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Abstract. We show that for a semi-elliptic polynomial P on R2 surjectivity
of P (D) on D ′(Ω) implies surjectivity of the augmented operator P+(D) on

D ′(Ω × R), where P+(x1, x2, x3) := P (x1, x2). For arbitrary dimension n

we give a sufficient geometrical condition on Ω ⊂ Rn such that an analogous
implication is true for semi-elliptic P . Moreover, we give an alternative proof

of a result due to Vogt which says that for elliptic P the operator P+(D) is

surjective if this is true for P (D).

1. Introduction

Let Ω ⊂ Rn be open and P ∈ C[X1, . . . , Xn] be a non-zero polynomial. Consider
the corresponding differential operator P (D), where as usual Dj = −i ∂

∂xj
, acting

on D ′(Ω). We denote by P+(D) the augmented operator, i.e. P (D) acting ”on the
first n variables” on D ′(Ω× R).

In [1, Problem 9.1] it is asked if it is true that P+(D) is surjective if P (D) is
surjective (not only on the space of ordinary distributions over Ω but more general
for ultradistributions of Beurling type). This question is closely connected with the
parameter dependence of solutions of the differential equation

P (D)uλ = fλ,

see [1]. It is shown in [1, Proposition 8.3] that the answer to the above question is
in the affirmative, if and only if NP (Ω), the kernel of the operator, possesses the
linear topological invariant (PΩ). It was shown by Vogt [3, Proposition 2.5] that
NP (Ω) has (PΩ) if the polynomial P is elliptic (in this case the property (PΩ)
equals the linear topological invariant (Ω)).

The paper is organized as follows. In section 2 we show that the above problem is
equivalent to the question whether P -convexity for supports as well as for singular
supports of Ω implies P+-convexity for singular supports of Ω × R. Moreover, we
observe that due to the fact that P+ carries a muted variable it is easier to evaluate
a certain numerical quantity σP+(W ) for subspaces W which arises in the theory
of continuation of differentabilty due to Hörmander. Based on this observation we
consider semi-elliptic polynomials P and characterize those subspaces W for which
σP+(W ) = 0 in section 3. This knowledge together with sufficient conditions for
P -convexity given in section 4 enable us to present an alternative proof of the above
mentioned result of Vogt in section 5, as well as a positive answer to the problem for
semi-elliptic polynomials if Ω ⊂ R2 or if Ω satisfies a certain additional “geometric”
property in case of n > 2.
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2. Preliminaries

As is well-known, for a non-zero polynomial P ∈ C[X1, . . . , Xn] the differential
operator P (D) is surjective on D ′(Ω) if and only if Ω is P -convex for supports as
well as P -convex for singular supports, i.e. for each compact subset K of Ω there is
another compact subset L of Ω such that for all φ ∈ D(Ω) one has supp P (−D)φ ⊂
L whenever supp φ ⊂ K, resp. for all µ ∈ E ′(Ω) one has sing supp P (−D)µ ⊂ L
whenever sing supp µ ⊂ K.

Therefore, the problem whether P+(D) is surjective on D ′(Ω × R) if P (D) is
surjective on D ′(Ω) is equivalent to the problem if Ω×R is P+-convex for supports
as well as P+-convex for singular supports if Ω is P -convex for supports and P -
convex for singular supports. As we will see, P -convexity for supports is trivial.

Proposition 1. Let P ∈ C[X1, . . . , Xn] and Ω ⊆ Rn be open such that Ω is P -
convex for supports. Then Ω× R is P+-convex for supports.

Proof. Let K ⊂ Ω and K ′ ⊂ R be compact. Ω being P -convex for sup-
ports there is a compact subset L of Ω such that for every φ ∈ D(Ω) satisfying
suppP (−D)φ ⊂ K already suppφ ⊂ L holds. If φ ∈ D(Ω × R) is of the form
φ(x, s) = φ1(x)φ2(s) with φ1 ∈ D(Ω) and φ2 ∈ D(R) obviously P+(−D)φ =
(P (−D)φ1)φ2 so that suppP+(−D)φ ⊂ K × K ′ implies suppφ ⊂ L × K ′. Since
functions of the form φ = φ1φ2 span a dense linear subspace in D(Ω × R) the
proposition follows. �

An alternative proof of the above proposition can be given by using tensor prod-
ucts. That an analogous implication for P -convexity for singular supports is not
true in general is shown in Example 9 below. Hence the original problem is equiv-
alent to whether P -convexity for supports as well as P -convexity for singular sup-
ports of Ω imply P+-convexity for singular supports of Ω× R.

Recalling that Ω is P -convex for supports if and only if P (D) : E (Ω)→ E (Ω) is
surjective we obtain the following result as an immediate consequence.

