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Abstract. We show that for a partial differential operator P (D) sur-
jectivity on the space of ultradistributions D ′

(ω)(Ω) of Beurling type is

equivalent to surjectivity of P (D) on C∞(Ω) in case of Ω being an open
subset of R2.

1. Introduction

It is a classical result by Malgrange [10, Chapitre 1, Théorème 4] that for

a polynomial P ∈ C[X1, . . . , Xd] and for an open set Ω ⊂ Rd the constant

coefficient differential operator P (D) : C∞(Ω)→ C∞(Ω) is surjective if and

only if Ω is P -convex for supports, that is, if and only if for every compact

subset K of Ω there is another compact subset L of Ω such that for each

u ∈ E ′(Ω) with suppP (−D)u ⊂ K it holds suppu ⊂ L.

Hörmander showed in [6] that P (D) is surjective as an operator on D ′(Ω)

if and only if Ω is P -convex for supports and P -convex for singular supports,

i.e. for every compact subset K of Ω there is another compact subset L

of Ω such that for each u ∈ E ′(Ω) with sing suppP (−D)u ⊂ K it holds

sing suppu ⊂ L.

It is well-known that surjectivity of P (D) as an operator on C∞(Ω) does

not imply surjectivity of P (D) as an operator on D ′(Ω) in general. However,

Trèves conjectured [12, p. 389, Problem 2] that in the case of Ω ⊂ R2 this

implication is true. A proof of this conjecture is given in [8].

In the present paper, we prove an adaption of Trèves conjecture to

the setting of ultradistributions of Beurling type associated with a non-

quasianalytic weight function ω. These generalize classical distributions by

allowing more flexible growth conditions for the Fourier transforms of the
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2 T. KALMES

corresponding test functions than the Paley-Wiener weights. More precisely,

we prove the following theorem.

Theorem 1.1. Let Ω ⊂ R2 be open and P ∈ C[X1, X2]. Then the following

are equivalent.

i) P (D) : C∞(Ω)→ C∞(Ω) is surjective.

ii) P (D) : D ′(Ω)→ D ′(Ω) is surjective.

iii) P (D) : D ′(ω)(Ω) → D ′(ω)(Ω) is surjective for each non-quasianalytic

weight function ω.

iv) P (D) : D ′(ω)(Ω) → D ′(ω)(Ω) is surjective for some non-quasianalytic

weight function ω.

The above theorem complements the following result proved by Zampieri

which shows the peculiarity of d = 2, too. For an open subset Ω of Rd we

denote as usual the space of real analytic functions on Ω with A(Ω).

Theorem 1.2 (Zampieri [13]). Let Ω ⊂ R2 be open and P ∈ C[X1, X2].

The following are equivalent.

i) P (D) : C∞(Ω)→ C∞(Ω) is surjective.

ii) P (D) : A(Ω)→ A(Ω) is surjective.

The article is organized as follows. In the preliminary section 2 we fix no-

tation and recall some well known facts about ultradistributions of Beurling

type. In section 3 we explain the connection of continuation of ultradiffer-

entiability and certain localizations of P at infinity. Moreover this section

contains the key result which sets apart the case d = 2 from d ≥ 3. Namely,

we show that in R2 certain hyperplanes which arise in the context of con-

tinuation of ultradifferentiability are always characteristic hyperplanes for

P . Section 4 provides a sufficient condition for an open subset Ω of Rd to be

P -convex for (ω)-singular supports by means of an exterior cone condition.

This condition is applied in section 5 in order to prove Theorem 1.1.

2. Preliminaries

In this section we introduce the ultradistributions of Beurling type in

the sense of Braun, Meise, and Taylor [4].

Definition 2.1. A continuous increasing function ω : [0,∞) → [0,∞)

is called a (non-quasianalytic) weight function if it satisfies the following

properties

(α) there exists K ≥ 1 with ω(2t) ≤ K(1 + ω(t)) for all t ≥ 0,

(β)
∫∞

0
ω(t)
1+t2

dt <∞,
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(γ) limt→∞
log t
ω(t)

= 0,

(δ) ϕ = ω ◦ exp is convex.

ω is extended to Cd by setting ω(z) := ω(|z|). Since we are not dealing with

quasianalytic weight functions in this article we simply speak of weight

functions for brevity.

For K ⊂ Rd compact let

D(ω)(K) = {f ∈ C∞(Rd); supp f ⊂ K and∫
Rd

|f̂(x)| exp(λω(x)) dx <∞ for all λ ≥ 1}

be equipped with its natural Fréchet space topology, and D(ω)(Ω) =
⋃

D(ω)(K),

where K runs through all compact subsets of the open subset Ω of Rd,

equipped with its natural (LF)-space topology. The elements of its dual

space D ′(ω)(Ω) are the ultradistributions of Beurling type.

The associated local space in the sense of Hörmander [7, 10.1.19]

E(ω)(Ω) = D(ω)(Ω)loc = {u ∈ D ′(ω)(Ω); ϕu ∈ D(ω)(Ω) for all ϕ ∈ D(ω)(Ω)}

is the space of ultradifferentiable functions of Beurling type.

