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Abstract. Considering a problem of Bonet and Domański [1, Problem 9.1],
we prove that for a polynomial P on R2 surjectivity of the differential opera-

tor P (D) on D ′(X) implies surjectivity of the augmented operator P+(D) on

D ′(X × R), where P+(x1, x2, x3) := P (x1, x2). Moreover we give a sufficient
geometrical condition on an open subset X of Rd such that an analogous im-

plication is true for arbitrary dimension d in case of P being homogeneous,

semi-elliptic, or of principal type.
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1. Introduction

For an open subset X ⊂ Rd and P ∈ C[X1, . . . , Xd] a non-zero polynomial
consider the corresponding differential operator P (D) on D ′(X), where as usual
Dj = −i ∂

∂xj
. For (x1, . . . , xd+1) ∈ Rd+1 we set P+(x1, . . . , xd+1) := P (x1, . . . , xd)

and call P+(D) the augmented operator, i.e. P (D) acting ”on the first d variables”
on D ′(X × R).

In [1, Problem 9.1] Bonet and Domański asked if surjectivity of the constant
coefficient differential operator P (D) : D ′(X) → D ′(X) passes on to surjectivity
of P+(D) : D ′(X × R) → D ′(X × R). This question is closely connected with the
parameter dependence of solutions of the differential equation

P (D)uλ = fλ,

see [1]. Bonet and Domański proved in [1, Proposition 8.3] that for a surjective
differential operator P (D) : D ′(X) → D ′(X) the augmented operator P+(D) is
surjective if and only if the kernel of P (D) has the linear topological invariant
(PΩ).

By a classical result due to Hörmander [4] P (D) is surjective on D ′(X) if and
only if X is P (D)-convex for supports as well as for singular supports. These
are some kind of geometric properties of X reflecting properties of the transposed
operator P (D)t = P (−D) acting on the space E ′(X) of distributions in X with
compact support. A different characterization of the surjectivity of P (D) on D ′(X)
in terms of the existence of certain shifted fundamental solutions was given only
recently by Wengenroth [15]. Roughly speaking, P (D) is surjective on D ′(X) if and
only if for every ξ ∈ X near the boundary of X there is E ∈ D ′(Rd) such that, in
a large relatively compact open subset of X, P (D)E = δξ and E is a Ck-function
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there with E and its derivatives up to order k being small, where k is somewhat
arbitrary.

This kind of condition on the existence of shifted fundamental solutions with
additional properties was also used in articles by Meise, Taylor, and Vogt [12], [13]
in order to characterize the existence of continuous linear right inverses of P (D) on
E (X) and D ′(X), respectively. In place of E ∈ D ′(X) being regular in the above
sense, one has to require that E vanishes in X except perhaps close to its boundary.
Moreover, Langenbruch characterized in [10] (see also [11]) surjectivity of P (D) on
the space of real analytic functions A(X) over X, where the existence of shifted
fundamental solutions having additional properties plays an important rôle, too.

Because the above result of Wengenroth seems rather difficult to apply in con-
crete situations, we will treat the problem of Bonet and Domański by using Hör-
manders classical approach. Thus we are interested in whether X×R is P+-convex
for supports as well as P+-convex for singular supports in case of X being P -convex
for supports as well as P -convex for singular supports. In [3, Proposition 1] it is
shown that P -convexity for supports of X is passed on to P+-convexity for supports
of X × R. Moreover, it is shown in [3, Example 9] that an analogous implication
for P -convexity for singular supports is not true in general but in this example the
set X is not P -convex for supports.

In this paper we give some positive results on the above problem under certain
conditions. Namely, we prove that for every open X ⊂ R2 and every polynomial
P ∈ C[X1, X2] surjectivity of P (D) on D ′(X) passes on to surjectivity of P+(D)
on D ′(X ×R). To be more precise, we show that P -convexity for supports of X is
equivalent to P+-convexity for singular supports of X×R. Moreover, we show that
for arbitrary dimension the question posed by Bonet and Domański has a positive
answer on special open subsets X if P is homogeneous, semi-elliptic, or of principal
type.

However, it will be shown in a forthcoming paper that the answer to the problem
of Bonet and Domański in general is in the negative [9].

The paper is organized as follows. In section 2 we give some sufficient condition
for P -convexity by means of exterior cone conditions. These are formally similar
to the sufficient condition for surjectivity on A(X) for operators P (D) with locally
hyperbolic principal part Pm involving the local propagation cone for Pm in [10].
The exterior cone conditions are then used in section 3 to give an affirmative result
to the above problem for special open subsets X of Rd in arbitrary dimensions d
and the previously mentioned classes of polynomials. Finally, in section 4 we show
that in two dimensions, i.e. when d = 2 the above question always has a positive
answer.

Apart from standard notation we use the following. For an affine subspace V
of Rd we denote by V ⊥ the orthogonal space to the subspace parallel to V . In
particular, for a hyperplane H = {x; 〈x,N〉 = α} in Rd, where N ∈ Rd\{0} and
α ∈ R we have that H⊥ is the one-dimensional subspace spanned by N . Moreover,
for x = (x1, . . . , xd+1) ∈ Rd+1 we set x′ = (x1, . . . , xd) ∈ Rd and more generally,
we write M ′ = {x′; x ∈M} for a subset M of Rd+1. Furthermore, a cone is always
assumed to be non-empty.

2. Exterior cone conditions for P-convexity

In this section we present some sufficient conditions for an open subset X of Rd
to be P -convex for supports as well as P -convex for singular supports in terms of
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exterior cone conditions. A similar sufficient condition for the P+-convexity for
singular supports of X × R is also given (see Theorem 11 below).