Corollary 2. Let P ∈ C[X1, . . . , Xn] and Ω ⊆ Rn be open. If P (D) : E (Ω)→ E (Ω)
is surjective then P+(D) : E (Ω× R)→ E (Ω× R) is surjective.

In order to deal with P+-convexity for singular supports, we will use the following
notion introduced by Hörmander in connection with continuation of differentiability
(cf. [2, Section 11.3, vol. II]). For a subspace V of Rn

σP (V ) = inf
t>1

lim inf
ξ→∞

P̃V (ξ, t)/P̃ (ξ, t),

where P̃V (ξ, t) := sup{|P (ξ+η)|; η ∈ V, |η| ≤ t}, P̃ (ξ, t) := P̃Rn(ξ, t). This quantity
is intimately connected with the so called localizations at infinity of the polynomial
P which in turn are related to the bounds for the wave front set and singular
support of a regular fundamental solution of P . Roughly speaking, σP (V ) 6= 0
implies that regularity of P (D)u continues along the subspace V to regularity of u
(cf. [2, Theorem 11.3.6, vol. II]).

The way we will use σP (V ) is given by the following result which is nothing but
a reformulation of [2, Corollary 11.3.7, vol. II].

Corollary 3. Let Ω1 ⊂ Ω2 be open and convex, and let P be a non-constant
polynomial. Then the following are equivalent:

i) If u ∈ D ′(Ω2) satisfies P (D)u ∈ C∞(Ω2) as well as sing supp u ⊂ Ω2\Ω1

then sing supp u = ∅.
ii) Every hyperplane H = {x; 〈x,N〉 = α} with σP (span{N}) = 0 which inter-

sects Ω2 already intersects Ω1.
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Proof. That i) implies ii) is just a special case of [2, Corollary 11.3.7, vol.
II]. Let u ∈ D ′(Ω2) satisfy P (D)u ∈ C∞(Ω2) as well as u|Ω1

∈ C∞(Ω1). By
the convexity of Ω2 we find v ∈ C∞(Ω2) such that P (D)v = P (D)u. Therefore
w := u− v ∈ D ′(Ω2) satisfies P (D)w = 0 and w|Ω1 ∈ C∞(Ω1). Now it follows from
ii) and [2, Corollary 11.3.7, vol. II] that w ∈ C∞(Ω2), thus u ∈ C∞(Ω2). �

So, for us it will be important to know for which (one-dimensional) subspace W
of Rn+1 we have σP+(W ) = 0. The next lemma will be very helpful in this.

Lemma 4. Let P ∈ C[X1, . . . , Xn] and let Π be the orthogonal projection of Rn+1

onto the first n coordinates. For a subspace W of Rn+1 we identify W ′ := Π(W )
with the corresponding subspace of Rn. Then the following hold.

i)

σP+(W ′ × {0}) = σP+(W ′ × R) = inf
t>1,ξ∈Rn

P̃W ′(ξ, t)

P̃ (ξ, t)
.

ii) σP+(W ) = 0 if and only if inft>1,ξ∈Rn
P̃W ′ (ξ,t)

P̃ (ξ,t)
= 0.

Proof. We write x = (x′, xn+1) for x ∈W with x′ ∈ Rn and xn+1 ∈ R.
By definition we have for (ξ, η) ∈ Rn × R

P̃+
W ′×R((ξ, η), t) = sup{|P (ξ + x′)|; (x′, xn+1) ∈W ′ × R, |(x′, xn+1)| ≤ t}

= sup{|P (ξ + x′)|; x′ ∈W ′, |x′| ≤ t}
= P̃W ′(ξ, t) = P̃+

W ′×{0}((ξ, η), t).

In particular, this implies

P̃+((ξ, η), t) = P̃ (ξ, t).

Hence

lim inf
(ξ,η)→∞

P̃+
W ′×R((ξ, η), t)

P̃+((ξ, η), t)
= sup

r>0
inf

|(ξ,η)|>r

P̃+
W ′×R((ξ, η), t)

P̃+((ξ, η), t)

= sup
r>0

inf
|(ξ,η)|>r

P̃W ′(ξ, t)

P̃ (ξ, t)

= inf
ξ∈Rn

P̃W ′(ξ, t)

P̃ (ξ, t)

as well as

lim inf
(ξ,η)→∞

P̃+
W ′×{0}((ξ, η), t)

P̃+((ξ, η), t)
= inf
ξ∈Rn

P̃W ′(ξ, t)

P̃ (ξ, t)

which gives

σP+(W ′ × R) = inf
t>1

lim inf
(ξ,η)→∞

P̃+
W ((ξ, η), t)

P̃+((ξ, η), t)
= inf
t>1,ξ∈Rn

P̃W ′(ξ, t)

P̃ (ξ, t)
,

as well as

σP+(W ′ × {0}) = inf
t>1,ξ∈Rn

P̃W ′(ξ, t)

P̃ (ξ, t)
.