Remark 2.2. i) For each weight function ω we have limt→∞ ω(t)/t = 0 by

the remark following 1.3 of Meise, Taylor, and Vogt [11].

ii) It is shown in [4] that condition (β) guarantees that D(ω)(Ω) 6= {0}
and that there are partitions of unity consisting of elements of D(ω)(Ω).

iii) By [4] we have

E(ω)(Ω) = {f ∈ C∞(Ω); for all k ∈ N and K b Ω

|f |k,K := sup
α∈Nd

0,x∈K
|f (α)(x)| exp

(
−kϕ∗

(
|α|
k

))
<∞},

where ϕ∗(s) = sup{st− ϕ(t); t ≥ 0} is the Young conjugate of ϕ.

iv) For δ > 1 the function ω(t) = t1/δ is a weight function for which the

corresponding class of ultradifferentiable functions coincides with the small

Gevrey class

γδ(Ω) = {f ∈ C∞(Ω); ∀K b Ω ∀ C ≥ 1 : sup
x∈K,α∈Nd

0

|f (α)(x)|
α!δC |α|

<∞}.

Definition 2.3. E(ω)(Ω) equipped with the seminorms (| · |k,K)k∈N,KbΩ is a

nuclear Fréchet space. Its dual E ′(ω)(Ω) is equal to the space of u ∈ D ′(ω)(Ω)

for which

suppu = Rd\
⋃
{B ⊂ Rd open; u(ϕ) = 0 for all ϕ ∈ D(ω)(B)}

is a compact subset of Ω.
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The next theorem is a special case of a result due to Frerick and Wengen-

roth (see [5]), which completes a result of Bonet, Galbis, and Meise (see [2]),

characterising surjectivity of convolution operators on ultradistributions of

Beurling type.

Theorem 2.4. Let Ω ⊂ Rd be open, ω be a weight function, and P ∈
C[X1, . . . , Xd]. Then the following are equivalent.

i) P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω) is surjective.

ii) Ω is P -convex for (ω)-supports as well as P -convex for (ω)-singular

supports.

Recall, that an open subset Ω of Rd is called P -convex for (ω)-supports

if for every compact subset K of Ω there is a compact subset L of Ω such

that suppϕ ⊂ L whenever suppP (−D)ϕ ⊂ K for every ϕ ∈ D(ω)(Ω). Anal-

ogously, Ω is called P -convex for (ω)-singular supports if for every compact

subset K of Ω there is a compact subset L of Ω such that sing supp (ω)u ⊂ L

whenever sing supp (ω)P (−D)u ⊂ K for every u ∈ E ′(ω)(Ω).

Remark 2.5. i) Clearly, P -convexity for supports of Ω implies P -convexity

for (ω)-supports of Ω. On the other hand, D(ω)(Ω) is sequentially dense in

D(Ω), as shown by Braun et al. [4, Proposition 3.9], so that P -convexity for

supports is implied by P -convexity for (ω)-supports. Hence, P -convexity for

supports and P -convexity for (ω)-supports are in fact equivalent.

ii) If P is elliptic the same is obviously true for P̌ . Hence P (−D) has a

fundamental solution E which is analytic in Rd\{0}. Since analytic functions

are contained in E(ω)(Ω) for each weight function ω (cf. [4, Proposition 4.10])

we have in particular

ch(sing supp (ω)E) = ch(sing supp (ω)P (−D)δ0),

where ch(A) denotes the convex hull of a set A ⊂ Rd. By [3, Theorem 2.1]

it therefore follows that for each open set Ω ⊂ Rd and every u ∈ D ′(ω)(Ω)

we have

sing supp (ω)P (−D)u = sing supp (ω)u.

In particular, Ω is P -convex for (ω)-singular supports. This and the well-

known fact that every open subset Ω of Rd is P -convex for supports for

elliptic P imply by Theorem 2.4 the surjectivity of

P (D) : D ′(ω)(Ω)→ D ′(ω)(Ω)

whenever P is elliptic.

From now on, let P always be an non-constant polynomial.
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3. (ω)-Localizations at Infinity and Continuation of

Ultradifferentiability

Obviously, P -convexity for (ω)-singular supports is closely related to the

continuation of (ω)-ultradifferentiability of P (−D)u to u. Analogously to

the tools introduced by Hörmander in order to deal with the classical case

(see e.g. [7, Section 11.3, vol. II]) Langenbruch introduced the following

notions in [9]. For a polynomial P , a subspace V of Rd, and t > 0, ξ ∈ Rd

let

P̃V (ξ, t) = sup{|P (ξ + η)|; η ∈ V, |η| ≤ t}
and

P̃ (ξ, t) = P̃Rd(ξ, t).

Moreover, let

σP,(ω)(V ) := inf
t≥1

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
.

