SURJECTIVITY OF PARTIAL DIFFERENTIAL
OPERATORS ON ULTRADISTRIBUTIONS OF BEURLING
TYPE IN 2 DIMENSIONS

THOMAS KALMES

ABSTRACT. We show that for a partial differential operator P(D) sur-
jectivity on the space of ultradistributions @(’w)(Q) of Beurling type is

equivalent to surjectivity of P(D) on C°°() in case of ) being an open
subset of R2.

1. INTRODUCTION

It is a classical result by Malgrange [10, Chapitre 1, Théoreme 4] that for
a polynomial P € C[X1,..., X4] and for an open set 2 C R¢ the constant
coefficient differential operator P(D) : C*°(Q2) — C>°() is surjective if and
only if 2 is P-convex for supports, that is, if and only if for every compact
subset K of ) there is another compact subset L of ) such that for each
u € &'(2) with supp P(—D)u C K it holds suppu C L.

Hormander showed in [6] that P(D) is surjective as an operator on Z'(2)
if and only if €2 is P-convex for supports and P-convex for singular supports,
i.e. for every compact subset K of ) there is another compact subset L
of Q such that for each u € &'(Q) with singsupp P(—D)u C K it holds
singsuppu C L.

It is well-known that surjectivity of P(D) as an operator on C'*(2) does
not imply surjectivity of P(D) as an operator on 2'(2) in general. However,
Treves conjectured [12, p. 389, Problem 2] that in the case of  C R? this

implication is true. A proof of this conjecture is given in [§].

In the present paper, we prove an adaption of Treves conjecture to
the setting of ultradistributions of Beurling type associated with a non-
quasianalytic weight function w. These generalize classical distributions by
allowing more flexible growth conditions for the Fourier transforms of the

2010 Mathematics Subject Classification. Primary 35E10, 46F05, 46F10.
Key words and phrases. Constant coefficient partial differential equation, Ultradistri-
butions of Beurling type.

This is a preprint version of the article published in: Studia Mathematica, Volume 201,
Issue 1, 2010, Pages 87-102, DOI: 10.4064/sm201-1-7.
1



2 T. KALMES

corresponding test functions than the Paley-Wiener weights. More precisely,

we prove the following theorem.

Theorem 1.1. Let Q C R? be open and P € C[X, Xs]. Then the following
are equivalent.
i) P(D):C*®(Q) — C*(Q) is surjective.
ii) P(D): 2'(Q) — 2'(Q) is surjective.
iii) P(D) : Z,,(Q) = Z,)(Q) is surjective for each non-quasianalytic
weight function w.
iv) P(D) : Z,,(Q2) = 2{,,(2) is surjective for some non-quasianalytic
weight function w.
The above theorem complements the following result proved by Zampieri
which shows the peculiarity of d = 2, too. For an open subset Q of R? we

denote as usual the space of real analytic functions on Q with A(2).

Theorem 1.2 (Zampieri [13]). Let Q C R? be open and P € C[X}, Xs].
The following are equivalent.

i) P(D):C*®(Q) — C*(Q) is surjective.

ii) P(D): A(Q) — A(Q) is surjective.

The article is organized as follows. In the preliminary section 2 we fix no-
tation and recall some well known facts about ultradistributions of Beurling
type. In section 3 we explain the connection of continuation of ultradiffer-
entiability and certain localizations of P at infinity. Moreover this section
contains the key result which sets apart the case d = 2 from d > 3. Namely,
we show that in R? certain hyperplanes which arise in the context of con-
tinuation of ultradifferentiability are always characteristic hyperplanes for
P. Section 4 provides a sufficient condition for an open subset 2 of R? to be
P-convex for (w)-singular supports by means of an exterior cone condition.
This condition is applied in section 5 in order to prove Theorem

2. PRELIMINARIES

In this section we introduce the ultradistributions of Beurling type in

the sense of Braun, Meise, and Taylor [4].

