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Abstract. We present a short, new, self-contained proof of localization
properties of multi-dimensional continuum random Schrödinger operators in the
fluctuation boundary regime. Our method is based on the recent extension of the
fractional moment method to continuum models in [2] but does not require the
random potential to satisfy a covering condition. Applications to random surface
potentials and potentials with random displacements are included.

1 Introduction

1.1 Motivation. We are concerned here with proving localization pro-
perties of multi-dimensional continuum random Schrödinger operators in the
fluctuation boundary regime. Such results were first found via the method of
multiscale analysis, which had been developed in the 80s to handle lattice models
and was later extended to the continuum (for a rather complete history and list
of references on multiscale analysis, see [31] and, for some of the more recent
developments, [13]).
Later, the fractional moment method was developed [3] as an alternative ap-

proach to the same problem, also initially for lattice models. It leads to a stronger
form of dynamical localization than multiscale analysis (see [1, 4]) and has pro-
vided much shorter and more transparent proofs in the lattice case, for example
[14]. It was recently shown in [2] that all themain features of the fractionalmoment
approach also apply to continuum random Schrödinger operators. This extension
required substantial new input from operator theory and harmonic analysis. The
paper [2] provides a framework of necessary and sufficient criteria for localization
in terms of fractional moment bounds, which can be verified for a rather broad
range of regimes.
One of our goals here is to complement the general framework from [2] by

focusing exclusively on presenting a short and self-contained proof of localization
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properties via fractionalmoments for one specific regime,where the technical effort
remains minimal. For this, we pick a fairly general setting we label the fluctuation
boundary regime. This is described by a random Schrödinger operator of Ander-
son-type in ����� �, where our approach allows for quite arbitrary background
potentials and geometries of the random impurities, provided the ground state
energy is induced by rare events (fluctuations) and therefore sensitive to changes
in the random parameters. The goal is to prove localization in the vicinity of the
bottom of the spectrum. Of course, various versions of the fluctuation boundary
regime have been studied in many works, and we borrowed the term from [28].
Anothermotivation for ourwork is that wewant to extend the fractionalmoment

method to situations in which the random potential does not satisfy a covering
condition, i.e., where the individual impurity potentials have small supports which
do not cover all of �� . This condition, which was required for the technical
approach to the continuum found in [2], is not natural in the fluctuation boundary
regime and should not be needed there, as has already been verified via multiscale
analysis. Particularly interesting examples are random surface potentials which act
in a small portion of space only. Nevertheless, they lead to a fluctuation boundary
by creating new “surface spectrum” below the “bulk spectrum”.
In our main result, Theorem 1 below, the fluctuation boundary regime is de-

scribed in the form of an abstract condition. For random surface potentials, which
are discussed as an application, this condition follows in an appropriate setting
from a result proven in [25] in order to derive Lifshitz tails. Another application
concerns models with additional random displacements as were originally studied
in [10].
Let us confess that we require absolutely continuous distribution of random

couplings. While it might be possible to relax this toHölder continuous distribution
(as has been done in the lattice case, e.g., [4]), the fractional moment method is
so far less flexible in that respect than the multiscale technique. In particular, see
the variant of multiscale analysis adapted to Bernoulli–Anderson models recently
developed in [6] and applications of similar ideas to Poisson models in [11, 12].

1.2 Results. Let us nowdescribe our results inmore detail after introducing
some notation. On �� we often consider the supremum norm ��� �� ����������������

and write
����� ��

�
� � �� � ��� �� �

�

	

�

for the �-dimensional cube with sidelength � centered at �. For an open set
� � �

� , we denote the restriction of the Schrödinger operator � to ����� with
Dirichlet boundary conditions by ��. In our results, we assume � � 
 and
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rely upon the following assumptions, which guarantee self-adjointness and lower
semi-boundedness of all the Schrödinger operators appearing in this paper.

(A1) The background potential �� � ��
loc,unif��

� � is real-valued,�� �� ��� ��.

(A2) The set � � �
� , where the random impurities are located, is uniformly

discrete, i.e., ��	���� �� � � �� � � �� �� �� � 
.

(A3) The randomcouplings ��,� � �, are independent randomvariables supported
in �
	 ����� for some ���� � 
 and with absolutely continuous distribution of
bounded density 
� with a uniform bound 
��� 	
�	� �� �� �
.
The single site potentials 
�, � � �, satisfy

������ ��� � 
� � ������ ���

for all � with �� 	 �� 	 �� 	 �� � 
 independent of �.

����� �
�

���

�����
����

and
� �� ���� �� �� � �� in ����� ��

Themost important condition expresses the fact that the ground state energy comes
from those realizations of the potential that vanish on large sets.

(A4) Let �� �� ��	 ����� � ��	 ������� and let

�� �� �� � ����

�

���


�	

the subscript � standing for full coupling.
Assume that �� is a fluctuation boundary in the sense that

(i) �� �� ��	 ���� � � ��, and

(ii) there exist � � �
	 �� and �� such that for �� �� �� � �, all � 
 �� and
� � ��,

�
�
������������ � ���	 �� � ���� �� �

�
� ���� �

By �� we denote the characteristic function of the unit cube centered at �. In the
following, it is understood that ����	��� ����	�
 � 
 if �	����� or �	�����

have measure zero.
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Our main result is

Theorem 1. Let � � � and assume (A1)–(A4). Then there exist Æ � �,
� � � � �, � � � and � � � such that for � �� ���	 �� � Æ�, all open sets 
 � �

�

and �	 � � �� ,

(1) 	
�
���� ���

� ��
���
� �� � ��
��
	�



 � � ������	��

Exponential decay of fractional moments of the resolvent as described by (1)
implies spectral and dynamical localization in the following sense.

Theorem 2. Let � � �, assume (A1)–(A4) and let � be given as in Theorem 1.
Then the following hold.

(a) For all open sets 
 � �
� , the spectrum of �� in � is almost surely pure point

with exponentially decaying eigenfunctions.

(b) There exist � � � and � �� such that for all �	 � � �
� and open 
 � �

� ,

(2) �
�
	
��
����

�
�� ��
�

	�

�
� �������	�	

where the supremum is taken over all Borel measurable functions � which satisfy
��� � � pointwise and �� ���
 is the spectral projection for �� onto � .

Dynamical localization should be considered as the special case ���
 � � �
� in
(b), with the supremum taken over � � �.

