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Abstract. We present an eigenfunction expansion theorem for generators of strongly
local, regular Dirichlet forms. Conditions are phrased in terms of the intrinsic metric. The
result covers many cases of Hamiltonians which appear in Mathematical Physics and
Geometry.

Introduction

The issue of expansion in generalized eigenfunctions is a classical one going back at
least to Fourier. A standard reference is [1]. Apart from its structur theoretic value its devel-
opment has been stimulated by applications to mathematical physics, as seen in [32], [29],
[28] and the references there. A relatively recent impact is due to the study of wave propa-
gation in random media [19], [24], [34], where eigenfunction expansions are an important
input in the proof of localization. The use of this tool is settled by classical results in the
Schrödinger operator case. But with the study of operators related with classical waves,
[17], [33], a need for more general results on eigenfunction expansion became apparent.
This is one of the sources from which we take our motivation. The other source is of quite
di¤erent nature. It concerns the study of regular Dirichlet forms and their associated oper-
ators in terms of geometric properties of the underlying space that carries a natural metric
which is induced by the Dirichlet form (once the latter is strongly local). The systematic
exploration of this metric, often called the intrinsic metric, has led to quite a number of beau-
tiful results which address questions of regularity of solutions, decay properties of heat
kernels as well as spectral properties of the associated operator, [2], [4], [9], [38], [39], [40].
This associated operator is typically a kind of Laplacian and so the results of this genre
have a wide range of applications and provide a unified treatment of quite a number of
important cases including Laplacians on Riemannian manifolds, uniformly elliptic opera-
tors with weights, Hörmander type operators, subelliptic operators on euclidean space and
Laplacians on graphs. Another advantage of the framework is that one can treat partial
di¤erential operators under minimal assumptions concerning the regularity of the coe‰-



cients. Moreover, in many instances, the proofs found in the abstract setting are even easier
than those known before.

In the present paper we contribute to this line of research, showing that generalized
eigenfunction expansions can be obtained in the framework of strongly local, regular
Dirichlet forms under quite general and natural assumptions.

The material is presented as follows: in Section 1 we outline the above mentioned
framework. For the convenience of the reader, strong locality, the energy measure and the
intrinsic metric are introduced along with the properties needed later. We also formulate a
first result on generalized eigenfunction expansions in order to give an impression of the
main results obtained here. Section 2 starts with an abstract Hilbert space theoretic result
on generalized eigenfunction expansions from [29]. This is the starting point of our inves-
tigation and we will exploit the intrinsic geometry to provide the necessary input to use the
result from [29]. Notably this includes exponential decay estimates for resolvents as well as
a factorization result. Our main theorem is Theorem 2.5. In Section 3 we present a list of
situations in which our result can be applied. In particular, the discussion of subelliptic
operators in Subsection 3.2 covers as a very special case the random divergence form oper-
ators from [17], [33]. Moreover, we discuss the treatment of perturbations, even as singular
as certain measure perturbations. This leads to a considerable extension of Theorem 2.5.

The second author wishes to express his sincere gratitude to the late Klaus Floret whose

untimely death we deeply mourn. The present article would not have been written without his

influence.

1. The framework

Many interesting operators in mathematical physics can be described in the frame-
work of Dirichlet forms that we now briefly describe. A list of examples is given in 3 below.
We follow here notation from [38] and [18], where details can be found. Consider a locally
compact separable Hausdor¤ space X endowed with a positive Radon measure m with
suppm ¼ X .

The basic object of our studies is a strongly local, regular Dirichlet form E with
domain D in L2ðXÞ and the selfadjoint operator H associated with E.

This means that DHL2ðX ;mÞ is a dense subspace, E : D�D ! ½0;yÞ is bilinear
and D is closed with respect to the energy norm k � kE, given by

kuk2E ¼ Eðu; uÞ þ kuk2L2ðX ;mÞ;

in which case one speaks of a closed form in L2ðX ;mÞ. The unique operator H associated
with E is then characterized by

DðHÞHD and Eð f ; vÞ ¼ ðHf j vÞ ð f A DðHÞ; v A DÞ:

Such a closed form is said to be a Dirichlet form if D is stable under certain operations;
more precisely if for any u A D also
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uþ ¼ u40 ¼ maxfu; 0g

belongs to D and Eðuþ; uþÞeEðu; uÞ and for any v A D, vf 0 the element
v51 ¼ minfv; 1g A D and Eðv51; v51ÞeEðv; vÞ.