Definition 2.1. A continuous increasing function w : [0,00) — [0,00)
is called a (non-quasianalytic) weight function if it satisfies the following
properties

(cv) there exists K > 1 with w(2t) < K(1 + w(t)) for all t > 0,

(B) f5° 2l dt < oo,
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(7) hmt%oo % = 07

(0) ¢ = woexp is convex.
w is extended to C? by setting w(z) := w(|z]). Since we are not dealing with
quasianalytic weight functions in this article we simply speak of weight
functions for brevity.

For K C R? compact let

D) (K) = {f € C>(R"); supp f C K and
|f ()| exp(Aw(z)) dz < oo for all A > 1}
R4

be equipped with its natural Fréchet space topology, and Z,,)(Q2) = |J Zw)(K),
where K runs through all compact subsets of the open subset € of R?
equipped with its natural (LF)-space topology. The elements of its dual
space .@(’w)(Q) are the ultradistributions of Beurling type.

The associated local space in the sense of Hérmander |7, 10.1.19]

() = .@(w)(Q)loc ={u € .@(/w)(Q); ou € D,)(2) for all p € Z(.,)(Q)}
is the space of ultradifferentiable functions of Beurling type.

Remark 2.2. i) For each weight function w we have lim,_,,, w(t)/t = 0 by
the remark following 1.3 of Meise, Taylor, and Vogt [11].
ii) It is shown in [4] that condition () guarantees that Z,)(£2) # {0}
and that there are partitions of unity consisting of elements of Z.(2).
iii) By [4] we have

Ew () ={f e C*(Q); for all k € Nand K €
hci= s | @exp (ke (51)) <03,

aeNg zeK
where ¢*(s) = sup{st — ¢(t); t > 0} is the Young conjugate of ¢.
iv) For > 1 the function w(t) = /% is a weight function for which the
corresponding class of ultradifferentiable functions coincides with the small
Gevrey class

Y(Q)={fecC®Q);VKeQVYC>1: sup |f(a)ﬂ<oo}.

S|
xEK,aENg al Cl |

Definition 2.3. &, (Q2) equipped with the seminorms (| - |k )ken,xecq is a
nuclear Fréchet space. Its dual &/,(€2) is equal to the space of u € Z[,(€2)
for which

supp u = R%\ U{B C R? open; u(yp) = 0 for all p € Z,\(B)}

is a compact subset of ().
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The next theorem is a special case of a result due to Frerick and Wengen-
roth (see [5]), which completes a result of Bonet, Galbis, and Meise (see [2]),
characterising surjectivity of convolution operators on ultradistributions of

Beurling type.

Theorem 2.4. Let Q C RY be open, w be a weight function, and P €
C[X1,...,X4]. Then the following are equivalent.

i) P(D): 9,,(Q) = Z,,(Q) is surjective.
ii) Q is P-convex for (w)-supports as well as P-convex for (w)-singular

SUPPorts.

Recall, that an open subset Q of R? is called P-convex for (w)-supports
if for every compact subset K of ) there is a compact subset L of {2 such
that supp ¢ C L whenever supp P(—D)p C K for every ¢ € Z,,(€2). Anal-
ogously, €2 is called P-convex for (w)-singular supports if for every compact
subset K of €) there is a compact subset L of €2 such that singsupp (,yu C L
whenever sing supp (,) P(—D)u C K for every u € & )(Q)

(w

Remark 2.5. i) Clearly, P-convexity for supports of 2 implies P-convexity
for (w)-supports of €. On the other hand, Z,,(?) is sequentially dense in
2(92), as shown by Braun et al. [4, Proposition 3.9], so that P-convexity for
supports is implied by P-convexity for (w)-supports. Hence, P-convexity for
supports and P-convexity for (w)-supports are in fact equivalent.

i) If P is elliptic the same is obviously true for P. Hence P(—D) has a
fundamental solution E which is analytic in R%\ {0}. Since analytic functions
are contained in &,(§2) for each weight function w (cf. [4, Proposition 4.10])

we have in particular
ch(singsupp () E) = ch(sing supp (., P(—D)d),

where ch(A) denotes the convex hull of a set A C R%. By [3, Theorem 2.1]
it therefore follows that for each open set Q C R? and every u € D) ()
we have
sing supp () P(—D)u = sing supp (,,)u.