The proof of Theorem 1 is given in Section 2. This is done via a self-contained
presentation of a new version of the continuum fractional moment method. While
we use many of the same ideas as [2], because of the lack of a covering condition,
we can no longer rely on the concept of “averaging over local environments,”
heavily exploited in [2]. It is interesting to note that, in some sense, we use
instead a global averaging procedure. Technically, this actually leads to some
simplifications compared to the method in [2], as repeated commutator arguments
can be replaced by simpler iterated resolvent identities. We also mention that
exponential decay in (1) follows from smallness of the fractional moments at a
suitable initial length scale (the localization length), via an abstract contraction
property.
As technical tools we need Combes–Thomas bounds (in operator norm as well

as in Hilbert–Schmidt norm) and a weak-��-type bound for the boundary values of
resolvents of maximally dissipative operators, which is based on results from [27]
and was also central to the argument in [2]. We collect these tools in an Appendix.



LOCALIZATION NEAR FLUCTUATION BOUNDARIES 87

That Theorem2 follows fromTheorem1was essentially shown in [2], Section 2.
In Section 3 below, we briefly discuss the changeswhich arise due to our somewhat
different set-up. In particular, the argument in [2] for proving (2) uses the covering
condition

(3) � � �� �
�

�� � �� ��

on one occasion; however, this is easily circumvented.
In Sections 4 and 5, we apply our main result to concrete models by verifying

assumption (A4) for these models. In Section 4, we consider Anderson-type
random potentials supported in the vicinity of a lower-dimensional surface. The
“usual” fully stationary Anderson model is considered in Section 5. The fact
that we do not have to assume a covering condition leads to high flexibility in
the geometry of the random scatterers. We could use this to go for far-reaching
generalizations of Andersonmodels. Instead, we restrict ourselves to the treatment
of additional random displacements, as was done in [10].

1.3 Remarks. We could have extended Theorem 1 in at least two different
ways but have refrained from doing so to keep the proofs as transparent as possible.

(i) The restriction to � � � is not necessary. We use it because in this case the
abstract fractional moment bound in Corollary 17 is more directly applicable
to our proof of Theorem1 than in higher dimensions. (Technically, this can be
traced back to the fact that ���������� is a Hilbert–Schmidt operator only
for � � �.) In higher dimensions, more iterations of resolvent identities would
be needed to yield the Hilbert–Schmidt multipliers required by Corollary 17,
leading to more involved summations in the arguments of Section 2.

(ii) Instead of bounded ��, we could work with relatively �-bounded ��, i.e.,
allow for suitable ��-type singularities in the single site potentials. In the
course of our proofs, they could be “absorbed” into resolvents using standard
arguments from relative perturbation theory.

In principle, our arguments could also be used to prove localization at fluctuation
type band edges more general than the bottom of the spectrum without using a
covering condition as in [2]. But this would require being much more specific
with settings and assumptions and, in particular, with the geometry of the impurity
set. Inconveniencewould also arise from having to work with boundary conditions
other than Dirichlet.
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We mention that the applications in Section 4 improve the results on contin-
uum random surface potentials of [7, 25], obtained through the use of multiscale
analysis.

(i) The exponentially decaying correlations of the time evolution, shown as a
special case of Theorem 2(b), are stronger than the dynamical bounds which
follow from multiscale analysis.

(ii) By using of the recent result of [25] on Lifshitz tails for surface potentials,
we do not need a condition on the smallness of the distribution of the �� near
the minimum of their support as in [7], an advance that had been achieved in
[25].

(iii) We can allow for more flexibility concerning the geometry of the scatterers.

Of course, the use of fractional moments precludes including single site mea-
sures as singular as those considered in [7, 25]; instead, we have to assume absolute
continuity of the ��.

2 Localization near fluctuation boundaries

This section is entirely devoted to the proof of Theorem 1. For a convenient
normalization, write

����� �� ���� � �����

for � � ������� � ���������� � � �� ��� �����
� �

and denote the product measure
�

��� 	�������� on � by �. We write

� ��� �� ����� ��
�

���

����������	

Note that�� � � and that


 � 
��� � 
� ��� 	

Fixing an open set � � �
� , we write

�� � ��
� � �
� � 
����

��
� � ��

��� � �
�
� � 
���

whenever 
 � � 
 ��. Since 
�
� � 
� by our choice of Dirichlet boundary

conditions and �� � ��
 ��
� �, we know that ���� �� � � ��
�
� �.
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The resolvent equation yields

(4) �� � ��
� ���

����
� ���

�������
� �

an identity that will be used over and again. The other workhorse result is the
following averaging estimate, which follows from Corollary 17 in the Appendix
below, by taking into account the uniform boundedness of the densities ��.

Lemma 3. For all � � ��� ��, there exists ���� such that
�

���������

�
������������	

���
� �
� �� � �
���	

���
� ���

�
HS

� ��������
�
HS����

�
HS�

As a warm-up, we prove boundedness of fractional moments.

Lemma 4. Let �� � �� , � � ���� ��	 and � � ��� ��. Then

(5) 
���� ����
�
��	
���

� � � � �� 
 � �� �� � � �
� � � � �

� open� �	 �

Proof. We use (4) above and write, suppressing the superscript � and the
subscript � � � � �
,

����� � ������ � ��������� � ������������

The first two terms on the r.h.s. of this equation obey an exponential bound by the
Combes–Thomas estimate (see Subsection A.1 below)

�������� � � 
�
������

and

����������� � ����
�
���

�����	
���
� � 
 �	���

� �����

� �
�
���


�
������
�
������ � �
�
������

with �� and �� � ���� depending only on ��. In the last estimate, we have used
that � is uniformly discrete.
For the third term, expand � �

�
� ��	� and use the boundedness of the ��

and the fact that ��
��

��
�
�

���

to estimate

�������������
� � �

�
�� ���

�����	��	������
��
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We now fix �� � � � and use the workhorse Lemma 3 to conclude
�

���������

�
������������������������

�

� 	�
�������
���
� ��HS��

���
� �����

�
HS

� 	�
� � ���������� � ����������

by the HS-norm Combes–Thomas bound from Proposition 15 and since

������� ��		��� � ��� �� ��	 �

where �	 majorizes the size of the support of �� according to assumption (A3).
Here and in the following we use the convention that 	, 	�
�, etc., denote

constants that only depend on non-crucial quantities and may change from line
to line. In particular, the constants are independent of � 
 
 and the random
background.
Summing up the last terms, we get the assertion. �

Remarks. (i) In this proof, it is still quite easy to see how to extend to arbitrary
dimension through iterations of the resolvent identity. It will be harder to keep
track of this later.
(ii) Note that because of the �� �-summations, averaging over the �� is required

for all �, i.e., is global. In [2], on account of the covering condition, an argument
is provided that only requires averaging over local environments of � and � and
proves Lemma 4 for arbitrary finite intervals � � ���� ��
, i.e., without requiring
�� � �� .
(iii) The above proof shows that (5) also holds in HS-norm, but this is not used

below.

