SOME RESULTS ON SURJECTIVITY OF AUGMENTED SEMI-ELLIPTIC DIFFERENTIAL OPERATORS

L. FRERICK, T. KALMES

Abstract

We show that for a semi-elliptic polynomial P on \mathbb{R}^{2} surjectivity of $P(D)$ on $\mathscr{D}^{\prime}(\Omega)$ implies surjectivity of the augmented operator $P^{+}(D)$ on $\mathscr{D}^{\prime}(\Omega \times \mathbb{R})$, where $P^{+}\left(x_{1}, x_{2}, x_{3}\right):=P\left(x_{1}, x_{2}\right)$. For arbitrary dimension n we give a sufficient geometrical condition on $\Omega \subset \mathbb{R}^{n}$ such that an analogous implication is true for semi-elliptic P. Moreover, we give an alternative proof of a result due to Vogt which says that for elliptic P the operator $P^{+}(D)$ is surjective if this is true for $P(D)$.

1. Introduction

Let $\Omega \subset \mathbb{R}^{n}$ be open and $P \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ be a non-zero polynomial. Consider the corresponding differential operator $P(D)$, where as usual $D_{j}=-i \frac{\partial}{\partial x_{j}}$, acting on $\mathscr{D}^{\prime}(\Omega)$. We denote by $P^{+}(D)$ the augmented operator, i.e. $P(D)$ acting "on the first n variables" on $\mathscr{D}^{\prime}(\Omega \times \mathbb{R})$.

In [1, Problem 9.1] it is asked if it is true that $P^{+}(D)$ is surjective if $P(D)$ is surjective (not only on the space of ordinary distributions over Ω but more general for ultradistributions of Beurling type). This question is closely connected with the parameter dependence of solutions of the differential equation

$$
P(D) u_{\lambda}=f_{\lambda},
$$

see [1]. It is shown in [1, Proposition 8.3] that the answer to the above question is in the affirmative, if and only if $\mathscr{N}_{P}(\Omega)$, the kernel of the operator, possesses the linear topological invariant $(P \Omega)$. It was shown by Vogt [3, Proposition 2.5] that $\mathscr{N}_{P}(\Omega)$ has $(P \Omega)$ if the polynomial P is elliptic (in this case the property $(P \Omega)$ equals the linear topological invariant (Ω)).

The paper is organized as follows. In section 2 we show that the above problem is equivalent to the question whether P-convexity for supports as well as for singular supports of Ω implies P^{+}-convexity for singular supports of $\Omega \times \mathbb{R}$. Moreover, we observe that due to the fact that P^{+}carries a muted variable it is easier to evaluate a certain numerical quantity $\sigma_{P^{+}}(W)$ for subspaces W which arises in the theory of continuation of differentabilty due to Hörmander. Based on this observation we consider semi-elliptic polynomials P and characterize those subspaces W for which $\sigma_{P^{+}}(W)=0$ in section 3. This knowledge together with sufficient conditions for P-convexity given in section 4 enable us to present an alternative proof of the above mentioned result of Vogt in section 5, as well as a positive answer to the problem for semi-elliptic polynomials if $\Omega \subset \mathbb{R}^{2}$ or if Ω satisfies a certain additional "geometric" property in case of $n>2$.

[^0]
2. Preliminaries

As is well-known, for a non-zero polynomial $P \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ the differential operator $P(D)$ is surjective on $\mathscr{D}^{\prime}(\Omega)$ if and only if Ω is P-convex for supports as well as P-convex for singular supports, i.e. for each compact subset K of Ω there is another compact subset L of Ω such that for all $\phi \in \mathscr{D}(\Omega)$ one has supp $P(-D) \phi \subset$ L whenever $\operatorname{supp} \phi \subset K$, resp. for all $\mu \in \mathscr{E}^{\prime}(\Omega)$ one has sing supp $P(-D) \mu \subset L$ whenever sing supp $\mu \subset K$.

Therefore, the problem whether $P^{+}(D)$ is surjective on $\mathscr{D}^{\prime}(\Omega \times \mathbb{R})$ if $P(D)$ is surjective on $\mathscr{D}^{\prime}(\Omega)$ is equivalent to the problem if $\Omega \times \mathbb{R}$ is P^{+}-convex for supports as well as P^{+}-convex for singular supports if Ω is P-convex for supports and P convex for singular supports. As we will see, P-convexity for supports is trivial.
Proposition 1. Let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and $\Omega \subseteq \mathbb{R}^{n}$ be open such that Ω is P convex for supports. Then $\Omega \times \mathbb{R}$ is P^{+}-convex for supports.

Proof. Let $K \subset \Omega$ and $K^{\prime} \subset \mathbb{R}$ be compact. Ω being P-convex for supports there is a compact subset L of Ω such that for every $\phi \in \mathscr{D}(\Omega)$ satisfying $\operatorname{supp} P(-D) \phi \subset K$ already $\operatorname{supp} \phi \subset L$ holds. If $\phi \in \mathscr{D}(\Omega \times \mathbb{R})$ is of the form $\phi(x, s)=\phi_{1}(x) \phi_{2}(s)$ with $\phi_{1} \in \mathscr{D}(\Omega)$ and $\phi_{2} \in \mathscr{D}(\mathbb{R})$ obviously $P^{+}(-D) \phi=$ $\left(P(-D) \phi_{1}\right) \phi_{2}$ so that supp $P^{+}(-D) \phi \subset K \times K^{\prime}$ implies $\operatorname{supp} \phi \subset L \times K^{\prime}$. Since functions of the form $\phi=\phi_{1} \phi_{2}$ span a dense linear subspace in $\mathscr{D}(\Omega \times \mathbb{R})$ the proposition follows.

An alternative proof of the above proposition can be given by using tensor products. That an analogous implication for P-convexity for singular supports is not true in general is shown in Example 9 below. Hence the original problem is equivalent to whether P-convexity for supports as well as P-convexity for singular supports of Ω imply P^{+}-convexity for singular supports of $\Omega \times \mathbb{R}$.

Recalling that Ω is P-convex for supports if and only if $P(D): \mathscr{E}(\Omega) \rightarrow \mathscr{E}(\Omega)$ is surjective we obtain the following result as an immediate consequence.
Corollary 2. Let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and $\Omega \subseteq \mathbb{R}^{n}$ be open. If $P(D): \mathscr{E}(\Omega) \rightarrow \mathscr{E}(\Omega)$ is surjective then $P^{+}(D): \mathscr{E}(\Omega \times \mathbb{R}) \rightarrow \mathscr{E}(\Omega \times \mathbb{R})$ is surjective.