In particular,  is P-convex for (w)-singular supports. This and the well-
known fact that every open subset  of R? is P-convex for supports for
elliptic P imply by Theorem [2.4] the surjectivity of

P(D): 9,)() = Z,)(Q)

whenever P is elliptic.

From now on, let P always be an non-constant polynomial.
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3. (w)-LOCALIZATIONS AT INFINITY AND CONTINUATION OF
ULTRADIFFERENTIABILITY

Obviously, P-convexity for (w)-singular supports is closely related to the
continuation of (w)-ultradifferentiability of P(—D)u to u. Analogously to
the tools introduced by Hormander in order to deal with the classical case
(see e.g. [7, Section 11.3, vol. II]) Langenbruch introduced the following
notions in [9]. For a polynomial P, a subspace V of RY and ¢t > 0,¢ € R?
let

Py(&t) =sup{|[P(E+n);n €V, |n| <t}
and
p(£7t> = de<£7t)'

Moreover, let

opw) (V) := inf lim inf M
21 &0 P(E, tw())
If we formally set w = 1, we obtain Hormander’s classical definition of
op(V), [1, Section 11.3, vol. II]. In order to simplify notation we write
0p,(w)(N) instead of op (. (span{N}) for N € S4.
The next theorem is almost an immediate consequence of [9, Theorem

2.5,

Theorem 3.1. Let Q; C €y be open convex subsets of RY. Assume that
every hyperplane H = {x € R% (x,N) = o}, N € S¥ 1 a € R with
opw)(IN) = 0 which intersects dy already intersects €.

Then for every u € :@(’w)(Qg) satisfying sing supp yP(D)u = 0 as well
as sing supp wu C Q\Qy we already have sing supp yu = 0.

PROOF. Let u € 7, (%) satisfy P(D)u € &) (€22) and ufg, € &) ().
Since )5 is convex it follows from the Theorem of supports (see e.g. [T, The-
orem 4.3.3, vol. I]) and [2, Theorem A] that there is v € &,)(£22) such that
P(D)v = P(D)u so that w := u—1v € Z,,({) satisfies P(D)w = 0 as well
as wlo, € &)(£21). Hence, by [9, Theorem 2.5] it follows that w € &,)(£2)
which proves the theorem. O

When investigating P-convexity for (w)-singular supports by means of
the above theorem it is necessary to study the zeros of op () in Sa=1 In
order to do so, recall the definition of w-localizations of P at infinity, as
introduced by Langenbruch in [9]. For a polynomial P and ¢ € R? we set
P ,(z) = P({+w(§)x) which is again a polynomial of the same degree as P.

Clearly, by P := V2o [P@(0)]? there is a norm given on the vector space
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C[Xy, ..., Xy]. From now on let C[ X7, ..., X ] be equipped with the vector
space topology induced by this norm. The set of all limits in C[Xq, ..., X,]
of the normalized polynomials

Pew(2)

P,

as £ tends to infinity is denoted by L, (P). More precisely, if N € S~ then
the set of limits where £/|¢| — N (with £ tending to infinity) is denoted by
L, n(P). Obviously, L, (P) as well as L, x(P) are closed subsets of the unit
sphere of all polynomials in d variables, equipped with the norm @ Q, of

X

degree not exceeding the degree of P. The non-zero multiples of elements
of L,(P) (resp. of L, y(P)) are called w-localizations of P at infinity (resp.
w-localizations of P at infinity in direction N). Since w(§) = w(|¢]), Q €
L,n(P) if and only if Q € L, _n(P). Again, if we formally set w = 1
we obtain the well known set L(P) of localizations of P at infinity (see
Hormander [7), Definition 10.2.6]).

For the classical case, i.e. if formally w = 1, the next lemma is proved
in [8]. The proof here is almost the same, but we include it for the reader’s

convenience.