Thus i) is proved.
In order to prove ii) assume first that W is contained in the kernel of Π, i.e.

W ⊂ {0} × R. Then we have for (ξ, η) ∈ Rn × R

P̃+
W ((ξ, η), t) = sup{|P (ξ)|; (0, xn+1) ∈W, |xn+1| ≤ t} = |P (ξ)| = P̃W ′(ξ, t).
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As in the proof of i) it then follows that

σP+(W ) = inf
t>1,ξ∈Rn

P̃W ′(ξ, t)

P̃ (ξ, t)
.

Hence, without loss of generality, let W * {0} × R. Then, by setting p1 := ‖Π|W ‖
we get p1 > 0 as well as

P̃+
W ((ξ, η), t) = sup{|P (ξ + x′)|; (x′, xn+1) ∈W, |(x′, xn+1)| ≤ t}

≤ sup{|P (ξ + x′)|; x′ ∈W ′, |x′| ≤ tp1}
= P̃W ′(ξ, tp1).

Now we distinguish two cases. If Π|W : W → W ′ is not injective we clearly have
{(0, y); y ∈ R} ⊂ W . Therefore, recalling that Π as an orthogonal projection
satisfies p1 = ‖Π|W ‖ ≤ ‖Π‖ ≤ 1

sup{|P (ξ+x′)|;x′ ∈W ′, |x′| ≤ tp1} = sup{|P (ξ+x′)|; (x′, xn+1) ∈W, |(x′, xn+1)| ≤ t}

because if x′0 ∈W ′ with |x′0| ≤ tp1 is a point where the supremum on the left hand
side is attained then (x′0, 0) ∈W with |(x′0, 0)| ≤ t. Therefore

P̃W ′(ξ, tp1) = P̃+
W ((ξ, η), t).

In case of Π|W : W → W ′ being injective (Π|W )−1 : W ′ → W is well-defined
and continuous and we get

P̃W ′(ξ, t ‖(Π|W )−1‖−1) = sup{|P (ξ + x′)|; x′ ∈W ′, |x′| ≤ t ‖(Π|W )−1‖−1}
≤ sup{|P (ξ + x′)|; (x′, xn+1) ∈W, |(x′, xn+1)| ≤ t}
= P̃+

W ((ξ, η), t).

Hence, in both cases there are p1, p2 > 0 such that

P̃W ′(ξ, tp2) ≤ P̃+
W ((ξ, η), t) ≤ P̃W ′(ξ, tp1)

for all ξ ∈ Rn, η ∈ R, t ≥ 1. Altogether this yields

inf
ξ∈Rn

P̃W ′(ξ, tp2)

P̃ (ξ, t)
≤ lim inf

(ξ,η)→∞

P̃+
W ((ξ, η), t)

P̃+((ξ, η), t)
≤ inf
ξ∈Rn

P̃W ′(ξ, tp1)

P̃ (ξ, t)
,

so that

inf
t≥1,ξ∈Rn

P̃W ′(ξ, tp2)

P̃ (ξ, t)
≤ σP+(W ) ≤ inf

t≥1,ξ∈Rn

P̃W ′(ξ, tp1)

P̃ (ξ, t)
.(1)

Now, recall that on the finite dimensional vector space

{Q|W ′ ;Q ∈ C[X1, . . . , Xn], degQ ≤ degP}

all norms are equivalent. Hence there are Cj > 0, j = 1, 2, such that for every
Q ∈ C[X1, . . . , Xn] with degQ ≤ degP we have for j = 1, 2

1/Cj sup
x′∈W ′,|x′|≤pj

|Q(x′)| ≤ sup
x′∈W ′,|x′|≤1

|Q(x′)| ≤ Cj sup
x′∈W ′,|x′|≤pj

|Q(x′)|.

Since for arbitrary ξ ∈ Rn, and t > 1 the degree of the polynomial y 7→ P (ξ + ty)
equals that of P it follows that for j = 1, 2

1/Cj
P̃W ′(ξ, tpj)

P̃ (ξ, t)
≤ P̃W ′(ξ, t)

P̃ (ξ, t)
≤ Cj

P̃W ′(ξ, tpj)

P̃ (ξ, t)
(2)

for all ξ ∈ Rn and t > 1. Now ii) follows from the inequalities (1) and (2). �
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3. Properties of semi-elliptic polynomials

In this section we will characterize the subspaces W of Rn+1 which satisfy
σP+(W ) = 0 for a semi-elliptic polynomial P on Rn. For m = (m1, . . . ,mn) ∈ Nn
and α ∈ Nn0 let |α : m| :=

∑n
j=1 αj/mj . If P (ξ) =

∑
α aαξ

α is a polynomial with

|α : m| ≤ 1 for every α with aα 6= 0, i.e.

