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ABSTRACT. A one parameter family of selfadjoint operators gives rise to a
corresponding direct integral. We show how to use the Putnam–Kato theorem
to obtain a new method for the proof of a spectral averaging result.
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1. INTRODUCTION

To us the basic issue of spectral averaging is to derive continuity properties
of an integral of spectral measures; thus we consider a selfadjoint operator A in
a separable Hilbert space H as well as a bounded operator B on H, B > 0 and
denote H(t) := A + tB. We write ρΦ

H(t) for the spectral measure of H(t) with
respect to the vector Φ ∈ H. Our main result is

THEOREM 1.1. Let H(·) be as above and let Φ ∈ Range(B). Then the measures

ν =
∫

ρΦ
H(t)h(t)dt

are absolutely continuous (with respect to Lebesgue measure) for any h ∈ L1(R).

Results of this type have quite a history and due to their importance for ran-
dom operators, the interest has been steady. We refer to [7], [9], [11] and the refer-
ences in there for early results, partly building on even older work [6] and to [3],
[4], [12] for the more recent state of matters. Note however that we concentrate on
one part of the intrigue, the continuity of the integrated spectral measures, while
the emphasis in the cited works is somewhat different. There the main point is
to deduce the spectral type of the single operators H(t) the integral is made of.
Clearly, in the setting of our main result nothing can be said about that.

The main improvement that had happened during the last 20 years of de-
velopment is the generality of the operator B that appears, a feature that is of
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prime importance for applications to random operators. One of the main ideas
that enter the usual proof, as presented, e.g. in [12], has also been fundamental
in the adaptation of the fractional moment method to continuum models, cf. [1].
It uses the fact that a maximally accretive operator can always be obtained as the
dilation of a selfadjoint operator. In contrast, in the early papers B was merely a
rank one projection which already turned out to be extremely useful for discrete
random models.

Our proof of the above theorem is quite different: we consider

H :=
∫
R

⊕
H(t)dt in

∫
R

⊕
Hdt

and apply the Kato–Putnam theorem to this operator to show that some of its
spectral measures are absolutely continuous. (In the next section we recall the
necessary notions from the theory of direct integrals of Hilbert spaces.) We should
like to point out that the idea to apply Mourre theory to obtain spectral averaging
results can be found in [5], leading to a somewhat different proof that is neverthe-
less quite related to what we have done here. A major point in the present paper
is the simplicity of the method.

2. SPECTRAL AVERAGING AND DIRECT INTEGRALS

What we need about direct integrals can be found in [10], p. 280 ff.
As we remarked above, we are dealing with a separable Hilbert space H

and consider the constant fibre direct integral

K = L2(R,H) =
∫
R

⊕
Hdt,

with the inner product ⟨ f , g⟩K =
∫
⟨ f (t), g(t)⟩H dt. The direct integral of a self-

adjoint operator function is described in:

REMARK 2.1. Let H(t) be selfadjoint in H for t ∈ R. Then D(H) :=
{

f ∈

L2(R,H) : f (t)∈D(H(t)) for a.e. t∈R,
∫
R
∥H(t) f (t)∥2dt<∞

}
, H f :=

∫
R

⊕H(t) f (t)dt

defines a selfadjoint operator. It follows that ϕ(H) is decomposable for any
bounded measurable ϕ : R → C and

ϕ(H) =
∫
R

⊕
ϕ(H(t))dt.

In particular,

⟨EH(I) f ⊗ g, f ⊗ g⟩ =
∫
R

⟨EH(t)(I) f , f ⟩|g(t)|2dt
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for the spectral projections and

ρ
f⊗g
H =

∫
R

ρ
f
H(t)|g(t)|

2dt

for the spectral measures.

See [10], p. 280 ff, in particular Theorem XIII.85. The latter formula makes
the connection to spectral averaging clear.

Note that the obvious isometric isomorphism gives

K = H⊗ L2(R).

We will use this additional structure and write, e.g.

A := A ⊗ 1

for the canonical extension of A (which is a selfadjoint operator in H) to K. In
much the same way we extend the position operator Q. Using some ideas from
[7] we introduce the following: T = tanh Q the maximal multiplication opera-
tor in L2(R) with tanh, as well as D := arctan(P), where P = −i(d/dt) is the
momentum operator in L2(R).

PROPOSITION 2.2 ([7], Lemma 2.9). On L2(R), consider the operators T and D
above. Then i[T, D] = C is positive definite.

We next infer the following result of Putnam and Kato [8], [10]:

PROPOSITION 2.3. Let H and D be selfadjoint and D be bounded. If C = i[T, D]
> 0, then H is absolutely continuous on Range(C).

COROLLARY 2.4. The operator Ĥ =
∫
R

⊕
(A + tanh tB)dt is absolutely continu-

ous on Range(B)⊗ L2(R).

Proof. By what we know from above,

i[Ĥ, D] = BC = B ⊗ C > 0.

Since C is positive definite it follows that Range(C) is dense in L2(R).

Proof of Theorem 1.1. Step 1. The preceding corollary and Remark 2.1 give
that for any Φ ∈ Range(B), g ∈ L2,∫

ρΦ
A+tanh tB|g(t)|

2dt ≪ dt,

where the latter indicates absolute continuity with respect to Lebesgue measure.
Step 2. By specializing and change of variables: For any Φ ∈ Range(B),

g ∈ L∞ with compact support:∫
ρΦ

A+tB|g(t)|2dt ≪ dt.
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Now by approximation, we get arbitrary positive h ∈ L1 and, by linearity, the
assertion of the theorem.