Lemma 3.2. Let P be of degree m with principal part P,,.
i) For every subspace V of R and t > 1 we have

it VEE©) o Qr(0)

e P tw(E)  QeLer) Q(0,1)

ii) Let N € S“' and Q € Ly n(P). If P,,(N) # 0 then Q is constant.
iii) If P is non-elliptic then for every subspace V of R? and t > 1 we

have

_ : Qv (0,t)
— = nf inf = :
§vo0 P(E tw(§)) N€eS§1,Ppn(N)=0 Q€Lun(P) (Q(0,1)

PROOF. i) Since for every subspace V and each ¢t > 0 the maps R +—
Ry (0, 1) are continuous seminorms on C[X, . .., X4] and because Py (€, tw(€))
(Pr)v(0,1) it follows immediately from the definition that

v (0, 1) Py (g tw(9)

a > lim inf

Q(0,t) — & P& tw(é))

for every Q € L, (P).
Moreover, if (&,),en tends to infinity such that

Pr(&tw@) . Prl&ntw(&)) . (Peu)v(00)

liminf =——>—*% = lim = lim

¢v0o P(Etw(€)) oo P& tw(&))  noe P, w(0,1)
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we can extract a subsequence of (,),en which we again denote by (&,)nen
such that the sequence of normalized polynomials 7%, ,/ pén,w converges in
the compact unit sphere of all polynomials in d variables of degree at most

m. This limit belongs to L, (P) and we get

g DV (& w(E) > inf Qv(0,7)
00 P(§tw(E)) — @eluP) Q(0,1)
completing the proof of i).
The proof of ii) is an easy application of Taylor’s formula. Let P =
ZT:O P;, where P; is a homogeneous polynomial of degree j. Let (&,)nen
tend to infinity with lim, . &,/|.| = N and P,,(N) # 0. Then

P,
P = Y &) f ol
0<lal<j<m '
. &l & €T (6)!™) ey En ) o
<j<m <la|<j<m
Moreover

m

Pepwo = Yo 1Y B (G (6l

0<|al<m  j=|a

_ m ‘€n| (a gn |§n|J o lw( ) o
& ‘Z \sn| el 2 > Gl T

0<|al<m  j=|q|

which implies by w(&,) = o(|€,]) as n tends to infinity
Pew(n) _ Pa(N)

lim —= =
=0 Pew [P (N)]

for every n € R? showing ii).

iii) is an immediate consequence of lim infe ., Py (€, tw(€))/P(&,tw(€)) <
1, 1), and ii). d

Before we continue, recall the following definition (cf. Hormander [7,
Section 10.2]). Let
AP)={neR,VEeR, teR: P(+1tn) = P(E)},

which is obviously a subspace of R? which coincides with R? if and only if P
is constant. In case of w = 1 the corresponding result of the next proposition
is due to Hormander [7, Theorem 10.2.8, vol. II] and its proof uses the

Tarski-Seidenberg theorem. In our case, the proof is rather elementary.

Lemma 3.3. If Q € L, n(P) then N € A(Q).
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PROOF. Since w(§) = w(|{]) we can assume without loss of generality
that N = e; = (1,0,...,0). We denote the degree of P by m. In case of
P = 0 we clearly have by Taylor’s theorem that e; € A(P) which clearly
implies e; € A(Q) by the definition of L, (P).

Now, if P1) does not vanish identically it follows that Pg(ij) does not
vanish identically either, for every ¢ € R Since P + > |P)(0)] is a
norm on the space of all polynomials in d variables, it follows that for every
£ eR?

0 |PED0)] =D [Pt (@w@)l = Y [Pete©)lw(E),

0<|ar|]<m—1

because P has degree m. Hence, for every ¢ € R% ¢t € R we have by Taylor’s

theorem
0 < [Pt +w(@)(x +ser))| _ | 2ozjajzm-1 Pt (€)w(&) 4 (z + ser)?]
- > o [P |w(&)l > [P |w(&)l
< Zog\a|§m—1 |P(a+el)(f)|w(§>‘a|$|(x + se1)?|
B >0<]al<m—1 | Platen) (€)w (&) e
< MaXogjaj<m-t $|(x + seq)?|
- w(§)
Since @ € L, (P) there is (&, )nen tending to infinity such that

Enyw
in the vector space topology of the polynomials in d variables of degree not
exceeding m. In particular, we also have

Q(61)(:L') — lim P(el)(gn:i‘w(gn)x).

