SURJECTIVITY OF PARTIAL DIFFERENTIAL
OPERATORS ON ULTRADISTRIBUTIONS OF BEURLING
TYPE IN 2 DIMENSIONS

THOMAS KALMES

ABSTRACT. We show that for a partial differential operator P(D) sur-
jectivity on the space of ultradistributions @(’w)(Q) of Beurling type is

equivalent to surjectivity of P(D) on C°°() in case of ) being an open
subset of R2.

1. INTRODUCTION

It is a classical result by Malgrange [10, Chapitre 1, Théoreme 4] that for
a polynomial P € C[X1,..., X4] and for an open set 2 C R¢ the constant
coefficient differential operator P(D) : C*°(Q2) — C>°() is surjective if and
only if 2 is P-convex for supports, that is, if and only if for every compact
subset K of ) there is another compact subset L of ) such that for each
u € &'(2) with supp P(—D)u C K it holds suppu C L.

Hormander showed in [6] that P(D) is surjective as an operator on Z'(2)
if and only if €2 is P-convex for supports and P-convex for singular supports,
i.e. for every compact subset K of ) there is another compact subset L
of Q such that for each u € &'(Q) with singsupp P(—D)u C K it holds
singsuppu C L.

It is well-known that surjectivity of P(D) as an operator on C'*(2) does
not imply surjectivity of P(D) as an operator on 2'(2) in general. However,
Treves conjectured [12, p. 389, Problem 2] that in the case of  C R? this

implication is true. A proof of this conjecture is given in [§].

In the present paper, we prove an adaption of Treves conjecture to
the setting of ultradistributions of Beurling type associated with a non-
quasianalytic weight function w. These generalize classical distributions by
allowing more flexible growth conditions for the Fourier transforms of the
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corresponding test functions than the Paley-Wiener weights. More precisely,

we prove the following theorem.

Theorem 1.1. Let Q C R? be open and P € C[X, Xs]. Then the following
are equivalent.
i) P(D):C*®(Q) — C*(Q) is surjective.
ii) P(D): 2'(Q) — 2'(Q) is surjective.
iii) P(D) : Z,,(Q) = Z,)(Q) is surjective for each non-quasianalytic
weight function w.
iv) P(D) : Z,,(Q2) = 2{,,(2) is surjective for some non-quasianalytic
weight function w.
The above theorem complements the following result proved by Zampieri
which shows the peculiarity of d = 2, too. For an open subset Q of R? we

denote as usual the space of real analytic functions on Q with A(2).

Theorem 1.2 (Zampieri [13]). Let Q C R? be open and P € C[X}, Xs].
The following are equivalent.

i) P(D):C*®(Q) — C*(Q) is surjective.

ii) P(D): A(Q) — A(Q) is surjective.

The article is organized as follows. In the preliminary section 2 we fix no-
tation and recall some well known facts about ultradistributions of Beurling
type. In section 3 we explain the connection of continuation of ultradiffer-
entiability and certain localizations of P at infinity. Moreover this section
contains the key result which sets apart the case d = 2 from d > 3. Namely,
we show that in R? certain hyperplanes which arise in the context of con-
tinuation of ultradifferentiability are always characteristic hyperplanes for
P. Section 4 provides a sufficient condition for an open subset 2 of R? to be
P-convex for (w)-singular supports by means of an exterior cone condition.
This condition is applied in section 5 in order to prove Theorem

2. PRELIMINARIES

In this section we introduce the ultradistributions of Beurling type in

the sense of Braun, Meise, and Taylor [4].

Definition 2.1. A continuous increasing function w : [0,00) — [0,00)
is called a (non-quasianalytic) weight function if it satisfies the following
properties

(cv) there exists K > 1 with w(2t) < K(1 + w(t)) for all t > 0,

(B) f5° 2l dt < oo,
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(7) hmt%oo % = 07

(0) ¢ = woexp is convex.
w is extended to C? by setting w(z) := w(|z]). Since we are not dealing with
quasianalytic weight functions in this article we simply speak of weight
functions for brevity.