A Dirichlet form is called regular if DXCcðXÞ is dense both in ðD; k � kEÞ and�
CcðX Þ; k � ky

�
, where CcðXÞ denotes the space of continuous functions with compact

support.

E is strongly local if Eðu; vÞ ¼ 0 whenever u is constant a.s. on the support of v.

The typical example one should keep in mind is the Laplacian H ¼ �D on L2ðWÞ,
WHRd open, in which case D ¼ W 1;2

0 ðWÞ and Eðu; vÞ ¼
Ð

W

ð‘u j‘vÞ dx. Now we turn to an

important notion generalizing the measure ð‘u j‘vÞ dx appearing above.

In fact, every strongly local, regular Dirichlet form E can be represented in the form

Eðu; vÞ ¼
Ð

X

dGðu; vÞ

where G is a nonnegative symmetric mapping from D�D to the set of signed Radon mea-
sures on X . It is determined by

Ð

X

f dGðu; uÞ ¼ Eðu; fuÞ � 1

2
Eðu2; fÞð1:1Þ

and called energy measure; see also [3]. The energy measure satisfies the Leibniz rule,

dGðu � v;wÞ ¼ u dGðv;wÞ þ v dGðu;wÞ;

as well as the chain rule

dG
�
hðuÞ;w

�
¼ h 0ðuÞ dGðu;wÞ:

One can even insert functions from Dloc into dG, where Dloc ¼: fu A L2
loc such that fu A D

for all f A DXCcðXÞg to dG, as is readily seen from the defining equation (1.1) above.
Using the energy measure one can define the intrinsic metric r by

rðx; yÞ ¼ sup
�
juðxÞ � uðyÞj : u A DlocXCðX Þ and dGðu; uÞe dm

�

where the latter conditions signifies that Gðu; uÞ is absolutely continuous with respect to m

and the Radon-Nikodym derivative is bounded by 1 on X . We assume throughout that r
induces the original topology on X and that all balls with respect to r are relatively com-
pact in the original topology. This assumption is not very restrictive and well established
for the applications we have in mind; see [38].

We single out two more requirements that are satisfied in typical finite dimensional
situations. The first concerns Lp-mapping properties of the heat semigroup e�tH and reads

e�tH : L2 ! Ly for some t > 0:ðA1Þ
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The second condition signifies that the volume growth of balls BRðxÞ (with respect to
the intrinsic metric) is slower than exponential.

e�aRm
�
BRðx0Þ

�
! 0 for every a > 0:ðA2Þ

Let us finally call f A Dlocnf0g a generalized eigenfunction for H corresponding to
l A R, whenever

Eðf;wÞ ¼ lðfjvÞ for all v A DXCcðXÞ:

We now state the main result of the present article in a form considerably weaker
than what we actually obtain in the next section:

Theorem 1.1. Let E, H be as above and assume (A1), (A2). Then, for spectrally

almost every l A sðHÞ there exists a generalized eigenfunction f of H corresponding to l
which is L2-subexponentially bounded.

Here, f is said to be L2-subexponentially bounded if, for any a > 0,

e�arðx0;xÞfðxÞ A L2ðXÞ

for some x0 A X . As we remarked above, we will be able to prove a stronger result.
Two aspects are worthwhile mentioning here: we get a Fourier type expansion of arbitrary
L2-functions in terms of generalized eigenfunctions. As this involves the issue of ordered
spectral representations we did not include it in the preceding theorem. The second
improvement concerns the bound on generalized eigenfunctions. It can be sharpened
according to the behaviour of the measure of the ball BRðxÞ for large R. In typical appli-
cations we have in mind, there is a bound of the form

m
�
BRðxÞ

�
e c � Rd ;

in which case we get generalized eigenfunctions which obey a bound of the form

fðxÞ
�
1þ rðx0; xÞ

��dþ1
2
�e

A L2

for every e > 0.