We now start an iterative procedure that shows exponential decay of
� ��������

�� in �� � �� for energies sufficiently close to ��. Clearly, it suffices to
consider �� � � �


. In view of the preceding lemma, the quantity

���� �� ��		� ����
�

������

� � � � �� � 
 
 and � 
 �

 open�

is finite. Moreover, we should keep in mind the dependence on the interval
� � ���� ��
. In fact, �� will later be chosen small enough.
In order to use the fact that �� appears rarely as an eigenvalue for boxes of

side length �, we exploit the resolvent identity and what is sometimes called the
Simon–Lieb inequality in a way visualized in Figure 1!
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�� ��� �� ���

Figure 1. The geometry of the induction step

Consider

�� �� ����� ���

��� � ������ � �������� ��� and ��� �� ���� �

Furthermore, with �� as in assumption (A3), define

	� �� � � ����������

�	� �
�
����������� � ���������

�
��� and ��� �� ���� �

The geometry is chosen in such a way that ��� and ��� are stochastically inde-
pendent. For ��� we can use the fluctuation boundary assumption to get small
fractional moments and the right size of 
 will be adjusted. We discuss all this
later.
Thus, by the Simon–Lieb inequality (e.g., [31, Sect. 2.5]), we have

(SLI) ����
��	� � 	����

������ � ��
�

��
����� � ��

�

��
���	�

where 	 only depends on ����
�������� �� and the interval � .
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The basic idea for proving exponential decay of ���� is to establish a recurrence
inequality for energies sufficiently close to ��. This recurrence inequality is
described in Proposition 6 below and allows us to apply a discrete Gronwall-
type argument, found in Lemma 7 below. To this end we exploit smallness of
fractional moments of the first factor on the r.h.s. of (SLI) for energies close to
�� and sufficiently large, but fixed, �. This follows from (A4)(ii) as is presented
in Lemma 5 below. Fractional moments of the second factor are bounded by
Lemma 4 (up to a polynomial factor in �). Finally, we use the third factor to start
an iteration (with � replaced by sites �� covering the layer ������� ������ ). By
construction, the first and third factor on the r.h.s. of (SLI) are probabilistically
independent. Unfortunately, the second factor introduces a correlation which
prevents us from simply factoring the expectation. We rely on a version of the
re-sampling procedure developed in [2] to solve this problem. Moreover, we do
not use Lemma 4, but instead apply Lemma 3 directly to bound certain conditional
expectations. This results in Proposition 6 below.

Lemma 5. For � as in (A4) and � � ��� ����, there exists �� � ����� �� such
that for all � � ��, open 	 � �����, � � 
 �� 	��� �� 
 ���������, � � � and

� � � �

� with �
� �� � ��
 we have

� ������
	 �� � ������
�

�� � ��������� �

where�� � 
� 	 �.

Proof. Divide � into the good and bad sets

�good �� 
� � ��������	�� ��� � ����� �bad � � ��good�

Since �	 � ������ by our choice of Dirichlet boundary conditions, (A4) implies
that

���bad� � ���� �

We split the expectation into contributions from the good and bad sets. By the
improved Combes–Thomas bound (Subsection A.1) we get, for � � �good, � � 
 ,

����
	

����
�

� � �����������
��
�������

�

This gives a uniform bound of the same type for the expectation over � good. For
the bad set, Hölder with � � ��� �� gives

� �����
	

����
�

���bad� �
�
� �����

	

����
�

��
����

���bad�
�����

� ������������������ �
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Now we choose � � ������� � �� so that � � ��� � ��� if � � ���. Putting things
together, we get

� �����
�
�������

�� � ����
�
	����	�������


�������

� 	����������

�



If 	 is large enough we can use ������ � � and ��� 
� � 	�	 to see that the r.h.s.
is bounded as asserted. �

The exponential decay of the �
�� follows from the following result, whose
proof takes most of the present section.

Proposition 6. There exist 	�, � � 
, � � 
 and � � 
, all depending on
������ � �� ���� ��� �� � ����, such that for 	 � 	� and � � ���� �� � 	����	���

the above defined �
�� satisfy

(6) �
�� � 	�	���
�


�� �����

��	��
�

�����������
 �
���� � ���	�
����



Proof of Proposition 6. We now restrict to the energy interval � �

���� �� � �
		

��� assuming 	 is large enough to guarantee that � � ���� �� �.
Using (SLI) above and denoting

�
�
 � �
�
����
 �

�
�
 � ��
�
���
 �

�
�
�� � ��
�
�����

we get
� ���
�

����
�� � � � ���
�
�

���
�
�
���
�
���

��


Note that ��
�
�� and ��
�
���
� are stochastically independent. Unfortunately,

they are correlated via ��
�
��.
Fix � � �
� ���� to estimate � ���
�
�

��. Using the preceding Lemma, we get
that

� ���
�
�
�� �

�
��
������

� ���
�
�����

��

� �	��� � 	� �
��� �

for 	 large enough. We can now expand �
�
 to split off a uniformly bounded
(in �) term:

�
�
 � ��
�
�
��

�

 � ��
�

�
����

��
�

� �� �

����

���
�
�
�������

��
�

� �� �

����
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Since � � ���� �� �, ������� is uniformly bounded. Thus

� �����
�
���	�
�

�� � �
�
� �������

� � �	����
�
�� � ��

�

� �
�
� �������

�� � � ��	����
�
�� � ��

�
�(7)

as ������� and �	����
�
� are independent. Here

�� �� � �������
�������

��	����
�
��


Expanding ��� , we see that for some � � �, the r.h.s. of (7) is bounded by

�
���������
�

�
������

	������
����

� ���������
�
�� � � ���

whence

(8) ���
 � 
�������
�

�
������

	������
���� ����
 � � 
��

���� 	��
����

��


To estimate ��, we begin by expanding

���� � ���
�����

� ���
��
� ��� � ���

��
� ����

� ��� � ���
��
� ��������

� ��� 
(9)

Since � has positive distance from ���� �, we have the Combes–Thomas bound
�	������ for the norm of the first two terms on the r.h.s. of (9); see Appendix A.1.
Here � �� and �� � � are uniform in the randomness, � � � , � � � and � � ��.
Expanding the third term and using boundedness of the �’s yields

������
� � �

�
	������

�

� �
�

����������� ���

������
�
�
�

where ���� � ���
��
� ���

�����
��
� ��� , and the summation is over those �� � for

which the corresponding �-terms touch ��.
A similar argument applied to 	����
 leads to

�	����
�
� � �

�
	����������
�������� �

�
����������

����
���

�	�������
�
�

where we have chosen 	����� � ����
��
� ������������

� �
.
Finally, expand

���� � ����
�
�������

��
�
� �

�
������

����� �
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where ����� � ����
�
� �����

���������
��

�
� .

