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A b s t r a c t .  We study strictly ergodic Delone dynamical systems and prove 
an ergodic theorem for Banach space valued functions on the associated set of 
pattern classes. As an application, we prove existence of the integrated density of 
states in the sense of uniform convergence in distribution for the associated random 
operators. 
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1 I n t r o d u c t i o n  

This paper is concerned with Delone dynamical systems and the associated 
random operators. 

Delone dynamical systems can be seen as the higher-dimensional analogues of 
subshifts over finite alphabets. They have attracted particular attention, as they can 

serve as models for so-called quasicrystals. These are substances, discovered in 

1984 by Shechtman, Blech, Gratias and Cahn [37] (see the report [ 18] of Ishimasa 

et al. as well), which exhibit features similar to crystals but are non-periodic. Thus, 

they belong to the reign of disordered solids; and their distinctive feature is their 
special form of weak disorder. 

This form of disorder and its effects have been extensively studied in recent 

years, both from the theoretical and the experimental point of  view (see [2, 19, 

34, 36] and references therein). On the theoretical side, there does not yet exist 

an axiomatic framework to describe quasicrystals. However, they are commonly 

modeled by either Delone dynamical systems or tiling dynamical systems. [36] (see 

[25, 26] for recent study of Delone sets as well). In fact, these two descriptions 

are essentially equivalent (see, e.g., [31]). The main focus of the theoretical study 
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lies then on diffraction properties, ergodic and combinatorial features and the 

associated random operators (see [2, 34, 36]). 

Here, we deal with ergodic features of Delone dynamical systems and the 

associated random operators. The associated random operators (Hamiltonians) 

describe basic quantum mechanical features of the models (e.g., conductance 

properties). In the one-dimensional case, starting with [6, 39], various specific 

features of these Hamiltonians have been rigorously studied. They include purely 

singular continuous spectrum, Cantor spectrum and anomalous transport (see [8] 
for a recent review and an extended bibliography). In the higher-dimensional case, 

our understanding is much more restricted. In fact, information on spectral types 
is completely missing. However, there is K-theory, providing some overall type 

information on possible gaps in the spectra. This topic was initiated by Bellissard 

[3] for almost periodic operators and subsequently investigated for filings, starting 

with the work of Kellendonk [20] (see [4, 21] for recent reviews). 

Our aim in this paper is to study the integrated density of states. This is a 

key quantity in the study of random operators. It gives some average type of 

information on the involved operators. 

We show uniform existence of the density of states in the sense of uniform 

convergence in distribution of the underlying measures. This result is considerably 

stronger than the corresponding earlier results of Kellendonk [20] and Hof [15], 

which gave only weak convergence. It fits well within the general point of view 

that quasicrystals should behave very uniformly due to their proximity to crystals. 

These results are particularly relevant as the limiting distribution may well have 

points of discontinuity. In fact, points of  discontinuity are an immediate conse- 

quence of the existence of locally supported eigenfunctions. Such eigenfunctions 

had already been observed in certain models [1, 13, 23, 24]. In fact, as discussed 

by the authors and Steffen Klassert in [22], they can easily be "introduced" without 

essentially changing the underlying Delone dynamical system. Moreover, based 

on the methods presented here, it is possible to show that points of  discontinuity 

of the integrated density of states are exactly those energies for which locally 
supported eigenfunctions exist (see [22] again). 

Let us emphasize that the limiting distribution is known to be continuous for 

models on lattices [10] (and, in fact, even stronger continuity properties hold 
[5]). In these cases, uniform convergence of the distributions is an immediate 

consequence of general measure theory. 

To prove our result on uniform convergence (Theorem 3), we introduce a new 

method. It relies on studying convergence of averages in suitable Banach spaces. 

Namely, the integrated density of states turns out to be given by an almost additive 
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function with values in a certain Banach space (Theorem 2). To apply our method, 

we prove an ergodic theorem (Theorem 1) for Banach space valued functions on 

the associated set of  pattern classes. 

This ergodic theorem may be of  independent interest. It is an analogue of  a 

result of Geerse/Hof [ 14] for tilings associated to primitive substitutions. For real 

valued almost additive functions on linearly repetitive Delone sets, related results 

have been obtained by Lagarias and Pleasants [26]. The one-dimensional case was 

studied by one of  the authors in [29, 28]. 

The proof of  our ergodic theorem uses ideas from the cited work of Geerse 

and Hof. Their work relies on suitable decompositions. These decompositions are 

naturally present in the framework of  primitive substitutions. However, we need 

to construct them separately in the case we are dealing with. To do so, we use 

techniques of  "partitioning according to return words," as introduced by Durand 

in [11, 12] for symbolic dynamics and later studied for filings by Priebe [35]. 

However, this requires some extra effort, as we do not assume aperiodicity. 

The paper is organized as follows. In Section 2, we introduce the notation 

and present our results. Section 3 is devoted to a discussion of  the relevant 

decomposition. The ergodic theorem is proved in Section 4. Uniform convergence 

of  the integrated density of  states is proven in Section 5, after proving the necessary 

almost additivity. 

2 Setting and results 

The aim of  this section is to introduce notation and to present our results, which 

cover part of  what has been announced in [30]. In a companion paper [31], more 

emphasis is laid on the topological background and the basics of  the groupoid 

construction and the noncommutative point of  view. 

For the remainder of  the paper, an integer d _> 1 is fixed and all Delone sets, 

patterns etc. are subsets of  l~ a. The Euclidean norm on •d is denoted by II �9 II as 

are the norms on various other normed spaces. For s > 0 and p E IRa, B(p, s) is the 

closed ball in IR a around p with radius s. A subset w of  I~ a is called Delone set if  

there exist r > 0 and R > 0 such that 

�9 2r < I[x - YI] whenever x, y e w with x # y, 

�9 B(x ,R)  Mw # 0 for all x E Rd; 

and the limiting values of  r and R are called packing radius and covering radius, 

respectively. Such an w is also called (r, R)-set. Of  particular interest are the 
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restrictions of  co to bounded subsets of  l i  d . In order to treat these restrictions, we 

introduce the following definition. 