In order to deal with P^{+}-convexity for singular supports, we will use the following notion introduced by Hörmander in connection with continuation of differentiability (cf. [2, Section 11.3, vol. II]). For a subspace V of \mathbb{R}^{n}

$$
\sigma_{P}(V)=\inf _{t>1} \liminf _{\xi \rightarrow \infty} \tilde{P}_{V}(\xi, t) / \tilde{P}(\xi, t)
$$

where $\tilde{P}_{V}(\xi, t):=\sup \{|P(\xi+\eta)| ; \eta \in V,|\eta| \leq t\}, \tilde{P}(\xi, t):=\tilde{P}_{\mathbb{R}^{n}}(\xi, t)$. This quantity is intimately connected with the so called localizations at infinity of the polynomial P which in turn are related to the bounds for the wave front set and singular support of a regular fundamental solution of P. Roughly speaking, $\sigma_{P}(V) \neq 0$ implies that regularity of $P(D) u$ continues along the subspace V to regularity of u (cf. [2, Theorem 11.3.6, vol. II]).

The way we will use $\sigma_{P}(V)$ is given by the following result which is nothing but a reformulation of [2, Corollary 11.3.7, vol. II].

Corollary 3. Let $\Omega_{1} \subset \Omega_{2}$ be open and convex, and let P be a non-constant polynomial. Then the following are equivalent:
i) If $u \in \mathscr{D}^{\prime}\left(\Omega_{2}\right)$ satisfies $P(D) u \in C^{\infty}\left(\Omega_{2}\right)$ as well as sing supp $u \subset \Omega_{2} \backslash \Omega_{1}$ then sing supp $u=\emptyset$.
ii) Every hyperplane $H=\{x ;\langle x, N\rangle=\alpha\}$ with $\sigma_{P}(\operatorname{span}\{N\})=0$ which intersects Ω_{2} already intersects Ω_{1}.

Proof. That i) implies ii) is just a special case of [2, Corollary 11.3.7, vol. II]. Let $u \in \mathscr{D}^{\prime}\left(\Omega_{2}\right)$ satisfy $P(D) u \in C^{\infty}\left(\Omega_{2}\right)$ as well as $\left.u\right|_{\Omega_{1}} \in C^{\infty}\left(\Omega_{1}\right)$. By the convexity of Ω_{2} we find $v \in C^{\infty}\left(\Omega_{2}\right)$ such that $P(D) v=P(D) u$. Therefore $w:=u-v \in \mathscr{D}^{\prime}\left(\Omega_{2}\right)$ satisfies $P(D) w=0$ and $\left.w\right|_{\Omega_{1}} \in C^{\infty}\left(\Omega_{1}\right)$. Now it follows from ii) and [2, Corollary 11.3.7, vol. II] that $w \in C^{\infty}\left(\Omega_{2}\right)$, thus $u \in C^{\infty}\left(\Omega_{2}\right)$.

So, for us it will be important to know for which (one-dimensional) subspace W of \mathbb{R}^{n+1} we have $\sigma_{P^{+}}(W)=0$. The next lemma will be very helpful in this.

Lemma 4. Let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ and let Π be the orthogonal projection of \mathbb{R}^{n+1} onto the first n coordinates. For a subspace W of \mathbb{R}^{n+1} we identify $W^{\prime}:=\Pi(W)$ with the corresponding subspace of R^{n}. Then the following hold.
i)

$$
\sigma_{P^{+}}\left(W^{\prime} \times\{0\}\right)=\sigma_{P^{+}}\left(W^{\prime} \times \mathbb{R}\right)=\inf _{t>1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)}
$$

ii) $\sigma_{P^{+}}(W)=0$ if and only if $\inf _{t>1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)}=0$.

Proof. We write $x=\left(x^{\prime}, x_{n+1}\right)$ for $x \in W$ with $x^{\prime} \in \mathbb{R}^{n}$ and $x_{n+1} \in \mathbb{R}$.
By definition we have for $(\xi, \eta) \in \mathbb{R}^{n} \times \mathbb{R}$

$$
\begin{aligned}
\tilde{P}_{W^{\prime} \times \mathbb{R}}^{+}((\xi, \eta), t) & =\sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ;\left(x^{\prime}, x_{n+1}\right) \in W^{\prime} \times \mathbb{R},\left|\left(x^{\prime}, x_{n+1}\right)\right| \leq t\right\} \\
& =\sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ; x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq t\right\} \\
& =\tilde{P}_{W^{\prime}}(\xi, t)=\tilde{P}_{W^{\prime} \times\{0\}}^{+}((\xi, \eta), t) .
\end{aligned}
$$

In particular, this implies

$$
\tilde{P}^{+}((\xi, \eta), t)=\tilde{P}(\xi, t)
$$

Hence

$$
\begin{aligned}
\liminf _{(\xi, \eta) \rightarrow \infty} \frac{\tilde{P}_{W^{\prime} \times \mathbb{R}}^{+}((\xi, \eta), t)}{\tilde{P}^{+}((\xi, \eta), t)} & =\sup _{r>0} \inf _{|(\xi, \eta)|>r} \frac{\tilde{P}_{W^{\prime} \times \mathbb{R}}^{+}((\xi, \eta), t)}{\tilde{P}^{+}((\xi, \eta), t)} \\
& =\sup _{r>0} \inf _{|(\xi, \eta)|>r} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)} \\
& =\inf _{\xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)}
\end{aligned}
$$

as well as

$$
\liminf _{(\xi, \eta) \rightarrow \infty} \frac{\tilde{P}_{W^{\prime} \times\{0\}}^{+}((\xi, \eta), t)}{\tilde{P}^{+}((\xi, \eta), t)}=\inf _{\xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)}
$$

which gives

$$
\sigma_{P^{+}}\left(W^{\prime} \times \mathbb{R}\right)=\inf _{t>1} \liminf _{(\xi, \eta) \rightarrow \infty} \frac{\tilde{P}_{W}^{+}((\xi, \eta), t)}{\tilde{P}^{+}((\xi, \eta), t)}=\inf _{t>1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)}
$$

as well as

$$
\sigma_{P^{+}}\left(W^{\prime} \times\{0\}\right)=\inf _{t>1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)} .
$$

Thus i) is proved.
In order to prove ii) assume first that W is contained in the kernel of Π, i.e. $W \subset\{0\} \times \mathbb{R}$. Then we have for $(\xi, \eta) \in \mathbb{R}^{n} \times \mathbb{R}$

$$
\tilde{P}_{W}^{+}((\xi, \eta), t)=\sup \left\{|P(\xi)| ;\left(0, x_{n+1}\right) \in W,\left|x_{n+1}\right| \leq t\right\}=|P(\xi)|=\tilde{P}_{W^{\prime}}(\xi, t)
$$

As in the proof of i) it then follows that

$$
\sigma_{P^{+}}(W)=\inf _{t>1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)}
$$