Recall that a cone C is called proper if it does not contain any affine subspace
of dimension one. Moreover, recall that for an open convex cone Γ ⊂ Rd its dual
cone is defined as

Γ◦ := {ξ ∈ Rd; ∀ y ∈ Γ : 〈y, ξ〉 ≥ 0}.
It is a closed proper convex cone in Rd. On the other hand, every closed proper
convex cone C in Rd is the dual cone of a unique open convex cone which is given
by

Γ := {y ∈ Rd; ∀ξ ∈ C\{0} : 〈y, ξ〉 > 0}.
The proof can be done by the Hahn-Banach Theorem (cf. [6, p. 257, vol. I]). There-
fore, we use the notation Γ◦ also for arbitrary closed convex proper cones.

The main tool not only in this section but throughout the whole paper will be
the following notion introduced by Hörmander in connection with continuation of
differentiability (cf. [6, Section 11.3, vol. II]). For a subspace V of Rd

σP (V ) = inf
t>1

lim inf
ξ→∞

P̃V (ξ, t)/P̃ (ξ, t)

with P̃V (ξ, t) := sup{|P (ξ + η)|; η ∈ V, |η| ≤ t}, P̃ (ξ, t) := P̃Rd(ξ, t). This quantity
is closely related with the localizations at infinity of the polynomial P which in
turn are connected with bounds for the wave front set and the singular support
of regular fundamental solutions of P . In order to simplify notation we will write
σP (y) instead of σP (span{y}). We recall some well-known facts in the following
remark.

Remark 1. a) Clearly, if V1 ⊂ V2 are subspaces of Rd it follows from the
definition that we have σP (V1) ≤ σP (V2).

b) If Q is a localization at infinity of P then there is a subspace {0} 6= Λ(Q)
of Rd such that

∀ ξ ∈ Rd, η ∈ Λ(Q) : Q(ξ + η) = Q(ξ),

(cf. [6, Theorem 10.2.8, vol. II]). It follows directly from the definitions that
for every subspace V of Rd

inf
t>1

Q̃V (0, t)

Q̃(0, t)
≥ σP (V ).

Hence, if V = Λ(Q) and if Q is not constant then the left hand side of the
above inequality is 0. In particular, if P has a non-constant localization at
infinity then there is a subspace {0} 6= V of Rd such that σP (V ) = 0.

c) Recall that a polynomial P is hypoelliptic if and only if all of its localiza-
tions at infinity are constant (cf. proof of [6, Theorem 11.1.11, vol. II]).
Therefore it follows that σP (V ) = 1 for every subspace {0} 6= V of Rd if P
is hypoelliptic. Moreover, observe that a polynomial P is hypoelliptic if and
only if the polynomial P̌ (ξ) = P (−ξ) is hypoelliptic (this follows e.g. from
[6, Theorem 11.1.11, vol. II]). Together with [6, Corollary 11.3.3, vol. II],
a), and b) this gives that for a polynomial P the following are equivalent.

i) Every open set X ⊂ Rd is P -convex for singular supports.
ii) P is hypoelliptic.
iii) σP (V ) 6= 0 for every subspace {0} 6= V of Rd.
iv) σP (y) 6= 0 for every y ∈ Rd\{0}.

One way we use σP (V ) is given by the following result which is nothing but a
reformulation of [6, Corollary 11.3.7, vol. II]. For a proof, see [3, Corollary 3].
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Proposition 2. Let X1 ⊂ X2 be open and convex, and let P be a non-constant
polynomial. Then the following are equivalent:

i) Every u ∈ D ′(X2) satisfying P (D)u ∈ C∞(X2) as well as u|X1
∈ C∞(X1)

already belongs to C∞(X2).
ii) Every hyperplane H with σP (H⊥) = 0 which intersects X2 already inter-

sects X1.

An easy consequence of the above proposition is the next result. For a proof see
[7, Proposition 7].

Proposition 3. Let Γ be an open proper convex cone in Rd, x0 ∈ Rd, and P a
non-constant polynomial. If for X := x0 + Γ no hyperplane H = {x; 〈x,N〉 = α}
with σP (H⊥) = 0 intersects X only in x0, the following holds.

Each u ∈ D ′(X) with P (D)u ∈ C∞(X) which is C∞ outside a bounded subset
of X already belongs to C∞(X).

Because we are interested in the P+-convexity for singular supports of X × R
we need a second quantity apart from σP (V ) for a subspace V of Rd.

We define

σ0
P (V ) := inf

t>1,ξ∈Rd
P̃V (ξ, t)/P̃ (ξ, t).

This function has already been considered by Hörmander in [5, Section 5] to discuss
“Hölder estimates” for solutions of partial differential equations. The reason for
introducing this quantity here is given by the following lemma. For the proof see
[3, Lemma 1]. Again we write σ0

P (y) instead of σ0
P (span{y}).

Lemma 4. Let P ∈ C[X1, . . . , Xd] and let Π be the orthogonal projection of Rd+1

onto the first d coordinates. For a subspace W of Rd+1 we identify W ′ := Π(W )
with the corresponding subspace of Rd. Then the following hold.

i) σP+(W ′ × {0}) = σP+(W ′ × R) = σ0
P (W ′).

ii) σP+(W ) = 0 if and only if σ0
P (W ′) = 0.

The next lemma exhibits a fundamental connection between σP and σ0
P . Recall

that a polynomial P with principal part Pm is of principal type if ∇Pm(ξ) 6= 0
for all ξ with Pm(ξ) = 0. Moreover, P is called semi-elliptic if we have P (ξ) =∑
|α:m|≤1 aαξ

α with
∑
|α:m|=1 aαξ

α 6= 0 for any ξ 6= 0. Here m = (m1, . . . ,md) ∈
Nd and |α : m| =

∑d
j=1 αj/mj .