D e f i n i t i o n  2.1. (a) A pair (A, Q) consisting of  a bounded subset Q of  lid and 

A C Q finite is called apattern. The set Q is called the support o f  the pattern. 
(b) A pattern (A, Q) is called a ballpattern if Q = B(x, s) with x 6 A for suitable 

z 6 lid and s > O. 

The diameter and the volume of a pattern are defined to be the diameter and the 

volume of its support, respectively. For patterns X1 = (Ax, Q1) and X2 = (A2, Q2), 

we define ~xl X2, the number of occurrences of  Xx in X2, to be the number of  

elements in {t 6 lid : A1 + t = A2 n (Qt + t), Q1 + t c Q2}. Moreover, for patterns 
k Xi = (A~, Qi), i = 1 , . . . ,  k, and X = (A, Q), we write X = (~i=1 Xi if  A = U Ai, 

Q = [,J Qi and the Qi are disjoint up to their boundaries. 

For further investigation, we have to identify patterns which are equal up to 

translation. Thus, on the set of patterns we introduce an equivalence relation by 

setting (A1,Q1) ~ (A2,Q2) if and only if  there exists t 6 lid with A1 = A2 + t 

and Q1 = Q2 + t. The equivalence class of  a pattern (A, Q) is denoted by [(A, Q)]. 

The notions of  diameter, volume occurrence, etc., can easily be carried over from 

patterns to pattern classes. 

Every Delone set co gives rise to a set of  pattern classes, T'(co), viz., 7~(w) = 

{Q A co : Q c li, t bounded and measurable} and to a set of  ball pattern classes 

79B(w)) = {[B(p, s) Act] :p  6 co, s 6 li}. Here we set 

(2.1) Q^co  = (co n Q,Q).  

Furthermore, for arbitrary ball patterns P,  we define s(P) to be the radius of the 

underlying ball, i.e., 

(2.2) s(P) = s for P = [(A, B(p,s))]. 

For s 6 (0, oo), we denote by P~(co) the set of  ball patterns with radius s. A 

Delone set is said to be of  finite type if for every radius s the set ~o b (co) is finite. 

The Hausdorff  metric on the set of  compact subsets of lie induces the so-called 

natural topology on the set of closed subsets of  ira. It is described in detail in [31] 

and enjoys certain nice properties: the set of  all closed subsets of  lie is compact 

in the natural topology, and the natural action T of  IR a on the closed sets given by 

TiC =- C + t is continuous. 

D e f i n i t i o n  2.2. (a) If  f~ is a set of  Delone sets which is invariant under the shift 

T and closed under the natural topology, then (f~, T) is called a Delone dynamical 
system, abbreviated as DDS. 
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was shown in Theorem 1.6 in [31] (see [27] as well). It goes back to [38], Theorem 

3.3, in the tiling setting. 

Definition 2.3. Let  [2 be a DDS and 13 be a vector space with seminorm I1 II. 
A function F : 79([2) :---+ 13 is called almost additive (with respect to II �9 II) if there 

exists a function b : 79(f~) L> [0, oo) (called the associated error function) and a 

constant D > 0 such that 
(A1) ] I F ( ~ : I  Pi) k k - Ei=l F(Pi)II <_ Ei=~ b(P/); 
(A2) HE(P)[] < D[Pl + b(P); 

(A3) b(P1) < b(P) + b(P2) whenever P = P1 @ P2; 

(A4) lim~_+~ [P,~l-lb(Pn) = 0 for every van Hove sequence (P~). 

Our first result is: 

Theorem 1. For a minimal DDSF (f~, T), the following are equivalent. 

(i) ([2, T) is uniquely ergodic. 

(ii) The limit limk~oo Iekl-a F(Pk) exists for  every van Hove sequence (Pk) and 
every almost additive F on (f~, T) with values in a Banach space. 

The proof of  the theorem makes use of  completeness of the Banach space in a 

crucial manner. However, it does not use the nondegeneracy of  the norm. Thus, 

we get the following corollary (of its proof). 

C o r o l l a r y  2.4. Let (f~, T) be a strictly ergodic DDSE Let the vector space 

I3 be complete with respect to the topology induced by the seminorms [1" li- 

E Z. I f  F : 79 ~ 13 is almost additive with respect to every 11.11~, ~ E 77, 

then limk~oo IPkI-~ F(Pk) exists for every van Hove sequence (Pk) in 79([2). 

Theorem 1 may also be rephrased as a result on additive functions on Borel 

sets. As this may also be of  interest, we include a short discussion. 

D e f i n i t i o n  2.5. Let ([2, T) be a DDS and 13 be a Banach space. Let S be the 

family of bounded measurable sets on iR a. A function F : S x f~ > B is called 

almost additive if there exists a function b : S ~ [0, oo) and D > 0 such that 

(A0) b(Q) = b(Q + t) for arbitrary Q e S and t E iRa and liEu(Q)- F~(Q')II _< b(Q) 
whenever w A Q = w ^ Q'. 

F ~  I% n - -  t ,  (A1) II ~(Uj=I QJ) - ~j___l F~(Q~)II < ~j=~ b(Q~) for arbitrary w E f~ and 

Qj E S which are disjoint up to their boundaries. 

(A2) lIF~(Q)ll <_ D]QI + b(Q). 



ERGODIC THEORY AND THE INTEGRATED DENSITY OF STATES 

(A3) b(Q1) <_ b(Q) + b(Q2) whenever Q = Q1 t.J Q2 with Q1 and Q2 disjoint up to 

their boundaries. 

(A4) lim~_+~ IQkl-lb(Qk) = 0 for every van Hove sequence (Qk). 