Combining all this, we get

�� � �

�
�������

�

�

�
����

� �������������������	��
�

�
�

� �������
�

�

�
�����
����

� ��������� � ����������

�
�

��������

� �������
� � �����������������������

�

�
�

�
�

��������������

� �������
� � �������� � ����������

�
�

The most complicated of these terms is the last one; it will be obvious how to
estimate the first three once we have established a bound for the last one according
to the assertion of Proposition 6. Thus we have to estimate

�� ��
�

��������������

����������������

where
��������������� � � �������

� � �������� � ���������� �

If not for the �����-terms, the ���� and ������ would be independent, leading to
an estimate as in (8) above. We reinforce a certain kind of independence through
re-sampling. For fixed

� �� ��� ��� �� ����

introduce new independent random variables �		 , 
 � � , independent of the 	
 ,
� � �, and with the same distribution as the 	
 . Denote the corresponding space
by ��, the corresponding probability by �� and the expectation with respect to �� by�� . Consider ���
� �
� � ��
� �

�
	��

�		�
�� �		��
���	
� �� �

��

and observe that �� does not depend on the 		 , 
 � � . The resolvent identity for���

 � � ��� � ���� gives

��

 � ���


 � ���


����


 �

We insert this for ���� and ������ and get

���� � ���
��
� �� �������

��
� ���� �� �

�����

����
��

� �� ������������
��

� ���� �� �
�����
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and, similarly,

������ � ������� � ������� �

Now we can estimate

(10) ��������������� � �� �

�
�� ������� � ������������������� ��������� � � ����������

�
�

This gives a sum of four terms we have to control. We start with the easiest one

��
�������������� �� �� �

�
� ���������������� ���������

�
�

Denote

� �� ��� ��� �

�
�	�
��	��

�
�	��
���	�� ���	�

for a random variable on � � ��, so that � �� ��� ��� is nothing but the conditional
expectationwith respect to the �-field generated by the family �	� � � � ����� ��	�.
According to the usual rules for conditional expectations,

��
�������������� � �� �

�
� ������������������ ������������ ���

�
� �� �

�
� �������� ��������� � ������������ ���

�
(11)

since the �� and �� are independent of 	�� 	�� . Using the workhorse Lemma 3 and
the Combes–Thomas estimate Proposition 15, we get

� ������������ ��� � 
������
��

�
��

�	�
� ��HS��

�	�
�� ��

��
�
��

�
HS

� 
�������
������������	�������������	������������

where the extra ����
��� term comes from covering ��� and ���. We have

�� �

�
� �������� ���������

�
� � 	������

����������
 � � 	������
�
 � 	���������
 �

since the �	’s have the same distribution as the 	’s and the � ’s and �’s are indepen-
dent. Inserting into (11) gives

��
��������������

� 
�������
������������	�������������	�����������
� 	������

�
 � 	���������
 �

We treat the latter two terms separately.
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Step 1. Denote by ��� �� � ��� � �� � ��� ���� �� �� those lattice points whose
1-cubes support ��� . By Combes–Thomas once again, we have

��������� � �����
��
	 ������������

	 ���
�

� �
�


�������

�

��������

��
����������������
�

����

�
����������

��	

By the assumption on the size of the support of��� we see that���� �� is uniformly
bounded. This together with the uniform discreteness of � gives

�

�����

� ��������� � �
�


�� ��������

�������
�

�����
������������

�� 

���� 	

Step 2. For the ����-term, we have

������
� � ��
�

��
	 ���

�����
��
	 ����

�

� �
�

���������

�

���������

��
�
��
	 ���

�����
�����

�����
��
	 ����

�	

If 	�
 
	 � ���	��, Lemma 5 gives

� �����
�����

�� � � � ����
���� 	

On the other hand, if 	� 
 
	 � ���	��, then 
��
�
� ���� � ������ or
	� 
 �	 � ������, so that the uniform bound of Lemma 4 for � ����������

��

together with the Combes–Thomas bound for ������
	 ����

� (resp., ��
���
	 ���

�)
gives

�
�
��
�

��
	 ���

�����
�����

�����
��
	 ����

�
�
� �����
������

� ����
����

for � large enough. Combining, we again get for � sufficiently large,
�

���

� �������
�� � �������
���� �

where the factor ��� arises through the number of terms considered.
Joining Step 1, Step 2 and the bound

�

����

���������
������
������
�����
��
��� � ��������

we arrive at
�

��������������

��
��������������

� ����������
����

�


�� ��������

�������
�

�����
������������

�� 

���� �
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which is a contribution to�� (and therefore��) bounded by one of the type asserted
in Proposition 6.
A look back at (10) shows that we still have to estimate three terms similar to

��
�������������� , the last one of which,

��
�������������� �� �� �

�
� ���������������� ���������

�
�

is the most complicated. Using Steps 1 and 2 above, as well as the steps below, it
will be clear how to treat the two remaining terms.

Step 3. We start by taking the conditional expectation

��
�������������� � �� �

�
� �� ���������������� ������������ ��� �� ���

�

� �� �

�
� ������������� ��� �� ������
� � ������������� ��� �� ������ � � �� ������������� ��� �� ������

�
�

by Hölder’s inequality. As above, the middle term can, up to �	�������, be
estimated by


���� �� ���������	��
�

�
���������

��	���

�
��

Recall that

� ���������� �
����

��

� ���
��
�


�� ����

��
 � ��
��
 �
�����
��
� ��

����

� � �
�


�� ����

���


��
� ���
���
 �
�����
��

� ���
���

where � can be excluded from the summation as �� doesn’t touch �
. Integration
over �
 and ��� gives a uniform bound by the workhorse Lemma 3:

� �� ������������� ��� �� ���

�
�


�� ����

� ����


��
� ���
���
 �
�����
��

� ���
����� ��� �� ���

� ���� �
�


������

���


��
� �

���
�� ���HS � ��

���



�
�����
��
� ���

��
HS

so that, as the sum has only three terms,

� �� ������������� ��� �� ������

� ���� �
�


�� ����

���


��
� �

���
�� ��HS � ��

���



�
�����
��
� ���

�
HS

� �	 

��

�
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Similarly,

� ������������� ��� �� ������
� ���� �

�
��� �����

����
��
	 	� ����	

���
� ��HS � �	

���
� ���

	 ��
�
�
HS

� �� �
��




Now �� and �� are independent, so

(12) ��

�
���������� � ������������ � �� � ��� � � �� � ���� � 

�
� 


Since the �� and the ��� have the same distribution, we can omit the hats in ����

and ���� and replace �� � by � in the bounds for �� � ��� � and �� � ���� to be derived
below.

