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The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0,1]→ C[0,1] satisfies

‖Id + T‖ = 1 + ‖T‖.

(Recall ‖T‖ = sup{‖Tx‖: ‖x‖ ≤ 1}.)

For which Banach spaces is this proposition true?

Examples

C[0,1], L1[0,1], L∞[0,1], A(D), H∞, Lip(K) (K ⊂ Rd convex), type II von
Neumann algebras and their preduals, . . .

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(μ) and L∞(μ) for a non-atomic measure μ.

Counterexamples

c0, ℓ1, ℓ∞, Lp(μ) for 1 < p <∞, Lip(K) (K ⊂ Rd compact and not convex),
type I von Neumann algebras and their preduals, . . .

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 2/19



The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0,1]→ C[0,1] satisfies

‖Id + T‖ = 1 + ‖T‖.

(Recall ‖T‖ = sup{‖Tx‖: ‖x‖ ≤ 1}.)

For which Banach spaces is this proposition true?

Examples

C[0,1], L1[0,1], L∞[0,1], A(D), H∞, Lip(K) (K ⊂ Rd convex), type II von
Neumann algebras and their preduals, . . .

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(μ) and L∞(μ) for a non-atomic measure μ.

Counterexamples

c0, ℓ1, ℓ∞, Lp(μ) for 1 < p <∞, Lip(K) (K ⊂ Rd compact and not convex),
type I von Neumann algebras and their preduals, . . .

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 2/19



The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0,1]→ C[0,1] satisfies

‖Id + T‖ = 1 + ‖T‖.

(Recall ‖T‖ = sup{‖Tx‖: ‖x‖ ≤ 1}.)

For which Banach spaces is this proposition true?

Examples

C[0,1], L1[0,1], L∞[0,1], A(D), H∞, Lip(K) (K ⊂ Rd convex), type II von
Neumann algebras and their preduals, . . .

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(μ) and L∞(μ) for a non-atomic measure μ.

Counterexamples

c0, ℓ1, ℓ∞, Lp(μ) for 1 < p <∞, Lip(K) (K ⊂ Rd compact and not convex),
type I von Neumann algebras and their preduals, . . .

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 2/19



The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0,1]→ C[0,1] satisfies

‖Id + T‖ = 1 + ‖T‖.

(Recall ‖T‖ = sup{‖Tx‖: ‖x‖ ≤ 1}.)

For which Banach spaces is this proposition true?

Examples

C[0,1], L1[0,1], L∞[0,1], A(D), H∞, Lip(K) (K ⊂ Rd convex), type II von
Neumann algebras and their preduals, . . .

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(μ) and L∞(μ) for a non-atomic measure μ.

Counterexamples

c0, ℓ1, ℓ∞, Lp(μ) for 1 < p <∞, Lip(K) (K ⊂ Rd compact and not convex),
type I von Neumann algebras and their preduals, . . .

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 2/19



The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0,1]→ C[0,1] satisfies

‖Id + T‖ = 1 + ‖T‖.

(Recall ‖T‖ = sup{‖Tx‖: ‖x‖ ≤ 1}.)

For which Banach spaces is this proposition true?

Examples

C[0,1], L1[0,1], L∞[0,1], A(D), H∞, Lip(K) (K ⊂ Rd convex), type II von
Neumann algebras and their preduals, . . .

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(μ) and L∞(μ) for a non-atomic measure μ.

Counterexamples

c0, ℓ1, ℓ∞, Lp(μ) for 1 < p <∞, Lip(K) (K ⊂ Rd compact and not convex),
type I von Neumann algebras and their preduals, . . .

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 2/19



The Daugavet equation

Proposition (I. Daugavet 1963)

Each compact linear operator T: C[0,1]→ C[0,1] satisfies

‖Id + T‖ = 1 + ‖T‖.

(Recall ‖T‖ = sup{‖Tx‖: ‖x‖ ≤ 1}.)

For which Banach spaces is this proposition true?

Examples

C[0,1], L1[0,1], L∞[0,1], A(D), H∞, Lip(K) (K ⊂ Rd convex), type II von
Neumann algebras and their preduals, . . .

