
is [13].

3. The intrinsic metric

In [33] we used the intrinsic metric to bound the heat kernel of the ∂̄-Neumann Laplacian.
Here it will again turn out to be extremely useful. In this section we give a characterization and
prepare the ground for a cutoff procedure that is well suited to forms in the domain of the form
Q = Qp,q . We rely on assumption (A) from 1.1, as usual.

Definition 3.1. We define the G-invariant pseudo-metric on M by

d�(x, y) = sup
{
w(y) − w(x)

∣∣ w ∈ L∞ ∩ C∞(M,R), 〈∂̄w, ∂̄w〉Λ0,1 � 1
}
.

We define the distance between sets accordingly,

d�(A;B) := sup
{

inf
B

w − sup
A

w

∣∣∣ w ∈ L∞ ∩ C∞(M,R), 〈∂̄w, ∂̄w〉Λ0,1 � 1
}

for arbitrary A,B ⊂ M .
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Compared to the above definition, we extend the family of functions over which we take the
supremum as follows.

Lemma 3.2. Let A1 = {w ∈ C(M,R) | |∂̄w|Λ0,1 � 1, μ-a.e.} where the derivative is understood
in the distributional sense. It follows that any w ∈ A1 is a limit, locally uniformly, of smooth
functions wk with |∂̄wk|Λ0,1 � 1.

Proof. Apply Friedrichs mollifiers. �
Corollary 3.3. d�(x, y) = sup{w(y) − w(x) | w ∈ A1}.

Definition 3.4. For E ⊂ M , put

ρE(x) = inf
{
d�(x, y)

∣∣ y ∈ E
}
.

Lemma 3.5. The function ρE ∈ A1 and d�({x},E) = ρE(x).

We deduce the preceding lemma from the following description of the saturation properties
of A1.

Proposition 3.6. (See [5, Propositions A.1, A.2].) For A1 as above, we have the following prop-
erties:

(1) A1 is balanced, i.e. it is convex and closed under multiplication by −1.
(2) A1 is closed under the operations min and max.
(3) A1 is closed under the operation of adding constants.
(4) A1 is closed under pointwise convergence of functions uniformly bounded on compacts.
(5) Let F ⊂ A1 ∩ C(M,R) be stable under max (resp. min). If u = sup{v | v ∈ F } (resp. u =

inf{v | v ∈ F }) then u ∈ A1.

Proof. Note that the form E (u, v) = 〈∂̄u, ∂̄v〉Λ0,1 from [33] on D = dom(Q0,0) is a strongly
local Dirichlet form with energy measure

Γ (u, v) = 〈
∂̄u(x), ∂̄v(x)

〉
Λ0,1 dμ(x),

so the formalism of [5, Appendix] applies. �
Now let us turn to an alternative description of the intrinsic metric. As calculated in [33, §3.2],

if the Hermitian metric on Λ0,1 is associated to the Riemannian metric on Λ1, then, pointwise

2〈∂̄w, ∂̄w〉Λ0,1 = 〈dw,dw〉Λ1, w ∈ C∞(M,R).

By [36,45], the form on the right induces the Laplace–Beltrami operator �LB on functions. Recall
the usual Riemannian distance on M :
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Definition 3.7. Put

L(γ ) =
b∫

a

∣∣γ̇ (t)
∣∣
T 1 dt

for γ a piecewise smooth curve γ : [a, b] → M , and where the length of γ̇ is measured with the
Riemannian metric on T 1M . Let

ρ(x, y) = inf
{
L(γ )

∣∣ γ is a piecewise smooth curve joining x and y
}
.

Corollary 3.8. In the situation above, we have

d�(x, y) = √
2 sup

{
w(y) − w(x)

∣∣ 〈dw,dw〉Λ1 � 1
}

= √
2ρ(x, y).

Proof. Fix a w ∈ A1 ∩ C∞(M,R) and let γ : [a, b] → M be a curve with

ρ(x, y) � L(γ ) + ε.

We get

w(y) − w(x) = w
(
γ (1)

)− w
(
γ (0)

) =
1∫

0

d

dt
w ◦ γ (t) dt

=
1∫

0

〈
dw

(
γ (t)

)
, γ̇ (t)

〉
dt

�
1∫

0

∣∣dw
(
γ (t)

)∣∣
Λ1

∣∣γ̇ (t)
∣∣
T 1 dt �

√
2

1∫
0

∣∣γ̇ (t)
∣∣
T 1 dt

�
√

2
(
ρ(x, y) + ε

)
.

Thus d�(x, y) �
√

2ρ(x, y). To show the reverse inequality, fix y ∈ M and note that it is enough
to prove that for w(x) = ρ(x, y) we have weak differentiability and |dw(x)|Λ1 � 1, μ-almost
everywhere in M . By Rademacher’s theorem, this amounts to showing that

∣∣w(x) − w
(
x′)∣∣ � ρ

(
x, x′)

which follows from the triangle inequality for ρ. �
Remark 3.9. The existence of minimizing geodesics in the case at hand is demonstrated in [1].
In the general Dirichlet form setting, the intrinsic metric gives at least a length space, as shown
in [42]. From now on we will simply write d(·,·) instead of d�(·,·).
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We now use the intrinsic metric to define cutoff functions. Let b > 0 and ζ ∈ C1(R, [0,1]) so
that ζ |(−∞,0] ≡ 0, ζ |[b,∞) ≡ 1, and sup |ζ ′(t)| < 2/b. It follows that

• ζ ◦ ρE ∈ W 1,∞(M,R),
• |∂̄(ζ ◦ ρE)| � 2/b,
• ζ ◦ ρE |Ē ≡ 1,
• ζ ◦ ρE |Bb(E)c ≡ 0,

where Bb(E) = {y ∈ M | d(y,E) � b} is the b-neighborhood of E.
A word on notation: For two quantities A and B , we write A � B to mean that there exists

a constant C > 0 such that |A(φ)| � C|B(φ)| uniformly for φ in whatever set relevant to the
context.