Lemma 5. Let P ∈ C[X1, . . . , Xd] be a non-constant polynomial with principal
part Pm and V ⊂ Rd a subspace.

i) σ0
P (V ) ≤ σP (V ).

ii) If V ⊂ {Pm = 0} then σ0
P (V ) = 0.

iii) Assume P is homogeneous, i.e. P = Pm. Then σ0
P (V ) = 0 if and only if

σP (V ) = 0 or V ⊆ {P = 0}.
iv) Assume that d = 2. Then σ0

P (V ) = 0 if and only if V ⊂ {Pm = 0}.
v) Assume P is semi-elliptic. Then σ0

P (V ) = 0 if and only if V ⊂ {Pm = 0}.
vi) Assume P is of principal type. Then σ0

P (V ) = 0 if and only if σP (V ) = 0.

Proof. i) is obvious from the definitions.

Obviously σ0
P (V ) ≤ P̃V (0,t)

P̃ (0,t)
for every t > 1. If P (ξ) =

∑
0≤|α|≤m cαξ

α with

cα 6= 0 for some α with |α| = m, we define Pj(ξ) :=
∑
|α|=j cαξ

α, 0 ≤ j ≤ m. Thus,

P (ξ) =
∑m
j=0 Pj(ξ), each Pj is a homogeneous polynomial of degree j and Pm is

the principal part of P .
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If V ⊂ {Pm = 0} it follows for t > 1

P̃V (0, t)

tm
= sup
x∈V,|x|≤t

|
m∑
j=0

1

tm
Pj(x)| = sup

x∈V,|x|≤1

|
m−1∑
j=0

1

tm−j
Pj(x)|.

Moreover, for t > 1 we have

P̃ (0, t) = tm sup
|x|≤1

|
m∑
j=0

1

tm−j
Pj(x)|,

so that

lim
t→∞

P̃V (0, t)

P̃ (0, t)
= 0

proving ii).
In order to show iii) observe that by i) and ii) we only have to prove that

σ0
P (V ) = 0 implies σP (V ) = 0 or V ⊆ {P = 0}. By the homogeneity of P we have

|P (ξ + tx)| = tm|P ( ξt + x)| for every t ≥ 1, ξ, x ∈ Rd. This implies

P̃V (ξ, t)

P̃ (ξ, t)
=
P̃V ( ξt , 1)

P̃ ( ξt , 1)

for every ξ ∈ Rd, t ≥ 1. Thus, if σ0
P (V ) = 0 we have

(1) 0 = inf
ξ∈Rd

P̃V (ξ, 1)

P̃ (ξ, 1)
= lim
n→∞

P̃V (ξn, 1)

P̃ (ξn, 1)
,

where (ξn)n∈N is a suitably chosen sequence. If (ξn)n∈N is unbounded we may pass
to a subsequence if necessary and consider the corresponding localization at infinity
Q. But then equality (1) implies Q|V = 0 so that

(2) 0 = inf
t≥1

Q̃V (0, t)

Q̃(0, t)
.

By [7, Lemma 2] we have σP (V ) = inft≥1 infQ′∈L(P )
Q̃′V (0,t)

Q̃′(0,t)
so that (2) implies

σP (V ) = 0.
If on the other hand (ξn)n∈N is bounded we can assume without loss of generality

that limn→∞ ξn = ξ. Using the continuity of (η, 1) 7→ P̃V (η, 1) equality (1) then
gives

0 = lim
n→∞

P̃V (ξn, 1)

P̃ (ξn, 1)
=
P̃V (ξ, 1)

P̃ (ξ, 1)
.

But this implies 0 = sup|θ|≤1 |P (ξ+θx)| for every x ∈ V, |x| = 1, i.e. for fixed x ∈ V
the polynomial P (ξ + tx) in t ∈ R vanishes for every t ∈ R. But then again

0 =
|P (ξ + tx)|
P̃ (ξ, t)

=
|P ( ξt + x)|
P̃ ( ξt , 1)

for all t 6= 0 and x ∈ V so that 0 = P ( ξt + x). Letting t tend to infinity gives
P (x) = 0 for all x ∈ V .

iv) While sufficiency follows from ii) necessity is [5, Remark following Theorem
6.3].

v) is [5, Theorem 6.8] or [3, Theorem 1].
vi) is part of [5, Theorem 6.9]. �
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Remark 6. A result similar to Lemma 5 iii) for arbitrary polynomials is not true
in general. This will be used in the forthcoming paper [9] to give an example of a
surjective P (D) : D ′(X)→ D ′(X) such that P+(D) : D ′(X × R)→ D ′(X × R) is
not surjective, thus solving the problem of Bonet and Domański in the negative.

In order to get a sufficient condition for the P+-convexity for singular supports
of X×R we aim at a result similar to Proposition 3. Before we are able to formulate
and proof this, some preparations have to be made.

The following proposition (cf. [7, Proposition 8]) contains some elementary geo-
metric results which will be usefull in the sequel.

Proposition 7. Let Γ◦ 6= {0} be a closed proper convex cone in Rd and N ∈ Sd−1.
For c ∈ R let Hc := {x; 〈x,N〉 = c}. Then the following are equivalent.

i) H0 ∩ Γ◦ = {0}.
ii) N ∈ Γ or −N ∈ Γ.

iii) If x ∈ Rd and Hc ∩ (x+ Γ◦) 6= ∅ then Hc ∩ (x+ Γ◦) is bounded.
iv) If x ∈ Hc then Hc ∩ (x+ Γ◦) = {x}.