P (ξ) =
∑
|α:m|≤1

aαξ
α

set

P 0(ξ) :=
∑
|α:m|=1

aαξ
α.

If P 0(ξ) 6= 0 for every ξ ∈ Rn\{0} then P is called semi-elliptic. Clearly, if P is of
degree m and mj = m for every j then P 0 is nothing but the principal part Pm
of P . Hence elliptic polynomials are semi-elliptic. Moreover, taking m1 = 1 and
mj = 2 for j > 1 shows that the polynomial P (ξ) = iξ1 + ξ2

2 + . . .+ ξ2
n, i.e. the heat

polynomial, is semi-elliptic.

In order to simplify the notation in the following proofs we write f <
_ g or

g >
_ f for two positive functions f, g if there is a positive constant C such that

f ≤ Cg.
The next lemma recalls some facts about semi-elliptic polynomials which can be

found in [2, proof of Theorem 11.1.11, vol. II].

Lemma 5. Let P (ξ) =
∑
|α:m|≤1 aαξ

α be a semi-elliptic polynomial, P 0(ξ) =∑
|α:m|=1 aαξ

α. Then the following hold.

i) For every ξ ∈ Rn we have
∑n
j=1 |ξj |mj <

_ |P 0(ξ)|.
ii) For α with |α : m| ≤ 1 we have |ξα| ≤ 1 +

∑n
j=1 |ξj |mj .

Recall that two polynomials P and Q on Rn are called equally strong if there is
a positive constant C such that 1/C ≤ Q̃(ξ, 1)/P̃ (ξ, 1) < C for all ξ ∈ Rn.

Proposition 6. Let P (ξ) =
∑
|α:m|≤1 aαξ

α be a semi-elliptic polynomial of degree

m, P 0(ξ) =
∑
|α:m|=1 aαξ

α. Then the following properties hold.

i) The degree m of P equals max1≤j≤nmj.
ii) The principal part Pm is a part of P 0, i.e. there is a polynomial R of degree
≤ m−1 such that P 0 = Pm+R and P (ξ)−Pm(ξ)−R(ξ) =

∑
|α:m|<1 aαξ

α.

iii) Pm(x) = 0 for x ∈ Rn if and only if xj = 0 for every j with mj = m. In
particular, {Pm = 0} is a subspace of Rn.

iv) P 0 and P are equally strong.

Proof. In case of n = 1 part i) is trivial so let n > 1. Not every monomial
appearing in P 0 depends on ξ1, for if this was true then P 0(0, ξ2, . . . , ξn) = 0 for
every choice of ξ2, . . . , ξn ∈ R contradicting the semi-ellipticity of P . If n > 2
from these monomials independent of ξ1, not every monomial depends of ξ2 for
this would yield P 0(0, 0, ξ3, . . . , ξn) = 0 for all ξ3, . . . , ξn ∈ R again contradicting
the semi-ellipticity of P . Continuing in that way we finally find a monomial in P 0

which only depends on ξn. For the exponent α of this monomial we have, since it
is part of P 0, that 1 = |α : m| = αn/mn. Because |α| ≤ m this gives mn ≤ m. In
the same way we get mj ≤ m for every j = 1, . . . , n.

Now, for every α with |α| = m and aα 6= 0 we have 1 ≥ |α : m|. If m > mj for
some j with αj 6= 0 we get 1 ≥

∑ αl

ml
>

∑ αl

m contradicting |α| = m. This shows

m = maxmj and mj = m for every j such that there is α with |α| = m, aα 6=
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0, αj 6= 0 which implies i) and ii). Moreover, if α is the exponent of a monomial in
Pm we have mj = m for every j with αj 6= 0. Therefore, Pm(x) = 0 if xj = 0 for
every j with mj = m.

To prove necessity in iii), note that semi-ellipticity of P gives
∑
|ξj |mj <

_ |P 0(ξ)|
for all ξ ∈ Rn by Lemma 5 i). If Pm(x) = 0 it follows from the homogeneity of Pm
and ii) that for l with ml = m and t > 0 sufficiently large

tm|xl|m ≤
n∑
j=1

|txj |mj <
_ |P 0(tx)| <

_ tm−1

which shows xl = 0.
To prove iv) we set S := P − P 0. For ξ ∈ Rn we have

|S(ξ)|2 <
_

∑
|α:m|<1

|aα|2|ξα|2.