If we formally set ω ≡ 1, we obtain Hörmander’s classical definition of

σP (V ), [7, Section 11.3, vol. II]. In order to simplify notation we write

σP,(ω)(N) instead of σP,(ω)(span{N}) for N ∈ Sd−1.

The next theorem is almost an immediate consequence of [9, Theorem

2.5].

Theorem 3.1. Let Ω1 ⊂ Ω2 be open convex subsets of Rd. Assume that

every hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R with

σP,(ω)(N) = 0 which intersects Ω2 already intersects Ω1.

Then for every u ∈ D ′(ω)(Ω2) satisfying sing supp (ω)P (D)u = ∅ as well

as sing supp (ω)u ⊂ Ω2\Ω1 we already have sing supp (ω)u = ∅.

Proof. Let u ∈ D ′(ω)(Ω2) satisfy P (D)u ∈ E(ω)(Ω2) and u|Ω1 ∈ E(ω)(Ω1).

Since Ω2 is convex it follows from the Theorem of supports (see e.g. [7, The-

orem 4.3.3, vol. I]) and [2, Theorem A] that there is v ∈ E(ω)(Ω2) such that

P (D)v = P (D)u so that w := u− v ∈ D ′(ω)(Ω2) satisfies P (D)w = 0 as well

as w|Ω1 ∈ E(ω)(Ω1). Hence, by [9, Theorem 2.5] it follows that w ∈ E(ω)(Ω2)

which proves the theorem. �

When investigating P -convexity for (ω)-singular supports by means of

the above theorem it is necessary to study the zeros of σP,(ω) in Sd−1. In

order to do so, recall the definition of ω-localizations of P at infinity, as

introduced by Langenbruch in [9]. For a polynomial P and ξ ∈ Rd we set

Pξ,ω(x) := P (ξ+ω(ξ)x) which is again a polynomial of the same degree as P .

Clearly, by P̂ :=
√∑

α |P (α)(0)|2 there is a norm given on the vector space
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C[X1, . . . , Xd]. From now on let C[X1, . . . , Xd] be equipped with the vector

space topology induced by this norm. The set of all limits in C[X1, . . . , Xd]

of the normalized polynomials

x 7→ Pξ,ω(x)

P̂ξ,ω

as ξ tends to infinity is denoted by Lω(P ). More precisely, if N ∈ Sd−1 then

the set of limits where ξ/|ξ| → N (with ξ tending to infinity) is denoted by

Lω,N(P ). Obviously, Lω(P ) as well as Lω,N(P ) are closed subsets of the unit

sphere of all polynomials in d variables, equipped with the norm Q 7→ Q̂, of

degree not exceeding the degree of P . The non-zero multiples of elements

of Lω(P ) (resp. of Lω,N(P )) are called ω-localizations of P at infinity (resp.

ω-localizations of P at infinity in direction N). Since ω(ξ) = ω(|ξ|), Q ∈
Lω,N(P̌ ) if and only if Q̌ ∈ Lω,−N(P ). Again, if we formally set ω ≡ 1

we obtain the well known set L(P ) of localizations of P at infinity (see

Hörmander [7, Definition 10.2.6]).

For the classical case, i.e. if formally ω ≡ 1, the next lemma is proved

in [8]. The proof here is almost the same, but we include it for the reader’s

convenience.

Lemma 3.2. Let P be of degree m with principal part Pm.

i) For every subspace V of Rd and t ≥ 1 we have

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= inf

Q∈Lω(P )

Q̃V (0, t)

Q̃(0, t)
.

ii) Let N ∈ Sd−1 and Q ∈ Lω,N(P ). If Pm(N) 6= 0 then Q is constant.

iii) If P is non-elliptic then for every subspace V of Rd and t ≥ 1 we

have

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= inf

N∈Sd−1,Pm(N)=0
inf

Q∈Lω,N (P )

Q̃V (0, t)

Q̃(0, t)
.

Proof. i) Since for every subspace V and each t > 0 the maps R 7→
R̃V (0, t) are continuous seminorms on C[X1, . . . , Xd] and because P̃V (ξ, tω(ξ)) =

( ˜Pξ,ω)V (0, t) it follows immediately from the definition that

Q̃V (0, t)

Q̃(0, t)
≥ lim inf

ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))

for every Q ∈ Lω(P ).

Moreover, if (ξn)n∈N tends to infinity such that

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= lim

n→∞

P̃V (ξn, tω(ξn))

P̃ (ξn, tω(ξn))
= lim

n→∞

(P̃ξn,ω)V (0, t)

P̃ξn,ω(0, t)
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we can extract a subsequence of (ξn)n∈N which we again denote by (ξn)n∈N

such that the sequence of normalized polynomials Pξn,ω/P̂ξn,ω converges in

the compact unit sphere of all polynomials in d variables of degree at most

m. This limit belongs to Lω(P ) and we get

lim inf
ξ→∞

P̃V (ξ, tω(ξ))

P̃ (ξ, tω(ξ))
≥ inf

Q∈Lω(P )

Q̃V (0, t)

Q̃(0, t)

completing the proof of i).