Corol lary 2.6. Let ([2, T) be a strictly ergodic DDS and F : S x [2 ~ B be 

almost additive. Then limk-}~ IQkl-lF~,(Qk) exists for  arbitrary w E f~ and every 
van Hove sequence (Qk) in lid, and the convergence is uniform on f~. 

Our further results concern selfadjoint operators in a certain C* algebra 

associated to (f~, T). The construction of this C* algebra was given in our ear- 

lier work [30, 31]. We recall the necessary details next. 

Def in i t ion  2.7. Let (fl, T) be a DDSE A family (A~) of bounded operators 

A~ : g2(w) > g~(w) is called a random operator o f  finite range if there exists a 

constant s > 0 with 

�9 A~(x,y) = 0 whenever IIx - Y[I > s; 

* A~(x, y) only depends on the pattern class of ((K(x, s) t.J K(y,  s)) ^ w) . 

The smallest such s is denoted by R a. 

The operators of  finite range form a .-algebra under the obvious operations. 

There is a natural C*-norm on this algebra and its completion is a C*-algebra 

denoted as A(fl,  T) (see [4, 30, 31] for details). It consists again of families 
(A,o)~,e~ of operators A,o : g2 (w) > g2 (w). 

Note that for selfadjoint A E A(fl, T) and bounded Q c ] l  d, the restriction A,~ IQ 

defined on g2(Q N w) has finite rank. Therefore, the spectral counting function 

n(A,,,, Q)(E) := #{eigenvalues of A,o[Q below E} 

is finite; and i~Tn(A,~, Q) is the distribution function of the measure p(A~, Q), 

defined by 
1 

(p(A,~,Q),~) : =  -~tr(~(AwIQ)) fo r~  E Cb(li). 

These spectral counting functions are obviously elements of the vector space 

D consisting of all bounded right continuous functions f : li ~ li for which 

limx-~_oo f (x)  = 0 and limx~oo f (x)  exists. Equipped with the supremum norm 

I[f[Ioo =- sup,oR ]f(x)[, this vector space is a Banach space. It turns out that 

the spectral counting function is essentially an almost additive function. More 

precisely, the following holds. 
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T h e o r e m  2. Let (f~, T) be a DDS. Let A be an operator o f  finite range. Then 

F A : 79(~) ) D, defined by FA(p)  = n(A~,,QRA)for P = [(w A Q)], is a 

well-defined almost additive function. 

R e m a r k  1. This theorem seems to be new even in the one-dimensional case. 

(There, of course, it is very easy to prove.) 

Based on the foregoing two theorems, it is rather clear how to show existence 

of  the limit limk-+oo IQkl-ln(A~, Qn) for van Hove sequences (Qk). This limit is 

called the spectral density of A. It is possible to express this limit in closed form 

using a certain trace on avon  Neumann algebra [30, 31]. We do not discuss this 

trace here, but rather directly give a closed expression. To each selfadjoint element 

A E A(~, T), we associate the m e a s u r e  pa defined on IR by 

pa(F ) -- ff~ trw(Mf(w)rr~(F(A)))dl~(W)" 

Here, tr~ is the standard trace on the bounded operators on e2 (w), f is an arbitrary 

nonnegative continuous function with compact support on R d with fR, f(t)dt = 1 

and M/(w) denotes the operator of multiplication with f in e2(w) (see [30, 31] 

for details). It turns out that pA is a spectral measure for A [31]. Our result on 

convergence of the integrated density of  states is the following. 

T h e o r e m  3. Let (il, T) be a strictly ergodic DDSE Let A be a selfadjoint 

operator of  finite range and (Qk) an arbitrary van Hove sequence. Then the 

distributions E ~-~ p ~  ((-oo, E]) converge to the distribution E ~-~ pA((--cx), E]) 

with respect to II " II~, and this convergence is uniform in w E 12. 

R e m a r k  2. (a) The usual proofs of existence of the integrated density of states 

yield only weak convergence of the measures. 

(b) The proof of the theorem uses the fact, already established in [31, 33], that 

the measures p(Ao~, Qn) converge weakly towards the m e a s u r e  pA for every w E fl 

and A E A(~, T). 

As mentioned in the nreceding remark, the usual proofs of existence of the in- 
a,o. Weak tegrated density of states give only weak convergence of the measures pQ, 

convergence of  measures does not, in general, imply convergence in distribution. 

Convergence in distribution follows, however, from weak convergence if the limit- 

ing distribution is continuous. Thus, Theorem 3 is particularly interesting in view 

of the fact that the limiting distribution can have points of discontinuity. 

Existence of  such discontinuities is rather remarkable, as it is completely dif- 

ferent from the behaviour of random operators associated to models with higher 
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disorder. It turns out that a very precise understanding of  this phenomenon can 

be obtained invoking the results presented above. Details of this will be given 

separately [22]. Here, we only mention the following theorem. 

T h e o r e m  4. Let (f~, T) be a strictly ergodic DDSF and A an operator offinite 

range on (~, T). Then E is a point of  discontinuity o f  p a i f  and only if there exists 

a locally supported eigenfunction ofAo~ - E for one (every) w E f~. 

3 D e c o m p o s i n g  Delone  sets 

This section provides the main geometric ideas underlying the proof of our 

ergodic theorem, Theorem 1. We first discuss how to decompose a given Delone 

set into finite pieces, called cells, in a natural manner, Proposition 3.2. This is 

based on the Voronoi construction, as given in (3.1) and Lemma 3.1, together with 

a certain way to obtain Delone sets from a given Delone set and a pattern. This 

decomposition is performed on an increasing sequence of scales. As mentioned 

already, here we use ideas from [11, 35]. Having described these decompositions, 

our main concern is to study van Hove type properties of the induced sequences 

of cells. This study is undertaken in a series of lemmas, yielding as main results 

Proposition 3.12 and Proposition 3.14. Here, the proof of Proposition 3.14 requires 

considerable extra effort (compared with the proof of Proposition 3.12), as we have 

to cope with periods. 