Proposition 8. Let Γ 6= Rd be an open proper convex cone in Rd, x0 ∈ Rd, and
N ∈ Sd−1 such that π := {x ∈ Rd; 〈x,N〉 = α} is a supporting hyperplane of x0 + Γ
intersecting x0 + Γ only in x0 and x0 + Γ ⊂ {x ∈ Rd; 〈x,N〉 > α}. For β > α set

X̃1 := {x ∈ x0 + Γ; 〈x,N〉 > β}, X1 := X̃1 × R, and X2 := (x0 + Γ)× R.
If H = {x ∈ Rd+1; 〈x,M〉 = c} is a hyperplane with X2 ∩ H 6= ∅ as well as

X1 ∩ H = ∅ then the hyperplane Hx0
:= {x ∈ Rd+1; 〈x,M〉 = 〈x0,M

′〉} is a
supporting hyperplane of X2 with Hx0

∩X2 = {x0} × R and Md+1 = 0. Moreover,
H ′x0

= {x ∈ Rd; 〈x,M ′〉 = 〈x0,M
′〉} is a supporting hyperplane of x0 + Γ such that

H ′x0
∩ (x0 + Γ) = {x0}.

Proof. Without loss of generality, let x0 = 0. In this case, α = 0 and H0

contains 0. Suppose H0 is not a supporting hyperplane of X2. Because of 0 ∈
H0∩X2 this means that there are v, w ∈ X2 = Γ×R such that 〈v,M〉 < 0 < 〈w,M〉,
hence 〈x,M〉 < 0 < 〈y,M〉 for some x, y ∈ Γ× R.

Set P := (N, 0) ∈ Rd+1. Then |P | = 1 and because of Γ ⊂ {v ∈ Rd; 〈v,N〉 > 0}
we have X2 ⊂ {v ∈ Rd+1; 〈v, P 〉 > 0}. Therefore, λ1 := 〈x, P 〉 > 0 as well as

λ2 := 〈y, P 〉 > 0. Since X2 is a cone we have x1 := β+1
λ1

x, y1 := β+1
λ2

y ∈ X2 and

from X1 = {v ∈ X2; 〈v, P 〉 > β} we get x1, y1 ∈ X1.
From 〈x1,M〉 < 0 < 〈y1,M〉 we get a t > 1 such that

〈tx1,M〉 < c < 〈ty1,M〉.
Hence there is λ ∈ (0, 1) with

〈λtx1 + (1− λ)ty1,M〉 = c,

i.e. λtx1 + (1−λ)ty1 ∈ H. Obviously, X1 is convex and for every x ∈ X1 and t > 1
we have tx ∈ X1. Therefore we have λtx1 + (1− λ)ty1 ∈ H ∩X1 which contradicts
our hypothesis.

So, H0 is a supporting hyperplane of X2 = Γ × R. This immediately implies
that Md+1 = 0 and that H ′0 is a supporting hyperplane of Γ. Moreover, Md+1 = 0
implies that H ′ = {x ∈ Rd; 〈x,M ′〉 = c} intersects Γ but not X ′1. Because Γ is a
proper cone and Γ\X ′1 = {x ∈ Γ; 〈x,N〉 ≤ β} this implies that H ′ ∩ Γ is bounded.
Since H ′0 is a supporting hyperplane of Γ this yields H ′0 ∩ Γ = {0} by Proposition
7 b), hence H0 ∩X2 = (H ′0 × R) ∩ (Γ× R) = {0} × R. �

Proposition 9. Let Γ 6= Rd be an open proper convex cone in Rd, x0 ∈ Rd, and let
X1 and X2 be as in Proposition 8. Moreover, let P be a non-constant polynomial.
Assume that no hyperplane H in Rd with σ0

P (H⊥) = 0 intersects x0 + Γ only in x0.



SOME RESULTS ON SURJECTIVITY OF AUGMENTED DIFFERENTIAL OPERATORS 7

Then for every hyperplane H in Rd+1 with H ∩ X2 6= ∅ and σP+(H⊥) = 0 it
follows that H ∩X1 6= ∅.

Proof. Let H = {x ∈ Rd+1; 〈x,M〉 = β} be a hyperplane with H ∩X2 6= ∅ but
H ∩X1 = ∅. We have to show that σP+(M) 6= 0.

From Proposition 8 it follows that M = (M ′, 0) and H ′x0
= {x ∈ Rd; 〈x,M ′〉 =

〈x0,M
′〉} is a supporting hyperplane of x0 + Γ with H ′x0

∩ (x0 + Γ) = {x0}. In

particular, the hypothesis gives σ0
P (M ′) 6= 0. With Lemma 4 we get

0 6= σ0
P (M ′) = σP+(span{M ′} × {0}) = σP+(M),

proving the proposition. �

Now, we can prove an analogue result to Proposition 3.

Proposition 10. Let Γ 6= Rd be an open proper convex cone in Rd, x0 ∈ Rd, and
P ∈ C[X1, . . . , Xd] a non-constant polynomial. Assume that no hyperplane H with
σ0
P (H⊥) = 0 intersects x0 + Γ only in x0.

Then, every u ∈ D ′((x0 + Γ)× R) with P+(D)u ∈ C∞((x0 + Γ)× R) for which
there is a bounded subsets B of x0 + Γ such that u is C∞ outside B × R already
satisfies u ∈ C∞((x0 + Γ)× R).

Proof. Without restriction, assume x0 = 0. Let u ∈ D ′(Γ×R) with P+(D)u ∈
C∞(Γ×R) and letB ⊂ Γ be bounded such that u|Γ\B×R ∈ C∞(Γ\B×R). Because Γ

is a proper cone in Rd there is a hyperplane H1 = {x ∈ Rd; 〈x,N〉 = 0} intersecting

Γ only in 0. Let X̃1 be the intersection of Γ with a halfspace whose boundary is
parallel to H1 such that X̃1 is unbounded and B ⊂ Γ\X̃1.