The proof of ii) is an easy application of Taylor’s formula. Let P =∑m
j=0 Pj, where Pj is a homogeneous polynomial of degree j. Let (ξn)n∈N

tend to infinity with limn→∞ ξn/|ξn| = N and Pm(N) 6= 0. Then

Pξn,ω(η) =
∑

0≤|α|≤j≤m

P
(α)
j (ξn)

α!
ω(ξn)|α|ηα

= |ξn|m
 ∑

0≤j≤m

|ξn|j

|ξn|m
Pj(

ξn
|ξn|

) +
∑

0<|α|≤j≤m

|ξn|j−|α|ω(ξn)|α|

|ξn|mα!
P

(α)
j (

ξn
|ξn|

)ηα

 .

Moreover

P̂ξn,ω =

√√√√ ∑
0≤|α|≤m

|
m∑

j=|α|

P
(α)
j (ξn)|2ω(ξn)2|α|

= |ξn|m
√√√√| m∑

j=0

Pj(
ξn
|ξn|

)
|ξn|j
|ξn|m

|2 +
∑

0<|α|≤m

|
m∑

j=|α|

P
(α)
j (

ξn
|ξn|

)
|ξn|j−|α|ω(ξn)|α|

|ξn|m
|2,

which implies by ω(ξn) = o(|ξn|) as n tends to infinity

lim
n→∞

Pξn,ω(η)

P̂ξn,ω
=

Pm(N)

|Pm(N)|

for every η ∈ Rd showing ii).

iii) is an immediate consequence of lim infξ→∞ P̃V (ξ, tω(ξ))/P̃ (ξ, tω(ξ)) ≤
1, i), and ii). �

Before we continue, recall the following definition (cf. Hörmander [7,

Section 10.2]). Let

Λ(P ) = {η ∈ Rd; ∀ ξ ∈ Rd, t ∈ R : P (ξ + tη) = P (ξ)},

which is obviously a subspace of Rd which coincides with Rd if and only if P

is constant. In case of ω ≡ 1 the corresponding result of the next proposition

is due to Hörmander [7, Theorem 10.2.8, vol. II] and its proof uses the

Tarski-Seidenberg theorem. In our case, the proof is rather elementary.

Lemma 3.3. If Q ∈ Lω,N(P ) then N ∈ Λ(Q).
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Proof. Since ω(ξ) = ω(|ξ|) we can assume without loss of generality

that N = e1 = (1, 0, . . . , 0). We denote the degree of P by m. In case of

P (e1) ≡ 0 we clearly have by Taylor’s theorem that e1 ∈ Λ(P ) which clearly

implies e1 ∈ Λ(Q) by the definition of Lω(P ).

Now, if P (e1) does not vanish identically it follows that P
(e1)
ξ,ω does not

vanish identically either, for every ξ ∈ Rd. Since P 7→
∑

α |P (α)(0)| is a

norm on the space of all polynomials in d variables, it follows that for every

ξ ∈ Rd

0 6=
∑
α

|P (e1)
ξ,ω (0)| =

∑
α

|P (α+e1)(ξ)|ω(ξ)|α| =
∑

0≤|α|≤m−1

|P (α+e1)(ξ)|ω(ξ)|α|,

because P has degree m. Hence, for every ξ ∈ Rd, t ∈ R we have by Taylor’s

theorem

0 ≤ |P (e1+α)(ξ + ω(ξ)(x+ se1))|∑
α |P (α)(ξ)|ω(ξ)|α|

=
|
∑

0≤|α|≤m−1 P
(α+e1)(ξ)ω(ξ)|α| 1

α!
(x+ se1)α|∑

α |P (α)(ξ)|ω(ξ)|α|

≤
∑

0≤|α|≤m−1 |P (α+e1)(ξ)|ω(ξ)|α| 1
α!
|(x+ se1)α|∑

0≤|α|≤m−1 |P (α+e1)(ξ)|ω(ξ)1+|α|

≤
max0≤|α|≤m−1

1
α!
|(x+ se1)α|

ω(ξ)
.

Since Q ∈ Lω(P ) there is (ξn)n∈N tending to infinity such that

Q(x) = lim
n→∞

P (ξn + ω(ξn)x)

P̂ξn,ω

in the vector space topology of the polynomials in d variables of degree not

exceeding m. In particular, we also have

Q(e1)(x) = lim
n→∞

P (e1)(ξn + ω(ξn)x)

P̂ξn,ω
.

The space of all polynomials in d variables of degree not exceeding m being

finite dimensional, all norms on it are equivalent. Therefore, by passing to

a subsequence of (ξn)n∈N if necessary, there is c > 0 such that for every

x ∈ Rd and s ∈ R

|Q(e1)(x+ se1)| = lim
n→∞

|P (e1)(ξn + ω(ξn)(x+ se1))|
P̂ξn,ω

≤ c lim
n→∞

|P (e1)(ξn + ω(ξn)(x+ se1))|∑
α |P (α+e1)(ξn)|ω(ξn)|α|

≤ c lim
n→∞

max0≤|α|≤m−1
1
α!
|(x+ se1)α|

ω(ξn)

= 0.
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Hence, for each x ∈ Rd the polynomial qx : R→ C, s 7→ Q(x+ se1) satisfies

q′x(s) = Q(e1)(x+se1) = 0. Thus qx is constant which shows that e1 ∈ Λ(Q).