n—o00 an w

The space of all polynomials in d variables of degree not exceeding m being
finite dimensional, all norms on it are equivalent. Therefore, by passing to
a subsequence of (§,)nen if necessary, there is ¢ > 0 such that for every
r€R%and s € R

QO (a4 se)| = tim D0+ G+ ser)

n—o0 Pin,w

[P (&0 + w(&a)( + se1))]

< cli

= S TR P () ()
L a

< ¢ lim Maxo<|a|<m—1 a!|(x + 861) |

n—00 w(én)
= 0.
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Hence, for each z € R? the polynomial ¢, : R — C, s — Q(z + se;) satisfies
¢.(s) = Q) (x4 se;) = 0. Thus g, is constant which shows that e; € A(Q).
O

Now we are able to prove the main result of this section. In the classical
case, i.e. if we formally set w = 1, the corresponding result was proved in [g].
Again the proofs are almost identical but we include it here for completeness’

sake.

Lemma 3.4. Let P € C[X;, X3 be of degree m with principal part P,,.
Then

{yeS% opu(y) =0} C{y €S Puly) =0}

Proor. By Lemma i) and ii) we can assume without loss of generality
that P is not elliptic. Since we are in R? the principal part P,, can only have a
finite numbers of zeros in S*. Let {N € S'; P,,(N) =0} = {Ny,..., N;}. For
each 1 < j <[ choose z; € S' orthogonal to N;. Without loss of generality,
let {y € S'; op(y) = 0} # 0. By Lemma there is a non-constant ) €
L, (P) for some 1 < j < 1. By Lemma [3.3 we have Q(§ + sN;) = Q(&)
for any ¢ € R?, s € R. Hence Q(&) = Q((£, z;)x;) for all £ € R?. Defining

q:R—C,s— Q(sz;)
it follows that for fixed y € S!

Qupaniy(0,8) = sup{|QOW): A < ¢} = sup{|Q(\y. 2),)]: ]A] < ¢}
— sup{Ja(M{y,z;))]; A < 1},

and because |z;| = 1 we also have

Q0,t) = sup{|Q(&)]; € € R?,[¢] <t} = sup{|Q((&, z;)x))]; £ € R?, [¢] <t}
= sup{|Q(Az;)|; [A] <t} =sup{|g(M)[; [A] < 1}

Since @ € L, (P) it follows that ¢ is a polynomial of degree at most m.
Because on the finite dimensional space of all polynomials in one variable of
degree at most m the norms sup,<; [p(s)| and 37" [p*)(0)| are equivalent
there is C' > 0 such that

C'sup |p(s)| > Z 1p™*)(0)] > 1/C sup |p(s)]
k=0

s|<1 s|<1
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for all p € C[X] with degree at most m. Applying this to the polynomials
s — q(st) and s — q(st(y, z;)) gives
@spajz{y}(oat) L Do ld Oy, @)
Q1) O, g (o)
> {y,x;)|™/C?

where we used |(y, z;)| < 1 in the last inequality. We conclude that for every
1<j<li

Qszum{y}(()?t) > |<y7 xj>|m

in )
QeLon;(P)  Q0,t)  —  C?
where C only depends on the degree m of P. It follows from Lemma iii)
and {N € S'; P,,(N) =0} = {Ny,...,N;} that for all t > 1

Popanyy (6,10(€)) g Qupan{y3 (0,1) > min LY 2™

lim inf = = 1 > mi
emoo P(Etw(€)) 1<j<IQeLun;(P)  Q(0,1) i<t G2

Therefore, if for y € S*

ﬁs an ,t
0 = 0p(w)(y) = inf lim inf —= wH(& tw(€))

R (R Z((J))

it follows that y is orthogonal to some xz;, hence y € {N;,—N,} since
ly| = 1 = |N;| which shows P,,(y) = 0. O

In particular it follows that for P € C[X, X5]\{0} the set

{y € SYopw)(y) = 0}

is finite. Moreover, it follows immediately from the above lemma that in
case of d = 2 every hyperplane H = {z; (z, N) = a}, N € S*! o € R, with
opw)(IN) = 0 is characteristic for P. That this is not the case in general for
d > 3 is shown by the next example.

