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1. Introduction

Expansion in generalized eigenfunctions is a topic that dates back to Fourier’s
work, at least. A classical reference is Berezanskii’s monograph [2]. Motivated
by examples from Mathematical Physics there has been a steady development
involving new models. One trigger of more recent results is the importance of
generalized eigenfunction expansions in the discussion of random models. See [4,
11, 22] and the references in there. This was also the background of the first
paper that established eigenfunction expansions for quantum graphs, [10] (see
[1, 10, 15, 16, 17, 7, 12, 13, 14] for recent results on quantum graphs). There the
authors consider a rather special class of metric graphs, due to the random model
they have in mind. We point out, however that part of their discussion is rather
abstract and pretty much equivalent to what had been obtained in [4]. As was
pointed out in [3], the Dirichlet form framework of the latter article applies to a
class of quantum graphs with Kirchhoff boundary conditions.

The point of the present paper is to establish an expansion in generalized
eigenfunctions under somewhat minimal conditions. This means we require just
the usual conditions necessary to define the operators in question. These conditions
essentially amount to providing a continuous embedding from the form domain of
the operator to the Sobolev space W 1,2 of the graph. More concretely, we allow for
general boundary conditions, unboundedness of the (locally finite) vertex degree
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function, loops, multiple edges and edges of infinite lengths. However, we require
a uniform lower bound on the length of the edges. To the best of our knowledge,
this framework contains all classes of models that have been considered so far. Our
discussion is intrinsic and does not require an embedding of the metric graph into
an ambient space.

As far as methods are concerned, we rely on the results from [18] rather
than the approach of [2] that had been used in [10]. However, this is mostly a
question of habit. In either approach a main point is to establish certain trace
class properties of auxiliary functions. Here, we can rely upon one-dimensional
techniques for quantum graphs. An extra asset is that we are able to establish
pointwise properties of generalized eigenfunctions.

Our paper is structured as follows: In Section 2 we set up model and nota-
tion, define metric graphs and introduce the kind of boundary conditions we allow.
Moreover, we check the necessary operator theoretic input for the Poerschke-Stolz-
Weidmann method for constructing generalized eigenfunctions. In Section 3 we
discuss the notion of generalized eigenfunctions and explore pointwise properties
in the quantum graph case. It turns out that in this case generalized eigenfunctions
have versions that satisfy the boundary conditions at the vertices. In Section 4 we
present the necessary material from [18]. The application to the quantum graph
case comes in Section 5 that contains our main results, Theorem 5.1 and Corol-
lary 5.4. The former deals with quantum graphs and the latter includes additional
perturbations by a potential that is uniformly locally square integrable.

2. Metric graphs and the associated operators

In this section we introduce metric graphs and the associated operators. The ba-
sic idea is that a metric graph consists of line segments – edges – that are glued
together at vertices. In contrast to combinatorial graphs, these line segments are
taken seriously as differential structures and in fact one is interested in the Lapla-
cian on the union of the line segments. To get a self-adjoint operator one has to
specify boundary conditions at the vertices. Our discussion of the unperturbed
operator associated to a quantum graph in this section relies on the cited works of
Kostrykin & Schrader, [12], Kuchment, [16], and the second named author, [21].
In particular, the subsequent discussion up to Lemma 2.3 can essentially be found
in [16].

Definition 2.1. A metric graph is Γ = (E, V, i, j) where

• E (edges) is a countable family of open intervals (0, l(e)) and V (vertices) is
a countable set.

• i : E → V defines the initial point of an edge and j : {e ∈ E|l(e) <∞} → V
the end point for edges of finite length.