Step 4. We start with the �-term. Proposition 15 gives

���
�
��
	 	

�

�

���
�
HS � ����������������

������
����


This is used to deal with the term for � � � � which appears in the sum over � ����;
since ����HS � ��� ���HS, we get

���
�
��
	 	

�

�

���
�
HS � �	

�

�

���
��	�����

	 ���
�
HS

� ����������������
������

�
��	

�

�

���
��	

�

�

���
� � �	

�

�

���
��
	 ���

�
HS

� ��������
�

��������
��������

��
�

�
��������������

��������������
(13)

For the terms � � � and � � �� in the sum, we borrow from 

�
� above and use
that



���

�
� � � � �������

���


if � 	 ��� ��� and �� 	 ����:



���

�
���

�

�

��
	 	

�

�

���
� � �	

�

�

� �
��	�����

	 ���
�
HS

� ����������������
������

�
�

�
�������
��������

��
�

�
��������������

��������������
(14)

Summing each of the three contributions from (13) and (14) to 
���
�
��� over ��� ��

(and extending the ��-sum in (14) to all of ��) gives

(15)
�

������	



���

�
�

�� � ���� � ��������
�

��������

��
�

�
��������������

�� ������ 
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We now show that summation over �� ��� �� � gives a small prefactor.

Step 5. We analyze

� �����
��
� ���

���
���
� ��HS� � ����

��
� �

���
� ��HS � � ���

���
� ����

���
� ����

If �� � 	� 
 ������, then either �
 � �� � ������ or ���	�	� ���� � ������. Since
	 � � 	 
���,

either � �������
� ���

���
���
� ��HS�� �

���
	
	� or �����

� ���
� ����

�
HS

is bounded by ��������� ; see Step 2 above. If, on the other hand �� � 	� � ������,
we can use Lemma 5 above to estimate

� ���
���
� ����

���
� ��� � � � ��������� �

Summing up these terms, we get

(16)
�

�
���

�
���
	
	�

�� � 
�
 � � �������������� �

since �� � run through at most ��� different points of � in ��. Also, by exponential
decay,

(17)
�
	
	�

�
���
	
	� � ���������

Putting the estimates from (15),(16),(17) together we arrive at
�

	
	�
�
��
�
��

��
	
	�
�
��
�
�� � � � ������ �

�
��

�
��
�����


�
�

�
��������������

�� ���
�� �

which is the desired bound. To deal with the other terms appearing in�	
	�
�
��
�
�� ,
we just combine the corresponding steps to control the � and�-sums, respectively.
This concludes the proof of Proposition 6. �

For energies sufficiently close to �	, we now complete the proof of exponen-
tial decay of ��
�, and thus of Theorem 1, by applying a discrete Gronwall-type
argument to the recursion inequality established in Proposition 6.
For � � �, consider the weighted ��-space

� � ������� 
����������

i.e., for � � ���
��,
���� � ���

�
����

�����������
���
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Lemma 7. The operator � defined by

������� �
�

�����

��������
����������������

is bounded as an operator on � as well as an operator on ������� with

(18) ���� � �������� and ����� � ���������

Proof of Lemma 7. The norm of � in � is the same as the norm of the
operator �� in ������� with kernel

�������� � �����������������
���������������

��������

Thus

���� � � ����� � ���
���

�

�����

��������

� � ���
���

��
		�	
������������������

���������������
�������

� � ���
�

��
	� 	� ������������	���
�������
�	���


with the substitutions � � 	� 	�, � � 
� � 	, 
 � 
 � 	.
Bound the latter exponent through

������ ���
�� �
�

�
��� ��

�
�
��

�

�

�
����� ���
�� �

�

�
��
� ��� ��� ��� ����

�
�

�
����� ���
�� �

�

�
�
��

After cancellation, the integral factorizes and gives (18) for ���� after scaling.
The bound for ����� is found more directly. �

This may be applied to the situation of Proposition 6 as it shows that for �
sufficiently large, the operator � with kernel

������� � ������ ��������
�����������


has norm less than one, both as an operator on � � ������
 ���������
� and as an
operator on �������. Fix this � and choose Æ � ���, � � ���
 ���Æ� in Theorem 1
and the definition of ����.
The recursion inequality (6) now takes the form

(19) ���� � ������� � ����

with ���� �� ����������
. The conclusion of the proof of Theorem 1 is now the
content of
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Lemma 8.
� � ������ � ��

Proof of Lemma 8. With � � ���, define the diagonal operator

� � ����������������

which is an isometry from � to 	������. Let 	� � �� and 	
 � �
 � 	�. Let
	� � �����. Then (19) implies that componentwise

(20) 	� � 	�	� 
	
�

Since � � ���	� is bounded and � a bounded operator on 	������, we have that
	� � � �� 	������ ����������� and 	� is a bounded operator on � with non-negative
kernel. Thus we obtain from (20) that

	��	� � 	����	� 
 	��	


holds with finite components. Summation yields

	� � 	����	� 


��

���

	��	
�

and thus

� � ����� 


��

���

��


for all 
 .
Now � � 	� � 	� is a contraction and � � 	�. Thus ����� � 
 in 	� and

componentwise. Also, � � � � � is a contraction and 
 � � . Thus
�
�

���
����

�� ������ � � and componentwise as � ��. We conclude that

� � �� ������ � ��

Lemma 8 is proved. �

3 On the proof of Theorem 2

That the localization properties stated in Theorem 2 follow from the fractional
moment bound for the resolvent established in Theorem 1 was demonstrated in
[2]. Here we want to comment on two minor changes in the argument which are
due to our somewhat different set-up.
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First we note that spectral and dynamical localization as established in parts
(a) and (b) of Theorem 2 hold for restrictions of � to arbitrary open domains �;
in particular, the exponential decay established in equation (2) holds with respect
to the standard distance ��� �� rather than the domain adapted distance �������� ��
used in [2]. Given that the corresponding bound (1) in Theorem 1 is true for
arbitrary � and in standard distance, this follows with exactly the same proof as
in Section 2 of [2] (with one exception discussed below). That the authors of
[2] chose to work with the domain adapted distance was in order to include more
general regimes, in which extended surface states might exist. This is not the case
in the regime considered here.
Second, let us provide a few details on how to eliminate the use of the covering

condition (3) from the proof of (2) provided in Section 2 of [2]. As done there,
one first considers bounded open � � �

� and defines

���� ��� �� 	
 ���
�������� �� ���

���	��
�����


If �	 and �	 are the eigenvalues and corresponding eigenfunctions of � � and 	 is
as above, then 	���� 


�
	�
���

	��	���	� � ��	 readily implies

���� ��� �� �
�

	�
���

����	� � ����	�


At this point, we modify the argument of [2] and write

���	 
 ����
�
� ��	�

�����
� ��	��	


 ����
�
� ��	�

��
�	



�

���

������
�
� ��	�

�����	


As all �	 	 � have a uniform distance from �
� ����
� �, we get from Combes–

Thomas Proposition 14 that

����	� � �
�

�

�����
�
� ��	�

����
�
� � � ���
�

� �	�

� �
�

�

������������
�
� �	�


Inserting above yields

���� ��� �� � �
�

�

������������� ��� ���

with ���� ��� �� 

�

	�
���
����	� � ��

�
�
� �	� defined as in [2], where the bound

� ����� ��� ��� � ���������� is established without any further references to the
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covering condition. Thus we conclude

(21) �
�
���� ��� ��

�
� �����������

The rest of the proof of Theorem 2, in particular the extension of (21) to infinite
volume and a supremum over arbitrary Borel functions, follows the argument in
[2] without change.

4 Localization for continuum random surface models

Random surface models have attracted quite some interest, with most of the
work dealing with the discrete case [9, 15, 17, 19, 18, 20, 21] and some with the
continuum case [16, 25, 7, 8], as we do here. Our aim in this section is to show
that, under suitable conditions, such surface models obey condition (A4) above.
To achieve it, we combine recent results from [25] with a technique from [30].
As usual, the background is assumed to be partially periodic.

(B1) Fix � � �� � � and write �� � �
�� � �

�� , � � ���� ���; assume that
	� � 
�loc,unif��

� � is real-valued and periodic with respect to the first variable,
i.e.,

	���� ������ � 	����� ��� for � � ����

Denote �� �� �	� 	�.

In order to state our second requirement, let us recall some facts from Bloch
theory. For more details, see [25]. For 	�� �� as in (B1), we have a direct integral
decomposition

�� � �

����
� �

���

�� ���

where ��� � �
�� ��

���� is the ��-dimensional torus and

�� � �	� 	� in 
�����

with �-periodic boundary conditions on the unit strip �� � ���
� � �
�� . We now

fix the assumption

(B2)
��� ����� � ��� �ess�����

It is well-known that under (B2), we have

�� �� ��� ����� � ��� ������
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and that there is a positive eigensolution �� of the distributional equation

���� � �����

see [25, 24] and the references therein. Finally, our randomperturbation is assumed
to satisfy the following condition.

(B3) The set � � �
� where the random impurities are located is uniformly discrete,

i.e., ��������� � � �� � � �� �� �� � �. Moreover, � is dense near the surface
�
�� 	��� in the sense that there exist��	 
� � � such that for � large enough
and �� � ��� ,

�
�
� 


�
	�
���	 	��
��

��
� 
��

�� 


We shall see that (B1)-(B3) ensure (A4) from Section 1. Of course, there might
be other ways to verify (A4) for surface-like potentials, so that Theorems 1 and 2
could, in principle, be used for other examples.

Theorem 9. Assume (B1)–(B3) and (A3). Then there exist Æ � �, � � � � �,
� � � and� �� such that for � �� 
��	 ���Æ�, all open sets� � �

� and �	 � � �� ,

(22) ���
���� ���

� 

�	
�

 �� � �������


�� � � ��
�	���


In particular, the following consequences hold.

(a) The spectrumof�
 in � is almost surely pure point with exponentially decaying
eigenfunctions.

(b) There are � � � and � �� such that for all �	 � � ��,

(23) �

�
���
���


�	�
������� 
�


���

�
� ���
�	���


The rest of this section is devoted to deducing (A4) under the assumptions of
the Theorem. Let

�� � ��
��� �� 	�
���	 �
��

be the strip of side length � centered at �� � �
�� perpendicular to the “surface”

�
�� 	 ���. It suffices to prove

Proposition 10. For all �	 � � � there exists �
�	 �� such that for all odd
integers � � �
�	 �� and �� � �

��,

(24) �
�
�
����	��� 
 
��	 �� � ��� � �� �

�
� ���
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In fact, (A4)(ii) then follows, since ������ � �������; and therefore

�� � ��� ���������� � ��� ����������

We actually prove the analogue of Proposition 10 with Dirichlet boundary
conditions replaced by suitable Robin boundary conditions that are defined using
the periodic ground state �� introduced above. Assume, for later convenience, that

�
��

�������
��� � ��

We consider on ��, � � 	���, Mezincescu boundary conditions, given as follows.
Let

	��� 
� �
�

�����
�������


where �� denotes the outer normal derivatives. The Mezincescu boundary condi-
tion can be thought of as the following requirement for functions � in the domain
of ���

� :
������ � �	������� for � � ����

For the formal definition of ���
� via quadratic forms and more background, see

Mezincescu’s original paper [26], as well as [24, 25]. In particular, we immediately
get the following important relations in the sense of the corresponding quadratic
forms:

(25) ���
� � ��� 


as well as

(26) ���
� �

��

���

�
��

�
����

� 


whenever the strip �� is divided into disjoint strips ����
�� whose closures exhaust
the closure of ��.