�

Now we are able to prove the main result of this section. In the classical

case, i.e. if we formally set ω ≡ 1, the corresponding result was proved in [8].

Again the proofs are almost identical but we include it here for completeness’

sake.

Lemma 3.4. Let P ∈ C[X1, X2] be of degree m with principal part Pm.

Then

{y ∈ S1; σP,(ω)(y) = 0} ⊂ {y ∈ S1; Pm(y) = 0}.

Proof. By Lemma 3.2 i) and ii) we can assume without loss of generality

that P is not elliptic. Since we are in R2 the principal part Pm can only have a

finite numbers of zeros in S1. Let {N ∈ S1; Pm(N) = 0} = {N1, . . . , Nl}. For

each 1 ≤ j ≤ l choose xj ∈ S1 orthogonal to Nj. Without loss of generality,

let {y ∈ S1; σP (y) = 0} 6= ∅. By Lemma 3.2 there is a non-constant Q ∈
Lω,Nj

(P ) for some 1 ≤ j ≤ l. By Lemma 3.3 we have Q(ξ + sNj) = Q(ξ)

for any ξ ∈ R2, s ∈ R. Hence Q(ξ) = Q(〈ξ, xj〉xj) for all ξ ∈ R2. Defining

q : R→ C, s 7→ Q(sxj)

it follows that for fixed y ∈ S1

Q̃span{y}(0, t) = sup{|Q(λy)|; |λ| ≤ t} = sup{|Q(λ〈y, xj〉xj)|; |λ| ≤ t}

= sup{|q(λt〈y, xj〉)|; |λ| ≤ 1},

and because |xj| = 1 we also have

Q̃(0, t) = sup{|Q(ξ)|; ξ ∈ R2, |ξ| ≤ t} = sup{|Q(〈ξ, xj〉xj)|; ξ ∈ R2, |ξ| ≤ t}

= sup{|Q(λxj)|; |λ| ≤ t} = sup{|q(λt)|; |λ| ≤ 1}.

Since Q ∈ Lω(P ) it follows that q is a polynomial of degree at most m.

Because on the finite dimensional space of all polynomials in one variable of

degree at most m the norms sup|s|≤1 |p(s)| and
∑m

k=0 |p(k)(0)| are equivalent

there is C > 0 such that

C sup
|s|≤1

|p(s)| ≥
m∑
k=0

|p(k)(0)| ≥ 1/C sup
|s|≤1

|p(s)|
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for all p ∈ C[X] with degree at most m. Applying this to the polynomials

s 7→ q(st) and s 7→ q(st〈y, xj〉) gives

Q̃span{y}(0, t)

Q̃(0, t)
≥

∑m
k=0 |q(k)(0)|tk|〈y, xj〉|k

C2
∑m

k=0 |q(k)(0)|tk

≥ |〈y, xj〉|m/C2,

where we used |〈y, xj〉| ≤ 1 in the last inequality. We conclude that for every

1 ≤ j ≤ l

inf
Q∈Lω,Nj

(P )

Q̃span{y}(0, t)

Q̃(0, t)
≥ |〈y, xj〉|

m

C2
,

where C only depends on the degree m of P . It follows from Lemma 3.2 iii)

and {N ∈ S1; Pm(N) = 0} = {N1, . . . , Nl} that for all t ≥ 1

lim inf
ξ→∞

P̃span{y}(ξ, tω(ξ))

P̃ (ξ, tω(ξ))
= min

1≤j≤l
inf

Q∈Lω,Nj
(P )

Q̃span{y}(0, t)

Q̃(0, t)
≥ min

1≤j≤l

|〈y, xj〉|m

C2
.

Therefore, if for y ∈ S1

0 = σP,(ω)(y) = inf
t≥1

lim inf
ξ→∞

P̃span{y}(ξ, tω(ξ))

P̃ (ξ, tω(ξ))

it follows that y is orthogonal to some xj, hence y ∈ {Nj,−Nj} since

|y| = 1 = |Nj| which shows Pm(y) = 0. �

In particular it follows that for P ∈ C[X1, X2]\{0} the set

{y ∈ S1;σP,(ω)(y) = 0}

is finite. Moreover, it follows immediately from the above lemma that in

case of d = 2 every hyperplane H = {x; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R, with

σP,(ω)(N) = 0 is characteristic for P . That this is not the case in general for

d ≥ 3 is shown by the next example.

Example 3.5. Let d > 2 and P ∈ C[X1, . . . , Xd] be given by

P (x1, . . . , xd) = x2
1 − x2

2 − . . .− x2
d.