We start with a discussion of the well-known Voronoi construction. Let w be 

an (r, R)-set. To an arbitrary z E w, we associate the Voronoi cell V(z, w) C •a 

defined by 

(3.1) V ( x , w ) - { p ~ a : l l p - x l l < l l p - y l l  f o r a l l y E w w i t h y ~ x }  

(3.2) = A {P E l~d: liP-- xll < l ip-  yll}. 
yEw,y~z 

Note that {p E ~d : lip- zll ___ lip- yll } is a half-space. Thus, V(z, w) is a convex set. 
Moreover, it is obviously closed and bounded and therefore compact. It turns out 

that V(z, w) is already determined by the elements ofo: close to z. More precisely, 

the following holds. 

L e m m a  3.1. Let w be an (r,R)-set. Then, V(x,w) is determined by 

B(x,2R) Aw, viz., V(x,w) = NyeB(x,2R)n~{P E ~d : liP- xll < lip- yll}. Moreover, 
V(x, w) is contained in B(x, R). 

Proof .  The first statement follows from Corollary 5.2 in [36], and the second 

one is a consequence of Proposition 5.2 in [36]. [] 
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Next we describe our notion of derived Delone sets. Let w be an (r, R)-set and 

P be a ball pattern class with P �9 7~(w). We define the Delone set derived from w 

by P, denoted wp, to be the set of all occurrences of P in R d , i.e., 

wp = {t �9 •a : [B(t,s(P)) Aw] = P}. 

Now let (f~,T) be a minimal DDSE Choose w �9 f~ and P �9 PB(f~). Then the 

Voronoi construction applied to wp yields a decomposition of w into cells 

C(x,  o3)P) :_~ V(x,~a)p) Ao3, x �9 o3p. 

More precisely, 

ll~d = U V(x, wp), and int(V(x, wp))Nin t (V(y ,  w p ) ) = 0 ,  
xEwv 

whenever x r y. Here, int(V) denotes the interior of V. This way of decomposing 

w is called the P-decomposition of w. It is a crucial fact that each C(x, w, P) is 

already determined by 

B(x, 2R(P)) A w, 

as can be seen by Lemma 3.1, where R(P)  denotes the covering radius of wp. 

Thus, in particular, the following holds. 

Proposition 3.2. Let (f~, T) be a minimal DDSF and let P �9 ~B([-~) be fixed. 

Letw fi f~ with 0 �9 ~dp and set Q = B(O,2R( P) ) Aw. Then C( Q ) - [V(0,03p) Aw] 
depends only on [Q] (and not on w). Moreover, if C is a cell occurring in the 

P-decomposition o f  some Wa fi fl, then [C] = C(Q) for  a suitable w �9 f~ with 

OEwp. 

The proposition says that the occurrences of certain cells in the P- 

decompositions are determined by the occurrences of the larger 

Q E {[B(x,2R(P)) Aw] :x  �9 wp,w �9 f~}. 

The proposition does not say that different Q induce different C(Q) (and this is 

not, in fact, true in general). 

The main aim is now to study the decompositions associated to an increasing 

sequence of ball pattern classes (Pn). We begin by studying minimal and maximal 

distances between occurrences of a ball pattern class P. We need the following 

definition. 
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Definition 3.3. Let (~, T) be a minimal DDSF and P E :PB be arbitrary. 

Define r ( P )  as the packing radius of  wp,  i.e., by 

1 inf{ll x -  y l l : x  # y , x , y  E cop,w 6 f~}, r ( P )  - 5 

and the occurrence radius R ( P )  by 

R(P) - inf{R > 0:  ~p([B(p,R) Aco]) _> 1 for everyp  6 R u andco 6 l~}. 

Lem_ma 3.4. Let  (f~, T )  be minimal .  Then 

R ( P )  - min{R > 0 : ~p([B(p, R) Aco]) > 1 f o r  every  p 6 I~ a a n d  co 6 f~}. 

Moreover,  cop is an (r( P) ,  R(  P)  )-set  f o r  every  co E f~. 

Proof ,  We show that the infimum is a minimum. Assume the contrary and 

set R' := R ( P ) .  Then there exist p 6 ll( a and co 6 f~ such that B(p, R') A co does not 

contain a copy of  P.  However, by definition of  R', B(p, R' + e) A co contains a copy 

of P for every e > 0. As co is a Delone set, B(p, R' + 1) A co contains only finitely 

many copies of  P,  and a contradiction follows. The last statement of  the lemma is 

immediate. [] 

We need to deal with Delone sets which are not aperiodic. To do so the 

following notions are useful. For a minimal DDS (f~, T) let s = s be the 

periodicity lattice of  (f~, T), i.e., 

s -- s -- { t  6 ]R d : Ttco = w for all co 6 f~}. 

Clearly, s is a subgroup of Rd; it is discrete, since every co is discrete. Thus (see 

Proposition 2.3 in [35]), s is a lattice in 11{ d, i.e., there exist D ( s  6 N and vectors 

e l , . . . ,  eD(s 6 ~d which are linearly independent (in ~d) such that 

D(s 

g = Linz{e j :  j = 1 , . . .D ( s  - { ~ a j e j :  aj 6 Z , j  = 1 , . . . , m ( s  
j = l  

We define r(s  by 

oo : ; i f s  

r ( s  - �89 t 6 s  {0}} : ; otherwise. 

Lemma 3.6 below provides a result on minimal distances. Variants of  this result 

have been given in the literature on filings [35] and on symbolic dynamics [ l l ] .  

To prove it in our context, we require the following result from [32] concerning 

the natural topology. 
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L e m m a  3.5.  A sequence (wn) o f  Delone sets converges to w E 79 in the natural 

topology i f  and only i f  there exists f o r  any I > 0 an L > l such that wn M B(0, L) 

converges to w f3 B(O, L) with respect to the Hausdorf f  distance as n --+ oo. 