Let us now comment on the strategy of proof we choose. We use an abstract result
[29] that yields a Fourier type expansion provided certain auxiliary operators satisfy
Hilbert-Schmidt properties.

In our context, the respective Hilbert-Schmidt properties will follow by a factoriza-
tion scheme using (A1), (A2). In the definition of the auxiliary operator the intrinsic metric
will enter in a crucial way. It is used to define weight functions w : X ! ½1;yÞ,

wðyÞ ¼ o
�
rðx0; xÞ

�
;

where o : ½0;yÞ ! ½1;yÞ is suitable chosen. In order to see that the Fourier type expan-
sion consists of generalized eigenfunctions in the above sense we have to verify that H

admits a core of functions that decrease rapidly enough in terms of the weight function.
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This will involve a Combes-Thomas estimate or Davies’ trick which amounts to
showing that the resolvent of H decays exponentially in the intrinsic metric.

2. The expansion theorem

For the reader’s convenience, we first recall the abstract expansion theorem by
Poerschke, Stolz and Weidmann [29] that serves as a starting point for our studies.

Given is a Hilbert space
�
H; ð� j �Þ

�
, a self-adjoint operator H in H and an auxiliary

closed operator T f 1 in H. With the help of the latter one defines the space

Hþ :¼ HþðTÞ :¼ DðTÞ

that is a Hilbert space, endowed with the scalar product ðx j yÞþ :¼ ðTx jTyÞ. If we dualize
Hþ over the scalar product ð� j �Þ of H we get H� :¼ H�ðTÞ, the completion of H with
respect to the scalar product ðx j yÞ� :¼ ðT�1x jT�1yÞ. Note that

HþHHHH�:

A further important ingredient is an ordered spectral representation of H. This is a special
form of representing a selfadjoint operator as a multiplication operator. It is particularly
useful whenever one is interested in spectral multiplicities. We do not want to enter this
latter subject here and refer the interested reader to [29] and the literature quoted there.
Before stating the properties of an ordered spectral representation let us recall that a mea-
sure m on R is called a spectral measure for H if mðAÞ ¼ 0 if and only if EHðAÞ ¼ 0, where
EH denotes the spectral resolution of H. Given such a m, N A NW fyg and a sequence of
measurable subsetsMj HR such that Mj IMjþ1, a unitary mapping

U ¼ ðUjÞ : H !
LN

j¼1

L2ðMj; dmÞ

is said to be an ordered spectral representation of H if

UjðHÞ ¼ MjU ;

for every measurable function j on R.

This means that U ‘‘maps’’ H to the operator of multiplication by the identity.
Clearly, M1 ¼ sðHÞ. Every selfadjoint operator admits an ordered spectral representation,
see [29] and the references there.

Theorem 2.1. Let H, T, Hþ, H� be as above. Let m be a spectral measure for H and

U an ordered spectral representation. Assume that there is g A CbðR;CÞ with jgj > 0 on

sðHÞ such that gðHÞT�1 is a Hilbert-Schmidt operator. Then there are measurable functions

jj : Mj ! H� for j ¼ 1; . . . ;N such that:

(1) Uj f ðlÞ ¼
�
f j jjðlÞ

�
for f A Hþ and m-a.e. l A Mj.
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(2) For every g ¼ ðgjÞ A
L

j

L2ðMj; dmÞ we have

Ug ¼ lim
n!N
E!y

Pn

j¼1

Ð

MjX½�E;E �
gjðlÞjjðlÞ dmðlÞð2:1Þ

and, therefore, for every f A H

f ¼ lim
n!N
E!y

Pn

j¼1

Ð

MjX½�E;E �
ðUj f ÞðlÞ dmðlÞ:ð2:2Þ

(3) If f A fg A DðHÞXHþ : Hg A Hþg we get that

�
Hf j jjðlÞ

�
¼ l

�
f j jjðlÞ

�
for m-a:e: l A Mj:ð2:3Þ

Let us add a few comments: note first that the integrals

Ð

MjX½�E;E �
gjðlÞjjðlÞ dl

appearing in equations (2.1) and (2.2) represent elements of H, although jjðlÞ A H� only.
This is reminiscent of the Fourier decomposition. In view of that analogy we speak of a
Fourier type expansion if ðjjÞ satisfy (1) and (2) from the above theorem. It is clear that the
term generalized eigenfunction expansion is justified whenever there are su‰ciently many
functions that obey (2.3), i.e., when