We let Xe := {e} × e, X = XΓ = V ∪
⋃

e∈E Xe and Xe := Xe ∪ {i(e), j(e)}.
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Note that Xe is basically just the interval (0, l(e)), the first component is
added to force the Xe’s to be mutually disjoint. The topology on X will be such
that the mapping πe : Xe → (0, l(e)), (e, t) 7→ t extends to a homeomorphism
again denoted by πe : Xe → (0, l(e)) that satisfies πe(i(e)) = 0 and πe(j(e)) = l(e)
(the latter in case that l(e) < ∞). A piece of the form I = π−1

e (J) with an edge
e and an interval J ⊂ (0, l(e)) is called an edge segment. The length of the edge
segment is the length of J . Edge segments will play a role, when we discuss local
properties of functions.

While we allow multiple edges and loops, we will assume finiteness of each
single vertex degree dv, v ∈ V , i. e.
(F) dv := |{(0, e) : v = i(e)} ∪ {(l(e), e) : v = j(e)}| <∞.

To define a metric structure on X we then proceed as follows: we say that
p = (x1, x2, . . . , xN ) ∈ XN is a good polygon if for every k ∈ {1, ..., N − 1} there
is a unique edge e ∈ E such that {xk, xk+1} ⊂ Xe. Using the usual distance on
[0, l(e)] we get a distance d on Xe and use it do define

l(p) =
N−1∑
k=1

d(xk, xk+1).

Since multiple edges are allowed, we needed to restrict our attention to good
polygons to exclude the case that {xk, xk+1} are joined by edges of different length.
Given connectedness of the graph and (F), a metric on X is given by

d(x, y) := inf{l(p) | p a good polygon with x1 = x and xN = y}.
In fact, symmetry and triangle inequality are evident and the separation of points
follows from the finiteness. Clearly, with the topology induced by that metric, X
is a locally compact, separable metric space. If X is not connected, we can do the
above procedure on any connected component.

We will assume a lower bound on the length of the edges:
(LB) There exists a u > 0 with l(e) ≥ u for all e ∈ E.

We will now turn to the relevant Hilbert spaces and operators. We define

L2(X) :=
⊕
e∈E

L2(e), W 1,2(X) :=
⊕
e∈E

W 1,2(e), W 2,2(X) :=
⊕
e∈E

W 2,2(e).

Here, of course, L2(e) (W 1,2(e), W 2,2(e)) consists of functions ue on e = (0, l(e)).
In the sequel we will view those families u = (ue)e∈E ∈ L2(X) rather as functions
defined on X. Note that W 1,2(X) and W 2,2(X) are sometimes referred to as
decoupled or maximal Sobolev spaces, see e.g. [9, 19]. Other Sobolev spaces can
also be found in the literature. For our purpose, the above definitions seem to be
the most convenient ones.

Consider a > 0 and recall that h ∈ W 1,2(0, a) is continuous and h(0) :=
limx→0+ h(x) exists and satisfies

|h(0)|2 ≤ 2
a
‖h‖2

L2(0,a) + a‖h′‖2
L2(0,a) (2.1)
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by standard Sobolev type theorems. Consider now an edge e and u ∈W 1,2(e). Then
the limit u(0) := limt→0 u(t) exists, as well as u(l(e)) := limt→l(e) u(t) and (2.1)
holds (with the obvious modifications). Similarly, for an edge e and u ∈ W 2,2(e)
the limits u′(0) := limt→0 u

′(t) and u′(l(e)) := − limt→l(e) u
′(t) exist. Here, we

have introduced a sign. This makes our definition of the derivative canonical, i. e.
independent of the choice of orientation of the edge.

For f ∈ W 1,2(X) and each vertex v we gather the boundary values of fe

over all edges e adjacent to v in a vector f(v). More precisely, let Ev := {(0, e) :
v = i(e)} ∪ {(l(e), e) : v = j(e)} denote the set of outgoing and incoming edges
adjacent to v and define f(v) := (fe(t))(t,e)∈Ev

∈ CEv . Similarly, for f ∈W 2,2(X)
we further gather the boundary values of f ′e(t) over all edges e adjacent to v in a
vector f ′(v) ∈ CEv . Note that for each loop at a vertex v there are two entries in
the vectors f(v) and f ′(v). These boundary values of functions will play a crucial
role when we discuss the concept of boundary condition.