It follows that for each weight function ω an ω-localization of P at infinity

in direction 1/
√

2 (1, 1, 0, . . . , 0) is given by Q(x1, . . . , xd) = (x1 − x2)/
√

2.

Hence it follows for ed = (0, . . . , 0, 1) that Q̃span{ed}(0, t) = 0 for every t ≥ 1

so that in particular σP,(ω)(ed) = 0 by Lemma 3.2. On the other hand, we

clearly have P2(ed) = P (ed) = −1.
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4. A sufficient Condition for P -convexity for (ω)-singular

Supports

In this section we will prove a sufficient condition for an open subset Ω

of Rd to be P -convex for (ω)-singular supports in terms of an exterior cone

condition, similar to those proved in [8].

Recall that a cone C is called proper if it does not contain any affine

subspace of dimension one. Moreover, recall that for an open convex cone

Γ ⊂ Rd its dual cone is defined as

Γ◦ := {ξ ∈ Rd; ∀ y ∈ Γ : 〈y, ξ〉 ≥ 0}.

For Γ 6= ∅ it is a closed proper convex cone in Rd. On the other hand, every

closed proper convex cone C in Rd is the dual cone of a unique non-empty,

open, convex cone which is given by

Γ := {y ∈ Rd; ∀ξ ∈ C\{0} : 〈y, ξ〉 > 0}.

The proof can be done by the Hahn-Banach Theorem (cf. [7, p. 257, vol. I]).

Therefore, we use the notation Γ◦ also for arbitrary closed convex proper

cones. Moreover, from now on we assume all open convex cones Γ to be

non-empty.

As a first result we obtain from Theorem 3.1 the next proposition which

is an analogue result to [7, Corollary 8.6.11, vol. I].

Lemma 4.1. Let Γ be an open proper convex cone in Rd, x0 ∈ Rd. If for

Ω := x0 + Γ no hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R,
with σP,(ω)(N) = 0 intersects Ω only in x0, the following holds.

Each u ∈ D ′(ω)(Ω) with sing supp (ω)P (D)u = ∅ and sing supp (ω)u bounded

already satisfies sing supp (ω)u = ∅.

Proof. Let u ∈ D ′(ω)(Ω) satisfy P (D)u ∈ E(ω)(Ω) and assume that

u is E(ω) outside a bounded subset of Ω. Since Γ is a proper cone, there

is a hyperplane π intersecting Ω only in x0. Let Hπ be a halfspace with

boundary parallel to π such that Ω1 := Ω ∩ Hπ 6= ∅ is unbounded and

u|Ω1 ∈ E(ω)(Ω1). Denoting Ω2 := Ω we have convex sets Ω1 ⊂ Ω2 and by the

hypothesis, each hyperplane H = {x ∈ Rd; 〈x,N〉 = α}, N ∈ Sd−1, α ∈ R,
with σP,(ω)(N) = 0 and H ∩Ω2 6= ∅ already intersects Ω1. Theorem 3.1 now

gives sing supp (ω)u = ∅. �

Before we come to the main result of this section, we need one more

result.
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Theorem 4.2. i) If u ∈ E ′(ω)(Rd) then

ch(sing supp (ω)u) = ch(sing supp (ω)P (−D)u).

ii) For an open subset Ω of Rd the following are equivalent.

a) Ω is P -convex for (ω)-singular supports.

b) For each u ∈ E ′(ω)(Ω) one has

dist(sing supp (ω)u,Ω
c) = dist(sing supp (ω)P (−D)u,Ωc).

Proof. i) By a result of Bonet et al. [3, Remark 2.10] one has for

a convex compact subset K of Rd and u ∈ E(ω)(Rd) that the inclusion

sing supp (ω)u ⊂ K is equivalent to the existence of b > 0 such that for each

m ∈ N there is Cm > 0 such that

|û(ζ)| ≤ Cm exp(HK(Imζ) + bω(ζ))

for all ζ ∈ Cd with |Imζ| ≤ mω(ζ) and |ζ| ≥ Cm, where HK denotes the

supporting function of K. Moreover, by [3, Remark 1.2 (c)] we can assume

without loss of generality that ω ≥ 1.

Since by Braun et al. [4, Lemma 1.2] there is some constant K > 0 such

that ω(ζ + η) ≤ K(1 +ω(ζ) +ω(η)) for all ζ, η ∈ Cd it follows for all ζ ∈ Cd

with |Imζ| ≤ mω(ζ) and all z ∈ C, |z| = 1 that

|Im(ζ + ze1)| ≤ mω(ζ) + 1 = mω(ζ + ze1 − ze1) + 1

≤ mω(|ζ + ze1|+ 1) + 1 ≤ Km(1 + ω(ζ + ze1) + ω(1)) + 1

≤ Kmω(ζ + ze1) + (Km(1 + ω(1)) + 1)ω(ζ + ze1)

= (Km(2 + ω(1)) + 1)ω(ζ + ze1).