We have the following elementary:

Lemma 3.10. For u ∈ L∞(M,Λk) with support in E and v ∈ L2(M,Λl), we have

‖u ∧ v‖2
L2(M,Λk+l )

� ‖u‖2
L∞(M,Λk)

∫
E

∣∣v(x)
∣∣2
Λl .

Proof. Pointwise, we have |u ∧ v|Λk+l � |u|Λk |v|Λl , and by Section 2, ‖u‖L∞ = esssupM |u|Λk ,
from which the result follows on integration. �
Proposition 3.11. Let φ ∈ W 1,∞(M,R) and u ∈ domQ. Then φu ∈ domQ and

Q(φu) � ‖φ‖2
W 1,∞

[
Q(u) + ‖u‖2

L2

]
.

Proof. First assume that φ and u are smooth. Then

∂̄(φu) = φ∂̄u + ∂̄φ ∧ u, ∂̄∗(φu) = φ∂̄∗u − �[∂φ ∧ �u],
cf. [33, Lemma 3.10]. The fact that the Hodge � is an isometry gives

Q(φu) = ∥∥∂̄(φu)
∥∥2

L2 + ∥∥∂̄∗(φu)
∥∥2

L2

= ‖φ∂̄u‖2
L2 + ∥∥φ∂̄∗u

∥∥2
L2 + ‖∂̄φ ∧ u‖2

L2 + ‖∂φ ∧ �u‖2
L2

+ 2Re〈φ∂̄u, ∂̄φ ∧ u〉L2 − 2Re
〈
φ∂̄∗u, �[∂φ ∧ �u]〉

L2 .

With the previous lemma, Cauchy–Schwarz, and again the fact that � is an isometry, we obtain

· · · � ‖φ‖2
L∞Q(u) + ‖∂̄φ‖2

L∞‖u‖2
L2 + ‖∂φ‖2

L∞‖u‖2
L2

+ ‖φ∂̄u‖2
L2 + ‖∂̄φ ∧ u‖2

L2 + ∥∥φ∂̄∗u
∥∥2

L2 + ‖∂φ ∧ �u‖2
L2,

and each of these terms is bounded by a constant multiple of the right-hand side in the asser-
tion. Now drop the assumption of smoothness and choose (φk)k ⊂ W 1,∞ ∩ C1 so that φk → φ,
pointwise a.e. and with ‖φk‖W 1,∞ � ‖φ‖W 1,∞ , and similarly (uk)k ⊂ C∞

c (M,Λp,q) so that

Q(uk − u) −→ 0 and ‖uk − u‖L2 −→ 0.
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It follows that φkuk → φu in L2 and supQ(φkuk) < ∞. Standard Fatou-type arguments [28]
give that φu ∈ domQ and

Q(φu) � lim infQ(φkuk),

giving the assertion. �
4. The Caccioppoli inequality

As usual, we work under the assumption (A) from 1.1 above. Let us first introduce the notion
of a generalized eigenform.

Definition 4.1. A form u ∈ L2
loc(M,Λp,q) is said to be a generalized eigenform for � = �p,q if:

1) u ∈ domloc Q. That is, for any compact K ⊂ M there is a v ∈ domQ such that v|K = u|K .
2) There exists a λ ∈ R such that Q(u,φ) = λ〈u,φ〉 for all φ ∈ C∞

c (M,Λp,q).

Remark 4.2. Note that domloc Q is in H
ε/2
loc ; see [17, Proposition 1.2]. Note also that the identity

in 2) is a weak form of the equation �u = λu.
By locality of the energy we can define Q(u,φ) = Q(v,φ) provided suppφ ⊂ K and v is as

in the definition. Alternatively, we can write

Q(u,φ) =
∫ 〈

∂̄u(x), ∂̄φ(x)
〉
Λp,q+1 + 〈

∂̄∗u(x), ∂̄∗φ(x)
〉
Λp,q−1 dμ(x)

noting that the integral is convergent. Moreover, we have that

u ∈ domloc Q ⇔ ∂̄u ∈ L2
loc

(
M,Λp,q+1) and ∂̄∗u ∈ L2

loc

(
M,Λp,q−1).

The Caccioppoli inequality states that for any generalized eigenform u, the energy

M � x �−→ 〈
∂̄u(x), ∂̄u(x)

〉
Λp,q+1 + 〈

∂̄∗u(x), ∂̄∗u(x)
〉
Λp,q−1

is locally bounded by the L2-norm of u. We follow the strategy of [5] in what follows; see also
[2, Proposition 3], for a similar result. The authors of the former paper had not been aware of the
latter at the time their paper appeared. The reader should note one important difference between
the result in [2] and in the following result: u is not supposed to be in the domain of the operator,
or even locally in the Sobolev space H 2.