Definition 2.2. A boundary condition is given by a pair (L,P ) consisting of a family
L = (Lv)v∈V of self-adjoint operators Lv : CEv −→ CEv and a family P = (Pv) of
projections Pv : CEv −→ CEv .

We will assume the following upper bound on (Lv)v∈V :
(UB) There exists an S > 0 with ‖L+

v ‖ ≤ S for any v ∈ V , where the + denotes
the positive part of a self-adjoint operator.
Given a metric graph satisfying (F) and(LB) and a boundary condition sat-

isfying (UB), we obtain from (2.1) by a direct calculation that∑
v∈V

〈Lvf(v), f(v)〉 ≤ 4S
ε
‖f‖L2(X) + 2Sε‖f ′‖L2(X) (2.2)

for any f ∈ W 1,2(X) and any ε > 0 with ε ≤ u. Given a boundary condition
(L,P ) we define the form s0 := sL,P by

D(s0) := {f ∈W 1,2(X) : Pvf(v) = 0 for all v ∈ V },

s0(f, g) :=
∑
e∈E

∫ l(e)

0

f ′e(t)g
′
e(t)dt−

∑
v∈V

〈Lvf(v), g(v)〉.

By (2.2) we easily see that for C > 0 large enough

s0(f, f) + C(f, f) ≥ 1
2
‖f‖W 1,2(X) (2.3)

for any f ∈ D(s0). This shows that s0 is bounded below and closed. Hence, there
exists an associated self-adjoint operator. This operator is denoted by H0 := HL,P .
It can be explicitly characterized by

D(H0) := {f ∈W 2,2(X) : Pvf(v) = 0 and

Lvf(v) + (1− Pv)f ′(v) = 0 for all v ∈ V },
(H0f)e := −f ′′e for all e ∈ E.
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We will assume the following setting:
(S) Γ is a metric graph satisfying (F) and (LB) with associated space X. (L,P )

is a boundary condition satisfying (UB). The induced form is denoted by s0
and the corresponding operator by H0 = HL,P .

Lemma 2.3. Assume (S). Then (H0+C)−
1
2 provides a continuous map from L2(X)

to L∞(X) for sufficiently large C > 0.

Proof. As H0 is bounded below, (H0 +C)−
1
2 provides a bounded map from L2(X)

to the form domain equipped with the form norm ‖·‖s0 for sufficiently large C > 0.
By (2.3), the form domain (with the form norm) is continuously embedded into
W 1,2(X). By (2.1), W 1,2(X) is continuously embedded in L∞(X). Putting this
together we obtain the statement. �

Lemma 2.4. Assume (S). Then

{f ∈ D(H0) : supp f compact}

is a core for H0.

Proof. Choose f ∈ D(H0). We have to find fn ∈ D(H0) with compact support
and fn −→ f and H0fn −→ H0f . We will provide fn = ψnf with suitable cut-
off functions ψn. We will assume without loss of generality that X is connected
(otherwise we will have to perform the process simultaneously on each connected
component).

Choose x ∈ X. For n ∈ N let Bn = B(x, n) be the ball around x with
radius n. Construct ψn = (ψn,e)e∈E with

ψn|B(x;n−2u) ≡ 1, ψn|B(x;n+2u)c ≡ 0 (2.4)

by distinguishing three cases: For edges e with both ends i(e) and j(e) contained
in Bn set ψn,e ≡ 1. For edges e with both ends i(e) and j(e) contained in the
complement of Bn set ψn,e ≡ 0. For edges e with one endpoint, say i(e) ∈ Bn and
j(e) ∈ Bc

n we choose ψn,e two times continuously differentiable on e, ψn,e ≡ 1 on
a suitable neighborhood of i(e), ψn,e ≡ 0 on a suitable neighborhood of j(e) such
that ψn,e and its first two derivatives are bounded by (1 + 4/u)2. This is possible,
since the length of the edges is bounded below by u.