More generally: C(K) for a compact Hausdorff space K without isolated
points; L1(μ) and L∞(μ) for a non-atomic measure μ.

Counterexamples

c0, ℓ1, ℓ∞, Lp(μ) for 1 < p <∞, Lip(K) (K ⊂ Rd compact and not convex),
type I von Neumann algebras and their preduals, . . .

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 2/19



The Daugavet property

Definition

A Banach space X has the Daugavet property if

‖Id + T‖ = 1 + ‖T‖

for all operators T: X→ X of the form T(x) = x∗0 (x)x0.

Note: W.l.o.g. ‖T‖ = 1.

Lemma

The following are equivalent:

X has the Daugavet property.

For all ‖x0‖ = 1, ϵ > 0 and all slices S of the unit ball BX there exists
some z ∈ S such that

‖z − x0‖ ≥ 2− ϵ.

For all ‖x0‖ = 1 and ϵ > 0, the convex hull of {z ∈ BX: ‖z − x0‖ ≥ 2− ϵ}
is dense in BX.

,
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Weak compactness

Proposition

If X has the Daugavet property, then ‖Id + T‖ = 1 + ‖T‖ for all weakly
compact operators T.

T is weakly compact if the closure of T(BX) is weakly compact, i.e.,
compact for the weak topology.

Proposition

If X has the Daugavet property, then every slice of the unit ball has
diameter 2. In particular, X is not reflexive.

Proposition

If X has the Daugavet property, then ‖Id + T‖ = 1 + ‖T‖ for all strong
Radon-Nikodym operators T.

T is a strong Radon-Nikodym operator if the closure of T(BX) has the
Radon-Nikodym property.
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ℓ1-subspaces

Proposition

If X has the Daugavet property, then X contains a copy of ℓ1.

Example

In C[0,2π], the functions t 7→ sin(2nt) span a copy of ℓ1.

Theorem

If X has the Daugavet property, then ‖Id + T‖ = 1 + ‖T‖ for all ℓ1-singular
operators T.

T is called ℓ1-singular if no restriction of T to any copy of ℓ1 is an (into-)
isomorphism, i.e., bounded below.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 5/19



ℓ1-subspaces

Proposition

If X has the Daugavet property, then X contains a copy of ℓ1.

Example

In C[0,2π], the functions t 7→ sin(2nt) span a copy of ℓ1.

Theorem

If X has the Daugavet property, then ‖Id + T‖ = 1 + ‖T‖ for all ℓ1-singular
operators T.

T is called ℓ1-singular if no restriction of T to any copy of ℓ1 is an (into-)
isomorphism, i.e., bounded below.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 5/19



ℓ1-subspaces

Proposition

If X has the Daugavet property, then X contains a copy of ℓ1.

Example

In C[0,2π], the functions t 7→ sin(2nt) span a copy of ℓ1.

Theorem

If X has the Daugavet property, then ‖Id + T‖ = 1 + ‖T‖ for all ℓ1-singular
operators T.

T is called ℓ1-singular if no restriction of T to any copy of ℓ1 is an (into-)
isomorphism, i.e., bounded below.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 5/19



ℓ1-subspaces

Proposition

If X has the Daugavet property, then X contains a copy of ℓ1.

Example

In C[0,2π], the functions t 7→ sin(2nt) span a copy of ℓ1.

Theorem

If X has the Daugavet property, then ‖Id + T‖ = 1 + ‖T‖ for all ℓ1-singular
operators T.

T is called ℓ1-singular if no restriction of T to any copy of ℓ1 is an (into-)
isomorphism, i.e., bounded below.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 5/19



Unconditional bases

Definition

A Schauder basis of a Banach space X is a sequence e1,e2, . . . in X so
that every element x ∈ X can uniquely be represented by an infinite
series x =
∑∞

k=1 αkek.
If these representing series converge unconditionally, (en) is said to be an
unconditional Schauder basis.

Examples

Orthonormal bases in Hilbert spaces, the canonical basis of ℓp, the Haar
system in Lp[0,1] for p > 1. Neither C[0,1] nor L1[0,1] have an
unconditional basis.