Theorem 4.3 (Caccioppoli inequality). For any generalized eigenform u of �p,q associated to
an eigenvalue λ � 0, every compact set E ⊂ M , and every b ∈ (0,1] we have

∫
E

|∂̄u|2
Λp,q+1 + ∣∣∂̄∗u

∣∣2
Λp,q−1 � 2λ

∫
E

|u|2Λp,q + 4

b2

∫
Bb(E)

|u|2Λp,q .
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Remark 4.4. Note that in order to control the energy on E we need to take the L2-norm on a
slightly larger set Bb(E), the b-neighborhood of E.

Proof. Pick a cutoff function η = ζ ◦ ρE as constructed in Section 3.1, so that |∂̄η| � 2/b,
η|Ē ≡ 1, and η|Bb(E)c ≡ 0. The eigenvalue equation

Q(u,φ) = λ〈u,φ〉L2(M,Λp,q )

(
φ ∈ C∞

c

(
M,Λp,q

))
,

extends to arbitrary φ ∈ domQ by approximation. Therefore we may calculate

λ
〈
u,η2u

〉 = Q
(
u,η2u

)
=

∫
Bb(E)

〈
∂̄u, ∂̄

(
η2u

)〉+ 〈
∂̄∗u, ∂̄∗(η2u

)〉

=
∫

Bb(E)

η2[|∂̄u|2 + ∣∣∂̄∗u
∣∣2]+ 〈

∂̄u, ∂̄η2 ∧ u
〉− 〈

∂̄∗u, �
[
∂η2 ∧ �u

]〉
.

Leibniz’ rule gives

· · · =
∫

Bb(E)

η2[|∂̄u|2 + ∣∣∂̄∗u
∣∣2]+ 2〈η∂̄u, ∂̄η ∧ u〉 − 2

〈
η∂̄∗u, �[∂η ∧ �u]〉.

Now rearrange terms, apply Cauchy–Schwarz, and Lemma 3.10 to get∫
Bb(E)

η2[|∂̄u|2 + ∣∣∂̄∗u
∣∣2] � λ

〈
u,η2u

〉+ 2‖η∂̄u‖‖∂̄η ∧ u‖ + 2
∥∥η∂̄∗u

∥∥‖∂η ∧ �u‖

� λ

∫
Bb(E)

η2|u|2 + 1

2

[∥∥η∂̄∗u
∥∥2 + 4‖∂η ∧ �u‖2].

The second term on the right-hand side is 1/2 the left-hand side so we have

1

2

∫
Bb(E)

η2[|∂̄u|2 + ∣∣∂̄∗u
∣∣2] � λ

∫
Bb(E)

|u|2Λp,q + 2

b

∫
Bb(E)\E

|u|2Λp,q ,

which yields the assertion since η ≡ 1 on E. �
5. Subexponentially bounded eigenforms induce spectrum

Here we closely follow [5], see also [25,26]. The treatment here rests on two main observa-
tions. The first is a criterion for λ ∈ σ(H) in terms of the quadratic form h associated with H .
Singular sequences or Weyl sequences for H and λ are sequences (fn)n∈N ⊂ dom(H) that satisfy
‖fn‖ = 1 for all n ∈ N and

‖Hfn − λfn‖ −→ 0 for n → ∞.
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Clearly, the existence of such a sequence implies that λ ∈ σ(H). However, due to the requirement
fn ∈ dom(H), such singular sequences may be hard to construct. The next proposition gives a
quadratic form version, which clearly is easier to find. Note that the terms “singular sequence”
and “Weyl sequence” are most commonly used in a stricter sense; namely, it is required that,
additionally, fn

w→ 0. In this case one even gets that λ lies in the essential spectrum of H . Our
criterion below does not require this. E.g., for an eigenvalue λ one could simply take fn = f ,
where f is a normalized eigenelement of H with eigenvalue λ.

Throughout this section we assume (A) from 1.1.

Proposition 5.1 (Weyl type criterion). Let h be a closed semibounded form and let H be the
associated self-adjoint operator. Then the following are equivalent:

1) λ ∈ σ(H).
2) There exists a sequence (uk)k in domh with ‖uk‖ → 1 and

sup
{∣∣h(uk, v) − λ〈uk, v〉L2

∣∣ ∣∣ v ∈ domh, ‖v‖h � 1
} −→ 0

for k → ∞.

For the proof see [43, Lemma 1.4.4] and [10].
As a last ingredient for the main result, let us introduce the inner b-collar of a set E ⊂ M ,

given by

Cb(E) = {
x ∈ E

∣∣ d
(
x,Ec

)
� b

}
.

Theorem 5.2 (1/2-Schnol). Assume that λ ∈ R admits a generalized eigenform u so that there
exists a sequence Ek of compact subsets of M and b > 0 with

‖u1Cb(Ek)‖L2

‖u1Ek
‖L2

−→ 0 as k → ∞.

Then λ ∈ σ(H).