For K C R? compact let

D) (K) = {f € C>(R"); supp f C K and
|f ()| exp(Aw(z)) dz < oo for all A > 1}
R4

be equipped with its natural Fréchet space topology, and Z,,)(Q2) = |J Zw)(K),
where K runs through all compact subsets of the open subset € of R?
equipped with its natural (LF)-space topology. The elements of its dual
space .@(’w)(Q) are the ultradistributions of Beurling type.

The associated local space in the sense of Hérmander |7, 10.1.19]

() = .@(w)(Q)loc ={u € .@(/w)(Q); ou € D,)(2) for all p € Z(.,)(Q)}
is the space of ultradifferentiable functions of Beurling type.

Remark 2.2. i) For each weight function w we have lim,_,,, w(t)/t = 0 by
the remark following 1.3 of Meise, Taylor, and Vogt [11].
ii) It is shown in [4] that condition () guarantees that Z,)(£2) # {0}
and that there are partitions of unity consisting of elements of Z.(2).
iii) By [4] we have

Ew () ={f e C*(Q); for all k € Nand K €
hci= s | @exp (ke (51)) <03,

aeNg zeK
where ¢*(s) = sup{st — ¢(t); t > 0} is the Young conjugate of ¢.
iv) For > 1 the function w(t) = /% is a weight function for which the
corresponding class of ultradifferentiable functions coincides with the small
Gevrey class

Y(Q)={fecC®Q);VKeQVYC>1: sup |f(a)ﬂ<oo}.

S|
xEK,aENg al Cl |

Definition 2.3. &, (Q2) equipped with the seminorms (| - |k )ken,xecq is a
nuclear Fréchet space. Its dual &/,(€2) is equal to the space of u € Z[,(€2)
for which

supp u = R%\ U{B C R? open; u(yp) = 0 for all p € Z,\(B)}

is a compact subset of ().
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The next theorem is a special case of a result due to Frerick and Wengen-
roth (see [5]), which completes a result of Bonet, Galbis, and Meise (see [2]),
characterising surjectivity of convolution operators on ultradistributions of

Beurling type.

Theorem 2.4. Let Q C RY be open, w be a weight function, and P €
C[X1,...,X4]. Then the following are equivalent.

i) P(D): 9,,(Q) = Z,,(Q) is surjective.
ii) Q is P-convex for (w)-supports as well as P-convex for (w)-singular

SUPPorts.

Recall, that an open subset Q of R? is called P-convex for (w)-supports
if for every compact subset K of ) there is a compact subset L of {2 such
that supp ¢ C L whenever supp P(—D)p C K for every ¢ € Z,,(€2). Anal-
ogously, €2 is called P-convex for (w)-singular supports if for every compact
subset K of €) there is a compact subset L of €2 such that singsupp (,yu C L
whenever sing supp (,) P(—D)u C K for every u € & )(Q)

(w

Remark 2.5. i) Clearly, P-convexity for supports of 2 implies P-convexity
for (w)-supports of €. On the other hand, Z,,(?) is sequentially dense in
2(92), as shown by Braun et al. [4, Proposition 3.9], so that P-convexity for
supports is implied by P-convexity for (w)-supports. Hence, P-convexity for
supports and P-convexity for (w)-supports are in fact equivalent.

i) If P is elliptic the same is obviously true for P. Hence P(—D) has a
fundamental solution E which is analytic in R%\ {0}. Since analytic functions
are contained in &,(§2) for each weight function w (cf. [4, Proposition 4.10])

we have in particular
ch(singsupp () E) = ch(sing supp (., P(—D)d),

where ch(A) denotes the convex hull of a set A C R%. By [3, Theorem 2.1]
it therefore follows that for each open set Q C R? and every u € D) ()
we have
sing supp () P(—D)u = sing supp (,,)u.

In particular,  is P-convex for (w)-singular supports. This and the well-
known fact that every open subset  of R? is P-convex for supports for
elliptic P imply by Theorem [2.4] the surjectivity of

P(D): 9,)() = Z,)(Q)

whenever P is elliptic.