Let X1 := X̃1 × R, and X2 := Γ × R. Then X1 ⊂ X2 are open convex
subsets of Rd+1 and it follows from Proposition 9 that for every hyperplane H
in Rd+1 with σP+(H⊥) = 0 and H ∩ X2 6= ∅ already H ∩ X1 6= ∅. Since
u ∈ D ′(X2), P+(D)u ∈ C∞(X2) and u|X1

∈ C∞(X1) it follows from Proposi-
tion 2 that u ∈ C∞(X2). �

We are now able to prove the main result of this section. Parts i) and ii) of the
next theorem are taken from [7, Theorem 9]

Theorem 11. Let X be an open, connected subset of Rd and P ∈ C[X1, . . . , Xd] a
non-constant polynomial with principal part Pm.

i) X is P -convex for supports if for every x ∈ ∂X there is an open convex
cone Γ such that (x+ Γ◦) ∩X = ∅ and Pm(y) 6= 0 for all y ∈ Γ.

ii) X is P -convex for singular supports if for every x ∈ ∂X there is an open
convex cone Γ such that (x+ Γ◦) ∩X = ∅ and σP (y) 6= 0 for all y ∈ Γ.

iii) X × R is P+-convex for singular supports if for every x ∈ ∂X there is an
open convex cone Γ such that (x+Γ◦)∩X = ∅ and σ0

P (y) 6= 0 for all y ∈ Γ.

Proof. For the proofs of i) and ii) see [7, Theorem 9]. In order to prove iii),
let u ∈ E ′(X ×R). Recall that by extending any compactly supported distribution
by zero to all of Rd+1 we have E ′(X × R) ⊂ D ′(Rd+1) and thus E ′(X × R) ⊂
D ′(Rd+1) ⊂ D ′(Y ) for every open subset Y ⊆ Rd+1.

We set K := sing suppP+(−D)u and δ := dist(K,Xc × R). By [6, Theorem
10.7.3, vol. II], we have to show that dist(sing suppu,Xc × R) ≥ δ. Let x0 ∈
∂(X × R) = ∂X × R and let Γ be as in the hypothesis for x′0 ∈ ∂X. Then
(x0 + (Γ◦ × R)) ∩ (X × R) = ∅, thus (x0 + y + (Γ◦ × R)) ∩K = ∅ for all y ∈ Rd+1

with |y| < δ. Therefore, for fixed y with |y| < δ, there is an open proper convex

cone Γ̃ in Rd with Γ̃ ⊃ Γ◦\{0} such that (x0 + y + (Γ̃ × R)) ∩ K = ∅. Hence,
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u ∈ E ′(X ×R) ⊂ D ′(x0 + y+ (Γ̃×R)) satisfies P+(−D)u ∈ C∞(x0 + y+ (Γ̃×R)).

We show that u ∈ C∞(x0 + y + (Γ̃× R)) by applying Proposition 10.

Let H = {v ∈ Rd; 〈v,N〉 = α} be a hyperplane with σ0
P (N) = 0. As Γ̃ is a closed

proper convex cone with non-empty interior, it is the dual cone of some open proper

convex cone Γ1. It follows from Γ◦1 = Γ̃ ⊃ Γ◦ that Γ1 ⊂ Γ. Because σ0
P (N) = 0 it

follows from the hypothesis on Γ that {N,−N} ∩ Γ = ∅, hence {N,−N} ∩ Γ1 = ∅,
so that by Proposition 7 H does not intersect x′0 + y′ + Γ̃ only in x′0 + y′.

Since u ∈ E ′(X×R) we have that sing suppu is compact. Moreover P+(−D)u ∈
C∞(x0 + y + (Γ̃ × R)), so that u ∈ C∞(x0 + y + (Γ̃ × R)) by Proposition 10.
Since x0 ∈ ∂X × R and y with |y| < δ were chosen arbitrarily, it follows that
dist(sing suppu,Xc × R) ≥ δ, which proves iii). �

3. Some partial results in arbitrary dimensions

In this section we will show that for some special cases of X the sufficient condi-
tions for P -convexity in Theorem 11 are also necessary. As a consequence, we will
see that surjectivity of P (D) on D ′(X) implies surjectivity of P+(D) on D ′(X×R)
for P being homogeneous, semi-elliptic, or of principal type.

Recall that a real valued function f defined on a subset M of Rd is said to
satisfy the minimum principle in the closed subset F of Rd if for every compact
subset K ⊂ F ∩M it holds that infx∈K f(x) = infx∈∂FK f(x), where ∂FK denotes
the boundary of K relative F .

For a subset M of Rd let dM : M → R, x 7→ distRd\M (x) be the distance to its
complement.

Proposition 12. Let Γ◦ 6= {0} be a closed proper convex cone in Rd and N ∈
Sd−1. Assume that dRd\Γ◦ satisfies the minimum principle in every hyperplane
Hc = {x; 〈x,N〉 = c}, c ∈ R. Then {N,−N} ∩ Γ = ∅.

Proof. If {N,−N} ∩ Γ 6= ∅ it follows from Proposition 7 that H0 ∩ Γ◦ = {0}.
Let c 6= 0 be arbitrary. We first show that Hc∩Γ◦ = ∅ if and only if H−c∩Γ◦ 6= ∅.

Indeed, if Hc ∩ Γ◦ = ∅ the convexity of Γ◦ implies that either Γ◦ ⊂ {x; 〈x,N〉 < c}
or Γ◦ ⊂ {x; 〈x,N〉 > c}. Without restriction we only consider the first case.
Since 0 ∈ Γ◦ we have 0 < c. Moreover, because Γ◦ is a cone, it follows for every
x ∈ Γ◦\{0} and t > 0 that t〈x,N〉 < c. Obviously, this implies 〈x,N〉 < 0 for
every x ∈ Γ◦\{0}. Therefore, −c/〈x,N〉 > 0 so that −c/〈x,N〉x ∈ Γ◦ for every
x ∈ Γ◦\{0}. In particular, there is x ∈ Γ◦ ∩H−c.