Without loss of generality, let m1 = m so that for t > 0 we have with Lemma 5
i)

P̃ 0(ξ, t)2 = sup
|η|<1

|P 0(ξ + tη)|2 >
_ sup
|η|<1

(

n∑
j=1

|ξj + tηj |mj )2

>
_ sup

|η|<1

(

n∑
j=1

|ξj + tηj |2mj ) >
_ sup

σ∈{−1,1}
(

n∑
j=2

ξ
2mj

j + (ξ1 + σt)2m)

>
_ (

n∑
j=1

ξ2mj + t2m).

From this and the fact that for α with |α : m| < 1 we have αl < ml ≤ m for
some l we get for t ≥ 1

|S(ξ)|2

P̃ 0(ξ, t)2
<
_

∑
|α:m|<1

|aα|2
n∏
j=1

ξ
2αj

j∑n
k=1 ξ

2mk

k + t2m

<
_

∑
|α:m|<1

|aα|2
ξ

2(ml−1)
l

ξ2ml

l + t2m

<
_

∑
|α:m|<1

|aα|2(t2m)−1/ml <
_ t−2

where in the third inequality we used that f : [0,∞)→ R, f(x) := x2ml−2/(x2ml+c)
for c > 0 is bounded by Mc−1/ml for some constant M .

It follows that

inf
t>1

( sup
ξ∈Rn

|S(ξ)|
P̃ 0(ξ, t)

) = 0

so that by [2, Theorem 10.4.6, vol. II] P 0 dominates S which by [2, Corollary 10.4.8,
vol. II] implies the equivalence of P 0 and P 0 + S = P . �

Lemma 7. Let P (ξ) =
∑
|α:m|=1 aαξ

α be a semi-elliptic polynomial on Rn of degree

m. Moreover, let W be a subspace of Rn+1. Then we have σP+(W ) = 0 if and only
if W ′ is a subspace of {Pm = 0}.

Proof. By Proposition 6 iii) W ′ is a subspace of {Pm = 0} if and only if for
each x ∈W ′ we have xj = 0 for every j with mj = m.
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Assume there is x ∈W ′ such that xl 6= 0 for some l with ml = m. Without loss
of generality let |x| = 1. Then by Lemma 5 ii)

P̃W ′(ξ, t)2 ≥ sup
|λ|≤t

|P (ξ + λx)|2

>
_ sup

|λ|≤t
(

n∑
j=1

|ξj + λxj |mj )2

>
_

n∑
j=1

((ξj + txj)
2mj + (ξj − txj)2mj )

>
_

n∑
j=1

ξ
2mj

j +

n∑
j=1

t2mjx
2mj

j

≥
n∑
j=1

ξ
2mj

j + t2mx2m
l .

Since for α with |α : m| ≤ 1 we have |ξα| ≤ 1 +
∑n
j=1 |ξj |mj by Lemma 5 ii) we get

for r ≥ 1 using the equivalence of norms on R2

P̃ (ξ, t)2 = sup
|y|≤t
|P (ξ + y)|2 <

_ 1 + sup
|y|≤t

(

n∑
j=1

|ξj + yj |mj )2

<
_ 1 +

n∑
j=1

ξ
2mj

j + nt2m ≤
n∑
j=1

ξ
2mj

j + (n+ 1)t2m.

Observing that xl ≤ 1, these estimates give

P̃W ′(ξ, t)2

P̃ (ξ, t)2
>
_

∑n
j=1 ξ

2mj

j + t2mx2m
l∑n

j=1 ξ
2mj

j + (n+ 1)t2m
>
_

x2m
l

n+ 1
> 0,

so that by Lemma 4 ii) we have σP+(W ) > 0.
On the other hand, if W ′ is a subspace of {x ∈ Rn; xj = 0 ∀j with mj = m} we

get using Lemma 5 ii) and the equivalence of norms on R2

P̃W ′(ξ, t)2 = sup
|x|≤1,x∈W ′

|P (ξ + tx)|2

<
_ 1 + sup

|x|≤1,x∈W ′
(
n∑
j=1

|ξj + txj |mj )2

<
_ 1 + sup

|x|≤1,x∈W ′
(

n∑
j=1

|ξj |mj + |txj |mj )2

<
_ 1 +

n∑
j=1

ξ
2mj

j + sup
|x|≤1,x∈W ′

n∑
j=1

t2mj |xj |2mj

<
_ 1 +

n∑
j=1

ξ
2mj

j + kt2(m−1).