Proof of Proposition 10. By the form inequality (25) above, it remains to
prove the estimate for ���

� .
Denoting the bottom eigenvalue of an operator � by ����� (caution: here our

notation differs from that in [24, 25], where the second eigenvalue is denoted by
�����), we see that

�����
� � � ���
 �� � ��	 
 �� 	 
� ����

��
� � � �� � ��	 �
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Step 1. There exist ���� � � � such that

(27) �
�
����

��
� � � �� � ����

�
� � � ��� ��� � ����	

We use here the method from [30]. Denote ��
� �� �	 ��� � 
���
��
� , and its first

eigenvalue by ���
� ��. Since ���
� �� increases in 
, the event in (27) implies that
���
� �� be small for all 
 � 
, which in turn implies that � �

���� �� must be small.
We infer from [25, Theorem3.25] that the gap between the first two eigenvalues

satisfies
����� �������� �� � ��
��	 ���	

As in [30, Lemma 2.3], this gives

(28) ����
� ��� ��� � 
 ���
���� ���� � ��� � 
� for � � 
 � 
 � ���	

Now assume that
����

��
� � � �� � ����

for � � �. From (28), we obtain

��
���� �� � ����

with ����� � for �� �.
On the other hand,

��
���� �� 	 ��������������

where ���� is the normalized ground state of ���
���. Now the boundary condition

of ���
��� is defined so as to ensure that �� is an eigenfunction; see the discussion in

[25]. Therefore, ���� 	 ��������; and we get

��
���� �� 	 �������������

	 ����
�
���

����� �

�
��

������������
���

� ����
�

���������

����� � �	 �

�
��� ���

�������
���	

Since, by (B3), there are at least ������	 ��� elements of �����
� in ��� 	������

and
�
�

��������������
�
���

�
��� �������

�������
��� � ��

we arrive at

(29) � �
���� �� � �� �




����

�
����

������
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with �� � � and independent variables �� running through an index set �� of
cardinality at least ����� . If we now choose � � � so small that ������� � � , where
� is smaller than the mean of all the ��’s, we get

�
�
	��


��
� � � 	� � ����

�
� �

�
�� �

�

����

�

����

����� � ����
�

� � � �����
������

� � � �����
�����

by a standard large deviation estimate; see [22] or [32, Theorem 1.4]. This finishes
the proof of Step 1.

Step 2. To deduce the desired bound from Step 1, we divide the strip �� into
disjoint strips ������� whose closures exhaust the closure of �� and such that

��� � � � ���� � 	
 � ��� � �� � 
� � ��

this is possible for � large enough.
Their number � is at most �
���� �����	���� . By (26), we know that

	�

�

��
�

�
� ���

����

	�

�



��
�
����

�

�
�

so that

�
�
	��


��
� � � 	� � ���

�
� �

�
���

����

	��


��
�
����

� � � 	� � ���
�

�


�

���

�
�
	��


��
�
����

� � � 	� � ���
�

�

�

���

�
�
	��


��
�
����

� � � 	� � � � ����

�

� � �� � �����
���� �

� ����

provided � is large enough. �

Remarks. (1) In cases where the operator
 is ergodic, a stronger bound than
(24) is provided in [25, Proposition 5.2]. The bound is in terms of the integrated
density of states, for which [25] establishes Lifshitz asymptotics. As we are only
interested in localization properties here, the bound (24) suffices and allows us to
handle the non-ergodic random potentials defined in (B3) and (A3).
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(2) We have established localization near the bottom of the spectrum for the
random surface models considered in this section. If �� � �, one expects for
physical reasons that the entire spectrum of � below ��� ���� � (see (A4)) is
localized. A corresponding result for lattice operators has been proved in [20]
(in situations where �� is the discrete Laplacian and �� � �). To show this for
continuum models remains an open problem.

5 Anderson models with displacement

By considering the special case �� � �, the results of the previous section also
cover the “usual” Andersonmodels, sometimes also called alloy models. Note that
in this case, (B2) becomes trivial. Nevertheless,we state the assumptions and result
again for this case, principally in order to point out below that the bounds obtained
hold uniformly in the geometric parameters describing the random potential. This
is then applied to models with random displacements. We rely upon the following
assumptions.

(D1) �� � ��loc,unif��
�� is real-valued and periodic.

(D2) The set � � �
� , where the random impurities are located, is uniformly

discrete, i.e., ������ � �� � � �� � � �� �� �� 	 	 and uniformly dense, i.e.,
there exists 
� 	 	 such that 
�� ��� 	 � �� 
 for every � � �� .

Theorem 11. Assume (D1), (D2) and (A3). Then there exist Æ 	 	, 	 � 
 � �,
� 	 	 and� �� such that for � �� ���� ���Æ
, all open sets� � �

� and �� � � �� ,

(30) ���
�������

� ���	��

 �� � ��������

�� 
 � ��
�	����

In particular, the following consequences hold.

(a) The spectrumof�
 in � is almost surely pure point with exponentially decaying
eigenfunctions.

(b) There are �� 	 	 and �� �� such that for all �� � � �
�,

(31) �
�
���
���

��	�
������� ��


����
�

 ���

�
��	����

Here all the constants Æ� 
� �� �� ��� �� can be chosen to depend only on the potential
through the parameters ��� �������� �� � �� � �� � 
� � �� � 
� .
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To this end, we first observe that (D1), (D2) and (A3) imply (A4) with constants
�� , � and �� depending only on the listed parameters.

Proposition 12. Assume (D1), (D2) and (A3). Then there exist

�� � ������ �������� �� � 	� � 
� � �� � 
� � ��� � ���

� � ����� �������� �� � 	� � 
� � �� � 
� � ��� � ��� ��

and �� � ���
 
 
� such that

(1) �� � ��;

(2) for �� �� �� � �, all � � �� and � � ��:

�
�
������������ � ���� �� 	 ���
 �� �

�
� ���� 


Proof. Firstwe show that (D2) implies that there exist ��� 	� and�� depending
only on 
� � �� such that for all � � �� ,

(32) �� � �
� � ��� � ������ � 	� � �

�


The upper bound follows from uniform discreteness:

��� � ������ � 	���			 � 	��
��			 � ������

provided � � 
���. For the lower bound, use uniform denseness. Divide �����

into disjoint boxes of side length �� . If � � ��� , there are at least �������
� of

them each of which contains at least one point from �.
Now we can use the analysis of the preceding section. Since the relevant

quantities depend only on the indicated parameters, the assertions follow. �

With this uniform version of (A4) and the proofs provided in Sections 2 and 3,
we also get corresponding uniform versions of Theorems 1 and 2, i.e. Theorem 11.
As a specific application of the previous observation, we can start from an

Anderson model as above and additionally vary the set � in a random way, as long
as 
� and �� obey uniform upper and lower bounds. Instead of formulating the
most general result in this direction, we consider models that were introduced in
[10] and further studied in [33].

(D3) Let �
 , � � �
� be independent random couplings, defined on a probability

space 
 with distribution �
 and �
 as in (A3).
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(D4) Let �� , � � �� be independent random vectors of length at most ��� in �� ;
denote the corresponding probability space by ��.

