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ABSTRACT

We prove absence of absolutely continuous spectra for multidimensional Schrodinger operators with
high barriers. The result is formulated in terms of a geometric condition on the barriers which entails
singular spectrum. The proof combines probabilistic and functional analytic techniques.

1. Introduction

In [10], Simon and Spencer exhibited two typical situations in which Schrodinger
operators have singular spectrum, namely when their potential has 'wide barriers' or
' high barriers'. For the case of wide barriers, their results were formulated for discrete
Schrodinger operators. Similar results for continuum operators were proven in [13]
for dimension d=\, in [1] and [12] for arbitrary dimension; [13,12] contain
somewhat more refined results in terms of a comparison criterion, allowing one to
prove absence of absolute continuity also at high energies. In this note we treat
multidimensional Schrodinger operators with high barriers, thus extending the d = 1
results of [10, 4,14]. While our general method of proof is that of [10], there are
some differences which we would like to point out. Since adding a Dirichlet boundary
condition is no longer a finite rank perturbation in d ^ 2, the necessary trace class
estimates become more involved. Our key to establishing such estimates (apart from
a factorization technique introduced in [11] and developed in [12]) is Lemma 3 below,
which deals with occupation times of Brownian motion and gives a quantitative
version of the fact that Brownian particles which hit a set ' stay around for some
time'. This will allow us to estimate in trace norm the effect of an additional Dirichlet
boundary condition where the original potential is large. As the use of occupation
times already indicates, we employ the Feynman-Kac formula for this purpose.

To give a flavour of our main result, let us formulate it for the special case where
V has spherical barriers of radius Rn, width wn and height hn. If these barriers (not
necessarily concentric) divide Ud into bounded components, and if

for some n < 1/8 \/2, then
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In this summability condition there is an additional feature, which, of course, does
not occur in the one-dimensional case: besides height and width there is also a
dependence on the surface area of the barrier. For general barriers we measure this
by the generalized area, introduced at the beginning of the following section.

Although we prove absence of absolute continuity by comparing —|A + V with an
operator with pure point spectrum, we cannot expect this kind of spectrum for the
general potentials which are covered by our main theorem. This is known from
several results in one dimension: in [5] it was shown for a class of potentials on the
half line (0, oo) that dense pure point spectrum occurs for almost every boundary
condition at 0. Nevertheless, a general result announced in [2] says that for some
boundary conditions these potentials will yield purely continuous spectrum. Finally,
a result in [3] states that for other special cases of the Simon-Spencer class, which are
closely related to the examples given in [6], the spectrum is singular continuous for
every boundary condition. In these examples the singular continuity will be stable
even under perturbation by a compactly supported potential.

2. The results

We shall consider the Schrodinger operator H = — |A+ V in L2(U
d), where V+e

Lloc(U
d) and V_eKd, the ^/-dimensional Kato class (compare [9] for the relevant

definitions). In the sequel we say that the potential V has barriers of form Sn, height
hn and width wn, if
(B.I) the Sn, for neN, are compact subsets of Ud with Lebesgue measure zero and

such that Ud\ \JneNSn is open and has only bounded connected components,
(B.2) V(x) >hn\{dist(x,Sn) ^wn/2,neN.
We also use the generalized area a(S) for a compact subset S1 of Ud:

, „ . meas{x;r ^ dist(x,S) ^ r+\}
a(S) = sup - j — .

rJsO r f I

Essentially the same definition of a(S) and some discussion of this notion were given
in [12].

THEOREM. Assume that V has barriers of form Sn, height hn and width wn. If

sup-^-<oo (C.I)

and
Y J < x > (C.2)
n

for some n < l/8\/2, then

Note that by the definition of a{S) we have cr(5'n) ^ C > 0 uniformly in n.
Therefore (C.2) implies wn\/(hn) -*• oo and, together with (C.I), hn -*• oo, meaning the
existence of high barriers. A typical special case of (C.I) is hn -*• oo and wn bounded.
In case of unbounded wn, that is, wide barriers, the results of [12] will often apply.