Here k equals the number of mjs stictly less than m. Observe that W ′ is a subspace
of {x ∈ Rn; xj = 0 ∀j with mj = m}!
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Since P is semi-elliptic we have |P (ξ)| >
_

∑n
j=1 |ξj |mj by Lemma 5 i). Without

loss of generality we assume m1 = m and obtain

P̃ (ξ, t)2 >
_ sup

|x|≤t
(

n∑
j=1

|ξj + xj |mj )2

>
_ sup

τ∈{−1,1}
((ξ1 + τt)2m +

n∑
j=2

ξ
2mj

j )

>
_

n∑
j=1

ξ
2mj

j + t2m.

With these estimates we conclude

P̃W ′(ξ, t)2

P̃ (ξ, t)2
<
_

1 +
∑n
j=1 ξ

2mj

j + kt2m−2∑n
j=1 ξ

2mj

j + t2m
,

so that σP+(W ) = 0 by Lemma 4 ii). �

Theorem 8. Let P (ξ) =
∑
|α:m|≤1 aαξ

α be a semi-elliptic polynomial of degree m

on Rn and W a subspace of Rn+1. Then we have σP+(W ) = 0 if and only if W ′ is
a subspace of {Pm = 0}.

Proof. By Proposition 6 the polynomials P 0(ξ) =
∑
|α:m|=1 aαξ

α and P are

equally strong, thus P+ and (P 0)+ are equally strong, too. By [2, Theorem 11.3.14,
vol. II] we therefore have σP+(W ) = 0 if and only if σ(P 0)+(W ) = 0 so that the
lemma follows from the previous lemma and Proposition 6. �

The following example shows that contrary to Proposition 1 P -convexity for
singular supports of Ω in general does not imply P+-convexity for singular supports
of Ω×R. However, in this example the set Ω is not P -convex for supports hence it
does not yield an answer to the general question.

Example 9. Consider P (ξ1, ξ2) = iξ1 + ξ2
2 , i.e. the heat polynomial in one space

dimension. As illustrated at the beginning of this section, P is then semi-elliptic
hence hypoelliptic by [2, Theorem 11.1.11]. Therefore

Ω := {x ∈ R2; x1 > 0} ∩ {x ∈ R2;x2
1 + x2

2 > 1}

is P -convex for singular supports. Consider the affine subspace

V = {(2, t, 0); t ∈ R} = (2, 0, 0) + span{(0, 1, 0)}

of R3. The orthogonal space W = span{(1, 0)}×R of span{(0, 1, 0)} clearly satisfies
W ′ ⊂ {x ∈ R2; P2(x) = 0} so that by Theorem 8 we have σP+(W ) = 0.

Let K := {(2, t, 0); t ∈ [−3, 3]}. Then K ⊂ V and the boundary of K relative V
consists of the points (2,−3, 0) and (2, 3, 0). Since

dist(K, (Ω× R)c) = 1 < 2 = dist({(2,−3, 0), (2, 3, 0)}, (Ω× R)c)

it follows from [2, Corollary 11.3.2, vol. II] that Ω×R is not P+-convex for singular
supports.

On the other hand, V ′ ⊂ R2 is clearly a characteristic hyperplane for P . Since
the boundary of K ′ relative V ′ consists of the points (2,−3) and (2, 3) and

dist(K ′,Ωc) = 1 < 2 = dist({(2,−3), (2, 3)},Ωc)

it follows from [2, Theorem 10.8.1, vol. II] that Ω is not P -convex for supports.
Compare this example with Corollary 15.
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4. Sufficient conditions for P -convexity

For x, y ∈ Rn we denote by [x, y] the closed convex hull of {x, y}. Moreover, for
Ω ⊂ Rn open, x ∈ Ω, r ∈ Rn\{0}, we define

λ(x, r) := sup{λ > 0; ∀ 0 ≤ µ < λ : [x, x+ µr] ⊂ Ω}.
In case of λ(x, r) =∞ we simply write [x, x+λ(x, r)r] instead of ∪0<λ<λ(x,r)[x, x+
λr]. The next lemma gives a sufficient condition for P -convexity for supports.

Lemma 10. Let Ω be an open subset of Rn and P a non-zero polynomial of degree
m. Assume that for each compact subset K of Ω there is another compact subset L
of Ω such that for every x ∈ Ω\L one can find r ∈ {Pm = 0}⊥\{0} satisfying

[x0, x0 + λ(x0, r)r] ∩K = ∅.
Then Ω is P -convex for supports.

Proof. Let φ ∈ D(Ω) and K := suppP (−D)φ. Choose L for K as stated in
the hypothesis. For x0 ∈ Ω\L there is r ∈ {Pm = 0}⊥\{0} such that

[x0, x0 + λ(x0, r)r] ∩K = ∅.
From the compactness of suppφ it follows that there is λ ∈ (0, λ(x0, r)) such that
x1 := x0 + λr /∈ suppφ. Therefore, [x0, x1] ⊂ Ω and we can find ρ > 0 such that
Ω1 := B(x1, ρ) ⊂ Ω\suppφ and Ω2 := [x0, x1] +B(0, ρ) ⊂ Ω\K.