Hence, if |Imζ| ≤ mω(ζ) for some m ∈ N there is k ∈ N such that

(1) |Im(ζ + ze1)| ≤ kω(ζ + ze1) for all z ∈ C, |z| = 1.

Now, for u ∈ E ′(ω)(Ω) set f := P (−D)u and let K be the convex hull

of sing supp (ω)f . Clearly, we have ch(sing supp (ω)u) ⊃ K. In order to show

that ch(sing supp (ω)u) ⊂ K observe that by [3, Remark 2.10] there is b > 0

such that for all m ∈ N there is Cm > 0 such that

|P (−ζ)û(ζ)| = |f̂(ζ)| ≤ Cm exp(HK(Imζ) + bω(ζ))

for all ζ ∈ Cd with |ζ| ≥ Cm and |Imζ| ≤ mω(ζ). By [7, Lemma 7.3.3, vol.

I] there is a > 0 such that

a|û(ζ)| ≤ sup
|z|=1

|f̂(ζ + ze1)|
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for all ζ ∈ Cd. Hence, for all ζ ∈ Cd such that |ζ + ze1| ≥ Cm and |Im(ζ +

ze1)| ≤ mω(ζ + ze1) for every |z| = 1 we obtain

a|û(ζ)| ≤ sup
|z|=1

Cm exp(HK(Im(ζ + ze1)) + bω(ζ + ze1))

≤ sup
|z|=1

Cm exp(HK(Imζ) +HK(Imze1) + bK(1 + ω(ζ) + ω(1)))

= sup
|z|=1

Cm exp(HK(Imze1) + bK(1 + ω(1))) exp(HK(Imζ) + bKω(ζ)).

Combining this and inequality (4.1) gives b̃ > 0 such that for all m ∈ N
there is C̃m > 0 such that

|û(ζ)| ≤ C̃m exp(HK(Imζ) + b̃ω(ζ))

for all ζ ∈ Cd with |ζ| ≥ C̃m and |Imζ| ≤ mω(ζ), proving ch(sing supp (ω)u) ⊂
K, hence i).

Using i), ultradifferentiable cut-off functions, and taking into account

that E(ω)(Ω) is an algebra with continuous multiplication (cf. [4, Proposi-

tion 4.4]), the proof of ii) follows along the same lines as the proofs of [7,

Theorem 10.6.3 and/or Theorem 10.7.3, vol. II]. �

The following proposition (cf. [8]) contains some elementary geometric

facts which will be used in the sequel.

Lemma 4.3. Let Γ◦ 6= {0} be a closed proper convex cone in Rd and N ∈
Sd−1. For c ∈ R let Hc := {x ∈ Rd; 〈x,N〉 = c}. Then the following are

equivalent.

i) N ∈ Γ or −N ∈ Γ.

ii) If x ∈ Hc then Hc ∩ (x+ Γ◦) = {x}.

We are now able to prove the main result of this section. Compare also

[8, Theorem 9].

Theorem 4.4. Let Ω be an open connected subset of Rd and P ∈ C[X1, . . . , Xd]

a non-constant polynomial with principal part Pm. Then Ω is P -convex for

(ω)-singular supports if for every x ∈ ∂Ω there is an open convex cone Γ

such that (x+ Γ◦) ∩ Ω = ∅ and σP,(ω)(y) 6= 0 for all y ∈ Γ.

Proof. Let u ∈ E ′(ω)(Ω). We set K := sing supp (ω)P (−D)u and δ :=

dist(K,Ωc). We will show that

dist(sing supp (ω)u,Ω
c) ≥ δ

which by

sing supp (ω)u ⊃ sing supp (ω)P (−D)u



14 T. KALMES

will imply

dist(sing supp (ω)u,Ω
c) = δ,

hence P -convexity for (ω)-singular supports of Ω by Theorem 4.2.

Let x0 ∈ ∂Ω and let Γ be as in the hypothesis for x0 ∈ ∂Ω. Then

(x0 + Γ◦) ∩ Ω = ∅, thus (x0 + y + Γ◦) ∩K = ∅ for all y ∈ Rd with |y| < δ.

Therefore, for fixed y with |y| < δ, there is an open proper convex cone Γ̃ in

Rd with Γ̃ ⊃ Γ◦\{0} such that (x0 + y + Γ̃) ∩K = ∅. Hence, u ∈ E ′(ω)(Ω) ⊂
D ′(ω)(x0 + y + Γ̃) satisfies P (−D)u ∈ E(ω)(x0 + y + Γ̃).