fg A DðHÞXHþ : Hg A Hþg

is an operator core for H.

As we already indicated in the preceding section, we shall use the above theorem for
H ¼ L2ðX ;mÞ and H the operator associated with a strongly local regular Dirichlet form.

We will choose T ¼ Mw, multiplication with a weight function w : X ! ½1;yÞ that
comes with the intrinsic metric r and depends on the volume growth of balls as well. More-
over, g from the theorem will just be e�s.

The Hilbert-Schmidt property for gðHÞT�1 will follow easily from a factorization
principle that has its roots in Grothendieck’s work, see [13], [21]. It has been introduced for
questions of the type considered here in [35], see also [14] for a simple proof in a special
case. The second author learned a lot about these techniques from Klaus Floret, to whose
memory the present paper is dedicated.

Factorization principle. Given two bounded operators A A BðL2;LyÞ and
B A BðLy;L2Þ, the product BA is a Hilbert-Schmidt operator.

In our case A ¼ e�tH , B ¼ T�1 and, additionally, A maps nonnegative functions
to nonnegative functions. Therefore, from [14] it follows that BA and consequently
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AB ¼ gðHÞT�1 are Hilbert-Schmidt, once we have chosen w in such a way that w�1 A L2.
Let us be precise on that first step:

Proposition 2.2. (1) Assume (A1). Then there exists a Fourier type expansion ðjjÞ of
H. If w : X ! ½1;yÞ satisfies w�1 A L2, then ðjjÞj can be chosen such that

w�1jjðlÞ A L2 for m-a:e: l:

(2) If, furthermore, (A2) is valid, we find an L2-subexponentially bounded weight func-

tion wf 1 such that w�1 A L2.

Proof. (1) By (A1) we have e�tH : L2 ! Ly for some t > 0. Fix such a t and let
gðsÞ :¼ e�ts51 which satisfies the assumptions of Theorem 2.1. Moreover, gðHÞ ¼ e�tH

since gðsÞ ¼ e�ts on sðHÞ. Let o : ½0;yÞ ! ½1;yÞ be a continuous, monotone increasing
function such that

P

n

oðnÞ�2
m
�
Bnþ1ðx0Þ

�
<y;

where x0 A X is fixed. Then, obviously,

wðxÞ :¼ o
�
rðx0; xÞ

�
þ 1

is a weight function on X with w�1 A L2ðX Þ. Consequently, T ¼ Mw gives rise to

gðHÞT�1 ¼
�
T�1gðHÞ

�� ¼ ðMw�1e�tHÞ�:

This is a Hilbert-Schmidt operator by [14] as it factors through LyðXÞ.

Theorem 2.1 yields a Fourier type expansion ðjjÞ with jjðlÞ ¼ fg : w�1g A L2g for
m-a.e. l. This finishes the proof of part (1).

Part (2) is easy, since the subexponential growth of m
�
BRðx0Þ

�
allows to choose w

accordingly. r

It is apparent that the volume growth of balls, (A2) does not enter the question of
existence of a Fourier type expansion; it is needed only to control the growth of the jjðlÞ.

As we shall see now, it can also be used to deriving that the condition of Theorem 2.1
(3) holds for an operator core of H. This ensures that the jjðlÞ obtained above are gener-
alized eigenfunctions.

As a step in this direction let us now state that the resolvent of H exhibits exponential
decay o¤ the diagonal. Estimates of this genre are quite useful in Mathematical Physics and
often named Combes-Thomas estimates [5] in the respective literature. In di¤erent com-
munities they are also known as Davies’ trick in view of the method introduced in [9].