Ω1 ⊂ Ω2 are open and convex, and φ|Ω1
= 0 as well as P (−D)φ|Ω2

= 0. Let
H = {x; 〈x, ξ〉 = α} be a characteristic hyperplane for P , i.e. ξ 6= 0 satisfies
Pm(ξ) = 0. If H intersects Ω2 there are γ ∈ [0, 1], b ∈ B(0, ρ) satisfying

α = 〈γx0 + (1− γ)x1 + b, ξ〉 = 〈x0 + (1− γ)λr + b, ξ〉
= 〈x0 + b, ξ〉 = 〈x1 − λr + b, ξ〉 = 〈x1 + b, ξ〉

where we used 〈r, ξ〉 = 0. So H already intersects Ω1. [2, Theorem 8.6.8, vol. I]
now gives φ|Ω2

= 0 so that x0 /∈ suppφ. Since x0 ∈ Ω\L was arbitrary it follows
suppφ ⊂ L proving the lemma. �

In order to formulate a similar condition for P -convexity for singular supports
we introduce for a non-zero polynomial P the subspace

SP :=
⋂

({V ⊂ Rn; V one-dimensional subspace, σP (V ) = 0}⊥).

The non-zero elements r of SP are the directions which lie in every hyperplane
H = {x; 〈x, ξ〉 = α} with σP (span{ξ}) = 0. Hence, due to these directions an
application of Corollary 3 instead of [2, Theorem 8.6.8, vol. I] makes it possible
to prove the next lemma in a very similar way to the previous one. Indeed, the
proof is mutatis mutandis the same. Nevertheless, we include it for the reader’s
convenience.

Lemma 11. Let Ω be an open subset of Rn and P a non-zero polynomial. Assume
that for each compact subset K of Ω there is another compact subset L of Ω such
that for every x ∈ Ω\L one can find r ∈ SP \{0} with

[x, x+ λ(x, r)r] ∩K = ∅.
Then Ω is P -convex for singular supports.

Proof. Let µ ∈ E ′(Ω) and K := sing suppP (−D)µ. Choose L for K as stated
in the hypothesis. For x0 ∈ Ω\L there is r ∈ SP \{0} such that

[x0, x0 + λ(x0, r)r] ∩K = ∅.
From the compactness of sing suppµ it follows that there is λ ∈ (0, λ(x0, r)) such
that x1 := x0 +λr /∈ sing suppµ. Therefore, [x0, x1] ⊂ Ω and we can find ρ > 0 such
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that Ω1 := B(x1, ρ) ⊂ Ω\sing suppµ and Ω2 := [x0, x1] + B(0, ρ) ⊂ Ω\K. We will
show that µ|Ω2

∈ C∞(Ω2) implying x0 /∈ sing suppµ. Since x0 ∈ Ω\L was chosen
arbitrarily this implies sing suppµ ⊂ L proving P -convexity for singular supports
of Ω.

By definition of K we have P (−D)µ|Ω2
∈ C∞(Ω2). Moreover, Ω1 is convex

and sing supp µ|Ω2
⊂ Ω2\Ω1. To show that µ|Ω2

∈ C∞(Ω2), let H = {x; 〈x, ξ〉 =
α}, ξ 6= 0, be a hyperplane with σP (span{ξ}) = 0. Since r ∈ SP we have 〈r, ξ〉 = 0.
If H intersects Ω2 it follows exactly as in the proof of Lemma 10 that H already
intersects Ω1. Now Corollary 3 gives µ|Ω2

∈ C∞(Ω2) thus proving the lemma. �

Having seen that {Pm = 0} is a subspace for semi-elliptic P the next proposition
will be useful to apply the above lemmas in the semi-elliptic case.

Proposition 12. Let Ω ⊂ Rn be open and M ⊂ Rn a subspace. The following
condition i) implies ii):

i) For each x ∈ Ω there is r ∈ M\{0} such that dist(x,Ωc) ≥ dist(y,Ωc) for
all y ∈ [x, x+ λ(x, r)r]

ii) For each compact subset K of Ω there is another compact subset L of Ω such
that for every x ∈ Ω\L there is r ∈M\{0} satisfying [x, x+λ(x, r)r]∩K =
∅.

Proof. For m ∈ N let Ωm := {x ∈ Ω; |x| < m, dist(x,Ωc) > 1/m}. For K ⊂ Ω
compact choose m such that K ⊂ Ωm and set L := Ωm. For x ∈ Ω\L let r be as in
i).