L e m m a  3.6.  Let (f~,T) be a minimal D D S E  Let (Pn) be a sequence o f  ball 

pattern classes with s(Pn) ~ oo, n > oo. Then 

lim inf r(Pn) 
n---), o o  

In particular, there exists p > 0 such that 

pattern with s (P)  >_ p. 

_> r(z:). 

r(P)  > r(/~)/2 whenever  P is a ball 

Proof.  As (f~, T)  is minimal, it is an (r, R)-system. Assume that the claim is 

false. Thus, there exists a sequence (Pn) in 7:'B(fl) with s(Pn) -~ oo, n ~ oo, but 

r(Pn) < C with a suitable constant C > 0 with C < r(s  Then there exist wn E [2 

and tn E I~ d with Iltnll < 2C (and, of  course, IIt,~ll > 2 r )w i th  

(3.3) B(O, s(Pn)) A w~ = B(O, s(Pn)) A (wn - tn). 

By compactness of  f~ and B(0, 2C), we can assume without loss o f  generality that 

Wn --+ w and t,~ ~ t, with t E B(0, C), n --+ c~. Thus, (3.3) implies 

(3.4) w = w - t. 

In fact, let p E w. Fix R > 0 such that p E w n B(0, R). By L e m m a  3.5, we find 

pn E w,~, for n sufficiently large, such that pn --+ p for n ~ ~ .  Assuming R < s (Pn) 

and utilizing (3.3), we find qn E wn such that pn = qn - tn. Since q,~ ~ p + t and 

Wn --+ w, we see that q = p + t E w, leaving us with 

n B(o, R) c (,,, - t) n B(O, n) .  

By symmetry and since R was arbitrary, this gives (3.4). Minimality yields that 

(3.4) extends to all w E f L  Thus, t belongs to E. As 0 < 2r < Iltll <_ 2 c  < 2r(Z:), 
this gives a contradiction. [] 

Definit ion 3.7.  For a compact  convex set C c I~ a, denote by s(C) > 0 the 

inradius of  C, i.e., the largest s such that C contains a ball o f  radius s. 

In the sequel, we write wn,Pn := (wn)p, to shorten notation. 

L e m m a  3.8.  Let  (f in,T),  n E N, be a family  o f  minimal DDS. Let  a pattern 

class Pn E 79 ( f~n ), wn E f~n and xn E O3n,p,~ be given for  any n E N. I f  r( Pn ) > oo, 

n ~, oo, then s(V(xn,wn,p~))  ~ oo, f o r n  ~ oo. 
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P r o o f .  Without loss of  generality, we can assume that xn = 0 for  every n �9 N. 

By construction o f  Vn = V(x~,  w~,p~ ), we have 

s(V~) > dist(0, OVn) > r(Pn),  n �9 N. 

This implies s(V~) ~ oo, n ~ oo. [] 

Our next aim is to show that a sequence of  convex sets with increasing inradii 

must be van Hove. We need the following two lemmas. 

L e m m a  3.9.  For every d �9 N, there exists a constant c = c(d) with 

( 1 +  s) d -  (1 - s) d < cs 

for  Isl < 1. 

P r o o f .  This follows by a direct computation. 

For C C I~ a and )~ > 0, we set 

[] 

~C - {~z : z �9 C}. 

L e m m a  3 .10 .  Let C be a compact convex set in ~d with B(O, s) C C. Then 

the inclusion 
c h \ C h C  ( l + h )  c \ ( 1 - h ) c  

holds, where we set (1 - hs-X)C = 0 i f h  > s. ln particular, 

ICh k Chl <_ ~rnax { h,  ~ }  ,CI, 

with a suitable constant ~ = to(d). 

P r o o f .  The first statement follows by convexity of  C. The second is then 

an immediate consequence o f  the change of  variable formula  combined with the 

foregoing lemma. [] 

L e m m a  3.11 .  Let (Cn) be a sequence o f  convex sets in ~a with s(Cn) ~ oo, 

n ----+ oo. Then (Cn) is a van Hove sequence. 

P r o o f .  Let  h > 0 be given and assume without loss of  generality that 

B(O, s(C,))  C C, .  The result follows f rom the previous lemma. [] 

The following consequence of  the foregoing results is a key ingredient of  our 

proof  o f  Theorem 1. 
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Proposition 3.12. Let (f~,T) be a minimal and aperiodic D D S E  Let ( Pn) be 

a sequence in PB(f~) with s(Pn) -~ oo, n ~ oo. Let (wn) C f~ and Xn E Wn,p, be 

arbitrary. Then V(xn ,  wn,p,) is a van Hove sequence. 

P r oo f .  By Lemma 3.6, aperiodicity of  (f~,T) together with s(P,~) --+ oo, 

n --+ ~ yields r(P,~) ~ c~, n --+ ~ .  Therefore, by Lemma 3.8, we have 

s(V(xn,Wn,p,))  -+ c~, for n ~ c~. The statement is now immediate from Lemma 

3.11. [] 

We also need an analogue of this proposition for arbitrary (i.e., not necessarily 

aperiodic) DDSF. To obtain this analogue requires some extra effort. 

Let a minimal DDSF (f~, T) with periodicity lattice Z: be given. Let U = U(s 

be the subspace of  IR d spannedby the ej, j = 1 , . . . , D ( s  and let Pu : IRd > U b e  

the orthogonal projection onto U. The lattice s induces a grid on IR a. Namely, we 

can set 

D(s 

Go =- {x  E IRa : P v x  = Z Ajej; wi th0  _< Aj < 1, j  = 1 , . . . ,D(s  
j----1 

and 

G(m ..... nmL)) =- n le l  + ".. + n D ( s 1 6 3  "-b Go, 

for ( n l , . . .  ,nD(s E 7/,D(E). 