From now on, let P always be an non-constant polynomial.
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3. (w)-LOCALIZATIONS AT INFINITY AND CONTINUATION OF
ULTRADIFFERENTIABILITY

Obviously, P-convexity for (w)-singular supports is closely related to the
continuation of (w)-ultradifferentiability of P(—D)u to u. Analogously to
the tools introduced by Hormander in order to deal with the classical case
(see e.g. [7, Section 11.3, vol. II]) Langenbruch introduced the following
notions in [9]. For a polynomial P, a subspace V of RY and ¢t > 0,¢ € R?
let

Py(&t) =sup{|[P(E+n);n €V, |n| <t}
and
p(£7t> = de<£7t)'

Moreover, let

opw) (V) := inf lim inf M
21 &0 P(E, tw())
If we formally set w = 1, we obtain Hormander’s classical definition of
op(V), [1, Section 11.3, vol. II]. In order to simplify notation we write
0p,(w)(N) instead of op (. (span{N}) for N € S4.
The next theorem is almost an immediate consequence of [9, Theorem

2.5,

Theorem 3.1. Let Q; C €y be open convex subsets of RY. Assume that
every hyperplane H = {x € R% (x,N) = o}, N € S¥ 1 a € R with
opw)(IN) = 0 which intersects dy already intersects €.

Then for every u € :@(’w)(Qg) satisfying sing supp yP(D)u = 0 as well
as sing supp wu C Q\Qy we already have sing supp yu = 0.

PROOF. Let u € 7, (%) satisfy P(D)u € &) (€22) and ufg, € &) ().
Since )5 is convex it follows from the Theorem of supports (see e.g. [T, The-
orem 4.3.3, vol. I]) and [2, Theorem A] that there is v € &,)(£22) such that
P(D)v = P(D)u so that w := u—1v € Z,,({) satisfies P(D)w = 0 as well
as wlo, € &)(£21). Hence, by [9, Theorem 2.5] it follows that w € &,)(£2)
which proves the theorem. O

When investigating P-convexity for (w)-singular supports by means of
the above theorem it is necessary to study the zeros of op () in Sa=1 In
order to do so, recall the definition of w-localizations of P at infinity, as
introduced by Langenbruch in [9]. For a polynomial P and ¢ € R? we set
P ,(z) = P({+w(§)x) which is again a polynomial of the same degree as P.

Clearly, by P := V2o [P@(0)]? there is a norm given on the vector space
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C[Xy, ..., Xy]. From now on let C[ X7, ..., X ] be equipped with the vector
space topology induced by this norm. The set of all limits in C[Xq, ..., X,]
of the normalized polynomials

Pew(2)

P,

as £ tends to infinity is denoted by L, (P). More precisely, if N € S~ then
the set of limits where £/|¢| — N (with £ tending to infinity) is denoted by
L, n(P). Obviously, L, (P) as well as L, x(P) are closed subsets of the unit
sphere of all polynomials in d variables, equipped with the norm @ Q, of

X

degree not exceeding the degree of P. The non-zero multiples of elements
of L,(P) (resp. of L, y(P)) are called w-localizations of P at infinity (resp.
w-localizations of P at infinity in direction N). Since w(§) = w(|¢]), Q €
L,n(P) if and only if Q € L, _n(P). Again, if we formally set w = 1
we obtain the well known set L(P) of localizations of P at infinity (see
Hormander [7), Definition 10.2.6]).

For the classical case, i.e. if formally w = 1, the next lemma is proved
in [8]. The proof here is almost the same, but we include it for the reader’s

convenience.

Lemma 3.2. Let P be of degree m with principal part P,,.
i) For every subspace V of R and t > 1 we have

it VEE©) o Qr(0)

e P tw(E)  QeLer) Q(0,1)

ii) Let N € S“' and Q € Ly n(P). If P,,(N) # 0 then Q is constant.
iii) If P is non-elliptic then for every subspace V of R? and t > 1 we

have

_ : Qv (0,t)
— = nf inf = :
§vo0 P(E tw(§)) N€eS§1,Ppn(N)=0 Q€Lun(P) (Q(0,1)