Before going into the proof of the Theorem, we collect together some basic facts
in three lemmas. The first gives a general trace class criterion for operators in L2 over
some cr-finite measure space. 93 denotes the bounded operators.
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LEMMA 1. Let re93(L1}L2), Se^iL^LJ and<&eL1 such that

\SJ{x)\ ^ O(x)

for a.e. x and allfeL.2 with | |/ | |2 ^ 1. Then TS is trace class with trace norm

Proof. See [12, Lemma 2.1].

In the sequel we shall use probabilistic methods, and thus we let (Q.x, Px, (Xt)t ^ 0)
denote Brownian motion starting in xeUd with expectation E* (see [8, II.4] for
background information). For coed* and S c Ud, the first hitting time of 5" is given
by TS(CO) = inf{/ > 0 ;^ (CO)G.S} .

LEMMA 2. (a) Given t > 0 and e > 0, there exists C = C(d, t,e) such that for all
r>0

(b) For t > 0 and p > 0, there exists C = C{d, t,p) such that for all compact S

(Px[zs ^t)ydx

Proof (a) By the reflection principle (compare [8, Theorem 3.6.5, p. 25]),

P°^v;M-r» < t] ^ 2P°[|^| ^ r] ̂  2(2nt)-^
\y\>r

which yields the required estimate.

(b) Since P*[TS < /] < P0[T{J,:|tfi-di8t(z.s)» < '1. P a r t ( a ) w i t n £ = 1 and the definition
of a(S) imply

= C(d,t,p)a(S).

In the last of our three lemmas we estimate the probability that a particle hits S
but spends only little time in a neighbourhood of S. To this end we introduce the
occupation time of a ^-neighbourhood,

rSi/w):=meas{Me(0,0;dist(A'B(a>),5) ^ S}.

LEMMA 3. Let t > 0, £ > 0. Then there exists C = C(d,t,e) such that for all
0 < a < t and S c W compact,
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Proof. Let B := {x; dist(x, S) ^ 3} and 5 ' := {x; dist(x, 5) ^ <5/2)- Denote by z'
the first hitting time of B', and let T := inf{s > 0; |Xs+r,-A^| ^ <5/2} on {T' < oo}, and
infinity otherwise. We have

Px\xs ^ /, 7 ^ ^ a] ^ Px\xs ^ / , T ' ^ t-u., Ts 5 ^ OL] + PX[ZS ^ t,x' > t-a].

The first summand can be estimated by

P*[TS ^t,T ^ a]

since Xs+zeB as long as |A'S+T. — ^r-| ^ S/2. The second term is zero if xeB'; for
x$B' it follows that dist (Xx(co), S) = 3/2 for coeClx, so that the second term can be
majorized by

PX[T' ^ a].
Put together, this gives

Px[rs ^ t, Tss ^ a] ^ 2PX[T' ^ a].

By the strong Markov property and translation invariance of Brownian motion
(compare [8, Theorem 7.9, p. 68]),

P*[r < a] < P°[T{y,y^l2] ^ a]

according to Lemma 2(a).

Proof of the Theorem. We define H = - | A + V on L2(K
rf) and HG = - | A + K on

L2(G) with Dirichlet boundary conditions, for arbitrary open G cz Ud, via the
corresponding quadratic forms.

Fix iSn, hn, wn as in the assumption of the Theorem, and let

where Uf are the connected components of Ud\ (Jn Sn- Since the Ut are bounded, HU(

has discrete spectrum and consequently <7ac(i/D) = 0- Thus if we manage to construct
wave operators for H,HD, the assertion of the Theorem will be proved. By the well-
known invariance principle (see, for example, [7, Corollary 4, p. 31]), it is sufficient
to show that exp( — 2tH) — exp( — 2tHD) is trace class for some t > 0. Writing

Ho := H, Hn := Hu<tx u«_] 5fc,
we have that

exp( -2f / / ) -exp( -2 / / / D ) = £ (exp(-2?//n_1)-exp(-2?//J)

in the strong sense (by monotone form convergence). We shall now demonstrate that
assumptions (C.I) and (C.2) imply that

t ||exp(-2///n_1)-exp(-2///n)||lr < oo,

which suffices for the desired trace class property. To estimate ||exp( — 2///n_1) —
exp( — 2///n)||tr, we shall apply Lemma 1, and therefore factorize
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By (C.2) there is an E > 0 such that £n<r(Sn)exp((- l /8V(2 + e)) wBV(A,)) < °°-
Fix / > supn (1 /8\/(2 + e)) wn(hn)~