Since in this way ψn is constant in the neighborhood of any vertex, smooth
and bounded the functions fn := ψnf belong to D(H0) for every n ∈ N. By (2.4)
we conclude fn → f in L2(X) as n→∞. Similarly,

H0(ψnf) = −ψnf
′′ − 2ψ′nf

′ − ψ′′nf → H0f,

as ψ′n, ψ
′′
n are uniformly bounded and supported on B(x;n+2u)\B(x;n−2u). �

Remark 2.5. Let us shortly discuss the necessity of conditions of the form (LB) and
(UB) in our context. Our aim is to show (2.3), i. e. that the identity is continuous
as a map from the form domain with W 1,2 norm to the form domain with form
norm.
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As we allow for rather general boundary conditions and do not assume any
connectedness, we need a pointwise estimate on the boundary values of a function
on an edge in terms of the correspondingW 1,2(e) norm. In this respect, the Sobolev
estimate (2.1) is essentially optimal. More precisely, testing with the constant
function on an interval of finite length shows that the factor 1/a can not be avoided.
In particular, (2.3) fails for a graph consisting of countably infinite disjoint edges
with lengths going to zero and a δ-boundary condition (corresponding to Lv being
the identity) on one of the vertices of each edge. In this sense, a condition of the
form (LB) seems unavoidable.

Similarly, given (LB), we need a bound of the form (UB) to bound the bound-
ary terms. In particular, (2.3) fails for a graph consisting of countably infinite
disjoint edges with lengths one and boundary conditions of the form cvL with cv
going to infinity.

3. A word on locality

Let a locally compact space X with a measure dx be given. Let L2
loc(X) be the

space of functions on X whose restrictions to compact sets are square integrable.
Let L2

comp(X) be the set of functions in L2(X) which have compact support. The
usual inner product can be “extended” to give a map (again denoted by 〈·, ·〉)

L2
comp(X)× L2

loc(X) −→ C, 〈f, g〉 :=
∫
f(x)g(x)dx.

Definition 3.1. Let X be a topological space with a measure dx. Let H be an
operator on X which is local i. e. Hf has compact support whenever f has and
D(H)∩Lcomp is a core for H. A nontrivial function φ on X is called a generalized
eigenfunction for H corresponding to λ if it belongs to L2

loc(X) and satisfies

〈Hf, φ〉 = λ〈f, φ〉 (3.1)

for any f ∈ D(H) with compact support.

Remark 3.2. Here, 〈Hf, φ〉 is defined in the sense discussed at the beginning of
the section. The inner product 〈f, φ〉 is defined in the same way. The condition
on the core of H is not necessary to state the definition. However, it is only this
condition that makes the definition a sensible one.

The question arises to which extent a generalized eigenfunction is locally a
good function. We say that φ ∈ L2

loc(X) is locally in W 2,2 if the restriction φI

belongs to W 2,2(I) for any compact edge segment. In particular, φe ∈W 2,2(e) for
every edge of finite length. Note that L2

loc(X)-functions belong to L2 of any edge
of finite length.

Here is one answer in the case of quantum graphs:

Lemma 3.3. Assume (S). If φ is a generalized eigenfunction for H0, then φ is
locally in W 2,2 and admits a version that satisfies the boundary condition at any
vertex.
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Proof. To check that φ belongs locally to W 2,2 is suffices to consider f ∈ D(H0)
with compact support contained in an edge and apply (3.1). This gives −φ′′ = λφ
so that φ belongs locally to W 2,2, since φ ∈ L2

loc(X) by our definition of generalized
eigenfunction.