Hence, without loss of generality, let $W \nsubseteq\{0\} \times \mathbb{R}$. Then, by setting $p_{1}:=\left\|\Pi_{\mid W}\right\|$ we get $p_{1}>0$ as well as

$$
\begin{aligned}
\tilde{P}_{W}^{+}((\xi, \eta), t) & =\sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ;\left(x^{\prime}, x_{n+1}\right) \in W,\left|\left(x^{\prime}, x_{n+1}\right)\right| \leq t\right\} \\
& \leq \sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ; x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq t p_{1}\right\} \\
& =\tilde{P}_{W^{\prime}}\left(\xi, t p_{1}\right)
\end{aligned}
$$

Now we distinguish two cases. If $\Pi_{\mid W}: W \rightarrow W^{\prime}$ is not injective we clearly have $\{(0, y) ; y \in \mathbb{R}\} \subset W$. Therefore, recalling that Π as an orthogonal projection satisfies $p_{1}=\left\|\Pi_{\mid W}\right\| \leq\|\Pi\| \leq 1$
$\sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ; x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq t p_{1}\right\}=\sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ;\left(x^{\prime}, x_{n+1}\right) \in W,\left|\left(x^{\prime}, x_{n+1}\right)\right| \leq t\right\}$
because if $x_{0}^{\prime} \in W^{\prime}$ with $\left|x_{0}^{\prime}\right| \leq t p_{1}$ is a point where the supremum on the left hand side is attained then $\left(x_{0}^{\prime}, 0\right) \in W$ with $\left|\left(x_{0}^{\prime}, 0\right)\right| \leq t$. Therefore

$$
\tilde{P}_{W^{\prime}}\left(\xi, t p_{1}\right)=\tilde{P}_{W}^{+}((\xi, \eta), t)
$$

In case of $\Pi_{\mid W}: W \rightarrow W^{\prime}$ being injective $\left(\Pi_{\mid W}\right)^{-1}: W^{\prime} \rightarrow W$ is well-defined and continuous and we get

$$
\begin{aligned}
\tilde{P}_{W^{\prime}}\left(\xi, t\left\|\left(\Pi_{\mid W}\right)^{-1}\right\|^{-1}\right) & =\sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ; x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq t\left\|\left(\Pi_{\mid W}\right)^{-1}\right\|^{-1}\right\} \\
& \leq \sup \left\{\left|P\left(\xi+x^{\prime}\right)\right| ;\left(x^{\prime}, x_{n+1}\right) \in W,\left|\left(x^{\prime}, x_{n+1}\right)\right| \leq t\right\} \\
& =\tilde{P}_{W}^{+}((\xi, \eta), t)
\end{aligned}
$$

Hence, in both cases there are $p_{1}, p_{2}>0$ such that

$$
\tilde{P}_{W^{\prime}}\left(\xi, t p_{2}\right) \leq \tilde{P}_{W}^{+}((\xi, \eta), t) \leq \tilde{P}_{W^{\prime}}\left(\xi, t p_{1}\right)
$$

for all $\xi \in \mathbb{R}^{n}, \eta \in \mathbb{R}, t \geq 1$. Altogether this yields

$$
\inf _{\xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}\left(\xi, t p_{2}\right)}{\tilde{P}(\xi, t)} \leq \liminf _{(\xi, \eta) \rightarrow \infty} \frac{\tilde{P}_{W}^{+}((\xi, \eta), t)}{\tilde{P}^{+}((\xi, \eta), t)} \leq \inf _{\xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}\left(\xi, t p_{1}\right)}{\tilde{P}(\xi, t)}
$$

so that

$$
\begin{equation*}
\inf _{t \geq 1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}\left(\xi, t p_{2}\right)}{\tilde{P}(\xi, t)} \leq \sigma_{P^{+}}(W) \leq \inf _{t \geq 1, \xi \in \mathbb{R}^{n}} \frac{\tilde{P}_{W^{\prime}}\left(\xi, t p_{1}\right)}{\tilde{P}(\xi, t)} \tag{1}
\end{equation*}
$$

Now, recall that on the finite dimensional vector space

$$
\left\{Q_{\mid W^{\prime}} ; Q \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right], \operatorname{deg} Q \leq \operatorname{deg} P\right\}
$$

all norms are equivalent. Hence there are $C_{j}>0, j=1,2$, such that for every $Q \in \mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$ with $\operatorname{deg} Q \leq \operatorname{deg} P$ we have for $j=1,2$

$$
1 / C_{j} \sup _{x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq p_{j}}\left|Q\left(x^{\prime}\right)\right| \leq \sup _{x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq 1}\left|Q\left(x^{\prime}\right)\right| \leq C_{j} \sup _{x^{\prime} \in W^{\prime},\left|x^{\prime}\right| \leq p_{j}}\left|Q\left(x^{\prime}\right)\right|
$$

Since for arbitrary $\xi \in \mathbb{R}^{n}$, and $t>1$ the degree of the polynomial $y \mapsto P(\xi+t y)$ equals that of P it follows that for $j=1,2$

$$
\begin{equation*}
1 / C_{j} \frac{\tilde{P}_{W^{\prime}}\left(\xi, t p_{j}\right)}{\tilde{P}(\xi, t)} \leq \frac{\tilde{P}_{W^{\prime}}(\xi, t)}{\tilde{P}(\xi, t)} \leq C_{j} \frac{\tilde{P}_{W^{\prime}}\left(\xi, t p_{j}\right)}{\tilde{P}(\xi, t)} \tag{2}
\end{equation*}
$$

for all $\xi \in \mathbb{R}^{n}$ and $t>1$. Now ii) follows from the inequalities (1) and (2).

3. Properties of semi-elliptic polynomials

In this section we will characterize the subspaces W of \mathbb{R}^{n+1} which satisfy $\sigma_{P^{+}}(W)=0$ for a semi-elliptic polynomial P on \mathbb{R}^{n}. For $\mathbf{m}=\left(m_{1}, \ldots, m_{n}\right) \in \mathbb{N}^{n}$ and $\alpha \in \mathbb{N}_{0}^{n}$ let $|\alpha: \mathbf{m}|:=\sum_{j=1}^{n} \alpha_{j} / m_{j}$. If $P(\xi)=\sum_{\alpha} a_{\alpha} \xi^{\alpha}$ is a polynomial with $|\alpha: \mathbf{m}| \leq 1$ for every α with $a_{\alpha} \neq 0$, i.e.

$$
P(\xi)=\sum_{|\alpha: \mathbf{m}| \leq 1} a_{\alpha} \xi^{\alpha}
$$

set

$$
P^{0}(\xi):=\sum_{|\alpha: \mathbf{m}|=1} a_{\alpha} \xi^{\alpha}
$$

If $P^{0}(\xi) \neq 0$ for every $\xi \in \mathbb{R}^{n} \backslash\{0\}$ then P is called semi-elliptic. Clearly, if P is of degree m and $m_{j}=m$ for every j then P^{0} is nothing but the principal part P_{m} of P. Hence elliptic polynomials are semi-elliptic. Moreover, taking $m_{1}=1$ and $m_{j}=2$ for $j>1$ shows that the polynomial $P(\xi)=i \xi_{1}+\xi_{2}^{2}+\ldots+\xi_{n}^{2}$, i.e. the heat polynomial, is semi-elliptic.