Proposition 2.3. Let H be as above. Then there exist C, a > 0 such that for all

A;BHX , lf 1 we have
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kwAðH þ lÞ�1wBkeC � e�a�rðA;BÞ

where rðA;BÞ ¼ inffrðx; yÞ : x A A; y A Bg and k � k denotes the operator norm.

Proof. One could use Davies’ trick taking into account the properties of the energy
measure. Such a simple approach yields, essentially, a ¼ l and C ¼ l�1. Presumably this
can be sharpened to a ¼

ffiffiffi
l

p
but we do not enter this issue here. However, we can also

simply refer to [4], Corollary 3. r

We get the following easy consequence:

Proposition 2.4. Assume (A2); let w be an L2-subexponentially bounded weight func-

tion. Then fg A DðHÞ : wf A L2;wHf A L2g is an operator core for H.

Proof. Consider D0 :¼ ðH þ 1Þ�1CcðXÞ. Since CcðXÞ is dense in L2, D0 is an oper-
ator core for H. By the Combes-Thomas estimate, Proposition 2.3, each f A D0 is expo-
nentially decreasing. Hence wf A L2 by the growth condition on w and

wHf ¼ wðH þ 1Þ f � wf ¼ wðH þ 1ÞðH þ 1Þ�1j� wf ¼ wj� wf A L2;

since f ¼ ðH þ 1Þ�1j with suitable j A CcðXÞ. r

We can now state our main result.

Theorem 2.5. Assume (A1), (A2). Let m be a spectral measure for H. Let

w : X ! ½1;yÞ be a weight function such that w�1 A L2ðXÞ and w is L2-subexponentially
bounded. Then there exists a Fourier type expansion ðjjÞ for H such that for m-a.e. l A sðHÞ
the function jjðlÞ is a generalized eigenfunction of H for l with w�1jjðlÞ A L2.

Proof. By Proposition 2.2 we get a Fourier type expansion ðjjÞ such that
w�1jjðlÞ A L2 for m-a.e. l A sðHÞ. By Theorem 2.1(3) we know that

�
jjðlÞ jHf

�
¼ l

�
jjðlÞ j f

�
m-a:e:ð2:4Þ

for f A fg A DðHÞ : w;wHg A L2g ¼: Dw. This latter space is a core for H according to
Proposition 2.4 so (2.4) extends to

E
�
jjðlÞ; v

�
¼ l

�
jjðlÞ j v

�

for all v A DXCcðX Þ: In fact, let us abbreviate f :¼ jjðlÞ. We have to check that f A Dloc,
i.e., that wf A D for any cuto¤ w A DXCcðXÞ: First note that ðH þ EÞ�1wH

1
2 extends to a

bounded operator on L2ðXÞ. Pick an arbitrary g A DðHÞ and use the fact that Dw is a core

to get a sequence ð fnÞ A Dw that converges to ðH þ EÞ�1wHg.

It follows that

�
f j ðH þ EÞ fn

�
¼ ðlþ EÞðfj fnÞ

and for n ! y we get
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ðf j wHgÞ ¼ ðlþ EÞ
�
f j ðH þ EÞ�1wHg

�
:

Therefore,

jðwf jHgÞj ¼ jðf j wHgÞje cwkH
1
2gk:

In particular, wf A D.

Now every u A DXCcðX Þ can be approximated by a sequence ðgnÞ from Dw in
E-norm. This gives

Eðf; uÞ ¼ lim
n

Eðf; gnÞ ¼ lim
n

lðf j gnÞ ¼ lðf j uÞ: r

Note that the choice of w has two aspects: in order to get w�1 A L2 we might want to
take w very large near infinity. However, the resulting condition on the bound of jjðlÞ viz.
w�1jjðlÞ A L2 will be weak then. Thus we should choose w as small as possible near infinity
subject to the condition w�1 A L2, of course.