We now use coloring of  Delone sets to obtain new DDS from (f~, T). These 

new systems are essentially the same sets but equipped with a coloring which 

"broadens" the periodicity lattice. Coloring has been discussed, e.g., in [31]. 

Let C be a finite set. A Delone set with colorings in C is a subset of  IRd • C 

such that Pa (w) is a Delone set, where pa : R d x C is the canonical projection 

pl (x, c) = x. When referring to an element (x, c) of a colored Delone set, we also 

say that x is colored with c. Notions such as patterns, pattern classes, occurrences, 

diameter, etc., can easily be carried over to colored Delone sets. 

Fix w E f~ with 0 E f L  For every l E N, we define a DDS as follows. Let w (t) 

be a Delone set with coloring in {0, 1} introduced by the following rule: z E w is 

colored with 1 if  and only if there exists ( n l , . . . ,  no(s e 7ZD(s with 

X E G( tn l  ..... /n~(~)); 

in all other cases, x 6 w is colored with 0. Set f~(t) _ f~(w(t)) _ {Ttw(~) : t E IRd}, 

where the bar denotes the closure in the canonical topology associated to colored 

Delone sets [31]. The DDS (f~(0, T) is minimal, as can easily be seen considering 

repetitions of  patterns in w(0. Also, (f~(t),T) is uniquely ergodic if (f~,T) is 
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uniquely ergodic, as follows by considering the existence of  frequencies in w(0. 

The important point about (f~(t), T) is the following fact. 

L e m m a  3.13. Let  (f~,T) be a m in ima l  D D S  a n d  (fl(0,T) f o r  l E N be 

cons t ruc ted  as  above.  Then r( li.( f~ (l) ) ) = I . r(E(f~)). 

Proof.  This is immediate from the construction. [] 

We can now state the following analogue of Proposition 3.12. 

Proposi t ion 3.14. Let  (D, T )  be a m in ima l  D D S F  a n d  (f~(n), T),  n E N con-  

s t ruc ted  as  above.  Then, there exists  a s e q u e n c e  Pn wi th  Pn > oo, n -----r oo, such  

that  V ( x n ,  Wn,p, ) is a van Hove  s equence  w h e n e v e r  (Pn) is a s e q u e n c e  o f  pa t t ern  

c lasses  wi th  Pn E 79(f~ (n)) and  s(Pn)  > p n f o r  all  n E N. 

Proof.  By the foregoing lemma and Lemma 3.6, there exist for every n E N 

a p,~ > 0 such that r(Pn) > nr(s  whenever Pn E p(fl(n)) with s ( P , )  > p , .  

Thus, 

r ( Pn ) > c~, n -----~ oo. 

Now, the statement follows as in the proof of  Proposition 3.12. [] 

4 The ergodie theorem 

In this section, we prove Theorem 1. The main idea of the proof is to combine 

the geometric decompositions studied in the last section with the almost additivity 

of F to reduce the study of  F on large patterns to the study of  F on smaller patterns. 

Proof  o f  T h e o r e m  1. (ii) ==~(i). For every Q E P,  the function P ~4 ~Q (P) 

is almost additive on P. Thus, its average lim,~oo IP.I-a~Q(P.) exists along 

arbitrary van Hove sequences (Pn) in P. But this easily implies (2.3), which in 

turn implies unique ergodicity, as discussed in Section 2. 

(i) ~ (ii). Let F : P(f~) ) /3 be almost additive with error function b. Let 

(Pn) be a van Hove sequence in P(f~). We have to show that limn~oo [Pn[-1F(Pn)  

exists. As/3 is a Banach space, it is clearly sufficient to show that ([Pn[-XF(Pn))  

is a Cauchy sequence. To do so we construct F (k) in/3 such that 

[ [ [ V n l - l F ( V n )  - F(k)[[ iS arbitrarily small for n large and k large. 

To introduce F (k) we proceed as follows. Fix w E f~ with 0 E w. 



16 D. L E N Z  A N D  P. S T O L L M A N N  

We first consider the case that (f~, T) is aperiodic. The other case can be dealt 
with similarly. Let B (k) be the ball pattern class occurring in w around zero with 

radius k, i.e., 

(4.1) B (k) _~ [w A B(0, k)]. 

Thus, (B (k)) is a sequence in PB(fl) with k = s(B (k)) ~ oo for k -+ oo, and the 

assumptions of Proposition 3.12 are satisfied. 

As (fl, T) is of finite local complexity, the set 

{[B(x,2R(B(k))) Awl: x e w,w �9 fl with [S(x,k) Awl = B (k)} 

is finite. We can thus enumerate its elements by BJ k), j = 1 , . . . ,  N(k) with suitable 

N(k) �9 N and BJ k) �9 79(0). Let CJ k) - C(BJ k)) be the cells associated to BJ k) 
according to Proposition 3.2. By Proposition 3.12, 

(*) (CJl k)) is a van Hove sequence 

for arbitrary (lk) C N with lk --+ oo, k ~ oo, and j~ �9 {1,. . . ,N(/~)}. This is 
crucial. Denote the frequencies of the B~ k) by f(BJk)), i.e., 

(4.2) f(B~ k)) = nlirnoo [Pnl-~B~h)Pn. 

Define 
Iv(k) 

j = l  

Choose e > 0. We have to show that 

[I[Pn[-1F(Pn) - F(k))[[ < e, for n and k large 

(as this implies that [Phi-IF(P,,) is a Cauchy sequence). By (.), there exists 

k(e) > 0 with 

(4.3) ICJk)l-%(CJk) ) < e/3 fo r eve ry j  = 1 , . . . ,N(k)  

whenever k _> k(e). (Otherwise, we could find (l~) in N and j~ �9 {1 , . . . ,N( /k)}  
with Ik --+ oo, k --+ oo such that 

[-lb(uj~ ) > e/3. - 3h 

Since (CJ~)) is a van Hoove sequence by (.), this contradicts property (A4) from 
Definition 2.3.) 
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Let P E P be an arbitrary pattern class. By minimality of  (fl, T), we can choose 
Q = Q(P) c ~d with [Q Aw] = P. 