Proof. Let us first calculate, for η ∈ W
1,∞
c (M,R) and u,v ∈ domloc Qp,q ,

Q(ηu,v) − Q(u,ηv) =
∫
M

〈
∂̄(ηu), ∂̄v

〉− 〈
∂̄u, ∂̄(ηv)

〉+ 〈
∂̄∗(ηu), ∂̄∗v

〉− 〈
∂̄∗u, ∂̄∗(ηv)

〉

=
∫
M

〈∂̄η ∧ u, ∂̄v〉 − 〈∂̄u, ∂̄η ∧ v〉 + · · ·

+ 〈
�[∂η ∧ �u], ∂̄∗v

〉− 〈
∂̄∗u, �[∂η ∧ �v]〉. (4)

Now choose a sequence Ek as in the assumptions and define

Fk = {
x ∈ Ek

∣∣ d
(
x,Ec

)
� b/2

}
,
k
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with which we will define suitable cutoff functions. So pick ζ ∈ C1(R) with 0 � ζ � 1,
ζ |(−∞,0] ≡ 1, ζ |[b/4,∞) ≡ 0, and sup |ζ ′| � 8/b. Note that ηk := ζ ◦ ρFk

∈ W
1,∞
c (M,R) satis-

fies 0 � ηk � 1Bb/4(Fk) and supp |∂ηk| ⊂ Bb/4(Fk) \ Fk =: Gk . Moreover, note that Bb/4(Gk) ⊂
Cb(Ek).

We now show that

uk = ηku

‖ηku‖L2

gives an approximate eigensequence as required by the Weyl criterion above.
Let vk = ηku. For v ∈ domQp,q with ‖v‖Q � 1, we estimate

Q(uk, v) − λ〈uk, v〉L2 = 1

‖vk‖L2

[
Q(vk, v) − λ〈vk, v〉L2

]
= 1

‖vk‖L2

[
Q(ηku, v) − λ〈u,ηkv〉L2

]
= 1

‖vk‖L2

[
Q(ηku, v) − Q(u,ηkv)

]
,

since ηk is real-valued. We have used that u is a generalized eigenform with eigenvalue λ and
the fact, discussed in the proof of Caccioppoli’s inequality, that ηkv can be taken to be a test
function. Now, as in (4),

Q(uk, v) − λ〈uk, v〉L2 = 1

‖vk‖L2

∫
M

〈∂̄ηk ∧ u, ∂̄v〉 − 〈∂̄u, ∂̄ηk ∧ v〉

− 〈
�[∂ηk ∧ �u], ∂̄∗v

〉+ 〈
∂̄∗u, �[∂ηk ∧ �v]〉.

Due to the support properties of the ηk , we know that

· · · � 1

‖vk‖L2
‖∂̄ηk‖∞

[‖u‖L2(Gk)
‖∂̄v‖L2 + ‖u‖L2(Gk)

∥∥∂̄∗v
∥∥

L2

]
+ 1

‖vk‖L2
‖∂̄ηk‖∞

[‖∂̄u‖L2(Gk)
‖v‖L2 + ∥∥∂̄∗u

∥∥
L2(Gk)

‖v‖L2

]
� 1

‖vk‖L2

[‖u‖L2(Gk)
‖v‖Q + ‖∂̄u‖L2(Gk)

‖v‖L2 + ∥∥∂̄∗u
∥∥

L2(Gk)
‖v‖L2

]
.

Now apply Caccioppoli with E = Gk and b/4 to get

· · · � 1

‖vk‖L2

[‖u1Gk
‖L2 + ‖u‖L2(Bb/4(Gk))

]
� ‖u1Cb(Ek)‖L2

‖u1Ek
‖L2

since 0 � ηk � 1E and Bb/4(Gk) ⊂ Cb(Ek). �

k
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Generalizing the notion from statistical mechanics, let us call a sequence (Ek) a van Hove
sequence if it has the property that

volCb(Ek)

volEk

−→ 0 as k −→ ∞,

for some b > 0.

Corollary 5.3. Assume that M admits a van Hove sequence. It follows that 0 ∈ σ(�0,0) and 1 is
a generalized eigenfunction.

Proof. Clearly, 1 is a generalized eigenfunction for the eigenvalue 0. By the preceding remark,
it satisfies the requirement for the theorem above. �

Apart from certain uniformities, the G-invariance which we assume throughout this treatment
is certainly too strong a condition to impose. Note that a suitable generalization of the theorem
above allows for manifolds with very different geometries in different “directions to infinity.”
One such direction which supports a van Hove sequence is sufficient for 0 to be in the spectrum
of �0,0.

We now add some sufficient conditions for the assumptions in the theorem. They rest on the
following notions: A function J : [0,∞) → [0,∞) is said to be subexponentially bounded if for
any α > 0 there exists a Cα > 0 such that

J (r) � Cαeαr (r � 0).

Similarly, a form u ∈ L2
loc(M,Λ0,1) will also be called subexponentially bounded if for some

z0 ∈ M ,

e−αwu ∈ L2(M,Λp,q
)

for any α > 0, where w(z) = d(z, z0).
As in Lemmata 4.2, 4.3, and Theorem 4.4 of [5], we obtain:

Corollary 5.4. Assume that λ ∈ R admits a subexponentially bounded eigenform for �. It follows
that λ ∈ σ(�).

This or the previous corollary has as a special case the following.