If one has a better control on the volume growth of intrinsic balls, e.g., an estimate
like

m
�
BRðx0Þ

�
eC � Rd

one gets better estimates for jjðlÞ, e.g.,
�
1þ rðx0; xÞ

��dþ1
2
�e
jjðlÞ A L2;

which is the bound in many d-dimensional situations.

3. Applications

In this section we record a list of relevant examples that are covered by our result
above. In fact, this work developed from an attempt to give a short and elegant proof of the
existence of an eigenfunction expansion for random divergence form operators, see [17],
[23], [24], [33]. This special case will be included in Subsection 3.2.

In the last subsection we will also describe how to pass from H to H þ V where V is
a potential or, more generally, a measure perturbation.

3.1. Laplace-Beltrami operators on Riemannian manifolds. We refer to [9] for the
necessary background and the results needed.

If M is an n-dimensional complete Riemannian manifold, the Laplace-Beltrami
operator H ¼ �D is associated with a strongly local, regular Dirichlet form.

The heat semigroup e�tH satisfies Gaussian estimates in this case and is consequently
ultracontractive, i.e.,
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e�tH : L2 ! Ly

for every t > 0 so that (A1) is satisfied.

Concerning condition (A2) note that the intrinsic metric coincides with the Riemann-
ian metric and that the volume growth of balls is governed by

m
�
BRðxÞ

�
eC � Rn;

provided the Ricci curvature is nonnegative. Therefore, by Theorem 2.5 and the remark
following it we get a generalized eigenfunction expansion with at most polynomially
growing eigenfunctions. More generally, if

lim
R!y

inf RiccijBRðxÞ f 0

then (A2) is satisfied.

3.2. Subelliptic operators and operators of Hörmander type. For the necessary
background on subelliptic operators see [8], [15], [16], [22], [26], [30]. Here we restrict our
attention to the case Rd . Consider a locally integrable function a : Rd ! Cd�d such that
aðxÞf 0. We moreover assume that a is bounded. If

Ð �
aðxÞ‘uðxÞ j‘uðxÞ

�
dxþ kuk2 fC � kuk2s;2

for some s > 0, c > 0 and all u A Cy
c , k � ks;2 denoting the norm in the Sobolev space of

order s over L2, we call H ¼ ‘ � a � ‘ subelliptic; here H is the operator associated with the
form

Eðu; vÞ ¼
Ð �
aðxÞ‘uðxÞ j‘vðxÞ

�
dx:

First note that for strictly positive matrix functions, i.e., when

�
aðxÞx j x

�
f hkxk2

for some fixed positive h, the subellipticity condition is satisfied with s ¼ 1.

Using Nash’s inequality, see [9], we get that every subelliptic operator H ¼ �‘ � a � ‘
satisfies (A1). Moreover, the intrinsic metric defined in this way has been studied exten-
sively; cf. [15], [16], [22], [26]. (A2) is trivially satisfied since by assumption a is bounded
and thus intrinsic balls of radius R are contained in Euclidean balls of radius C � R.

Of course, all the ingredients needed in the strictly elliptic case are very easy so we get
the results needed for random operators, almost for free. Compare this with analogous
results in the recent [23], [24] for somewhat more complicated operators. The generalization
to operators on Lie groups can also be considered in the framework of the present paper.
The relevant notions for such a generalization as well as a thorough analysis of subelliptic
operators in the Lie group setting can be found in [30].

3.3. Laplacians on graphs. We follow here the notation from [25]. Let X be some
countable set of vertices and EHX � X the set of edges of a discrete graph that is assumed
to be symmetric. Suppose we are given a weight function b : E ! ð0;yÞ such that
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sup b <y and that we have a uniform bound M on the number of edges emerging from a
vertex, i.e.,

M ¼ sup
x AX

Kfðx; yÞ : y A X and ðx; yÞ A Eg < y:

We can take as H the Laplacian on l2ðXÞ defined by

Hf ðxÞ ¼
P

y AX ; ðx;yÞ AE
b
�
ðx; yÞ

��
f ðyÞ � f ðxÞ

�
:

Assuming that bðx; yÞ ¼ bðy; xÞ for all ðx; yÞ A E this operator is seen to come with a
regular Dirichlet form. Moreover, since l2 H lyðXÞ assumption (A1) is satisfied. Although
the form of H is not strongly local, there is an appropriate intrinsic metric, see [11], [27],
[25]. If (A2) is satisfied, we consequently get the analogue of Theorem 2.5.