Define

(33) ���� ��� �� ��	 �� �
�

����

�������� � � � � ��������

Corollary 13. Assume (D1), (D3), (D4). Then for ���� ��� as above, there
exist Æ 	 �, � 
 � 
 �, � 	 � and 
 
 � such that for � �� ���� �� � Æ	, all open
sets � � �

� and �� � � �� ,

(34) 
��
�������

�� � ������
	 �� � ������
�

�� � 
 
�����
��

In particular, the following consequences hold.

(a) The spectrumof�	 in � is almost surely pure point with exponentially decaying
eigenfunctions.

(b) There are � 	 � and 
 
� such that for all �� � � ��,

(35) �� � �
��

��

���

��
������

	��
�
�
� 

�����
��

Proof. The corresponding inequality holds uniformly in �� by what we proved
above. �

Note that in this last corollary, we have not assumed that the random perturba-
tions cover the whole space. In that respect, our result provides substantial progress
as compared to [10, 33].
Let us also mention the Poisson model, another prominent model in which the

points � � ������ in (33) are replaced by the points of a Poisson process. They are
neither uniformly discrete nor uniformly dense, and adjusting our method to this
case is not easy (if possible at all).

Appendix A. Some technical tools

Here we collect some technical backgroundwhich was used in Section 2 above.
All of this is known. We either provide references or, for convenience, in some
cases sketch the proof.
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A.1 Combes–Thomas bounds. Proofs of the following improved
Combes–Thomas bound can be found in [5] (where it was first observed) and
[31]. We state it here under assumptions which are sufficient for our applications.
In particular, we assume � � �, while the result holds in arbitrary dimension for a
suitably modified class of potentials. As above, for an open � � �

� , we denote by
�� the restriction of ��� � to ����� with Dirichlet boundary conditions.

Proposition 14. Let � � �, � � ��
loc,unif��

� � with ���� �� �������� � � . Let
� � 	 and � 	 
. Then there exist 
� � 
������ and 
� � 
������ such that the
conditions

(i) � � �
� open, ��
 � �, �
�����
� �� Æ 	 
,

(ii) ��� �� � ����� � ������, � � ��� �� and � �� �
����� ��� ���� 	 
,

imply the estimate

(36) ���
���

�����
� �� � �������� �


�

�
����

�
��	
���Æ �

Note that the results in [5] and [31] are stated for � � 
, but the proofs are easily
adjusted to show that the bounds are uniform in the additional imaginary part.

A.2 Combes–Thomas bounds in Hilbert–Schmidt norm. A conse-
quence of (36) is that �������� � � � �������� decays exponentially in �� � ��.
Due to the restriction to � � �, this is also true in Hilbert–Schmidt norm.

Proposition 15. Let � � �, � � ��
loc,unif��

� �, � � �� � � in ����� � and
� � ��	� 
�� ����� be a compact interval. Then there exist � �	 and � 	 
 such
that

(37) ���
��
� ���

����open

�����
� �� � ��������HS � ���������

for all �� � � �� .

Proof. We sketch the proof by combining several well-known facts. Let ��
denote the �-th Schatten class, i.e., the set of all bounded operators � such that
���� �� ��� �������� �	. As � � �, by Theorem B.9.3 of [29], we have

(38) ����� ��������� � �� �	

for each � 	 � and � � 
�� ����. The proof provided in [29] shows that �� can
be chosen uniform in � � �

� and � � � . In the sense of quadratic forms, one
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has �� � � for each open � � �
� , i.e., ��� � �������� � ������� � � for all

� � ��� ����; see, e.g., Section VI.2 of [23]. Thus

�����
� ��������� � ����� ��������� ��� ��������� ��������

� �� ���(39)

The Hölder property of Schatten classes implies that

(40) �����
� � ���������� � ��

�

uniformly in 	
 � � �� , � � � and � � �
� open. From the resolvent identity

����
� �� � 
������ � ����

� ������� � 
�����
� �� � 
������� �������

we easily see that

(41) �����
� �� � 
���������� � �� ��

also holds uniformly in the additional parameter � � �. By Proposition 14, we also
have �� �� and �� � 	 such that

(42) �����
� �� � 
������� � ��


��������


uniform in �, � � � and � � �. As we may choose ��� � ����
 ��, (37) follows
from (41) and (42) by interpolation, more precisely from the fact that � � �HS � � � ��

and ����
�
� 
� 	�	� � 
��	�	���	�	������ � �����������

���
���. �

A.3 A fractional-momentbound. The next result and its proof are found
in [2], where it played a central role in the extension of the fractional-moment
method to Anderson-type random Schrödinger operators in the continuum.
Recall that an operator� is called dissipative if ��
��
�� � 	 for all � � ����.

It is called maximally dissipative if it has no proper dissipative extension. Below
we also use the notation 	 � 	 for Lebesgue measure in �� .

Proposition 16. There exists a universal constant � �� such that for every
separable Hilbert space �, every maximally dissipative operator � in � with
strictly positive imaginary part (i.e., ��
��
�� � Æ���� for some Æ � 	 and all
� � ����), for arbitrary Hilbert–Schmidt operators ��, �� in �, for arbitrary
bounded non-negative operators ��, �� in �, and for all � � 	,

(43)
�
�����
 ��� � �	
 ��� � ����

���
�

��� ���� � �����
���

���
�

���HS � �
���

� �����HS����HS � ����
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The weak-��-type bound yields a fractional moment bound.

Corollary 17. Let � � ��� ��. Then for the constant � and operators �, ��,
��, ��, �� as in Proposition 16,

(44)
�

�

�

���

�
�

�

�������
���
�

��� ���� � �����
���

���
�

���
�
HS

�
��

�� �
����

�
HS����

�
HS	

This follows with layer-cake integration, which gives for the l.h.s. of (44)
�

�

�

���

�
�

�

����	 	 	�
� �

�
�

�

�
������ ��� � ��� ��� � �	 	 	� 
 �����

�
���	

The integrand is bounded by the minimum of � and a bound following from (43).
Splitting the integral accordingly leads to (44).

Remarks. (1) The use of the interval ��� �� as support of ��� �� in Proposition 16
and Corollary 17 is not essential. By shifting and scaling, it can be replaced by an
arbitrary compact interval �, with constants becoming �-dependent.
(2) In our applications, maximally dissipative operators arise in the form � 	

��
 �� � ��� for self-adjoint operators 
, with � 
 � providing a strictly positive
imaginary part.
(3) Note that, as seen from the argument in [2], a bound like (44) also holds in

the “diagonal” case, i.e., for
�
�

�
�� ��������� ������������HS.
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