Corollary 5.5. Assume that there is a z0 ∈ M such that r �→ volBr(z0) is subexponentially
bounded. It follows that 0 ∈ σ(�).

Remark 5.6. See the example in [9, §5].

During the writing of [5,25] we were not aware of M. Shubin’s papers [39,40], where strongly
related results are presented. The main difference is that our approach is based on the underlying
forms, making it applicable in cases where nothing is known about the domain of the operator.
On the other hand, the latter papers contain results about higher order elliptic operators.
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6. Expansion in generalized eigenforms

Here we prove Theorem 3, in fact the stronger result Proposition 6.3 below, where assumption
(A) from 1.1 is required, as usual.

Some explanations are in order: spectrally a.e. means a.e. with respect to a spectral measure; in
turn, a spectral measure ρ is a measure with the property that ρ(I) = 0 if and only if EI (�) = 0,
where E·(�) denotes the spectral projection of the operator �.

The strategy of proof is sufficiently parallel to the one in [4] so that we do not carry out all
the details but rather point at differences; we fix integers p � 0, q > 0 so that the pseudolocal
estimate holds true. This latter condition is important in that we use ultracontractivity established
in [33], i.e., e−t� : L2(M,Λp,q) → L∞(M,Λp,q) for t > 0. The compactness property referred
to above is contained in the following:

Lemma 6.1. In the situation of the theorem above let γ (x) := e−tx and T := Mω−1 the multipli-
cation operator. Then γ (�)T −1 is Hilbert–Schmidt.

Proof. This follows from the factorization principle based on Grothendieck’s theorem. See [8]
for the abstract background and [4] for an application in a situation similar to ours.

Indeed, for bounded operators, from

A : L2 −→ L∞, B : L∞ −→ L2,

it follows that BA : L2 → L2 is a Hilbert–Schmidt operator. We can apply this to deduce that

(
γ (�)T −1)∗ = (

T −1)∗γ (�)∗

is Hilbert–Schmidt: γ (�) : L2 → L∞ is the above mentioned ultracontractivity and T −1 = Mω :
L∞ → L2, since ω is an L2 function. Since the adjoint of a Hilbert–Schmidt operator is likewise
Hilbert–Schmidt, we have the result. �

Suppressing the indices p,q , let

H+ := {
α ∈ L2(M,Λp,q

) ∣∣ α ∈ dom(T )
}
,

and H−, the completion of H := L2(M,Λp,q) with respect to the inner product 〈α,β〉− :=
〈T −1α,T −1β〉H. We have a special case of a Gelfand triple here, considering on H+ the inner
product 〈α,β〉+ := 〈T α,Tβ〉H.

Remark 6.2. We have that

C∞
c

(
M,Λp,q

) ⊂ {
α ∈ dom(�) ∩ dom(T )

∣∣ �α ∈ dom(T )
}

is dense in H. In the next section we will prove much more, namely that C∞
c (M,Λp,q) is a core

for �. Note the important difference between M and M here.
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In the following result we see a much stronger though more technical version of the theorem
above. It uses the notion of an ordered spectral representation, that goes as follows: Given is a
self-adjoint operator H in some Hilbert space H, a spectral measure ρ of H , N ∈ N ∪ {∞} a
sequence (Mj )j<∞ of measurable subsets Mj ⊂ R so that Mj ⊃ Mj+1 and a unitary

U = (Uj )j<∞ : H −→
⊕
j<N

L2(Mj ,ρ)

so that

Uϕ(�) = MϕU

for every bounded measurable function ϕ on R.

Proposition 6.3. Let ρ be a spectral measure for � and U = (U(j))j<N , N ∈ N ∪ {∞}, an
ordered spectral representation for �. Also let ω, T , H+ and H− be as above. Then there are
measurable functions Mj → H−, λ �→ εj,λ for j ∈ N, j < N such that:

(1) Ujα(λ) = 〈α, εj,λ〉 for α ∈ H+ and ρ-a.e. λ ∈ Mj .
(2) For every g = (gj )j<N ∈ ⊕

j<N L2(Mj ,ρ) we have

U−1g = lim
m→N,R→∞

m∑
j=1

∫
Mj ∩[−R,R]

gj (λ)εj,λ dρ(λ),

and therefore, for every α ∈ H,

α = lim
m→N,R→∞

m∑
j=1

∫
Mj ∩[−R,R]

Ujα(λ)εj,λ dρ(λ).

(3) If α ∈ dom(�) ∩ H+ with �α ∈ H+, then

〈�α, εj,λ〉 = λ〈α, εj,λ〉 for ρ-a.e. λ ∈ Mj.

For details on ordered spectral representations, see [34]; this reference is the basis for our
proof of the eigenform expansion.

Part (3) of the above proposition ensures that

�εj,λ = λεj,λ

in the weak sense. This is why we speak of a generalized eigenform.

Remark 6.4. Due to the interior ellipticity of �, [13, Theorem 2.2.9] we obtain that the eigen-
forms constructed above are in C∞(M,Λp,q) for q > 0.



J.J. Perez, P. Stollmann / Journal of Functional Analysis 261 (2011) 2717–2740 2733
7. Essential self-adjointness of ���

As we explained in the introduction, � is defined via its sesquilinear form, so its domain
dom(�) is only given implicitly. In the previous sections we have seen that even without explicit
knowledge of its domain we can analyze important properties of �.