We will show that u ∈ E(ω)(x0 + y + Γ̃) by applying Lemma 4.1. Hence,

let H = {v ∈ Rd; 〈v,N〉 = α} be a hyperplane with σP,(ω)(N) = 0. As

Γ̃ is a closed proper convex cone with non-empty interior, it is the dual

cone of some open proper convex cone Γ1. It follows from Γ◦1 = Γ̃ ⊃ Γ◦

that Γ1 ⊂ Γ. Because σP,(ω)(N) = 0 it follows from the hypothesis that

{N,−N} ∩ Γ = ∅, hence {N,−N} ∩ Γ1 = ∅, so that by Lemma 4.3 H

does not intersect x0 + y + Γ̃ only in x0 + y. Since u ∈ E ′(ω)(Ω) we have

that sing suppu is compact. Moreover P (−D)u ∈ E(ω)(x0 + y + Γ̃), so that

u ∈ E(ω)(x0 + y + Γ̃) by Lemma 4.1. Since x0 ∈ ∂Ω and y with |y| < δ

were chosen arbitrarily, we conclude that dist(sing supp (ω)u,Ω
c) ≥ δ, which

proves the theorem. �

5. Proof of the main Theorem

Recall that for elliptic P every open subset Ω ⊂ Rd is P -convex for

supports. In case of d = 2 a complete characterization of P -convexity for

supports is known. It is due to Hörmander, see e.g. [7, Theorem 10.8.3, vol.

II].

Theorem 5.1. If P is non-elliptic then the following conditions on an open

connected set Ω ⊂ R2 are equivalent.

i) Ω is P -convex for supports.

ii) The intersection of every characteristic hyperplane with Ω is convex.

iii) For every x0 ∈ ∂Ω there is a closed proper convex cone Γ◦ 6= {0}
with (x0 + Γ◦) ∩ Ω = ∅ and no characteristic hyperplane intersects

x0 + Γ◦ only in x0.

It is not hard to see that in the above theorem condition iii) is equivalent

to the following condition (see [8]).

iii’) For every x0 ∈ ∂Ω there is an open convex cone Γ 6= R2 with (x0 +

Γ◦) ∩ Ω = ∅ and Pm(y) 6= 0 for all y ∈ Γ, where Pm denotes the

principal part of P .
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Theorem 5.2. Let Ω ⊂ R2 be open, ω a weight function, and P ∈ C[X1, X2].

If Ω is P -convex for supports then Ω is P -convex for (ω)-singular supports.

Proof. Without loss of generality we can assume that P is not elliptic.

Clearly, by passing to the different components of Ω if necessary, we can

assume that Ω is connected. Since P is not elliptic, it follows from The-

orem 5.1 with iii’), Lemma 3.4, and Theorem 4.4 that Ω is P -convex for

(ω)-singular supports. �

As a corollary we now obtain Theorem 1.1.

Proof of Theorem 1.1. That i) and ii) are equivalent is shown in

[8]. Clearly, iii) implies iv). By Theorem 2.4 and Remark 2.5 i), iv) implies

that Ω is P -convex for supports, so that i) follows from iv). So, all that

remains to be shown is that i) implies iii). But this implication follows from

Theorem 5.2 and Theorem 2.4. �

Combining Theorems 1.2, 5.1, and 1.1 gives the next result.

Theorem 5.3. Let Ω ⊂ R2 be open and P ∈ C[X1, X2]. The following are

equivalent.

i) P (D) : A(Ω)→ A(Ω) is surjective.

ii) P (D) : C∞(Ω)→ C∞(Ω) is surjective.

iii) P (D) : D ′(Ω)→ D ′(Ω) is surjective.

iv) P (D) : D ′(ω)(Ω) → D ′(ω)(Ω) is surjective for some non-quasianalytic

weight function ω.

v) P (D) : D ′(ω)(Ω) → D ′(ω)(Ω) is surjective for each non-quasianalytic

weight function ω.

vi) The intersection of every characteristic hyperplane with any con-

nected component of Ω is convex.

The next example shows that for d ≥ 3 an analogous result to Theorem

1.1 is not true in general. See also Langenbruch [9, Example 3.13], where it

is shown that surjectivity of P (D) on D ′(ω)(Ω) for d ≥ 3 depends explicitly

on the weight function ω in general.

Example 5.4. Let d > 2 and P (x1, . . . , xd) = x2
1−x2

2− . . .−x2
d. Moreover,

let Γ := {x ∈ Rd; xd > (x2
1 + . . .+x2

d−1)1/2}. Then Γ is an open convex cone

with Γ◦ = Γ. Set Ω := Rd\Γ. Then it is not hard to show that Ω is P -convex

for supports. This follows for example by [8, Theorem 9 i)]. Hence, P (D) is
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surjective on C∞(Ω) but P (D) is not surjective on D ′(Ω) (see [8, Example

12]).

Moreover, it follows from Example 3.5 and Lemma 3.2 that

lim inf
ξ→∞

P̃span{ed}(ξ, ω(ξ))

P̃ (ξ, ω(ξ))
= 0,

where ed = (0, . . . , 0, 1). Setting H = {x ∈ Rd; 〈x, ed〉 = −1} and

K := H ∩ {x ∈ Rd; |x| ≤ 2}

it is easily seen that the distance of ∂Ω = ∂Γ to K is 1 while the distance

of ∂Γ to ∂HK, i.e. to the boundary of K relative H, strictly increases 1.

Hence, it follows from [9, Corollary 2.7] that P (D) cannot be surjective on

D ′(ω)(Ω).
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