To check that φ satisfies the boundary condition at a vertex v, it suffices to
consider f ∈ D(H0) supported on a neighborhood of v and apply (3.1). In fact,
let f ∈ D(H0) with fe ≡ 0 for all edges e not adjacent to v. Then we get

〈f, λφ〉 = 〈H0f, φ〉
= 〈−f ′′, φ〉;

integration by parts and the condition on the support of f give (with the evident
notation for the inner product in CEv )

. . . = 〈f,−φ′′〉+ 〈f ′(v), φ(v)〉 − 〈f(v), φ′(v)〉
= 〈f, λφ〉+ 〈f ′(v), φ(v)〉 − 〈f(v), φ′(v)〉

as the second weak derivative of φ is −λφ. Therefore,

〈f ′(v), φ(v)〉 = 〈f(v), φ′(v)〉
for every choice of f ∈ D(H0). Splitting the scalar products in the parts living in
the images of Pv and 1− Pv gives

〈Pvf
′(v), Pvφ(v)〉+ 〈(1− Pv)f ′(v), (1− Pv)φ(v)〉

= 〈Pvf(v), Pvφ
′(v)〉+ 〈(1− Pv)f(v), (1− Pv)φ′(v)〉.

Choosing f ∈ D(H0) with arbitrary Pvf
′(v) and (1 − Pv)f(v) = 0 (granting

(1− Pv)f ′(v) = 0), we see that Pvφ(v) has to be equal to zero.
If we use the boundary condition for f , the last equation can be trans-

formed to

〈Pvf
′(v), Pvφ(v)〉 = 〈(1− Pv)f(v), Lvφ(v) + (1− Pv)φ′(v)〉.

Taking an f with arbitrary (1−Pv)f(v), we conclude that Lvφ(v) + (1−Pv)φ′(v)
also equals zero, thus giving the boundary condition for φ. �

4. Expansion in generalized eigenfunctions: general framework

In this section we discuss the expansion in generalized eigenfunctions of a self-
adjoint operator. We follow the work of Poerschke, Stolz and Weidmann [18]. This
will be used to provide an expansion for metric graphs in a spirit similar to the
considerations of [4] for Dirichlet forms. Note that in [10] a different approach
has been used. However, an important point in both the different methods is to
establish suitable trace class properties for operators constructed from H. In that
respect, the analysis of [4, 10] is similar. Actually, the case of quantum graphs
is rather easy as far as trace class properties are concerned, as we have a locally
one-dimensional situation at hand.
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Let a Hilbert space (H, 〈·, ·〉) and a self-adjoint operator T ≥ 1 in H be given.
We will define the following two auxiliary Hilbert spaces: H+ := H+(T ) := D(T ),
〈x, y〉+ := 〈Tx, Ty〉 and H− as completion of H with respect to the scalar product
〈x, y〉− := 〈T−1x, T−1y〉. Thus, the inner product on H can be naturally extended
to give a map

〈·, ·〉 : H+ ×H− −→ C.
Let N be a positive integer or infinity, H a self-adjoint operator in H and µ a
spectral measure for H.

A sequence of subsets Mj ⊂ R, such that Mj ⊃Mj+1 together with a unitary
map U

U = (Uj) : H →
⊕N

j=1
L2(Mj , dµ)

is said to be an ordered spectral representation of H if

Uφ(H) = MφU,

for every measurable function φ on R.

Theorem 4.1 (Theorem 1 of Section 3 in [18]). Let H, T , H+, H− be as above.
Let µ be a spectral measure for H and U an ordered spectral representation. Let
γ : R −→ C be continuous and bounded with |γ| > 0 on σ(H) such that γ(H)T−1

is a Hilbert-Schmidt operator. Then there are measurable functions φj : Mj → H−,
λ 7→ φj,λ for j = 1, . . . , N such that the following properties hold:

(i) Ujf(λ) = 〈f, φj(λ)〉 for f ∈ H+ and µ-a. e. λ ∈Mj .
(ii) For every g = (gj) ∈

⊕
j L

2(Mj , dµ)

U−1g = lim
n→N,E→∞

N∑
j=1

∫
Mj∩[−E,E]

gj(λ)φj,λdµ(λ)

and, for every f ∈ H,

f = lim
n→N,E→∞

N∑
j=1

∫
Mj∩[−E,E]

(Ujf)(λ)dµ(λ).