On the other hand it is known for manifolds without boundary that elliptic operators are typ-
ically essentially self-adjoint on smooth compactly supported forms, see e.g. [39–41] and the
literature cited there. Thus it is a natural question whether the same holds true in the situation at
hand with two important differences: there is a boundary, and we do not have ellipticity but only
subellipticity.

Essential self-adjointness means that there is a unique self-adjoint extension of �|domc and
this is in turn equivalent to the fact that domc := domc � := dom(�) ∩ C∞

c (M,Λp,q) is a core
for �, i.e., �|domc = �, where T̄ denotes, as usual, the closure of the operator T . We want to
point out that there is a big difference due to the boundary: in the usual complete case without
boundary, the so-called minimal operator, defined on C∞

c (M,Λp,q) is essentially self-adjoint.
This fails in our situation. There are various different self-adjoint extensions. E.g., the operator
�p,q we consider is obviously different from the Friedrichs extension of �p,q |C∞

c (M,Λp,q ) which
would usually be called the � with Dirichlet boundary conditions, and which has a smaller form
domain.

A first step in showing the asserted essential self-adjointness is the following result from [17].
As usual, assumption (A) from 1.1 is in force. Here and for what follows we fix ρ to be the
(positive) distance to bM as given by a G-invariant Riemannian metric on M .

Proposition 7.1. Let ϑ be the formal adjoint operator to ∂̄ , and denote by σ = σ(ϑ, ·) its princi-
pal symbol. Assume also that q > 0 and let � = �p,q . Then

dom0 � := {
u ∈ C∞(

M,Λp,q
) ∣∣ u, ∂̄u,ϑu ∈ L2,

σ (ϑ, dρ)u|bM = 0, σ (ϑ, dρ)∂̄u|bM = 0
}

is a core for �.

Proof. Let u ∈ dom�p,q . Then �u + u = α ∈ L2. Now let (αk)k ⊂ C∞
c (M,Λp,q), so that

αk → α in L2 and put uk = (�+1)−1αk . Since (�+1)−1 is defined everywhere and is bounded,
we have that (uk)k is Cauchy in L2 with limit u. Applying the pseudolocal estimate [11],
[33, Theorem 2.4] we have

‖ζuk‖Hs+ε = ∥∥ζ(� + 1)−1αk

∥∥
Hs+ε �

∥∥ζ ′αk

∥∥
Hs + ‖αk‖L2,

thus (uk)k ⊂ C∞(M,Λp,q) and we have shown that the assertion is true. �
For the proof of essential self-adjointness we need some geometrical tools. First recall the

following:

Definition 7.2. (See [13, p. 33], [44, §2.2].) A special boundary chart U is a chart intersecting
bM having the following properties:
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(1) With ρ the function defining bM as above, the functions t := {t1, . . . , t2n−1}, together with
ρ form a coordinate system on U .

(2) The functions {t, ρ = 0} form a coordinate system on bM ∩ U .
(3) With respect to the Riemannian structure in the cotangent bundle, choose a local orthonormal

basis ω1, . . . ,ωn for C∞(U,Λ1,0) such that ωn = √
2 ∂ρ on U .

Let us describe dom� by restating the boundary conditions as in [13, §5.2]. In terms of the
Hermitian structure 〈 , 〉Λ in Λp,q , the above conditions on the symbol σ(ϑ,dρ) translate to
the following criteria. Members of dom0 � are those forms φ ∈ C∞(M,Λp,q) satisfying the
following ∂̄-Neumann boundary conditions:

(1) 〈φ, ∂̄ρ ∧ ψ〉Λ|bM = 0 (ψ ∈ Λp,q−1), and
(2) 〈∂̄φ, ∂̄ρ ∧ ψ〉Λ|bM = 0 (ψ ∈ Λp,q ).

The first condition (equivalent to φ ∈ dom0 ϑ ) is obviously preserved by introduction of a cutoff
function φ → χφ since the condition is algebraic.

The second “free boundary” condition becomes

〈
∂̄(χφ), ∂̄ρ ∧ ψ

〉
Λ
|bM = 〈

(∂̄χ) ∧ φ, ∂̄ρ ∧ ψ
〉
Λ
|bM + 〈χ∂̄φ, ∂̄ρ ∧ ψ〉Λ|bM = 0.

Upon restriction to the boundary, the second term is zero by assumption that φ ∈ dom�, which
assumes that ∂̄φ ∈ dom ∂̄∗. Thus we are interested in the condition

〈
(∂̄χ) ∧ φ, ∂̄ρ ∧ ψ

〉
Λ
|bM = 0, ∀ψ ∈ Λp,q.

In terms of the forms defined in the special boundary chart, we have the formulas

∂̄ρ = 1√
2
ω̄n, ∂̄χ =

∑
k

(L̄kχ)ω̄k

so cutoff functions χ satisfying

L̄nχ |bM = 0 (5)

preserve dom�. Notice that there are no other restrictions on χ ∈ C∞(M) beyond this one at the
boundary, so χ satisfying (5) may be extended smoothly to the interior of M in an arbitrary way.