Theorem

A separable Banach space with the Daugavet property fails to have an
unconditional basis.
Even more, a separable Banach space with the Daugavet property does
not even embed into a space with an unconditional basis.
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Rich subspaces

Theorem (here used as a Definition)

Let X be a Banach space with the Daugavet property. A closed subspace
Y is called rich if every closed subspace between Y and X has the
Daugavet property.

Examples

Unital algebras represented on their Shilov boundary are rich in C(K).

For Y ⊂ L1[0,1] put CY = the L0-closure of BY in L1.
Then Y is rich iff 1

2BL1 ⊂ CZ for every 1-codimensional Z ⊂ Y.

On the other hand, if rBL1 ⊂ CY for some r > 1
2 , then Y = L1.

If X has the Daugavet property and X/Y is reflexive or does not
contain a copy of ℓ1 (e.g., (X/Y)∗ is separable), then Y is rich.

Theorem (Kadets, Popov)

If a separable Banach space contains a complemented copy of C[0,1],
then it is isomorphic to a rich subspace of C[0,1] and can hence be
renormed to have the Daugavet property.
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2 , then Y = L1.
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contain a copy of ℓ1 (e.g., (X/Y)∗ is separable), then Y is rich.

Theorem (Kadets, Popov)
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The Daugavet equation reloaded

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all weakly compact operators T: X→ X; in fact this is so for all “strong
Radon-Nikodym operators” (i.e., T(BX) has the RNP).

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all ℓ1-singular operators T: X→ X.

Common roof:
narrow operators;
SCD operators.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 8/19



The Daugavet equation reloaded

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all weakly compact operators T: X→ X; in fact this is so for all “strong
Radon-Nikodym operators” (i.e., T(BX) has the RNP).

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all ℓ1-singular operators T: X→ X.

Common roof:
narrow operators;
SCD operators.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 8/19



The Daugavet equation reloaded

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all weakly compact operators T: X→ X; in fact this is so for all “strong
Radon-Nikodym operators” (i.e., T(BX) has the RNP).

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all ℓ1-singular operators T: X→ X.

Common roof:
narrow operators;
SCD operators.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 8/19



The Daugavet equation reloaded

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all weakly compact operators T: X→ X; in fact this is so for all “strong
Radon-Nikodym operators” (i.e., T(BX) has the RNP).

Theorem

If X has the Daugavet property, then

‖Id + T‖ = 1 + ‖T‖

for all ℓ1-singular operators T: X→ X.

Common roof:
narrow operators;
SCD operators.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 8/19



SCD sets

Definition (Avilés, Kadets, Martín, Merí, Shepelska 2010)

A bounded subset A of a Banach space is called slicely countably
determined if there is a sequence of slices Sn of A with the following
property: If B ⊂ A intersects all the Sn, then A ⊂ convB.

Note: SCD ⇒ separable

Examples of SCD-sets

Separable relatively weakly compact sets,
separable RNP-sets,
separable sets without ℓ1-sequences,
BX if X has a 1-unconditional basis.

Theorem

If X has the Daugavet property and T: X→ X is such that T(BX) is an
SCD-set, then

‖Id + T‖ = 1 + ‖T‖.
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Possible generalisations

Question

‖G+ T‖ = ‖G‖+ ‖T‖ for possibly nonlinear maps G,T: X→ Y?

Which ones? For which norm?

In the linear case, G “Daugavet centre”; characterised by V. Kadets and
T. Bosenko.

Note that a continuous linear operator T: X→ Y is

a bounded map on the closed unit ball, and the norm is the sup norm;

a Lipschitz map, and the norm is the Lipschitz norm.
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Lipschitz maps

Lip(X) stands for the Banach space of all Lipschitz maps from X to X that
map 0 to 0, endowed with the Lipschitz norm, i.e.,

‖T‖Lip = sup
§‖Tx− Ty‖

‖x− y‖
: x 6= y
ª

.

Question

If X has the Daugavet property, when does ‖Id + T‖Lip = 1 + ‖T‖Lip hold?