The idea is now to consider the decomposition of w A Q induced by the B(k)- 

decomposition of w. This decomposition of w A Q consists (up to a boundary term) 

of representatives of C~ k), j = 1, . . . ,  N(k). For P = Pn with n E N large, the 

number of representatives of a CJ k) for j fixed occurring in Q A w is essentially 

given by f(C~k))[Pn[. Together with the almost additivity of  F, this allows us to 

relate F(Pn) to F (k) in the desired way. Here are the details. 

Let I(P,k) - {x E wB(,) : B(x,2R(B(k))) C Q}. Then, by Lemma 3.1 and 

Proposition 3.2, 

(4.4) Q A w = S A w ~ 9  ~ C(x ,w,B (k)) 
xEI(P,k) 

with a suitable surface type set S C ~d with 

(4.5) S C Q \ Q4R(B(*))- 

The triangle inequality implies 

+ IPl 

- D1 (P, k) + D2(P, k). 

The terms DI(P,k) and D2(P,k) can be estimated as follows. By almost 
additivity of  F, we have 

Dx (P, k) < b([S A w]) b([C(x, w, B(k))]) IC(x, w, B(k))l 
- [p[ + ~ [C(x,w,B(k))[ IF[ xEl(P,k) 

b(P) + b([(~)zei(p,k) C(x, w, B(k))]) 
< 
- IPl 

{ B(k))]) } 
+sup [C(x,w,B(k)) [ : x E I(P,k) . 

In the last inequality we have used (A3). 

Fix k = k(e) from (4.3) and consider the above estimate for P = Pn. Then 

b(Pn) + b([~zei(V,k) C(x, w, B (k))]) e 
DI(Pn, k) <_ [Pn[ + 5" 
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As (P,~) is a van Hove sequence, it is clear from (4.5) that 

([~xel(P,k) C(x, o.1, B (k))]) is a van Hove sequence as well. Thus 

b(P ) + ) C(x, 

IP l 

b(Pn) b([(~zEl(P~,k) C(x,~,8(k))])  I[~zEl(P,,,k) C(z,w, B(k))] I - - +  

tends to zero for n tending to infinity by the definition of b. Putting this together, 

we infer 

DI(Pn, k) < e/2 

for large enough n E N. 

Consider now D2. Invoking the definition of F (k), we clearly have 

IlF([S A ~'])11 D2(P, k) <_ 
IPI 

N(k) ] 
+ ~ li{x E I (P,k):  [B(z,2R(Bk)) Awl = B~ k)} _ f(B~k) ) ilF(CJk))ll. 

IPI 

Choose k as above and consider P = P, .  By (4.5) and the almost additivity of 

F (property (A2)), we infer that the first term tends to zero for n tending to infinity. 

Again by (4.5) and the definition of  the frequency, we infer that the second term 

tends to zero as well. Thus, 

D2(P,, k) < e/2 

for n large. Putting these estimates together, we have 

H]PnI-1F(P,) - F(k)]l _< Dl(n,k)  + D2(n,k) < e 

for large n, and the proof is finished for aperiodic DDSF. 

For arbitrary strictly ergodic DDSP, we replace the definition of B (k) in (4.1) 

by 

B (k) - [B(0,pk) A w(k)], 

where w (~) E f l  (k) is defined via colouring; see the paragraphs preceding Lemma 

3.13 in Section 3 and pk is given by Proposition 3.14. Then B (~) belongs to 

:PB(fl (~)) for every k E N and 

s k - s ( B  (k))=pk,  k E N .  

Thus, Proposition 3.14 applies. The proof then proceeds along the same lines as 

above, with fl replaced by fl (k) and Proposition 3.12 replaced by Proposition 3.14 

at the corresponding places. [] 
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R e m a r k  3. Using what could be called the k-cells, CJ k), 
j = 1 , . . . ,  N(k), from the preceding proof we have actually proved that 

N(k) 
lim ~ f(BJk))F(C} k)) = lim F(Pn) 

j = l  

k E N, 

Proof of Corollary 2.4. We use the notation of the corollary. Apparently, 

the reasoning yielding (i) ~ (ii) in the foregoing proof remains valid for arbitrary 

seminorms [I " II. Thus, if F is almost additive with respect to seminorms ][ �9 II,, 

E 77, then (IPnI-1F(Pn)) is a Cauchy sequence with respect to II " [[~ for every 

E 77. The corollary now follows from completeness. [] 

Proof of Corollary 2.6. This can be shown by mimicking the arguments in 

the above proof. Alternatively, one can define the function _~ : P > B by setting 

F(P) := F(Q, w), where (Q, w) is arbitrary with P = [w A Q]. This definition may 

seem very arbitrary. However, by (A0), it is not hard to see that ff~(P) is (up to a 

boundary term) independent of the actual choice of Q and w. By the same kind 

of reasoning, one infers that F is almost additive. Now existence of the limits 

IPn]-l/~(Pn) follows for arbitrary van Hove sequences (Pn). Invoking (A0) once 

more yields the corollary. [] 

5 U n i f o r m  c o n v e r g e n c e  o f  the  i n t e g r a t e d  dens i ty  o f  
s ta tes  

This section is devoted to a proof of Theorems 2 and 3. We need some 

preparation. 

L e m m a  5.1. Let B and C be selfadjoint operators in a finite-dimensional 

Hilbert space. Then In(B)(E) - n(B + C)(E)I < rank(C) for  every E E I~, 
where n(D) denotes the eigenvalue counting function o f  D, i.e., n(D)(E) = 

~{eigenvalues o f  D not exceeding E}. 