In order to simplify the notation in the following proofs we write $f \leq g$ or $g \geq f$ for two positive functions f, g if there is a positive constant C such that $f \leq C g$.

The next lemma recalls some facts about semi-elliptic polynomials which can be found in [2, proof of Theorem 11.1.11, vol. II].

Lemma 5. Let $P(\xi)=\sum_{|\alpha: \mathbf{m}| \leq 1} a_{\alpha} \xi^{\alpha}$ be a semi-elliptic polynomial, $P^{0}(\xi)=$ $\sum_{|\alpha: \mathbf{m}|=1} a_{\alpha} \xi^{\alpha}$. Then the following hold.
i) For every $\xi \in \mathbb{R}^{n}$ we have $\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}} \leq\left|P^{0}(\xi)\right|$.
ii) For α with $|\alpha: \mathbf{m}| \leq 1$ we have $\left|\xi^{\alpha}\right| \leq 1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}$.

Recall that two polynomials P and Q on \mathbb{R}^{n} are called equally strong if there is a positive constant C such that $1 / C \leq \tilde{Q}(\xi, 1) / \tilde{P}(\xi, 1)<C$ for all $\xi \in \mathbb{R}^{n}$.
Proposition 6. Let $P(\xi)=\sum_{|\alpha: \mathbf{m}| \leq 1} a_{\alpha} \xi^{\alpha}$ be a semi-elliptic polynomial of degree $m, P^{0}(\xi)=\sum_{|\alpha: \mathbf{m}|=1} a_{\alpha} \xi^{\alpha}$. Then the following properties hold.
i) The degree m of P equals $\max _{1 \leq j \leq n} m_{j}$.
ii) The principal part P_{m} is a part of P^{0}, i.e. there is a polynomial R of degree $\leq m-1$ such that $P^{0}=P_{m}+R$ and $P(\xi)-P_{m}(\xi)-R(\xi)=\sum_{|\alpha: \mathbf{m}|<1} a_{\alpha} \xi^{\alpha}$.
iii) $P_{m}(x)=0$ for $x \in \mathbb{R}^{n}$ if and only if $x_{j}=0$ for every j with $m_{j}=m$. In particular, $\left\{P_{m}=0\right\}$ is a subspace of \mathbb{R}^{n}.
iv) P^{0} and P are equally strong.

Proof. In case of $n=1$ part i) is trivial so let $n>1$. Not every monomial appearing in P^{0} depends on ξ_{1}, for if this was true then $P^{0}\left(0, \xi_{2}, \ldots, \xi_{n}\right)=0$ for every choice of $\xi_{2}, \ldots, \xi_{n} \in \mathbb{R}$ contradicting the semi-ellipticity of P. If $n>2$ from these monomials independent of ξ_{1}, not every monomial depends of ξ_{2} for this would yield $P^{0}\left(0,0, \xi_{3}, \ldots, \xi_{n}\right)=0$ for all $\xi_{3}, \ldots, \xi_{n} \in \mathbb{R}$ again contradicting the semi-ellipticity of P. Continuing in that way we finally find a monomial in P^{0} which only depends on ξ_{n}. For the exponent α of this monomial we have, since it is part of P^{0}, that $1=|\alpha: \mathbf{m}|=\alpha_{n} / m_{n}$. Because $|\alpha| \leq m$ this gives $m_{n} \leq m$. In the same way we get $m_{j} \leq m$ for every $j=1, \ldots, n$.

Now, for every α with $|\alpha|=m$ and $a_{\alpha} \neq 0$ we have $1 \geq|\alpha: \mathbf{m}|$. If $m>m_{j}$ for some j with $\alpha_{j} \neq 0$ we get $1 \geq \sum \frac{\alpha_{l}}{m_{l}}>\sum \frac{\alpha_{l}}{m}$ contradicting $|\alpha|=m$. This shows $m=\max m_{j}$ and $m_{j}=m$ for every j such that there is α with $|\alpha|=m, a_{\alpha} \neq$
$0, \alpha_{j} \neq 0$ which implies i) and ii). Moreover, if α is the exponent of a monomial in P_{m} we have $m_{j}=m$ for every j with $\alpha_{j} \neq 0$. Therefore, $P_{m}(x)=0$ if $x_{j}=0$ for every j with $m_{j}=m$.

To prove necessity in iii), note that semi-ellipticity of P gives $\sum\left|\xi_{j}\right|^{m_{j}} \leq\left|P^{0}(\xi)\right|$ for all $\xi \in \mathbb{R}^{n}$ by Lemma 5 i). If $P_{m}(x)=0$ it follows from the homogeneity of P_{m} and ii) that for l with $m_{l}=m$ and $t>0$ sufficiently large

$$
t^{m}\left|x_{l}\right|^{m} \leq \sum_{j=1}^{n}\left|t x_{j}\right|^{m_{j}} \leq\left|P^{0}(t x)\right| \lesssim t^{m-1}
$$

which shows $x_{l}=0$.
To prove iv) we set $S:=P-P^{0}$. For $\xi \in \mathbb{R}^{n}$ we have

$$
|S(\xi)|^{2} \lesseqgtr \sum_{|\alpha: \mathbf{m}|<1}\left|a_{\alpha}\right|^{2}\left|\xi^{\alpha}\right|^{2}
$$

Without loss of generality, let $m_{1}=m$ so that for $t>0$ we have with Lemma 5 i)

$$
\begin{aligned}
\tilde{P}^{0}(\xi, t)^{2} & =\sup _{|\eta|<1}\left|P^{0}(\xi+t \eta)\right|^{2} \gtrsim \sup _{|\eta|<1}\left(\sum_{j=1}^{n}\left|\xi_{j}+t \eta_{j}\right|^{m_{j}}\right)^{2} \\
& \geq \sup _{|\eta|<1}\left(\sum_{j=1}^{n}\left|\xi_{j}+t \eta_{j}\right|^{2 m_{j}}\right) \gtrsim \sup _{\sigma \in\{-1,1\}}\left(\sum_{j=2}^{n} \xi_{j}^{2 m_{j}}+\left(\xi_{1}+\sigma t\right)^{2 m}\right) \\
& \gtrsim\left(\sum_{j=1}^{n} \xi^{2 m_{j}}+t^{2 m}\right)
\end{aligned}
$$