Example 3.5. Let d > 2 and P € C[X},..., X, be given by
P(xy,...,0q) =27 — 25 — ... — 22,

It follows that for each weight function w an w-localization of P at infinity
in direction 1/4/2(1,1,0,...,0) is given by Q(x1,...,7q4) = (21 — 22)/V/2.
Hence it follows for e; = (0,...,0,1) that Qsmn{ed}(O, t) =0 for every t > 1
so that in particular O'P7(w)(€d) = 0 by Lemma . On the other hand, we
clearly have P(eq) = P(eq) = —1.
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4. A SUFFICIENT CONDITION FOR P-CONVEXITY FOR (w)-SINGULAR
SUPPORTS

In this section we will prove a sufficient condition for an open subset (2
of R4 to be P-convex for (w)-singular supports in terms of an exterior cone
condition, similar to those proved in [§].

Recall that a cone C' is called proper if it does not contain any affine
subspace of dimension one. Moreover, recall that for an open convex cone
I' € R? its dual cone is defined as

I°:={¢cRyvyel: (y& >0}

For I' # () it is a closed proper convex cone in R?. On the other hand, every
closed proper convex cone C in R? is the dual cone of a unique non-empty,

open, convex cone which is given by

I':={ycR% Ve e C\{0}: (y,&) >0}

The proof can be done by the Hahn-Banach Theorem (cf. [7, p. 257, vol. I]).
Therefore, we use the notation I'° also for arbitrary closed convex proper
cones. Moreover, from now on we assume all open convex cones I' to be
non-empty.

As a first result we obtain from Theorem the next proposition which
is an analogue result to [7, Corollary 8.6.11, vol. I].

Lemma 4.1. Let I' be an open proper convex cone in RY, o € R If for
Q=29+ I no hyperplane H = {x € R% (x,N) = a}, N € S% 1 a € R,
with op ) (N) = 0 intersects Q only in zg, the following holds.

Fachu € @(’w)(Q) with sing supp ) P(D)u = 0 and sing supp (,yu bounded
already satisfies sing supp yu = 0.

PrOOF. Let u € 7, (?) satisty P(D)u € &.,)(2) and assume that
u is &, outside a bounded subset of €. Since I' is a proper cone, there
is a hyperplane 7 intersecting {2 only in x,. Let H, be a halfspace with
boundary parallel to 7 such that Q; := QN H, # () is unbounded and
ulg, € &)(€h). Denoting €, := Q we have convex sets 1 C 2y and by the
hypothesis, each hyperplane H = {z € R% (2, N) = a}, N € S%1 a € R,
with 0p ) (N) = 0 and HNQ, # 0 already intersects ;. Theorem [3.1 now
gives singsupp (yu = 0. O

Before we come to the main result of this section, we need one more

result.
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Theorem 4.2. i) If u € &, (R) then
ch(sing supp (yu) = ch(sing supp (., P(—D)u).

ii) For an open subset Q of R? the following are equivalent.
a) Q is P-convex for (w)-singular supports.

b) For each u € &, (S2) one has
dist(sing supp (u, 2°) = dist(sing supp . P(—D)u, 2°).

PROOF. i) By a result of Bonet et al. [3, Remark 2.10] one has for
a convex compact subset K of R? and u € &)(R?) that the inclusion
sing supp (,yu C K is equivalent to the existence of b > 0 such that for each
m € N there is C,, > 0 such that

()] < O exp(Hg (ImC) + bw(C))

for all ¢ € C* with |Im¢| < mw(¢) and [¢| > C,,, where Hf denotes the
supporting function of K. Moreover, by [3, Remark 1.2 (c¢)] we can assume
without loss of generality that w > 1.

Since by Braun et al. [4, Lemma 1.2] there is some constant K > 0 such
that w(¢+n) < K(1+w(¢) +w(n)) for all ¢,n € C4 it follows for all ¢ € C4
with [Im(| < mw(¢) and all z € C, |z| = 1 that

I (¢ + ze1)]

IN

mw(¢) +1=mw({ + ze; — zey) + 1
mw(|¢+zel|+1)+1 < Km(l4+w((+ze1) +w(l)) + 1
Kmw(C+ zep) + (Km(1 +w(1)) + 1) w(¢ + zeq)
(Km(2+w(l)) + 1) w(C + zeq).