(iii) For f ∈ {g ∈ D(H) ∩H+| Hg ∈ H+} and µ-a. e. λ ∈Mj

〈Hf, φj,λ〉 = λ〈f, φj,λ〉. (4.1)

If the functions φj,λ fulfill (i) and (ii) of the theorem, we will speak of a
Fourier type expansion. If the set {g ∈ D(H)∩H+| Hg ∈ H+} is a core for H, we
speak of an expansion in generalized eigenfunctions.

We will apply the previous theorem to the Hilbert Space H = L2(X) and
the operator H0, where X is a quantum graph satisfying (F), (LB) and (UB) as
discussed in Section 2. As T we then use the operator T := Mw of multiplication
with a suitable weight function w, i. e. a continuous map w : X −→ [1,∞).
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5. The main theorem

Theorem 5.1. Assume (S). Let µ be a spectral measure for H0. Let w : X → [1,∞)
be continuous with w−1 ∈ L2(X). Then there exists a Fourier type expansion
(φj) for H0, such that for µ-a. e. λ ∈ σ(H0) the function φj,λ is a generalized
eigenfunction of H0 for λ with w−1φj,λ ∈ L2.

Proof. We will apply the abstract result of the previous section. Let γ be the
function γ(t) = (C + t)−1/2. As T choose multiplication with w. Then, γ(H0) is
a bounded map from L2(X) to L∞(X) by Lemma 2.3. This, together with the
assumption on w easily shows that the operator T−1γ(H0) has an L2 kernel and
is therefore a Hilbert-Schmidt operator. Thus, its adjoint operator γ(H0)T−1 is a
Hilbert-Schmidt operator as well. We can therefore apply the result of the previous
section. This gives a Fourier type expansion. By definition of T any function in
H− is locally in L2. Moreover,

〈H0f, φj,λ〉 = λ〈f, φj,λ〉

holds µ-a. e. (in λ) for f ∈ Dw := {g ∈ D(H0)| wg,wH0g ∈ L2(X)}. As w
is continuous and H0f has compact support whenever f has compact support
by definition of H0, the set Dw obviously contains D(H0) ∩ L2

comp(X). Thus, the
functions φj,λ are generalized eigenfunctions in the sense of Section 3. This finishes
the proof. �

We denote by m the measure induced on X by the Lebesgue measure on the
edges Xe, pulled back via πe.

Remark 5.2 (A weight function). Assume thatX is connected and define, for ε > 0,

w(x) = m
(
Bd(x,x0)+1(x0)

)1+ε
.

Clearly, w is continuous and w ≥ 1. To see that w−1 ∈ L2(X), it suffices to consider
the case that Γ is infinite. In this case, m(Br(x0)) ≥ r for every x0 ∈ X and r > 0
by construction of the metric. We consider the volume of the annuli Bn(x0) \
Bn−1(x0). For x in this annulus we obviously have that w(x) ≥ m(Bn(x0))1+ε.
Hence, suppressing the x0 in the notation of the balls,∫

X

|w−1|2dx ≤
∫

B1\B0

w−2dx+
∫

B2\B1

w−2dx+ . . .

≤
∫

B1\B0

m(B1)−2−2εdx+
∫

B2\B1

m(B2)−2−2εdx+ . . .

≤
∞∑

i=1

i−1−2ε <∞,

where we used m(Bn) ≥ n.
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Schrödinger operators

Now we show that our main result can be extended to Schrödinger operators on
metric graphs. Here, we treat a rather simple case. More singular perturbations
will be considered elsewhere. In the following proposition we gather some operator
theoretic results for potential perturbations of the operators H0 = HL,P for a
quantum graph satisfying assumption (S). For a general background, we refer the
reader to [20], Section X. 2 as well as [8], §5 and §6.