112 which, according to assumption (C. 1), is possible.
In order to apply Lemma 1, we let /eL2, | |/ | |2 ^ 1 and use the Feynman-Kac formula
(compare [8, II.6]) to write

\(e-
lH»->-e-tH»)J{x)\ =

Applying Cauchy-Schwarz twice, we obtain

t,xSn ^ t

't \ 1 \ 1 / 2

e x p | - 2 | V+oXsds),TSn^t\) (E* |exp(2 | K o * 5 ^ ] | / | s

0 / J/

- ) ' • T _ . T II1/2

C•(E*[exp(-^4V+oX.ds>J,TSn ^ / ^ V l ^ . < ^)1/4- (3)

Here we have used that the norm occurring above is finite by [9, Theorem B.I . I , p.
460] and, again, Feynman-Kac. Lemma 2(b) gives us control on the last term on the
right. To estimate the remaining factor uniformly in x, we use the occupation time
estimate from Lemma 3 together with the fact that Vn is large in a wn/2-
neighbourboood of Sn: fix neN and let Tn(co) :=meas{we(0,0;dist(Xu(co), Sn) <
wn/2}. Since /{, V+oXsds ^ hn Tn we have, for 0 < a < t,

exp(-?4V+oX,dsj,rSn < /j < e~^Px[Tn > a] + P̂ [TSn ^ t, Tn ^ a).

Using Lemma 3 this can be estimated by

' K/2)2
exp( — 4hnct) + Cexp\ —

\ 4(2+ £)«/•

Setting 4hn a = (wn/2)2/4(2 + e) a, we arrive at a = (1 /8 V(2 + e)) wn(/iw)"1/2 < / by our
assumption on /. With this choice of a, we obtain

E^exp^-Jo4F+o^s^],rs^ t\ < Cexp[ - ^

Plugging this into (3), we find

for a l l /eL 2 , | |/ | |2 ^ 1. Hence we can apply Lemma 2(b) to estimate

Since \\e~tHn:L1 ->L2|| ^ \\e~tH: Lx^>L2\\ (monotonicity), it follows from Lemma 1
that
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As ||(£>-'"«-•-?-<"»)<?-'"«|ltr = \\e-tH»(e-tH*-*-e-iH«)\\lr, we finally obtain

which by (C.2) implies the summability of the trace norms, and hence the Theorem.

We conclude with some remarks.
(a) Assume that Khas barriers of form Sn, height hn and width wn with the property

that for each subsequence Sn the connected components of Ud/ \Jk Sn are bounded.
Then (C.I) and

for some rj < (8V2)"1 already implies that

To see this one has only to apply the Theorem to a suitable subsequence Sn .
(b) For d = 1 and Sn = {jcn} satisfying (— l)kxk -> oo for k -*• oo, we are in the

situation of (a). As, moreover, cr(Sn) is constant in this case, the summability
condition of the Theorem can be weakened to

\im wnV(hn)= oo. (4)

Thus we obtain as a special case of our Theorem the original result from [10]. (From
hn -> oo it follows that in (4) we can assume boundedness of wn, and therefore also
(C.I) is satisfied.)

(c) If the potential V is spherically symmetric, then by separation of variables the
one-dimensional result of [10] applies directly. This gives a slightly stronger result
than our Theorem, since only hn -> oo and wn\/(hn) -*• oo are required, and no growth
condition on the cr(Sn).

(d) In order to obtain crac = 0 , the barriers Sn need not be 'massive'. One may
cut holes into the Sn (thus violating property (B.I) of barriers) as long as the holes
get small quickly enough as n -*• oo to allow another trace class perturbation
argument. More interesting would be an answer to the following question. May the
holes be big as long as the hole in Sn is far apart from that in 5'n+1, n = 1,...? Think
of concentric Sn with holes in alternating directions.
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