If |x| > m either {x+λr;λ > 0} ⊂ Rn\B(0,m) or {x−λr;λ > 0} ⊂ Rn\B(0,m)
so that ii) follows with r or −r. If |x| ≤ m we have 1/m ≥ dist(x,Ωc) ≥ dist(y,Ωc)
for every y ∈ [x, x+λ(x, r)r] because of x ∈ Ω\L, hence [x, x+λ(x, r)r]∩K = ∅.�

5. Main results

The next theorem is an immediate consequence of Theorem 8, Lemma 10, Lemma
11, Proposition 12, and Proposition 1.

Theorem 13. Let Ω ⊂ Rn be open and P a non-zero polynomial with principal part
Pm. If for every x ∈ Ω there is r ∈ {Pm = 0}⊥\{0} such dist(x, ∂Ω) ≥ dist(y, ∂Ω)
for every y ∈ {x+ λr;λ ∈ (0, λ(x, r))} then Ω is P -convex for supports.

Moreover, if P is semi-elliptic then Ω × R is P+-convex for singular supports,
hence P (D) : D ′(Ω) → D ′(Ω) as well as P+(D) : D ′(Ω × R) → D ′(Ω × R) are
surjective.

A result of Vogt (cf. [3, Proposition 2.5]) says that the kernel of an elliptic
differential operator always has the linear topological invariant (Ω). Since in this
context (Ω) equals the property (PΩ) it follows from [1, Proposition 8.3] that for
an elliptic polynomial P the augmented operator P+(D) is surjective on D ′(Ω×R)
if P (D) is surjective on D ′(Ω). This interpretation of Vogt’s result can be derived
as a direct application of the above theorem.

Corollary 14. Let Ω ⊂ Rn be open and P an elliptic polynomial. Then P+(D) is
surjective on D ′(Ω× R).

Proof. This follows immediately from Theorem 13, {Pm = 0}⊥ = Rn, and
Proposition 1. �

Corollary 15. Let Ω ⊂ R2 be open and P a semi-elliptic polynomial such that
P (D) : D ′(Ω)→ D ′(Ω) is surjective.

Then P+(D) : D ′(Ω× R)→ D ′(Ω× R) is surjective.
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Proof. By Corollary 14 we can assume without loss of generality that P is not
elliptic. Then by Proposition 6 {Pm = 0} is a one-dimensional subspace of R2.
Therefore a hyperplane H is characteristic if and only if H = {x + λr;λ ∈ R} for
some x ∈ R2, r ∈ R2\{0} with r ∈ {Pm = 0}⊥.

Let x0 ∈ Ω and r ∈ {Pm = 0}⊥\{0}. Then the hyperplane

H := {x0 + λr;λ ∈ R}
is characteristic. Assuming that there are λ+ ∈ (0, λ(x0, r)) and λ− ∈ (0, λ(x0,−r))
such that dist(x0+λ+ r,Ωc) > dist(x0,Ω

c) as well as dist(x0−λ− r,Ωc) > dist(x0,Ω
c)

it follows for the compact subset K := [x0 − λ− r, x0 + λ+ r] of Ω ∩H that

dist(∂HK,Ω
c) = min{dist(x0 + λ+ r,Ωc), dist(x0 − λ− r,Ωc)} > dist(x0,Ω

c)

≥ dist(K,Ωc),

where ∂HK denotes the boundary of K as a subset of H. On the other hand, since
Ω is P -convex for supports by hypothesis, we have dist(∂HK,Ω

c) = dist(K,Ωc) by
[2, Theorem 10.8.1, vol. II] giving a contradiction. Hence, dist(y,Ωc) ≤ dist(x0,Ω

c)
for all y ∈ [x0, x0 + λ(x0, r)r] or all y ∈ [x0, x0 − λ(x0,−r)r].

It follows from Proposition 12 that for each compact subset K of Ω there is
another compact subset L of Ω such that for every x ∈ Ω\L there is r ∈ {Pm =
0}⊥\{0} satisfying [x, x+ λ(x, r)r] ∩K = ∅.

Now, since P is semi-elliptic we have SP+ = {Pm = 0}⊥ × {0} by Theorem 8.
Thus the above gives that for each compact subset K of Ω × R there is another
compact subset L of Ω×R such that for every x ∈ (Ω×R)\L there is r ∈ SP+\{0}
satisfying [x, x+λ(x, r)r]∩K = ∅. Lemma 11 applied to Ω×R therefore yields the
result. �

We do not know if an analogous conclusion for semi-elliptic operators is true for
arbitrary dimension. In particular, the main problem remains open for the heat
operator in arbitrary many variables.

Acknowledgement. We want to thank the referee for pointing out a cap in the
previous version of Lemma 4.
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