PROOF. i) Since for every subspace V and each ¢t > 0 the maps R +—
Ry (0, 1) are continuous seminorms on C[X, . .., X4] and because Py (€, tw(€))
(Pr)v(0,1) it follows immediately from the definition that

v (0, 1) Py (g tw(9)

a > lim inf

Q(0,t) — & P& tw(é))

for every Q € L, (P).
Moreover, if (&,),en tends to infinity such that

Pr(&tw@) . Prl&ntw(&)) . (Peu)v(00)

liminf =——>—*% = lim = lim

¢v0o P(Etw(€)) oo P& tw(&))  noe P, w(0,1)
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we can extract a subsequence of (,),en which we again denote by (&,)nen
such that the sequence of normalized polynomials 7%, ,/ pén,w converges in
the compact unit sphere of all polynomials in d variables of degree at most

m. This limit belongs to L, (P) and we get

g DV (& w(E) > inf Qv(0,7)
00 P(§tw(E)) — @eluP) Q(0,1)
completing the proof of i).
The proof of ii) is an easy application of Taylor’s formula. Let P =
ZT:O P;, where P; is a homogeneous polynomial of degree j. Let (&,)nen
tend to infinity with lim, . &,/|.| = N and P,,(N) # 0. Then

P,
P = Y &) f ol
0<lal<j<m '
. &l & €T (6)!™) ey En ) o
<j<m <la|<j<m
Moreover

m

Pepwo = Yo 1Y B (G (6l

0<|al<m  j=|a

_ m ‘€n| (a gn |§n|J o lw( ) o
& ‘Z \sn| el 2 > Gl T

0<|al<m  j=|q|

which implies by w(&,) = o(|€,]) as n tends to infinity
Pew(n) _ Pa(N)

lim —= =
=0 Pew [P (N)]

for every n € R? showing ii).

iii) is an immediate consequence of lim infe ., Py (€, tw(€))/P(&,tw(€)) <
1, 1), and ii). d

Before we continue, recall the following definition (cf. Hormander [7,
Section 10.2]). Let
AP)={neR,VEeR, teR: P(+1tn) = P(E)},

which is obviously a subspace of R? which coincides with R? if and only if P
is constant. In case of w = 1 the corresponding result of the next proposition
is due to Hormander [7, Theorem 10.2.8, vol. II] and its proof uses the

Tarski-Seidenberg theorem. In our case, the proof is rather elementary.

Lemma 3.3. If Q € L, n(P) then N € A(Q).
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PROOF. Since w(§) = w(|{]) we can assume without loss of generality
that N = e; = (1,0,...,0). We denote the degree of P by m. In case of
P = 0 we clearly have by Taylor’s theorem that e; € A(P) which clearly
implies e; € A(Q) by the definition of L, (P).

Now, if P1) does not vanish identically it follows that Pg(ij) does not
vanish identically either, for every ¢ € R Since P + > |P)(0)] is a
norm on the space of all polynomials in d variables, it follows that for every
£ eR?

0 |PED0)] =D [Pt (@w@)l = Y [Pete©)lw(E),

0<|ar|]<m—1

because P has degree m. Hence, for every ¢ € R% ¢t € R we have by Taylor’s

theorem
0 < [Pt +w(@)(x +ser))| _ | 2ozjajzm-1 Pt (€)w(&) 4 (z + ser)?]
- > o [P |w(&)l > [P |w(&)l
< Zog\a|§m—1 |P(a+el)(f)|w(§>‘a|$|(x + se1)?|
B >0<]al<m—1 | Platen) (€)w (&) e
< MaXogjaj<m-t $|(x + seq)?|
- w(§)
Since @ € L, (P) there is (&, )nen tending to infinity such that

Enyw
in the vector space topology of the polynomials in d variables of degree not
exceeding m. In particular, we also have

Q(61)(:L') — lim P(el)(gn:i‘w(gn)x).

n—o00 an w

The space of all polynomials in d variables of degree not exceeding m being
finite dimensional, all norms on it are equivalent. Therefore, by passing to
a subsequence of (§,)nen if necessary, there is ¢ > 0 such that for every
r€R%and s € R