We are going to consider the class of potentials V ∈
∏
e

L2(e) with

M := MV := sup{‖VI‖2 : I edge segment with length between u and 2u} <∞.

This class will be denoted by L2
loc,u(X).

Proposition 5.3. Assume (S) and let V ∈ L2
loc,u(X). Then we have:

(i) V is infinitesimally small with respect to H0. In particular, H = H0 + V is
self-adjoint on D(H0).

(ii) (H+C)−
1
2 provides a continuous map from L2(X) to L∞(X) for sufficiently

large C > 0.
(iii)

{f ∈ D(H0) : supp f compact}
is a core for H.

(iv) If φ is a generalized eigenfunction for H, then φ is locally in W 2,2 and admits
a version that satisfies the boundary condition at any vertex.

Proof. (i) Let a > 0 be arbitrary. Assume w.l.o.g. that a ≤ u. We now decompose
the edges of the graph into edge segments, which are disjoint up to their boundary
and have length between a and 2a. Then any point of the graph belongs to such
an edge segment I. Accordingly, our usual Sobolev estimate (2.1) gives

‖f |I‖2
∞ ≤ a

2
‖f ′|I‖2

2 +
4
a
‖f |I‖2

2. (5.1)

Note that we pick up an extra factor of 2 compared to estimate (2.1) as the point
may not lie at the boundary of I (in which case we only have an interval of length
a/2 at our disposal). Recall the estimate

‖f‖2
W 1,2 ≤ 2s0(f, f) + C‖f‖2

2. (5.2)

Summing over all I of our decomposition we obtain

‖V f‖2
2 =

∑
I

‖(V f)|I‖2
2

≤
∑

I

‖V |I‖2
2‖f |I‖2

∞

≤M2
∑

I

‖f |I‖2
∞
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(5.1) ≤M2
∑

I

(a
2
‖f ′|I‖2

2 +
4
a
‖f |I‖2

2

)
≤M2 a

2
‖f‖2

W 1,2 +M2 4
a
‖f‖2

2

(5.2) ≤M2as0(f, f) +M2Ca

2
‖f‖2

2 +M2 4
a
‖f‖2

2

= M2as0(f, f) + C(a)‖f‖2
2,

where

C(a) = M2
(Ca

2
+

4
a

)
.

As s0(f, f) ≤ ‖H0f‖‖f‖ ≤ ‖H0f‖2 + ‖f‖2, we obtain

‖V f‖2 ≤M2a‖H0f‖2 + (C(a) +M2a)‖f‖2
2.

As a > 0 is arbitrary, self-adjointness of H and (iii) both follow from the Kato-
Rellich theorem, cf [20], Theorem X. 12.

(ii) It follows from (i) that V is also form small with respect to H0, see [8]
and [20] so that the form norm of H0 and H are equivalent. Hence (ii) follows from
Lemma 2.3 above.

(iv) For every compact edge segment I we get that the restriction φI of φ to
I satisfies

φ′′I = VIφI − λφI

in the weak sense. Since φI ∈ L2(I) for every compact I and VI ∈ L2(I), we get
that φI ∈ L1. In particular, φ′I admits a continuous version so that φI ∈ C(I).
Since VI ∈ L2(I) this gives that φ is locally in W 2,2. The rest of the argument can
be taken from the proof of Lemma 3.3 with the obvious rewording. �

This gives the following analog of Theorem 5.1 for Schrödinger operators:

Corollary 5.4. Assume (S) and let V ∈ L2
loc,u(X). Let µ be a spectral measure for

H. Let w : X → [1,∞) be continuous with w−1 ∈ L2(X). Then there exists a
Fourier type expansion (φj) for H, such that for µ-a. e. λ ∈ σ(H0) the function
φj,λ is a generalized eigenfunction of H for λ with w−1φj,λ ∈ L2.
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