We may write the relation (5) in such a way that manifestly separates the tangential and normal
derivatives of χ , as indicated in [3, p. 86]. First note that since Ln is dual to ωn = √

2∂ρ, we have

Lnρ = dρ(Ln) = 〈
(∂ + ∂̄)ρ,ωn

〉
Λ

= √
2〈∂ρ, ∂ρ〉Λ,

and similarly L̄nρ = √
2〈∂̄ρ, ∂̄ρ〉Λ. It follows that (L̄n − Ln)ρ = 0 and thus L̄n − Ln is a vec-

tor field tangential to bM . If J is the complex structure, then Ln and L̄n lie in the i and −i

eigenspaces of J , respectively and

J (L̄n − Ln) = −i(L̄n + Ln)
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must not be tangential; indeed, (L̄n + Ln)ρ = 2
√

2〈∂̄ρ, ∂̄ρ〉 �= 0. The same calculations provide
that the equation

−iJ (L̄n − Ln)χ = (L̄n − Ln)χ (6)

(in bM) is equivalent to the property L̄nχ |bM = 0. Since only the normal derivative is prescribed
at the boundary, it follows that given any smooth function χ in bM , there exists an extension to
a collar of bM which fulfills the requirement (5), cf. Lemma 7.5 below.

Definition 7.3. A sequence of functions (χk)k in C∞
c (M,R) is called a good cutoff-exhaustion

of M if

(C1) χk → 1 as k → ∞,
(C2) L̄nχk|bM = 0 for all k ∈ N, and
(C3) sup{‖∂αχk‖∞, |α| � m} < ∞, for any m ∈ N,

where the derivatives in the last condition are with respect to geodesic coordinates. Note that L̄n

is globally defined in a collar of the boundary of M .

Our goal here will be to demonstrate the existence of good cutoff-exhaustions of M and to
use such a sequence to show that domc is a core for �. We start with:

Proposition 7.4. Let U be a special boundary chart and χ ∈ C∞
c (U,R) with L̄nχ |bM = 0. Then,

for any u ∈ dom�p,q with q > 0 it follows that

χu ∈ dom�

and

∥∥�(χu)
∥∥

L2 � sup
{∥∥∂αχ

∥∥∞, |α| � 2
}

︸ ︷︷ ︸
=‖χ‖

W2,∞

· (‖�u‖2
L2 + ‖u‖2

L2

) 1
2 . (7)

Proof. The factor (‖�u‖2
L2 + ‖u‖2

L2)
1
2 appearing above is called the operator norm ‖u‖� of u.

It dominates the form norm ‖u‖Q in the sense that

‖u‖Q := (
Q(u,u) + ‖u‖2

L2

) 1
2 � ‖u‖�.

Let us first consider the case that u ∈ dom0 �p,q . By the calculation above, χu ∈ dom�. For the
proof of the estimate (7), we use the following straightforward calculation:

∂̄(χu) = (∂̄χ) ∧ u + χ∂̄u,

∂̄∗(χu) = (− � ∂�)(χu)

= − �
[
(∂χ) ∧ �u

]+ χ∂̄∗u,

from which we get that
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∣∣〈�(χu), v
〉 − 〈χ�u,v〉∣∣

= ∣∣Q(χu,v) − Q(u,χv)
∣∣

= ∣∣〈∂̄(χu), ∂̄v
〉+ 〈

∂̄∗(χu), ∂̄∗v
〉− 〈

∂̄u, ∂̄(χv)
〉 − 〈

∂̄∗u, ∂̄∗(χv)
〉∣∣

= ∣∣〈∂̄χ ∧ u, ∂̄v〉 − 〈∂̄u, ∂̄χ ∧ v〉 − 〈
�(∂χ ∧ �u), ∂̄∗v

〉+ 〈
∂̄∗u, �(∂χ ∧ �v)

〉∣∣.
The first term can be estimated as

∣∣〈∂̄∗(∂̄χ ∧ u), v
〉∣∣ � ‖χ‖W 2,∞‖u‖Q‖v‖L2

and similarly we can bound the third term. The second and fourth terms are easily bounded and
we get

∣∣〈�(χu), v
〉 − 〈χ�u,v〉∣∣ � ‖χ‖W 2,∞‖u‖Q‖v‖L2

for arbitrary v ∈ domQ. Since the latter is dense in L2, we obtain the estimate

∥∥�(χu) − χ�u
∥∥ � ‖χ‖W 2,∞‖u‖�.

Since

‖χ�u‖ � ‖χ‖W 2,∞‖u‖�

is obvious, we arrive at the desired estimate. Since dom0 � is a core for � the assertion carries
over to arbitrary u ∈ dom�. �

Before going on, let us note that due to the invariance under the group action and the compact
quotient our manifold has bounded geometry. We rely on [37] for the definition and a number of
nice technical properties that come with bounded geometry. The first is the existence of rc > 0
so that the geodesic collar

j : N = [0, rc) × bM −→ M, (τ, x) �−→ expx(τνx)

is a diffeomorphism onto its image, with νx denoting the unit inward normal vector at x; so τ

refers to the distance ρ to the boundary mentioned previously. Denote j ([0, 1
3 rc) × bM) =: N 1

3
and define N 2

3
accordingly.