QO (a4 se)| = tim D0+ G+ ser)

n—o0 Pin,w

[P (&0 + w(&a)( + se1))]

< cli

= S TR P () ()
L a

< ¢ lim Maxo<|a|<m—1 a!|(x + 861) |

n—00 w(én)
= 0.
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Hence, for each z € R? the polynomial ¢, : R — C, s — Q(z + se;) satisfies
¢.(s) = Q) (x4 se;) = 0. Thus g, is constant which shows that e; € A(Q).
O

Now we are able to prove the main result of this section. In the classical
case, i.e. if we formally set w = 1, the corresponding result was proved in [g].
Again the proofs are almost identical but we include it here for completeness’

sake.

Lemma 3.4. Let P € C[X;, X3 be of degree m with principal part P,,.
Then

{yeS% opu(y) =0} C{y €S Puly) =0}

Proor. By Lemma i) and ii) we can assume without loss of generality
that P is not elliptic. Since we are in R? the principal part P,, can only have a
finite numbers of zeros in S*. Let {N € S'; P,,(N) =0} = {Ny,..., N;}. For
each 1 < j <[ choose z; € S' orthogonal to N;. Without loss of generality,
let {y € S'; op(y) = 0} # 0. By Lemma there is a non-constant ) €
L, (P) for some 1 < j < 1. By Lemma [3.3 we have Q(§ + sN;) = Q(&)
for any ¢ € R?, s € R. Hence Q(&) = Q((£, z;)x;) for all £ € R?. Defining

q:R—C,s— Q(sz;)
it follows that for fixed y € S!

Qupaniy(0,8) = sup{|QOW): A < ¢} = sup{|Q(\y. 2),)]: ]A] < ¢}
— sup{Ja(M{y,z;))]; A < 1},

and because |z;| = 1 we also have

Q0,t) = sup{|Q(&)]; € € R?,[¢] <t} = sup{|Q((&, z;)x))]; £ € R?, [¢] <t}
= sup{|Q(Az;)|; [A] <t} =sup{|g(M)[; [A] < 1}

Since @ € L, (P) it follows that ¢ is a polynomial of degree at most m.
Because on the finite dimensional space of all polynomials in one variable of
degree at most m the norms sup,<; [p(s)| and 37" [p*)(0)| are equivalent
there is C' > 0 such that

C'sup |p(s)| > Z 1p™*)(0)] > 1/C sup |p(s)]
k=0

s|<1 s|<1
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for all p € C[X] with degree at most m. Applying this to the polynomials
s — q(st) and s — q(st(y, z;)) gives
@spajz{y}(oat) L Do ld Oy, @)
Q1) O, g (o)
> {y,x;)|™/C?

where we used |(y, z;)| < 1 in the last inequality. We conclude that for every
1<j<li

Qszum{y}(()?t) > |<y7 xj>|m

in )
QeLon;(P)  Q0,t)  —  C?
where C only depends on the degree m of P. It follows from Lemma iii)
and {N € S'; P,,(N) =0} = {Ny,...,N;} that for all t > 1

Popanyy (6,10(€)) g Qupan{y3 (0,1) > min LY 2™

lim inf = = 1 > mi
emoo P(Etw(€)) 1<j<IQeLun;(P)  Q(0,1) i<t G2

Therefore, if for y € S*

ﬁs an ,t
0 = 0p(w)(y) = inf lim inf —= wH(& tw(€))

R (R Z((J))

it follows that y is orthogonal to some xz;, hence y € {N;,—N,} since
ly| = 1 = |N;| which shows P,,(y) = 0. O

In particular it follows that for P € C[X, X5]\{0} the set

{y € SYopw)(y) = 0}

is finite. Moreover, it follows immediately from the above lemma that in
case of d = 2 every hyperplane H = {z; (z, N) = a}, N € S*! o € R, with
opw)(IN) = 0 is characteristic for P. That this is not the case in general for
d > 3 is shown by the next example.