From this and the fact that for α with $|\alpha: \mathbf{m}|<1$ we have $\alpha_{l}<m_{l} \leq m$ for some l we get for $t \geq 1$

$$
\begin{aligned}
\frac{|S(\xi)|^{2}}{\tilde{P}^{0}(\xi, t)^{2}} & \leq \sum_{|\alpha: \mathbf{m}|<1}\left|a_{\alpha}\right|^{2} \prod_{j=1}^{n} \frac{\xi_{j}^{2 \alpha_{j}}}{\sum_{k=1}^{n} \xi_{k}^{2 m_{k}}+t^{2 m}} \\
& \leq \sum_{|\alpha: \mathbf{m}|<1}\left|a_{\alpha}\right|^{2} \frac{\xi_{l}^{2\left(m_{l}-1\right)}}{\xi_{l}^{2 m_{l}}+t^{2 m}} \\
& \leq \sum_{|\alpha: \mathbf{m}|<1}\left|a_{\alpha}\right|^{2}\left(t^{2 m}\right)^{-1 / m_{l}} \leq t^{-2}
\end{aligned}
$$

where in the third inequality we used that $f:[0, \infty) \rightarrow \mathbb{R}, f(x):=x^{2 m_{l}-2} /\left(x^{2 m_{l}}+c\right)$ for $c>0$ is bounded by $M c^{-1 / m_{l}}$ for some constant M.

It follows that

$$
\inf _{t>1}\left(\sup _{\xi \in \mathbb{R}^{n}} \frac{|S(\xi)|}{\tilde{P}^{0}(\xi, t)}\right)=0
$$

so that by [2, Theorem 10.4.6, vol. II] P^{0} dominates S which by [2, Corollary 10.4.8, vol. II] implies the equivalence of P^{0} and $P^{0}+S=P$.

Lemma 7. Let $P(\xi)=\sum_{|\alpha: \mathbf{m}|=1} a_{\alpha} \xi^{\alpha}$ be a semi-elliptic polynomial on \mathbb{R}^{n} of degree m. Moreover, let W be a subspace of \mathbb{R}^{n+1}. Then we have $\sigma_{P^{+}}(W)=0$ if and only if W^{\prime} is a subspace of $\left\{P_{m}=0\right\}$.

Proof. By Proposition 6 iii) W^{\prime} is a subspace of $\left\{P_{m}=0\right\}$ if and only if for each $x \in W^{\prime}$ we have $x_{j}=0$ for every j with $m_{j}=m$.

Assume there is $x \in W^{\prime}$ such that $x_{l} \neq 0$ for some l with $m_{l}=m$. Without loss of generality let $|x|=1$. Then by Lemma 5 ii)

$$
\begin{aligned}
\tilde{P}_{W^{\prime}}(\xi, t)^{2} & \geq \sup _{|\lambda| \leq t}|P(\xi+\lambda x)|^{2} \\
& \geq \sup _{|\lambda| \leq t}\left(\sum_{j=1}^{n}\left|\xi_{j}+\lambda x_{j}\right|^{m_{j}}\right)^{2} \\
& \geq \sum_{j=1}^{n}\left(\left(\xi_{j}+t x_{j}\right)^{2 m_{j}}+\left(\xi_{j}-t x_{j}\right)^{2 m_{j}}\right) \\
& \geq \sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+\sum_{j=1}^{n} t^{2 m_{j}} x_{j}^{2 m_{j}} \\
& \geq \sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+t^{2 m} x_{l}^{2 m}
\end{aligned}
$$

Since for α with $|\alpha: \mathbf{m}| \leq 1$ we have $\left|\xi^{\alpha}\right| \leq 1+\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}$ by Lemma 5 ii) we get for $r \geq 1$ using the equivalence of norms on \mathbb{R}^{2}

$$
\begin{aligned}
\tilde{P}(\xi, t)^{2} & =\sup _{|y| \leq t}|P(\xi+y)|^{2} \leq 1+\sup _{|y| \leq t}\left(\sum_{j=1}^{n}\left|\xi_{j}+y_{j}\right|^{m_{j}}\right)^{2} \\
& \leq 1+\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+n t^{2 m} \leq \sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+(n+1) t^{2 m}
\end{aligned}
$$

Observing that $x_{l} \leq 1$, these estimates give

$$
\frac{\tilde{P}_{W^{\prime}}(\xi, t)^{2}}{\tilde{P}(\xi, t)^{2}} \geq \frac{\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+t^{2 m} x_{l}^{2 m}}{\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+(n+1) t^{2 m}} \geq \frac{x_{l}^{2 m}}{n+1}>0
$$

so that by Lemma 4 ii) we have $\sigma_{P^{+}}(W)>0$.
On the other hand, if W^{\prime} is a subspace of $\left\{x \in \mathbb{R}^{n} ; x_{j}=0 \forall j\right.$ with $\left.m_{j}=m\right\}$ we get using Lemma 5 ii) and the equivalence of norms on \mathbb{R}^{2}

$$
\begin{aligned}
\tilde{P}_{W^{\prime}}(\xi, t)^{2} & =\sup _{|x| \leq 1, x \in W^{\prime}}|P(\xi+t x)|^{2} \\
& \leq 1+\sup _{|x| \leq 1, x \in W^{\prime}}\left(\sum_{j=1}^{n}\left|\xi_{j}+t x_{j}\right|^{m_{j}}\right)^{2} \\
& \leq 1+\sup _{|x| \leq 1, x \in W^{\prime}}\left(\sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}+\left|t x_{j}\right|^{m_{j}}\right)^{2} \\
& \leq 1+\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+\sup _{|x| \leq 1, x \in W^{\prime}} \sum_{j=1}^{n} t^{2 m_{j}}\left|x_{j}\right|^{2 m_{j}} \\
& \leq 1+\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+k t^{2(m-1)} .
\end{aligned}
$$

Here k equals the number of m_{j} s stictly less than m. Observe that W^{\prime} is a subspace of $\left\{x \in \mathbb{R}^{n} ; x_{j}=0 \forall j\right.$ with $\left.m_{j}=m\right\}$!

Since P is semi-elliptic we have $|P(\xi)| \gtrsim \sum_{j=1}^{n}\left|\xi_{j}\right|^{m_{j}}$ by Lemma 5 i). Without loss of generality we assume $m_{1}=m$ and obtain

$$
\begin{aligned}
\tilde{P}(\xi, t)^{2} & \geq \sup _{|x| \leq t}\left(\sum_{j=1}^{n}\left|\xi_{j}+x_{j}\right|^{m_{j}}\right)^{2} \\
& \geq \sup _{\tau \in\{-1,1\}}\left(\left(\xi_{1}+\tau t\right)^{2 m}+\sum_{j=2}^{n} \xi_{j}^{2 m_{j}}\right) \\
& \geq \sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+t^{2 m} .
\end{aligned}
$$

With these estimates we conclude

$$
\frac{\tilde{P}_{W^{\prime}}(\xi, t)^{2}}{\tilde{P}(\xi, t)^{2}} \lesseqgtr \frac{1+\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+k t^{2 m-2}}{\sum_{j=1}^{n} \xi_{j}^{2 m_{j}}+t^{2 m}}
$$

so that $\sigma_{P^{+}}(W)=0$ by Lemma 4 ii).
Theorem 8. Let $P(\xi)=\sum_{|\alpha: \mathbf{m}| \leq 1} a_{\alpha} \xi^{\alpha}$ be a semi-elliptic polynomial of degree m on \mathbb{R}^{n} and W a subspace of \mathbb{R}^{n+1}. Then we have $\sigma_{P^{+}}(W)=0$ if and only if W^{\prime} is a subspace of $\left\{P_{m}=0\right\}$.