On the other hand, let H−c ∩ Γ◦ 6= ∅. If Hc ∩ Γ◦ 6= ∅ it follows from c 6= 0 that
there are x, y ∈ Γ◦\{0} such that for some λ ∈ (0, 1) we have λx+ (1− λ)y ∈ H0.
The convexity of Γ◦ together with H0 ∩ Γ◦ = {0} implies λx + (1 − λ)y = 0.
Therefore, −x ∈ Γ◦\{0} which contradicts the fact that Γ◦ is proper.

So, for arbitrary c 6= 0 we can therefore assume that Hc ∩ Γ◦ = ∅ as well as
H−c∩Γ◦ 6= ∅. Because of H0∩Γ◦ = {0} it follows from Proposition 7 that the non-
empty set H−c∩Γ◦ is bounded. So there is R > |c| such that ∅ 6= H−c∩Γ◦ ⊂ BR(0).
In particular, K := Hc∩BR(0) is a non-empty, compact subset of Hc∩Rd\Γ◦ with

dRd\Γ◦(K) = distΓ◦(K) ≤ dist{0}(K) = |c|.

Obviously, x− cN ∈ H0 for all x ∈ Hc, so that M := {x− cN ; x ∈ Hc∩∂BR(0)} ⊂
H0 is compact, and because R > |c|, M does not contain 0. Since H0\{0}∩Γ◦ = ∅
we obtain

δ := inf
v∈M

distΓ◦(v) > 0.
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We have

∀x ∈ Hc, y ∈ Γ◦ : |x− y|2 = |(x− cN)− (y − cN)|2

= c2 + |(x− cN)− y|2 − 2c〈N, y〉.

Again, by the convexity of Γ◦ and Hc ∩Γ◦ = ∅ we have either Γ◦ ⊂ {x; 〈x,N〉 < c}
or Γ◦ ⊂ {x; 〈x,N〉 > c}. From 0 ∈ Γ◦ it therefore follows that c〈N, y〉 ≤ 0 for all
y ∈ Γ◦ so that we get

∀x ∈ Hc, y ∈ Γ◦ : |x− y|2 ≥ c2 + |(x− cN)− y|2.

Therefore,

dRd\Γ◦(∂Hc
K) = distΓ◦(∂Hc

K) = inf
x∈Hc∩∂BR(0)

distΓ◦ |x|

≥ (c2 + inf
x∈Hc∩∂BR(0)

distΓ◦ |x− cN |2)1/2

= (c2 + inf
v∈M

distΓ◦(v)2)1/2

= (c2 + δ2)1/2 > |c| ≥ distΓ◦(K)

= dRd\Γ◦(K),

so that dRd\Γ◦ does not satisfy the minimum principle in Hc contradicting the hy-
pothesis. �

Combining the previous proposition with Theorem 11 gives the next result.

Theorem 13. Let Γ 6= Rd be an open convex cone in Rd and X := Rd\Γ◦. Let P
be a non-constant polynomial with principal part Pm.

i) X is P -convex for supports if and only if Pm(y) 6= 0 for all y ∈ Γ.
ii) X is P -convex for singular supports if and only if σP (y) 6= 0 for all y ∈ Γ.
iii) X × R is P+-convex for singular supports if and only if σ0

P (y) 6= 0 for all
y ∈ Γ.

Proof. For the proof of i) recall that a necessary condition for P -convexity for
supports for an arbitrary open set Y in Rd is that dY satisfies the minimum principle
in every characteristic hyperplane, i.e. in every hyperplaneH = {x; 〈x,N〉 = c} with
Pm(N) = 0 (cf. [6, Theorem 10.8.1, vol. II]). So, if X is P -convex for supports it
follows from Proposition 12 that Pm(y) 6= 0 for every y ∈ Γ.

On the other hand, for every x ∈ ∂X = ∂Γ◦ and y ∈ Γ◦ we have x + y =
2(1/2x+ 1/2 y) ∈ Γ◦ since Γ◦ is a closed convex cone, hence (x+ Γ◦) ∩X = ∅ for
every x ∈ ∂X. Therefore, if Pm(y) 6= 0 for every y ∈ Γ it follows from Theorem 11
i) that X is P -convex for supports, which proves i).

For the proof of ii) recall that a necessary condition for P -convexity for singular
supports for an arbitrary open set Y in Rd is that dY satisfies the minimum principle
in every affine subspace V with σP (V ⊥) = 0 (cf. [6, Corollary 11.3.2, vol. II]). In
particular, if X is P -convex for singular supports, it follows that dX satisfies the
minimum principle in every hyperplane H = {x; 〈x,N〉 = c} with σP (H⊥) = 0.
Thus, by Proposition 12 we get σP (y) 6= 0 for every y ∈ Γ.

Sufficiency of the condition stated in ii) is proved analogously to the proof of i).
Finally, to prove iii) observe that by [6, Corollary 11.3.2, vol. II] P+-convexity

for singular supports of X × R in particular implies that dX×R satisfies the min-
imum principle in every affine subspace H = {x ∈ Rd; 〈x,N〉 = c} × {0} with
0 = σP+(span{N}×R) = σ0

P (N), where we used Lemma 4. Hence dX satisfies the
minimum principle in every hyperplane H = {x ∈ Rd; 〈x,N〉 = c} with σ0

P (N) = 0,
so that σ0

P (y) 6= 0 for every y ∈ Γ due to Proposition 12. This proves necessity in
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iii). Again, sufficiency is proved as in i). �

As an immediate consequence we obtain the next result.