For more recent and more precise estimates, see [6], [7], [20] and the references
cited there.

3.4. Singular perturbations. Let us now turn back to the abstract case of a strongly
local, regular Dirichlet form E on X . We want to discuss the question whether H can be
replaced by H þ V where V is a perturbation with some mild regularity assumption. The
answer will be yes and the necessary analysis is available from [37]. We refer to the litera-
ture quoted there and start to introduce the necessary notions.

We treat here ‘‘potentials’’ V that may well be measures and include Dirichlet bound-
ary conditions.

Consider the positive cone

fn j n a positive measure on X such that capaðBÞ ¼ 0 implies nðBÞ ¼ 0g :¼ M0

where cap is the capacity; see [18].

For every nþ A M0 (in contrast to [37] we denote measures by n rather than m in order
to distinguish them from the spectral measure m from Section 2) we get an operator H þ nþ
by form methods. This operator is defined on L2ðYÞ where Y HX might be smaller than X

but the resolvent and the semigroup of H act on L2ðXÞ (they are 0 on L2ðX nYÞ). More-
over we can add a negative n� from the generalized Kato class ŜSK provided the Kato
constant cKðn�Þ < 1; see [37] for details. In that case H þ nþ � n� is bounded below and,
due to the results from [37] (A1) is satisfied for nþ � n� whenever it is satisfied for H. To
construct an eigenfunction expansion we work with the intrinsic metric of unperturbed
operator H and get:

Corollary 3.1. Let H, nþ, n� be as above and assume that (A1), (A2) are satisfied.
Then the assertion of Theorem 2.5 remains valid for H replaced by H þ nþ � n�.

Proof. Due to [37], Theorem 5.1, property (A1) is valid for H þ n, n ¼ nþ � n�
under the assumptions made in the corollary. Therefore, we get a Fourier type expansion
ðjjÞ for H þ n by Proposition 2.2.
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It remains to produce a weight function wf 1 such that w�1 A L2. To this end we can
use the one defined in the proof of Proposition 2.2, where r is the intrinsic metric of the
unperturbed operator H.

The form of H þ n is small with respect to the form of H, see e.g., [37], Theorem 3.1,
so that Propositions 2.3 and 2.4 extend to the perturbed case. Proceeding like in the proof
of Theorem 2.5 we get the assertion. r

Remarks 3.2. (1) For singular perturbations it may happen that there are no non-
trivial continuous functions in the form domain of H þ n, see [36]. One should therefore
point out that the identity

E
�
jjðlÞ; v

�
¼ l

�
jjðlÞ j v

�

extends to all bounded v in the form domain that have compact support.

(2) Starting from a strongly regular Dirichlet form with operator H and a measure
nþ A M0 it is clear that H þ nþ corresponds to a Dirichlet form as well. Moreover, the
semigroup has even better contraction properties than the unperturbed, as it is dominated
pointwise by the latter. However, one looses the regularity of the form as already men-
tioned above so that the intrinsic metric for the perturbed form cannot be defined as
above. Nevertheless, one might be able to find a well-behaved weight function for the per-
turbed rather than for the unperturbed operator. The referee raised the interesting question
whether this is the case for H the negative Laplace-Beltrami operator on hyperbolic space
perturbed with a quadratic potential. For a decent treatment one should extend the present
framework, a task we will not pursue here.

(3) In connection with the last remark note that the operator H þ n, n ¼ nþ � n�
considered in the corollary does not correspond to a Dirichlet form, due to the negative per-
turbation. It is therefore reasonable to use the intrinsic metric of the unperturbed operator.

We should stress that this corollary now applies to all the classes of operators dis-
cussed in Subsections 3.1 to 3.3 above. This means that we get a fairly complete picture that
includes most of the operators of Schrödinger type met in Mathematical Physics or Geome-
try all treated within the same framework.
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