VAN VAN

Hence, if |Im¢| < mw(() for some m € N there is k& € N such that
(1) IIm (¢ + ze1)| < kw(C + zey) for all z € C,|z| = 1.

Now, for u € &(,(2) set f := P(—D)u and let K be the convex hull
of singsupp (., f. Clearly, we have ch(singsupp (,yu) O K. In order to show
that ch(singsupp (,yu) C K observe that by [3, Remark 2.10] there is b > 0
such that for all m € N there is C,,, > 0 such that

1P(=Q)a(C)] = |F(Q)] < Coexp(Hi (ImC) + b (C))

for all ¢ € C? with || > C,, and |[Im¢| < mw(¢). By [7, Lemma 7.3.3, vol.
I] there is a > 0 such that
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for all ¢ € CY. Hence, for all ¢ € C? such that |¢ + ze;| > C,, and |[Im(¢ +
ze1)| < mw(C + zep) for every |z| = 1 we obtain
ala(C)] < sup Cpexp(Hg(Im(C + zeq)) + bw(C + zeq))
|z|=1
< sup Oy, exp(Hg(Im¢) + Hx(Imzey) + bK (1 + w(() + w(1)))

|z|=1

= sup O, exp(Hg(Imzey) + bK (1 4+ w(1))) exp(Hx(Im¢) + bKw(()).

|2=1

Combining this and inequality (4.1) gives b > 0 such that for all m € N
there is CN’m > (0 such that

[a(¢)] < Con exp(Hr (Im) + bw(())

for all ¢ € C% with |¢| > C,, and |Im¢| < mw((), proving ch(sing supp (@) C
K, hence i).

Using i), ultradifferentiable cut-off functions, and taking into account
that &,)(€2) is an algebra with continuous multiplication (cf. [4, Proposi-
tion 4.4]), the proof of ii) follows along the same lines as the proofs of [7,
Theorem 10.6.3 and/or Theorem 10.7.3, vol. II]. O

The following proposition (cf. [§]) contains some elementary geometric

facts which will be used in the sequel.

Lemma 4.3. Let I° # {0} be a closed proper convezx cone in R? and N €
S4=1. For ¢ € R let H, := {x € R {(x, N) = c}. Then the following are
equivalent.

i) Nel' or =N €T

ii) If v € H. then H.N (x +1°) = {z}.

We are now able to prove the main result of this section. Compare also
[8, Theorem 9.

Theorem 4.4. Let ) be an open connected subset of R? and P € C[X4, ..., X4
a non-constant polynomial with principal part P,,. Then € is P-convex for

(w)-singular supports if for every x € 0K there is an open convex cone T’
such that (x +T°)NQ =0 and op,)(y) #0 for ally € T.

PROOF. Let u € &, (). We set K := singsupp () P(—D)u and ¢ :=
dist(K,Q°). We will show that
dist(sing supp (w)u, 2°) > 6

which by
sing supp (yu O sing supp )y P(—D)u
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will imply
dist(sing supp (u)u, 2°) = 6,
hence P-convexity for (w)-singular supports of 2 by Theorem [4.2]

Let zyp € 02 and let ' be as in the hypothesis for zo € 9. Then
(w0 +T°)NQ =0, thus (zo +y +T°) N K =0 for all y € R? with |y| < 6.
Therefore, for fixed y with |y| < 0, there is an open proper convex cone [ in
R? with T' D I'°\{0} such that (z¢ +y + )N K = 0. Hence, u € &y () C
Dy (@0 +y + I) satisties P(—D)u € &u)(zo +y +1T).