Proof. This is a consequence of the minmax principle; see Theorem 4.3.6 in 

[17] for details. [] 

Proposition 5.2. Let U be a subspace o f  the finite-dimensional Hilbert space 
X with inclusion j : U ---+ X and orthogonal projection p : X ---+ U. Then, 

In(A)(E) -n (pA j ) (E) l  _< 4. rank(1 - j  op) 

for  every selfadjoint operator A on X.  
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P r o o f .  

Set P• - 1 - P and detaote the range of P• by U • By 

A - P A P  = p x A p  + P A P  • + p x A p  • 

and the foregoing lemma, we have In(A)(E) - n (PAP)(E) I  _< 3 rank(P• 

obviously 

P A P  = pA j  @ Ov• 

with the zero operator Ou.L : U • ~ U • f ~ O, we also have 

In(PAP)(E)  - n (pAj ) (E)  I < dim(U• 

As dim U • = rank(p• we are done. 

L e m m a  5 . 3 .  

R ~. Then 

Let P : X ---+ X be the orthogonal projection onto U, i.e., P = j o p. 

As 

[] 

Let (f~, T) be an (r, R)-system, w E fl and Q a bounded subset o f  

1 
I~QNw < IB(O,r)IIQ% 

Proof .  As (fi, T) is an (r, R)-system, balls with radius r around different points 
in w are disjoint. The lemma follows. [] 

Our main tool is the following consequence of the previous two results. 

P ropos i t i on  5.4. Let (fl, T) be an (r, R)-system. Let Q, Qj c m s, j = 1 , . . . ,  n 

be given with Q = U j~=l Q j and the Q j pairwise disjoint up to their boundaries. Set 

~(~, s) - I dim e2 ( Q s N w) - dim g2(O~.=l ( Q j,s n w ) ) l f o r  w ~ f~ and s > 0 arbitrary. 

Then 
n 

t~(w, s) _< I dim g2 (Q n w) - dim g2 ( U  (QJ,s n w))l 
j = l  

1 n 

5 IB(O,r)l Y~'~ IO~ \ OJ,,+~l. 
j = l  

Proof .  Obviously, 
Yl 

dim g2( U (Qj,s n w)) _< dim e2(Qs n w) < dim e2(Q n w). 
j = l  

Now the first inequality is clear, and the second follows by 
n 

dim gz(Q n w) - d i m g 2 (  U Qj,s n w) < ~_, ~((Qj \ Q~,,) n w) 
j = l  j = l  

1 n 

< iB(O,r)l ~ IQ~ \ Qr 
j = l  

Here the last inequality follows by the foregoing lemma. [] 
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We are now able to prove Theorem 2. 

P r o o f  o f  T h e o r e m  2. We have to exhibit b : P(i2) > (0, c~), and D > 0 

such that (A1), (A2) and (A3) of Definition 2.3 are satisfied. Set 

and define b by 

2 
D -  

IB(O,r)l 

8 
b(P) - IB(O,r);IQ \ QR"+~I 

whenever P E P(f~) with P = [(Q, A)]. Clearly, b is well-defined. Moreover, (A4) 

follows by the very definition of b and the van Hove property. 

Now (A2) is satisfied, as 

1 Qr [[FA(p)[[ = Iln(A,,,,QR.,)[Ioo < ~(QRA no.,) < ~ 1  [ < D[P[ +b(P), 

for P = [Q ^ w]. (A3) can be proved by a similar argument. It remains to show 
1% (A1). Let P = ~ j = l  PJ. Then, there exists w E f~ and bounded measurable sets 

Q, Q~, j = 1 , . . . ,  n in I~ d with Q~ pairwise disjoint up to their boundaries and 
n Q = (J~=l Q~ such that 

P = [ Q A w ]  and Pj=[QjAw], j = l , . . . , n .  

As A is an operator of finite range, it follows from the definition of R A that 

A~Iu?=, %.~A = ( ~  AwIQ~,Ra ; 
j=l 

in particular, 

(5.1) 
n gl 

~_n(A~,Qj,RA) = n(A~, U QI, R't)" 
j = l  j = l  
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Thus, we can calculate 

n n 

IIFA(p) - Y~F(Pj)ll  = IIn(Ao~,QR~) - ~n (A~ ,Q j ,R~) I I~  
j : l  j = l  

= IIn(A~,QRA) - n ( A ~ ,  U Qy,RA)II~ 
j----1 

(Prop 5.2) < 4(dimg2(Qna) - d i m g~(5  Qj,na) 
j = l  

4 ~ IQ~ \ Q.i,RA+,-I (Prop5.4) < iB(0, r)l ~=~ 

n 

<_ ~ b ( P j ) .  
j = l  

This finishes the proof. [] 

Theorem 3 is an immediate consequence of Theorems 1 and 2, once we have 

proved the following lemma. 

L e m m a  5.5. Let (f~, T) be a strictly ergodic (r, R)-system. Let A be a finite 
range operator with range R A. Then 

IIn(A~,Q) - FA([co A Q])[l~o ~ 41B(O,r)I-~IQ ~ \ QRA+~I 

for all co E f~ and all bounded subsets Q in I~ a. 

Proof .  By definition of F A, w e  have 

Iln(A~, Q) - FA([co A Q])I I~  tln(A,o, Q) - n(A~, QRA)II~- 

Invoking Proposition 5.2, we see that the difference is bounded by 4~(Q \ QRa ) A co. 

The result now follows by Lemma 5.3. [] 

P r o o f  o f  T h e o r e m  3. Let (Qn) be a van Hove sequence. Then ([Q,~ A w]) 
is a van Hove sequence in 79([2) independent of co. Thus, tQnI-1FA([Q,~ A co]) 

converges uniformly in co E f~ by Theorems 1 and 2. The theorem now follows 
from the foregoing lemma. [] 
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