Theorem

If X has the Daugavet property and T ∈ Lip(X) is such that
§Tx− Ty

‖x− y‖
: x 6= y
ª

is an SCD-set (e.g., relatively weakly compact), then

‖Id + T‖Lip = 1 + ‖T‖Lip.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 11/19



Lipschitz maps

Lip(X) stands for the Banach space of all Lipschitz maps from X to X that
map 0 to 0, endowed with the Lipschitz norm, i.e.,

‖T‖Lip = sup
§‖Tx− Ty‖

‖x− y‖
: x 6= y
ª

.

Question

If X has the Daugavet property, when does ‖Id + T‖Lip = 1 + ‖T‖Lip hold?

Theorem

If X has the Daugavet property and T ∈ Lip(X) is such that
§Tx− Ty

‖x− y‖
: x 6= y
ª

is an SCD-set (e.g., relatively weakly compact), then

‖Id + T‖Lip = 1 + ‖T‖Lip.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 11/19



Lipschitz maps

Lip(X) stands for the Banach space of all Lipschitz maps from X to X that
map 0 to 0, endowed with the Lipschitz norm, i.e.,

‖T‖Lip = sup
§‖Tx− Ty‖

‖x− y‖
: x 6= y
ª

.

Question

If X has the Daugavet property, when does ‖Id + T‖Lip = 1 + ‖T‖Lip hold?

Theorem

If X has the Daugavet property and T ∈ Lip(X) is such that
§Tx− Ty

‖x− y‖
: x 6= y
ª

is an SCD-set (e.g., relatively weakly compact), then

‖Id + T‖Lip = 1 + ‖T‖Lip.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 11/19



Lipschitz maps

Lip(X) stands for the Banach space of all Lipschitz maps from X to X that
map 0 to 0, endowed with the Lipschitz norm, i.e.,

‖T‖Lip = sup
§‖Tx− Ty‖

‖x− y‖
: x 6= y
ª

.

Question

If X has the Daugavet property, when does ‖Id + T‖Lip = 1 + ‖T‖Lip hold?

Theorem

If X has the Daugavet property and T ∈ Lip(X) is such that
§Tx− Ty

‖x− y‖
: x 6= y
ª

is an SCD-set (e.g., relatively weakly compact), then

‖Id + T‖Lip = 1 + ‖T‖Lip.

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 11/19



Elements of the proof: Lipschitz slices

Introduce Lipschitz slices for Lipschitz functionals f : X→ R:

Σ(f , ϵ) =

§ x− y

‖x− y‖
:
f (x)− f (y)

‖x− y‖
> (1− ϵ)‖f‖Lip

ª

Example: Σ(‖ . ‖, ϵ) = SX

Key lemma

If A ⊂ SX and A ∩Σ(f , ϵ) = ∅, then conv(A) ∩Σ(f , ϵ) = ∅.

Lemma

If X has the Daugavet property, then for all ‖x0‖ = 1, ϵ > 0 and all
Lip-slices Σ of the unit sphere SX there exists some z ∈ Σ such that

‖x0 − z‖ ≥ 2− ϵ.

,
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Elements of the proof (cont’d)

Let K(X∗) be the weak∗ closure of extBX∗ intersected with SX∗ . (This is a
Baire space!)
Let, for a Lip-slice Σ, D(Σ, ϵ) be the set of all those x∗ ∈ K(X∗) such that Σ
intersects the slice S(SX,Rex∗, ϵ).

Lemma

If X has the Daugavet property, then D(Σ, ϵ) is weak∗ open and dense in
K(X∗). Consequently,

⋂

nD(Σn, ϵn) is always dense and hence norming.

Now start from a sequence of determining slices Sn of
§Tx− Ty

‖x− y‖
: x 6= y
ª

;

associate Lip-slices Σn; apply the previous lemma; and . . .
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§Tx− Ty

‖x− y‖
: x 6= y
ª

;

associate Lip-slices Σn; apply the previous lemma; and . . .
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The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969),

with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical range of an operator

Definition (O. Toeplitz 1918; G. Lumer / F.L. Bauer 1961/62)

Let X be a Hilbert space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {〈Tx,x〉: ‖x‖ = 1}.