Proof. By Proposition 6 the polynomials $P^{0}(\xi)=\sum_{|\alpha: \mathbf{m}|=1} a_{\alpha} \xi^{\alpha}$ and P are equally strong, thus P^{+}and $\left(P^{0}\right)^{+}$are equally strong, too. By [2, Theorem 11.3.14, vol. II] we therefore have $\sigma_{P^{+}}(W)=0$ if and only if $\sigma_{\left(P^{0}\right)^{+}}(W)=0$ so that the lemma follows from the previous lemma and Proposition 6.

The following example shows that contrary to Proposition $1 P$-convexity for singular supports of Ω in general does not imply P^{+}-convexity for singular supports of $\Omega \times \mathbb{R}$. However, in this example the set Ω is not P-convex for supports hence it does not yield an answer to the general question.

Example 9. Consider $P\left(\xi_{1}, \xi_{2}\right)=i \xi_{1}+\xi_{2}^{2}$, i.e. the heat polynomial in one space dimension. As illustrated at the beginning of this section, P is then semi-elliptic hence hypoelliptic by [2, Theorem 11.1.11]. Therefore

$$
\Omega:=\left\{x \in \mathbb{R}^{2} ; x_{1}>0\right\} \cap\left\{x \in \mathbb{R}^{2} ; x_{1}^{2}+x_{2}^{2}>1\right\}
$$

is P-convex for singular supports. Consider the affine subspace

$$
V=\{(2, t, 0) ; t \in \mathbb{R}\}=(2,0,0)+\operatorname{span}\{(0,1,0)\}
$$

of \mathbb{R}^{3}. The orthogonal space $W=\operatorname{span}\{(1,0)\} \times \mathbb{R}$ of $\operatorname{span}\{(0,1,0)\}$ clearly satisfies $W^{\prime} \subset\left\{x \in \mathbb{R}^{2} ; P_{2}(x)=0\right\}$ so that by Theorem 8 we have $\sigma_{P^{+}}(W)=0$.

Let $K:=\{(2, t, 0) ; t \in[-3,3]\}$. Then $K \subset V$ and the boundary of K relative V consists of the points $(2,-3,0)$ and $(2,3,0)$. Since

$$
\operatorname{dist}\left(K,(\Omega \times \mathbb{R})^{c}\right)=1<2=\operatorname{dist}\left(\{(2,-3,0),(2,3,0)\},(\Omega \times \mathbb{R})^{c}\right)
$$

it follows from [2, Corollary 11.3.2, vol. II] that $\Omega \times \mathbb{R}$ is not P^{+}-convex for singular supports.

On the other hand, $V^{\prime} \subset \mathbb{R}^{2}$ is clearly a characteristic hyperplane for P. Since the boundary of K^{\prime} relative V^{\prime} consists of the points $(2,-3)$ and $(2,3)$ and

$$
\operatorname{dist}\left(K^{\prime}, \Omega^{c}\right)=1<2=\operatorname{dist}\left(\{(2,-3),(2,3)\}, \Omega^{c}\right)
$$

it follows from [2, Theorem 10.8.1, vol. II] that Ω is not P-convex for supports.
Compare this example with Corollary 15.

4. Sufficient conditions for P-convexity

For $x, y \in \mathbb{R}^{n}$ we denote by $[x, y]$ the closed convex hull of $\{x, y\}$. Moreover, for $\Omega \subset \mathbb{R}^{n}$ open, $x \in \Omega, r \in \mathbb{R}^{n} \backslash\{0\}$, we define

$$
\lambda(x, r):=\sup \{\lambda>0 ; \forall 0 \leq \mu<\lambda:[x, x+\mu r] \subset \Omega\} .
$$

In case of $\lambda(x, r)=\infty$ we simply write $[x, x+\lambda(x, r) r]$ instead of $\cup_{0<\lambda<\lambda(x, r)}[x, x+$ $\lambda r]$. The next lemma gives a sufficient condition for P-convexity for supports.

Lemma 10. Let Ω be an open subset of \mathbb{R}^{n} and P a non-zero polynomial of degree m. Assume that for each compact subset K of Ω there is another compact subset L of Ω such that for every $x \in \Omega \backslash L$ one can find $r \in\left\{P_{m}=0\right\}^{\perp} \backslash\{0\}$ satisfying

$$
\left[x_{0}, x_{0}+\lambda\left(x_{0}, r\right) r\right] \cap K=\emptyset
$$

Then Ω is P-convex for supports.
Proof. Let $\phi \in \mathscr{D}(\Omega)$ and $K:=\operatorname{supp} P(-D) \phi$. Choose L for K as stated in the hypothesis. For $x_{0} \in \Omega \backslash L$ there is $r \in\left\{P_{m}=0\right\}^{\perp} \backslash\{0\}$ such that

$$
\left[x_{0}, x_{0}+\lambda\left(x_{0}, r\right) r\right] \cap K=\emptyset
$$

From the compactness of $\operatorname{supp} \phi$ it follows that there is $\lambda \in\left(0, \lambda\left(x_{0}, r\right)\right)$ such that $x_{1}:=x_{0}+\lambda r \notin \operatorname{supp} \phi$. Therefore, $\left[x_{0}, x_{1}\right] \subset \Omega$ and we can find $\rho>0$ such that $\Omega_{1}:=B\left(x_{1}, \rho\right) \subset \Omega \backslash \operatorname{supp} \phi$ and $\Omega_{2}:=\left[x_{0}, x_{1}\right]+B(0, \rho) \subset \Omega \backslash K$.
$\Omega_{1} \subset \Omega_{2}$ are open and convex, and $\phi_{\mid \Omega_{1}}=0$ as well as $P(-D) \phi_{\mid \Omega_{2}}=0$. Let $H=\{x ;\langle x, \xi\rangle=\alpha\}$ be a characteristic hyperplane for P, i.e. $\xi \neq 0$ satisfies $P_{m}(\xi)=0$. If H intersects Ω_{2} there are $\gamma \in[0,1], b \in B(0, \rho)$ satisfying

$$
\begin{aligned}
\alpha & =\left\langle\gamma x_{0}+(1-\gamma) x_{1}+b, \xi\right\rangle=\left\langle x_{0}+(1-\gamma) \lambda r+b, \xi\right\rangle \\
& =\left\langle x_{0}+b, \xi\right\rangle=\left\langle x_{1}-\lambda r+b, \xi\right\rangle=\left\langle x_{1}+b, \xi\right\rangle
\end{aligned}
$$

where we used $\langle r, \xi\rangle=0$. So H already intersects Ω_{1}. [2, Theorem 8.6.8, vol. I] now gives $\phi_{\mid \Omega_{2}}=0$ so that $x_{0} \notin \operatorname{supp} \phi$. Since $x_{0} \in \Omega \backslash L$ was arbitrary it follows $\operatorname{supp} \phi \subset L$ proving the lemma.