Example 3.5. Let d > 2 and P € C[X},..., X, be given by
P(xy,...,0q) =27 — 25 — ... — 22,

It follows that for each weight function w an w-localization of P at infinity
in direction 1/4/2(1,1,0,...,0) is given by Q(x1,...,7q4) = (21 — 22)/V/2.
Hence it follows for e; = (0,...,0,1) that Qsmn{ed}(O, t) =0 for every t > 1
so that in particular O'P7(w)(€d) = 0 by Lemma . On the other hand, we
clearly have P(eq) = P(eq) = —1.
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4. A SUFFICIENT CONDITION FOR P-CONVEXITY FOR (w)-SINGULAR
SUPPORTS

In this section we will prove a sufficient condition for an open subset (2
of R4 to be P-convex for (w)-singular supports in terms of an exterior cone
condition, similar to those proved in [§].

Recall that a cone C' is called proper if it does not contain any affine
subspace of dimension one. Moreover, recall that for an open convex cone
I' € R? its dual cone is defined as

I°:={¢cRyvyel: (y& >0}

For I' # () it is a closed proper convex cone in R?. On the other hand, every
closed proper convex cone C in R? is the dual cone of a unique non-empty,

open, convex cone which is given by

I':={ycR% Ve e C\{0}: (y,&) >0}

The proof can be done by the Hahn-Banach Theorem (cf. [7, p. 257, vol. I]).
Therefore, we use the notation I'° also for arbitrary closed convex proper
cones. Moreover, from now on we assume all open convex cones I' to be
non-empty.

As a first result we obtain from Theorem the next proposition which
is an analogue result to [7, Corollary 8.6.11, vol. I].

Lemma 4.1. Let I' be an open proper convex cone in RY, o € R If for
Q=29+ I no hyperplane H = {x € R% (x,N) = a}, N € S% 1 a € R,
with op ) (N) = 0 intersects Q only in zg, the following holds.

Fachu € @(’w)(Q) with sing supp ) P(D)u = 0 and sing supp (,yu bounded
already satisfies sing supp yu = 0.

PrOOF. Let u € 7, (?) satisty P(D)u € &.,)(2) and assume that
u is &, outside a bounded subset of €. Since I' is a proper cone, there
is a hyperplane 7 intersecting {2 only in x,. Let H, be a halfspace with
boundary parallel to 7 such that Q; := QN H, # () is unbounded and
ulg, € &)(€h). Denoting €, := Q we have convex sets 1 C 2y and by the
hypothesis, each hyperplane H = {z € R% (2, N) = a}, N € S%1 a € R,
with 0p ) (N) = 0 and HNQ, # 0 already intersects ;. Theorem [3.1 now
gives singsupp (yu = 0. O

Before we come to the main result of this section, we need one more

result.
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Theorem 4.2. i) If u € &, (R) then
ch(sing supp (yu) = ch(sing supp (., P(—D)u).

ii) For an open subset Q of R? the following are equivalent.
a) Q is P-convex for (w)-singular supports.

b) For each u € &, (S2) one has
dist(sing supp (u, 2°) = dist(sing supp . P(—D)u, 2°).

PROOF. i) By a result of Bonet et al. [3, Remark 2.10] one has for
a convex compact subset K of R? and u € &)(R?) that the inclusion
sing supp (,yu C K is equivalent to the existence of b > 0 such that for each
m € N there is C,, > 0 such that

()] < O exp(Hg (ImC) + bw(C))

for all ¢ € C* with |Im¢| < mw(¢) and [¢| > C,,, where Hf denotes the
supporting function of K. Moreover, by [3, Remark 1.2 (c¢)] we can assume
without loss of generality that w > 1.

Since by Braun et al. [4, Lemma 1.2] there is some constant K > 0 such
that w(¢+n) < K(1+w(¢) +w(n)) for all ¢,n € C4 it follows for all ¢ € C4
with [Im(| < mw(¢) and all z € C, |z| = 1 that

I (¢ + ze1)]

IN

mw(¢) +1=mw({ + ze; — zey) + 1
mw(|¢+zel|+1)+1 < Km(l4+w((+ze1) +w(l)) + 1
Kmw(C+ zep) + (Km(1 +w(1)) + 1) w(¢ + zeq)
(Km(2+w(l)) + 1) w(C + zeq).