Let X be a Banach space and T: X→ X a linear operator. The
numerical range of T is

V(T) = {x∗(Tx): x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1}.

Some properties

X Hilbert space: V(T) is convex (Toeplitz/Hausdorff 1918/1919).

X Banach space: in general, V(T) is not convex.

V(T) contains the convex hull of the spectrum of T (Wintner 1929;
Crabb 1969), with equality for normal operators on a Hilbert space
(Stone 1931, Berberian 1964).

,

Dirk Werner, Banach spaces with the Daugavet property, 6.2.2015 14/19



The numerical index

Definition

The number v(T) = sup{|λ|: λ ∈ V(T)}, that is

v(T) = sup{|x∗(Tx)|: x ∈ X, x∗ ∈ X∗, ‖x‖ = ‖x∗‖ = x∗(x) = 1},

is called the numerical radius of T. (Obviously v(T) ≤ ‖T‖.)

Definition

The best constant k ≥ 0 in the inequality

k‖T‖ ≤ v(T) ≤ ‖T‖ für alle T: X→ X

is called the numerical index of X, denoted by n(X).

Examples

The numerical index of an R-Hilbert space is 0, the numerical index of a
C-Hilbert space is 1/2, the numerical index of a C-Banach space is ≥ 1/e;
n(C(K)) = 1, n(L1(μ)) = 1, n(A(D)) = 1.
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The duality problem for the numerical index

Problem

n(X) = n(X∗) ??? n(X) = 1 ⇔ n(X∗) = 1 ???

“≥” resp. “⇐” always hold; hence “yes” for reflexive X.

Connection with the Daugavet equation (for real Banach spaces):

supV(T) = ‖T‖ ⇔ ‖Id + T‖ = 1 + ‖T‖
v(T) = ‖T‖ ⇔ max

±
‖Id± T‖ = 1 + ‖T‖

Lemma

n(X) = 1 if and only if max± ‖Id± T‖ = 1 + ‖T‖ for all T: X→ X.

Note:
Daugavet property 6⇒ n(X) = 1 (e.g. X = C([0,1],R2));
n(X) = 1 6⇒ Daugavet property (e.g. X = c0).

,
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Lush Banach spaces

Definition

A (real) Banach space X is called lush if for all ‖x0‖ = 1, ‖y0‖ = 1 and ϵ > 0
there exists an ϵ-slice S containing x0 such that dist(y0,conv(S ∪ −S)) ≤ ϵ.

Examples

C(K), L1(μ), A(D); rich subspaces of C(K).

Proposition

Every lush space has numerical index 1.

Theorem

If X is lush, then the “Lipschitz numerical index” is 1, i.e.,

max
±
‖Id± T‖Lip = 1 + ‖T‖Lip

for all Lipschitz maps T: X→ X.
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The solution of the duality problem

Theorem

Let X = {f ∈ C[0,2]: f (0) + f (1) + f (2) = 0}. Then n(X) = 1, but n(X∗) ≤ 1/2.

Elements of the proof:

X is lush, hence n(X) = 1.

Let Y = {f ∈ X: f (0) = f (1) = f (2) = 0}. Then X∗ ∼= Y∗ ⊕1 Y⊥ and
therefore n(X∗) ≤ n(Y⊥).

Y⊥ ∼= (X/Y)∗ and X/Y ∼= {(x,y, z) ∈ ℓ3∞: x+ y+ z = 0}.

The unit ball of this two-dimensional space is a regular hexagon,
hence n(X/Y) = 1/2 and n(Y⊥) = 1/2.

Theorem

There is a real Banach space with n(X) = 1, but n(X∗) = 0.
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Epilogue

“I have noticed,” said Mr. K., “that we put many people off our teachings
because we have an answer to everything. Could we not, in the interests
of propaganda, draw up a list of the questions that appear to us
completely unsolved?”

Bertolt Brecht, Stories of Mr Keuner

Problem

Does there exist a Banach space X such that X∗∗ has the Daugavet
property?

All contributions are welcome!

,
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