A standard extension formulated in a way that is suited for the application
we have in mind is the following corollary from the proof of Theorem 1.1.

COROLLARY 2.5. Let A and B be as above and assume that {φ(A)B f : f ∈ H} =
H. Then, for any h ∈ L1 and any ϕ ∈ H:∫

R

⟨EA+tB(·)ϕ, ϕ⟩h(t)dt ≪ dt.

Proof. We consider the operators Ĥ, A and B on K as above. By what we
proved above, the absolutely continuous subspace of Ĥ contains Range(B) ⊗
L2(R). Moreover it is cyclic for Ĥ and closed. Therefore, the arguments from
proof of Theorem 2.7, p. 61 of [7], give that the absolutely continuous subspace
of Ĥ is all of K. As in the above proof this implies the asserted absolute continu-
ity.

It is time to compare what we have shown so far with what is known by
other methods, see [3], [4], [5], [12].

REMARK 2.6. (i) Strictly speaking, the results of [3], [4], [12] and our corol-
lary above are not comparable, but the latter can be used to deduce what we have
shown here. More precisely:

(ii) In [3], [4], [12] instead of h(t)dt more general measures are allowed. The
continuity of ν :=

∫
R
⟨EA+tB(·)ϕ, ϕ⟩dµ(t) as well as that of µ is measured in terms

of the modulus of continuity

s(µ, ε) := sup{µ([a, b]) : a, b ∈ R, b − a = ε}

and the conclusion is that s(ν, ε) 6 Cs(µ, ε), provided ϕ ∈ Range(B1/2).
(iii) Clearly, the latter estimate directly does not give anything in the case of

our result above: for absolutely continuous µ = h(t)dt the modulus of continuity
does not need to decay at a certain rate as ε tends to zero. But, we can approximate
h by bounded hn in a suitable way. At the same time, we can approximate any
ϕ ∈ Range(B) by a sequence ϕn ∈ Range(B1/2) the resulting

νn :=
∫
R

⟨EA+tB(·)ϕn, ϕn⟩hn(t)dt

will converge to ν and all the νn are absolutely continuous with respect to dt, thus
giving the assertion of our Theorem 1.1.

(iv) In [5] the method of proof is pretty much similar to our strategy here.
There, a direct application of Mourre estimates is used to prove spectral aver-
aging and Wegner estimates. While their result concerns a more general setup it
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requires even differentiability of the density h; see Theorem 1.1, Corollaries 1.2
and 1.4 in the cited paper for results analogous to ours.

3. ABSOLUTE CONTINUITY OF THE IDS; A VERY SHORT PROOF

We consider L2(Rd) and the operators

(3.1) Hω = −∆+ ∑
n∈Zd

ωnu(· − n)

where u is a non-negative bounded measurable function that is positive on some
open set. Let ωn, n ∈ Zd be independent identically distributed random vari-
ables with a probability distribution µ which is absolutely continuous and has a
compactly supported, integrable density h. We denote by P :=

⊗
n∈Z

µ the product

measure and by E the corresponding expectation.
By Λ(0) we denote the unit cube. In view of the Pastur–Shubin trace for-

mula we can express the integrated density of states, IDS, in terms of

(3.2) N (I) = E[Tr(χΛ(0)EHω (I)χΛ(0))],

for any bounded Borel set I. See [13] for an extensive bibliography on the IDS and
the proof of the trace formula in a more general situation. The IDS is quite often
also expressed as the distribution function N(E) : N (−∞, E] of the measure N
defined above.

COROLLARY 3.1. In the situation above, N ≪ dt.

Proof. Note that in the situation given we can apply the cyclicity result of
Proposition A2.2 in [2], and know that for

A := −∆+ ∑
n∈Zd\{0}

ωnu(· − n) B := u(·),

the assumptions of Corollary 2.5 are met. We fix an orthonormal basis (ϕk)k∈N of
H = L2(Rd) and write

N (I) = E[Tr(χΛ(0)EHω (I)χΛ(0))]

= E
[

∑
k∈N

⟨χΛ(0)EHω (I)χΛ(0)ϕk : ϕk⟩
]

= ∑
k∈N

E[⟨EHω (I)χΛ(0)ϕk : χΛ(0)ϕk⟩].
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It suffices to show that every sum in the term is absolutely continuous with re-
spect to dt and this works as follows:

E[⟨EHω (I)χΛ(0)ϕk : χΛ(0)ϕk⟩]
= E[⟨E(−∆+∑n∈Zd\{0} ωnu(·−n)+ω0B)(I)χΛ(0)ϕk : χΛ(0)ϕk⟩]

= E
[ ∫
R

⟨E(−∆+∑n∈Zd\{0} ωnu(·−n)+tB)(I)χΛ(0)ϕk : χΛ(0)ϕk⟩dt
]
.

For fixed ω′ := (ωn)n∈Zd\{0} the inner integral is seen to give an absolutely con-
tinuous measure: set A as above and apply Corollary 2.5. The expectation pre-
serves the absolute continuity and that establishes the claim.

Of course, an additional periodic background potential V0 would not change
the proof; all the ingredients we cited are valid in this case as well.
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