Corollary 14. Let X0 ⊂ Rd be open and convex and let Γ1,Γ2, . . . be a sequence of
open convex cones, all different from Rd. Moreover, let x1, x2 . . . be a sequence in
X0. Denote by X the interior of X0 ∩

⋂∞
n=1(xn + Γ◦n)c and assume that for every

n ∈ N we have εn > 0 such that

Bεn(xn) ∩ (xn + Γ◦n)c ⊂ X.(3)

Then the following holds for a non-constant polynomial P .

i) X is P -convex for supports if and only if Pm(y) 6= 0 for every y ∈ ∪∞n=1Γn,
where Pm is the principal part of P .

ii) X is P -convex for singular supports if and only if σP (y) 6= 0 for every
y ∈ ∪∞n=1Γn.

iii) X×R is P+-convex for singular supports if and only if σ0
P (y) 6= 0 for every

y ∈ ∪∞n=1Γn.

Proof. Since for non-constant polynomials Q convex sets are Q-convex for
(singular) supports and the interior of arbitrary intersections of Q-convex sets for
(singular) supports are again Q-convex for (singular) supports (cf. [6, Theorems
10.6.4 and 10.7.4, vol. II]) the sufficiency of the conditions follows from Theorem
13.

We only prove necessity in iii) since the corresponding proofs for parts i) and ii)
are the same modulo obvious changes.

Let X ×R be P+-convex for singular supports. Assume that there is j ∈ N and
y ∈ Γj such that σ0

P (y) = 0. Without restriction let |y| = 1. Then H := {x; 〈x, y〉 =
〈xj , y〉} is a hyperplane through xj with σ0

P (H⊥) = 0 and H ∩ (xj + Γ◦j ) = {xj} by
Proposition 7. Without loss of generality we can assume that xj +Γ◦j ⊂ {x; 〈x, y〉 ≥
〈xj , y〉}.

For c > 0 set Hc := {x; 〈x, y〉 = 〈xj , y〉 − c} and Kc := Hc ∩ B2c(xj). Then
Kc 6= ∅ is compact and due to condition (1) we have

∀ 0 < c < εj/4 : Kc ⊂ X as well as dX(Kc) = dRd\(xj+Γ◦j )(Kc).

As in the proof of Proposition 12 it follows that

dRd\(xj+Γ◦j )(Kc) = c < dRd\(xj+Γ◦j )(∂HcKc).

Hence by Lemma 4 for 0 < c < ε/4 the affine subspace Hc × {0} of Rd+1 satisfies
σP+((Hc ×{0})⊥) = σ0

P (H⊥c ) = σ0
P (y) = 0 but for the compact subset Kc ×{0} of

(Hc × {0}) ∩ (X × R) we have

dX×R(Kc × {0}) = dX(Kc) = dRd\(xj+Γ◦j )(Kc) = c

< dRd\(xj+Γ◦j )(∂Hc
Kc)

= dX×R(∂Hc×{0}(Kc × {0})).
So the minimum principle for dX×R is not valid in Hc × {0} which contradicts the
P+-convexity for singular supports of X × R by [6, Corollary 11.3.2, vol. II]. �

Remark 15. Observe that for sufficiency of the above conditions instead of X0

being convex, in part i) one only needs X0 to be P -convex for supports while in
parts ii) and iii) it suffices to let X0 be P -convex for singular supports, resp. X0×R
be P+-convex for singular supports. For necessity of the above conditions, X0 can
be arbitrary.

Recall that P is of real principal type if it is of principal type and the coefficients
in its principal part are real.
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Corollary 16. Let X0 ⊂ Rd be open and convex let Γ1,Γ2, . . . be a sequence of
open convex cones, all different from Rd. Moreover, let x1, x2 . . . be a sequence in
X0. Denote by X the interior of X0 ∩

⋂∞
n=1(xn + Γ◦n)c and assume that for every

n ∈ N we have εn > 0 such that

Bεn(xn) ∩ (xn + Γ◦n)c ⊂ X.(4)

If the non-constant polynomial P is homogeneous, semi-elliptic, or of principal type
the following are equivalent.

i) P (D) : D ′(X)→ D ′(X) is surjective.
ii) P+(D) : D ′(X × R)→ D ′(X × R) is surjective.

If P is homogeneous, semi-elliptic, or of real principal type then the above are also
equivalent to

iii) X × R is P+-convex for singular supports.

Proof. Assume that i) holds. Then X is P -convex for supports as well as for
singular supports. By Corollary 14 it follows that Pm(y) 6= 0 and σP (y) 6= 0 for all
y ∈ ∪∞i=1Γi, hence X × R is P+-convex for singular supports by Corollary 14 and
Lemma 5 iii), v), or vi), respectively. Since X is P -convex for supports it follows
that X × R is P+-convex for supports by [3, Proposition 1], so that ii) follows.

Now assume that ii) holds. For v ∈ D ′(X) there is w ∈ D ′(X × R) such that
P+(D)w = v ⊗ δ0. Choose ψ ∈ D(R) with ψ(0) = 1. Then u(ϕ) = w(ϕ ⊗ ψ) for
ϕ ∈ D(X) defines a distribution with P (D)u = v proving i). Note that for this
implication neither the special form of X nor the special properties of P are needed.

Now, we assume that P is homogeneous, semi-elliptic, or of real principal type.
Clearly, ii) implies iii). If iii) holds it follows from Corollary 14 iii) that σ0

P (y) 6= 0
for all y ∈ ∪n∈NΓn. If P is homogeneous it follows from Lemma 5 iii) that Pm(y) 6= 0
and σP (y) 6= 0 for all y ∈ ∪n∈NΓn so that i) follows from Corollary 14 i) and ii).
If P is semi-elliptic we have Pm(y) 6= 0 for all y ∈ ∪n∈NΓn by Lemma 5 v). Hence
X is P -convex for supports by Corollary 14 i), so that iii) implies i) also for semi-
elliptic P . Finally, if P is of real principal type, it follows from Lemma 5 vi) that
σP (y) 6= 0 for all y ∈ ∪n∈NΓn. Therefore, X is P -convex for singular supports by
Corollary 14 ii). It is shown in the proof of [6, Corollary 10.8.10] that P -convexity
for singular supports implies P -convexity for supports if P is of real principal type,
so that i) follows from iii) in this case, too. �

4. The two-dimensional case

Recall that for elliptic P every open subset X ⊂ Rd is P -convex for supports.
The next theorem is [6, Theorem 10.8.3, vol. II].