Lemma 7.5. Let U ⊂ N 2
3

be a special boundary chart and ϕ ∈ C∞
c (U,R). Then there exists a

ψ ∈ C∞
c (U,R) so that

ψ |bM = ϕ|bM, L̄nψ |bM = 0. (8)

Moreover, if ϕ|V = 1 on a set of the form V = j ([0, r) × R) ⊂ U with R a relatively open subset
of bM , then ψ |V = 1.
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Proof. We set ζ = ψ − ϕ, so we want the derivatives of ζ to satisfy

−iJ (L̄n − Ln)[ϕ + ζ ]|bM = (L̄n − Ln)[ϕ + ζ ]|bM.

We should have ζ |bM = 0, so we obtain (L̄n − Ln)ζ |bM = 0 since the vector field is tangent
to bM , thus

−iJ (L̄n − Ln)[ϕ + ζ ]|bM = (L̄n − Ln)ϕ|bM

and so

−iJ (L̄n − Ln)ζ |bM = (L̄n − Ln)ϕ|bM + iJ (L̄n − Ln)ϕ|bM = 2L̄nϕ|bM.

Following the computations in [33, §3.2], one can derive that Lnζ = dζ(Ln) = 〈dζ,ωn〉Λ and
likewise L̄nζ = 〈dζ, ω̄n〉Λ, so that

iJ (L̄n − Ln)ζ = (Ln + L̄n)ζ = √
2〈dζ, dρ〉Λ1 = √

2
∂ζ

∂ρ
.

In the special boundary chart U , we are left with solving the equations⎧⎪⎨
⎪⎩

∂ζ

∂ρ
(t, ρ)

∣∣∣∣
ρ=0

= −√
2L̄nϕ(t,0),

ζ(t,0) = 0.

Define now, for r < 2
3 rc ,

ζ(t, r) := −√
2

r∫
0

dρ L̄nϕ(t, ρ).

It follows that a solution ψ to Eq. (8) exists. Clearly, it satisfies the required bound on the deriva-
tives as well as the assertion on the level sets. �
Proposition 7.6. There exists a good cutoff-exhaustion of M .

Proof. We begin by constructing a sequence of functions with bounded derivatives that con-
verges to 1. To this end, let (ϕi)i∈Z be a partition of unity as in [37, Lemma 3.22]. Without loss
of generality, we may choose the supports of these functions to have diameter smaller than 1

3 rc
and to have a uniform bound on the number of j ’s for which the support of ϕj meet a given point.
We fix x0 ∈ M and let

I
(0)
k := {

i ∈ Z
∣∣ suppϕi ∩ Bk+rc (x0) ∩ N 1

3
�= ∅}.

Note that ϕ
(0)
k := ∑

i∈I
(0)
k

ϕi satisfies

1 � ϕ
(0)
k � 1Bk+rc (x0)∩N 1

3
.
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Due to the uniform bounds for the partition of unity,

sup
k

∥∥ϕ
(0)
k

∥∥
Wm,∞ < ∞.

Note that ϕ
(0)
k ∈ C∞

c (U,R), where U is the interior (in M) of Bk+rc+1(x0) ∩ N 2
3
. The functions

ϕ
(0)
k build the “boundary part” of a smooth exhaustion we want to construct. We will now modify

them in a way to make sure that the product with any function in dom0 is in the domain dom(�).
To this end we use Lemma 7.5 to find ψ

(0)
k for ϕ

(0)
k so that ψ

(0)
k satisfies the requirement

from (8), mutatis mutandis. Moreover,

ψ
(0)
k

∣∣[0, 1
3 rc)×(Bk(x0)∩bM)

= 1,

since ϕ
(0)
k is 1 on the respective set by definition and the triangle inequality.

Denote Ik := {i ∈ Z | suppϕi ⊂ Bk+rc (x0)} and

ψ
(1)
k := (

1 − ψ
(0)
k

) ·
∑
i∈Ik

ϕi .

By the assumption on the support of the ϕi , the sum is 1 on Bk(x0) and suppψ
(1)
k ⊂ Bk+rc (x0).

In particular, ψ
(1)
k ∈ C∞

c (M,R) and

χk := ψ
(0)
k + ψ

(1)
k

is 1 on Bk(x0). Thus (C1) from the definition of a good cutoff-exhaustion above is satisfied. The
function ψ

(0)
k was constructed so that the required condition (5) holds and since ψ

(1)
k is supported

away from the boundary, χk satisfies (C2). The uniform bound on the derivatives is evident from
the definition and the properties of the partition of unity. �
Proof of Theorem 3. We have to show that any u ∈ dom� can be approximated by a sequence
(uk) in C∞

c (M,Λp,q) in the Hilbert space (dom�,‖ · ‖�). Since dom0 � is dense by Proposi-
tion 7.1 we can restrict to the case in which u ∈ dom0 �. Since C∞

c (M,Λp,q) is convex, its weak
and norm closures in (dom�,‖ · ‖�) coincide, so we are left with finding (uk) that converges
weakly in the latter space. We take a good cutoff-exhaustion (χk) and claim that uk := χku does
the job. By (C1) and (C3) we know that uk → u in L2(M,Λp,q) as k → ∞. Moreover, by (7) in
Proposition 7.4 it follows that (uk) is bounded in (dom�,‖ · ‖�). It thus has a weakly conver-
gent subsequence that has to converge to u by uniqueness of the limit and the L2-convergence
we already established. �
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