We will show that u € &,)(zo +y + I') by applying Lemma . Hence,
let # = {v € R%(v,N) = a} be a hyperplane with op,)(N) = 0. As
' is a closed proper convex cone with non-empty interior, it is the dual
cone of some open proper convex cone I'y. It follows from I'] = [ >I°
that I’y C I'. Because op.)(N) = 0 it follows from the hypothesis that
{N,—-N} NT = ), hence {N,—N} NT; = 0, so that by Lemma H
does not intersect xy + y + r only in zo + y. Since u € &, () we have
that singsupp u is compact. Moreover P(—D)u € &, (2o +y +1T'), so that
u € (o +y + ') by Lemma Since xy € 092 and y with |y| < o
were chosen arbitrarily, we conclude that dist(singsupp (yu, ) > ¢, which
proves the theorem. O

5. PROOF OF THE MAIN THEOREM

Recall that for elliptic P every open subset Q@ C R is P-convex for
supports. In case of d = 2 a complete characterization of P-convexity for
supports is known. It is due to Hérmander, see e.g. [7, Theorem 10.8.3, vol.
I1].

Theorem 5.1. If P is non-elliptic then the following conditions on an open
connected set Q0 C R? are equivalent.

i) Q is P-convez for supports.
ii) The intersection of every characteristic hyperplane with S is convet.
iii) For every xo € OS) there is a closed proper convex cone I'° # {0}
with (xg + I°) N Q = 0 and no characteristic hyperplane intersects

xo + I'° only in xy.

It is not hard to see that in the above theorem condition iii) is equivalent

to the following condition (see [§]).

iii’) For every xo € OS) there is an open convex cone I’ # R? with (zg +
YN Q =0 and Py(y) # 0 for all y € T, where P, denotes the
principal part of P.
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Theorem 5.2. Let Q) C R? be open, w a weight function, and P € C[X1, X5].
If Q is P-convex for supports then § is P-convex for (w)-singular supports.

ProOF. Without loss of generality we can assume that P is not elliptic.
Clearly, by passing to the different components of €2 if necessary, we can
assume that €2 is connected. Since P is not elliptic, it follows from The-
orem with iii’), Lemma [3.4] and Theorem that € is P-convex for
(w)-singular supports. O

As a corollary we now obtain Theorem [I.1]

PrOOF OF THEOREM (1.1 That i) and ii) are equivalent is shown in
[§]. Clearly, iii) implies iv). By Theorem [2.4) and Remark [2.5]1), iv) implies
that  is P-convex for supports, so that i) follows from iv). So, all that

remains to be shown is that i) implies iii). But this implication follows from
Theorem [£.2] and Theorem [2.4] O

Combining Theorems [1.2] [5.1] and [I.1] gives the next result.

Theorem 5.3. Let Q C R? be open and P € C[Xy, Xs]. The following are
equivalent.
i) P(D)
i) P(D)
iii) P(D)
) P(D)
weight function w.
v) P(D) : 7, () = () is surjective for each non-quasianalytic

weight function w.

cA(Q) — A(Q) is surjective.

1 C®(Q) — C(Q) is surjective.

: 2'(Q) = Z'(Q) is surjective.

D0y (Q) = D, (Q) is surjective for some non-quasianalytic

1v

vi) The intersection of every characteristic hyperplane with any con-

nected component of () is convez.

The next example shows that for d > 3 an analogous result to Theorem
is not true in general. See also Langenbruch [9, Example 3.13], where it
is shown that surjectivity of P(D) on .@(’w)(Q) for d > 3 depends explicitly

on the weight function w in general.

Example 5.4. Let d > 2 and P(zy,...,24) = 22 — 23— ... — 22 Moreover,
let T := {z € RY 24 > (22 + ...+ 2% |)Y/?}. Then I' is an open convex cone
with ['® = T. Set  := RY\T. Then it is not hard to show that 2 is P-convex
for supports. This follows for example by [8, Theorem 9 i)]. Hence, P(D) is
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surjective on C'*(€2) but P(D) is not surjective on 2'(Q2) (see [8, Example
12]).
Moreover, it follows from Example [3.5/ and Lemma that

Pspan{ed} (57 w(g))

lim inf =0

o P(gw(©))
where eg = (0,...,0,1). Setting H = {z € R%; (x,e4) = —1} and

Y

K :=Hn{zeR%|z| <2}

it is easily seen that the distance of 92 = OI' to K is 1 while the distance
of OI" to Oy K, i.e. to the boundary of K relative H, strictly increases 1.

Hence, it follows from [9, Corollary 2.7] that P(D) cannot be surjective on
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