In order to formulate a similar condition for P-convexity for singular supports we introduce for a non-zero polynomial P the subspace

$$
S_{P}:=\bigcap\left(\left\{V \subset \mathbb{R}^{n} ; V \text { one-dimensional subspace, } \sigma_{P}(V)=0\right\}^{\perp}\right)
$$

The non-zero elements r of S_{P} are the directions which lie in every hyperplane $H=\{x ;\langle x, \xi\rangle=\alpha\}$ with $\sigma_{P}(\operatorname{span}\{\xi\})=0$. Hence, due to these directions an application of Corollary 3 instead of [2, Theorem 8.6.8, vol. I] makes it possible to prove the next lemma in a very similar way to the previous one. Indeed, the proof is mutatis mutandis the same. Nevertheless, we include it for the reader's convenience.

Lemma 11. Let Ω be an open subset of \mathbb{R}^{n} and P a non-zero polynomial. Assume that for each compact subset K of Ω there is another compact subset L of Ω such that for every $x \in \Omega \backslash L$ one can find $r \in S_{P} \backslash\{0\}$ with

$$
[x, x+\lambda(x, r) r] \cap K=\emptyset .
$$

Then Ω is P-convex for singular supports.
Proof. Let $\mu \in \mathscr{E}^{\prime}(\Omega)$ and $K:=\operatorname{sing} \operatorname{supp} P(-D) \mu$. Choose L for K as stated in the hypothesis. For $x_{0} \in \Omega \backslash L$ there is $r \in S_{P} \backslash\{0\}$ such that

$$
\left[x_{0}, x_{0}+\lambda\left(x_{0}, r\right) r\right] \cap K=\emptyset .
$$

From the compactness of sing supp μ it follows that there is $\lambda \in\left(0, \lambda\left(x_{0}, r\right)\right)$ such that $x_{1}:=x_{0}+\lambda r \notin \operatorname{sing} \operatorname{supp} \mu$. Therefore, $\left[x_{0}, x_{1}\right] \subset \Omega$ and we can find $\rho>0$ such
that $\Omega_{1}:=B\left(x_{1}, \rho\right) \subset \Omega \backslash \operatorname{sing} \operatorname{supp} \mu$ and $\Omega_{2}:=\left[x_{0}, x_{1}\right]+B(0, \rho) \subset \Omega \backslash K$. We will show that $\mu_{\mid \Omega_{2}} \in C^{\infty}\left(\Omega_{2}\right)$ implying $x_{0} \notin \operatorname{sing} \operatorname{supp} \mu$. Since $x_{0} \in \Omega \backslash L$ was chosen arbitrarily this implies sing supp $\mu \subset L$ proving P-convexity for singular supports of Ω.

By definition of K we have $P(-D) \mu_{\mid \Omega_{2}} \in C^{\infty}\left(\Omega_{2}\right)$. Moreover, Ω_{1} is convex and sing supp $\mu_{\mid \Omega_{2}} \subset \Omega_{2} \backslash \Omega_{1}$. To show that $\mu_{\mid \Omega_{2}} \in C^{\infty}\left(\Omega_{2}\right)$, let $H=\{x ;\langle x, \xi\rangle=$ $\alpha\}, \xi \neq 0$, be a hyperplane with $\sigma_{P}(\operatorname{span}\{\xi\})=0$. Since $r \in S_{P}$ we have $\langle r, \xi\rangle=0$. If H intersects Ω_{2} it follows exactly as in the proof of Lemma 10 that H already intersects Ω_{1}. Now Corollary 3 gives $\mu_{\mid \Omega_{2}} \in C^{\infty}\left(\Omega_{2}\right)$ thus proving the lemma.

Having seen that $\left\{P_{m}=0\right\}$ is a subspace for semi-elliptic P the next proposition will be useful to apply the above lemmas in the semi-elliptic case.

Proposition 12. Let $\Omega \subset \mathbb{R}^{n}$ be open and $M \subset \mathbb{R}^{n}$ a subspace. The following condition i) implies ii):
i) For each $x \in \Omega$ there is $r \in M \backslash\{0\}$ such that $\operatorname{dist}\left(x, \Omega^{c}\right) \geq \operatorname{dist}\left(y, \Omega^{c}\right)$ for all $y \in[x, x+\lambda(x, r) r]$
ii) For each compact subset K of Ω there is another compact subset L of Ω such that for every $x \in \Omega \backslash L$ there is $r \in M \backslash\{0\}$ satisfying $[x, x+\lambda(x, r) r] \cap K=$ \emptyset.

Proof. For $m \in \mathbb{N}$ let $\Omega_{m}:=\left\{x \in \Omega ;|x|<m, \operatorname{dist}\left(x, \Omega^{c}\right)>1 / m\right\}$. For $K \subset \Omega$ compact choose m such that $K \subset \Omega_{m}$ and set $L:=\overline{\Omega_{m}}$. For $x \in \Omega \backslash L$ let r be as in i).

If $|x|>m$ either $\{x+\lambda r ; \lambda>0\} \subset \mathbb{R}^{n} \backslash \overline{B(0, m)}$ or $\{x-\lambda r ; \lambda>0\} \subset \mathbb{R}^{n} \backslash \overline{B(0, m)}$ so that ii) follows with r or $-r$. If $|x| \leq m$ we have $1 / m \geq \operatorname{dist}\left(x, \Omega^{c}\right) \geq \operatorname{dist}\left(y, \Omega^{c}\right)$ for every $y \in[x, x+\lambda(x, r) r]$ because of $x \in \Omega \backslash L$, hence $[x, x+\lambda(x, r) r] \cap K=\emptyset$.

5. Main Results

The next theorem is an immediate consequence of Theorem8, Lemma 10, Lemma 11. Proposition 12, and Proposition 1.

Theorem 13. Let $\Omega \subset \mathbb{R}^{n}$ be open and P a non-zero polynomial with principal part P_{m}. If for every $x \in \Omega$ there is $r \in\left\{P_{m}=0\right\}^{\perp} \backslash\{0\}$ such $\operatorname{dist}(x, \partial \Omega) \geq \operatorname{dist}(y, \partial \Omega)$ for every $y \in\{x+\lambda r ; \lambda \in(0, \lambda(x, r))\}$ then Ω is P-convex for supports.