VAN VAN

Hence, if |Im¢| < mw(() for some m € N there is k& € N such that
(1) IIm (¢ + ze1)| < kw(C + zey) for all z € C,|z| = 1.

Now, for u € &(,(2) set f := P(—D)u and let K be the convex hull
of singsupp (., f. Clearly, we have ch(singsupp (,yu) O K. In order to show
that ch(singsupp (,yu) C K observe that by [3, Remark 2.10] there is b > 0
such that for all m € N there is C,,, > 0 such that

1P(=Q)a(C)] = |F(Q)] < Coexp(Hi (ImC) + b (C))

for all ¢ € C? with || > C,, and |[Im¢| < mw(¢). By [7, Lemma 7.3.3, vol.
I] there is a > 0 such that
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for all ¢ € CY. Hence, for all ¢ € C? such that |¢ + ze;| > C,, and |[Im(¢ +
ze1)| < mw(C + zep) for every |z| = 1 we obtain
ala(C)] < sup Cpexp(Hg(Im(C + zeq)) + bw(C + zeq))
|z|=1
< sup Oy, exp(Hg(Im¢) + Hx(Imzey) + bK (1 + w(() + w(1)))

|z|=1

= sup O, exp(Hg(Imzey) + bK (1 4+ w(1))) exp(Hx(Im¢) + bKw(()).

|2=1

Combining this and inequality (4.1) gives b > 0 such that for all m € N
there is CN’m > (0 such that

[a(¢)] < Con exp(Hr (Im) + bw(())

for all ¢ € C% with |¢| > C,, and |Im¢| < mw((), proving ch(sing supp (@) C
K, hence i).

Using i), ultradifferentiable cut-off functions, and taking into account
that &,)(€2) is an algebra with continuous multiplication (cf. [4, Proposi-
tion 4.4]), the proof of ii) follows along the same lines as the proofs of [7,
Theorem 10.6.3 and/or Theorem 10.7.3, vol. II]. O

The following proposition (cf. [§]) contains some elementary geometric

facts which will be used in the sequel.

Lemma 4.3. Let I° # {0} be a closed proper convezx cone in R? and N €
S4=1. For ¢ € R let H, := {x € R {(x, N) = c}. Then the following are
equivalent.

i) Nel' or =N €T

ii) If v € H. then H.N (x +1°) = {z}.

We are now able to prove the main result of this section. Compare also
[8, Theorem 9.

Theorem 4.4. Let ) be an open connected subset of R? and P € C[X4, ..., X4
a non-constant polynomial with principal part P,,. Then € is P-convex for

(w)-singular supports if for every x € 0K there is an open convex cone T’
such that (x +T°)NQ =0 and op,)(y) #0 for ally € T.

PROOF. Let u € &, (). We set K := singsupp () P(—D)u and ¢ :=
dist(K,Q°). We will show that
dist(sing supp (w)u, 2°) > 6

which by
sing supp (yu O sing supp )y P(—D)u
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will imply
dist(sing supp (u)u, 2°) = 6,
hence P-convexity for (w)-singular supports of 2 by Theorem [4.2]

Let zyp € 02 and let ' be as in the hypothesis for zo € 9. Then
(w0 +T°)NQ =0, thus (zo +y +T°) N K =0 for all y € R? with |y| < 6.
Therefore, for fixed y with |y| < 0, there is an open proper convex cone [ in
R? with T' D I'°\{0} such that (z¢ +y + )N K = 0. Hence, u € &y () C
Dy (@0 +y + I) satisties P(—D)u € &u)(zo +y +1T).

We will show that u € &,)(zo +y + I') by applying Lemma . Hence,
let # = {v € R%(v,N) = a} be a hyperplane with op,)(N) = 0. As
' is a closed proper convex cone with non-empty interior, it is the dual
cone of some open proper convex cone I'y. It follows from I'] = [ >I°
that I’y C I'. Because op.)(N) = 0 it follows from the hypothesis that
{N,—-N} NT = ), hence {N,—N} NT; = 0, so that by Lemma H
does not intersect xy + y + r only in zo + y. Since u € &, () we have
that singsupp u is compact. Moreover P(—D)u € &, (2o +y +1T'), so that
u € (o +y + ') by Lemma Since xy € 092 and y with |y| < o
were chosen arbitrarily, we conclude that dist(singsupp (yu, ) > ¢, which
proves the theorem. O

5. PROOF OF THE MAIN THEOREM

Recall that for elliptic P every open subset Q@ C R is P-convex for
supports. In case of d = 2 a complete characterization of P-convexity for
supports is known. It is due to Hérmander, see e.g. [7, Theorem 10.8.3, vol.
I1].

Theorem 5.1. If P is non-elliptic then the following conditions on an open
connected set Q0 C R? are equivalent.

i) Q is P-convez for supports.
ii) The intersection of every characteristic hyperplane with S is convet.
iii) For every xo € OS) there is a closed proper convex cone I'° # {0}
with (xg + I°) N Q = 0 and no characteristic hyperplane intersects

xo + I'° only in xy.

It is not hard to see that in the above theorem condition iii) is equivalent

to the following condition (see [§]).

iii’) For every xo € OS) there is an open convex cone I’ # R? with (zg +
YN Q =0 and Py(y) # 0 for all y € T, where P, denotes the
principal part of P.
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Theorem 5.2. Let Q) C R? be open, w a weight function, and P € C[X1, X5].
If Q is P-convex for supports then § is P-convex for (w)-singular supports.

ProOF. Without loss of generality we can assume that P is not elliptic.
Clearly, by passing to the different components of €2 if necessary, we can
assume that €2 is connected. Since P is not elliptic, it follows from The-
orem with iii’), Lemma [3.4] and Theorem that € is P-convex for
(w)-singular supports. O

As a corollary we now obtain Theorem [I.1]

PrOOF OF THEOREM (1.1 That i) and ii) are equivalent is shown in
[§]. Clearly, iii) implies iv). By Theorem [2.4) and Remark [2.5]1), iv) implies
that  is P-convex for supports, so that i) follows from iv). So, all that

remains to be shown is that i) implies iii). But this implication follows from
Theorem [£.2] and Theorem [2.4] O

Combining Theorems [1.2] [5.1] and [I.1] gives the next result.

Theorem 5.3. Let Q C R? be open and P € C[Xy, Xs]. The following are
equivalent.
i) P(D)
i) P(D)
iii) P(D)
) P(D)
weight function w.
v) P(D) : 7, () = () is surjective for each non-quasianalytic

weight function w.

cA(Q) — A(Q) is surjective.

1 C®(Q) — C(Q) is surjective.

: 2'(Q) = Z'(Q) is surjective.

D0y (Q) = D, (Q) is surjective for some non-quasianalytic

1v

vi) The intersection of every characteristic hyperplane with any con-

nected component of () is convez.

The next example shows that for d > 3 an analogous result to Theorem
is not true in general. See also Langenbruch [9, Example 3.13], where it
is shown that surjectivity of P(D) on .@(’w)(Q) for d > 3 depends explicitly

on the weight function w in general.

Example 5.4. Let d > 2 and P(zy,...,24) = 22 — 23— ... — 22 Moreover,
let T := {z € RY 24 > (22 + ...+ 2% |)Y/?}. Then I' is an open convex cone
with ['® = T. Set  := RY\T. Then it is not hard to show that 2 is P-convex
for supports. This follows for example by [8, Theorem 9 i)]. Hence, P(D) is
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surjective on C'*(€2) but P(D) is not surjective on 2'(Q2) (see [8, Example
12]).
Moreover, it follows from Example [3.5/ and Lemma that

Pspan{ed} (57 w(g))

lim inf =0

o P(gw(©))
where eg = (0,...,0,1). Setting H = {z € R%; (x,e4) = —1} and

Y

K :=Hn{zeR%|z| <2}

it is easily seen that the distance of 92 = OI' to K is 1 while the distance
of OI" to Oy K, i.e. to the boundary of K relative H, strictly increases 1.

Hence, it follows from [9, Corollary 2.7] that P(D) cannot be surjective on
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