Moreover, if P is semi-elliptic then $\Omega \times \mathbb{R}$ is P^{+}-convex for singular supports, hence $P(D): \mathscr{D}^{\prime}(\Omega) \rightarrow \mathscr{D}^{\prime}(\Omega)$ as well as $P^{+}(D): \mathscr{D}^{\prime}(\Omega \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(\Omega \times \mathbb{R})$ are surjective.

A result of Vogt (cf. [3, Proposition 2.5]) says that the kernel of an elliptic differential operator always has the linear topological invariant (Ω). Since in this context (Ω) equals the property $(P \Omega)$ it follows from [1, Proposition 8.3] that for an elliptic polynomial P the augmented operator $P^{+}(D)$ is surjective on $\mathscr{D}^{\prime}(\Omega \times \mathbb{R})$ if $P(D)$ is surjective on $\mathscr{D}^{\prime}(\Omega)$. This interpretation of Vogt's result can be derived as a direct application of the above theorem.

Corollary 14. Let $\Omega \subset \mathbb{R}^{n}$ be open and P an elliptic polynomial. Then $P^{+}(D)$ is surjective on $\mathscr{D}^{\prime}(\Omega \times \mathbb{R})$.

Proof. This follows immediately from Theorem 13, $\left\{P_{m}=0\right\}^{\perp}=\mathbb{R}^{n}$, and Proposition 1.

Corollary 15. Let $\Omega \subset \mathbb{R}^{2}$ be open and P a semi-elliptic polynomial such that $P(D): \mathscr{D}^{\prime}(\Omega) \rightarrow \mathscr{D}^{\prime}(\Omega)$ is surjective.

Then $P^{+}(D): \mathscr{D}^{\prime}(\Omega \times \mathbb{R}) \rightarrow \mathscr{D}^{\prime}(\Omega \times \mathbb{R})$ is surjective.

Proof. By Corollary 14 we can assume without loss of generality that P is not elliptic. Then by Proposition $6\left\{P_{m}=0\right\}$ is a one-dimensional subspace of \mathbb{R}^{2}. Therefore a hyperplane H is characteristic if and only if $H=\{x+\lambda r ; \lambda \in \mathbb{R}\}$ for some $x \in \mathbb{R}^{2}, r \in \mathbb{R}^{2} \backslash\{0\}$ with $r \in\left\{P_{m}=0\right\}^{\perp}$.

Let $x_{0} \in \Omega$ and $r \in\left\{P_{m}=0\right\}^{\perp} \backslash\{0\}$. Then the hyperplane

$$
H:=\left\{x_{0}+\lambda r ; \lambda \in \mathbb{R}\right\}
$$

is characteristic. Assuming that there are $\lambda^{+} \in\left(0, \lambda\left(x_{0}, r\right)\right)$ and $\lambda^{-} \in\left(0, \lambda\left(x_{0},-r\right)\right)$ such that $\operatorname{dist}\left(x_{0}+\lambda^{+} r, \Omega^{c}\right)>\operatorname{dist}\left(x_{0}, \Omega^{c}\right)$ as well as $\operatorname{dist}\left(x_{0}-\lambda^{-} r, \Omega^{c}\right)>\operatorname{dist}\left(x_{0}, \Omega^{c}\right)$ it follows for the compact subset $K:=\left[x_{0}-\lambda^{-} r, x_{0}+\lambda^{+} r\right]$ of $\Omega \cap H$ that

$$
\begin{aligned}
\operatorname{dist}\left(\partial_{H} K, \Omega^{c}\right) & =\min \left\{\operatorname{dist}\left(x_{0}+\lambda^{+} r, \Omega^{c}\right), \operatorname{dist}\left(x_{0}-\lambda^{-} r, \Omega^{c}\right)\right\}>\operatorname{dist}\left(x_{0}, \Omega^{c}\right) \\
& \geq \operatorname{dist}\left(K, \Omega^{c}\right)
\end{aligned}
$$

where $\partial_{H} K$ denotes the boundary of K as a subset of H. On the other hand, since Ω is P-convex for supports by hypothesis, we have $\operatorname{dist}\left(\partial_{H} K, \Omega^{c}\right)=\operatorname{dist}\left(K, \Omega^{c}\right)$ by [2, Theorem 10.8.1, vol. II] giving a contradiction. Hence, $\operatorname{dist}\left(y, \Omega^{c}\right) \leq \operatorname{dist}\left(x_{0}, \Omega^{c}\right)$ for all $y \in\left[x_{0}, x_{0}+\lambda\left(x_{0}, r\right) r\right]$ or all $y \in\left[x_{0}, x_{0}-\lambda\left(x_{0},-r\right) r\right]$.

It follows from Proposition 12 that for each compact subset K of Ω there is another compact subset L of Ω such that for every $x \in \Omega \backslash L$ there is $r \in\left\{P_{m}=\right.$ $0\}^{\perp} \backslash\{0\}$ satisfying $[x, x+\lambda(x, r) r] \cap K=\emptyset$.

Now, since P is semi-elliptic we have $S_{P^{+}}=\left\{P_{m}=0\right\}^{\perp} \times\{0\}$ by Theorem 8 . Thus the above gives that for each compact subset K of $\Omega \times \mathbb{R}$ there is another compact subset L of $\Omega \times \mathbb{R}$ such that for every $x \in(\Omega \times \mathbb{R}) \backslash L$ there is $r \in S_{P^{+}} \backslash\{0\}$ satisfying $[x, x+\lambda(x, r) r] \cap K=\emptyset$. Lemma 11 applied to $\Omega \times \mathbb{R}$ therefore yields the result.

We do not know if an analogous conclusion for semi-elliptic operators is true for arbitrary dimension. In particular, the main problem remains open for the heat operator in arbitrary many variables.

Acknowledgement. We want to thank the referee for pointing out a cap in the previous version of Lemma 4.

References

[1] J. Bonet, P. Domański, Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences, J. Funct. Anal. 230 (2006), 329-381
[2] L. Hörmander, The Analysis of Linear Partial Differential Operators I and II, SpringerVerlag, Berlin, 1983.
[3] D. Vogt, On the Solvability of $P(D) f=g$ for vector valued functions, RIMS Kokyoroku 508 (1983), 168-181

Authors' Address:

L. Frerick

FB IV - Mathematik
Universität Trier
D-54286 Trier, Germany
e-mail: frerick@uni-trier.de
T. Kalmes

Technische Universität Chemnitz
Fakultät für Mathematik
D-09107 Chemnitz, Germany
e-mail: thomas.kalmes@math.tuchemnitz.de

[^0]: (C)2010. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 Published in: Mathematische Annalen, Volume 347, Issue 1, Pages 81-94
 DOI: 10.1007/s00208-009-0418-5
 https://doi.org/10.1007/s00208-009-0418-5