Theorem 17. If P is non-elliptic then the following conditions on an open con-
nected set X ⊂ R2 are equivalent.

i) X is P -convex for supports.
ii) The intersection of X with every characteristic hyperplane is convex.
iii) For every x0 ∈ ∂X there is a closed proper convex cone Γ◦ 6= {0} with

(x0 + Γ◦)∩X = ∅ and no characteristic hyperplane intersects x0 + Γ◦ only
in x0.

In view of Proposition 7 the above condition iii) clearly is equivalent to the
following condition.

iii’) For every x0 ∈ ∂X there is an open convex cone Γ 6= Rd with (x0+Γ◦)∩X =
∅ and Pm(y) 6= 0 for all y ∈ Γ, where Pm denotes the principal part of P .
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An analogous theorem to Theorem 17 for P -convexity for singular supports is
the following. Recall that by Remark 1 c) a polynomial P is hypoelliptic if and
only if σP (H⊥) 6= 0 for every hyperplane H.

Theorem 18. If P is non-hypoelliptic then the following conditions on an open
connected set X ⊂ R2 are equivalent.

i) X is P -convex for singular supports.
ii) The intersection of X with every hyperplane H satisfying σP (H⊥) = 0 is

convex.
iii) For every x0 ∈ ∂X there is an open convex cone Γ 6= Rd with (x0+Γ◦)∩X =
∅ and σP (y) 6= 0 for all y ∈ Γ.

The proof of the above theorem is very similar to the proof of [6, Theorem 10.8.3,
vol. II] and can be found in [7, Theorem 11].

Theorem 19. If P is non-constant with principal part Pm then the following con-
ditions on an open connected set X ⊂ R2 are equivalent.

i) X × R is P+-convex for singular supports.
ii) The intersection of X with every characteristic hyperplane is convex.

iii) For each x0 ∈ ∂X there is an open convex cone Γ 6= Rd with (x0+Γ◦)∩X =
∅ and Pm(y) 6= 0 for all y ∈ Γ.

Proof. By Lemma 5 iv) we have σ0
P (y) = 0 if and only in y ∈ {Pm = 0}.

Hence, that iii) implies i) is just Theorem 11.
Observe that if X × R is P+-convex for singular supports it follows as in the

proof of Theorem 13 that dX satisfies the minimum principle in every hyperplane
H in R2 with σ0

P (H⊥) = 0. By Lemma 5 iv) dX therefore satisfies the minimum
principle in every characteristic hyperplane. Now that i) implies ii) follows as in
the proof of [6, Theorem 10.8.3, vol. II].

That ii) implies iii) follows immediately from Theorem 17 where one has to re-
place iii) by iii’) �

A result of Vogt (cf. [14, Proposition 2.5]) says that the kernel of an elliptic
differential operator on D ′(X) always has the linear topological invariant (Ω). Since
the kernel of an elliptic differential operator is a Fréchet-Schwartz space it has
property (Ω) if and only if it has property (PΩ). Therefore, it follows from [1,
Proposition 8.3] that for an elliptic polynomial P the augmented operator P+(D)
is surjective on D ′(X×R). This interpretation of Vogt’s result is the next theorem.
A proof based on the techniques used here can be found in [3, Corollary 14].

Theorem 20. Let P ∈ C[X1, . . . , Xd] be elliptic. Then for every X ⊂ Rd open
P+(D) : D ′(X × R)→ D ′(X × R) is surjective.

Combining the last four theorems and [7, Theorem 1] we obtain the following
result.

Theorem 21. Let X be an open subset of R2 and P a non-constant polynomial.
Then the following are equivalent.

i) P (D) : C∞(X)→ C∞(X) is surjective.
ii) P (D) : D ′(X)→ D ′(X) is surjective.
iii) P+(D) : D ′(X × R)→ D ′(X × R) is surjective.
iv) X × R is P+-convex for singular supports.
v) The intersection of every characteristic hyperplane with any connected com-

ponent of X is convex.

Proof. Because for elliptic polynomials P every open set is P -convex for sup-
ports and singular supports and because of Theorems 19 and 20 we can assume



SOME RESULTS ON SURJECTIVITY OF AUGMENTED DIFFERENTIAL OPERATORS 13

without loss of generality that P is non-elliptic. Moreover, by passing to different
components of X we can assume without restriction that X is connected. For non-
elliptic P the equivalence of i), iv) and v) follows from Theorems 17 and 19 and
that i) and ii) are equivalent follows from [7, Theorem 1].

If i) (and therefore also iv)) holds then X is P -convex for supports so that
X × R is P+-convex for supports by [3, Proposition 1] and we obtain iii). Finally,
iii) obviously implies iv) which proves the theorem. �

Remark 22. As stated in the introduction, the results of Bonet and Domański [1,
Proposition 8.3] imply that for a surjective differential operator P (D) : D ′(X) →
D ′(X) the augmented operator P+(D) is surjective if and only if ker P (D) has the
linear topological invariant (PΩ). Combining this with Theorem 21 and Corollary
16 gives the following, respectively.

i) Let X ⊂ R2 be open and P a non-constant polynomial. If the intersection
of every characteristic hyperplane with each connected component of X is
convex then the kernel of

P (D) : D ′(X)→ D ′(X)

has the property (PΩ).
ii) Let X ⊂ Rd be as in Corollary 16 and P be homogeneous, semi-elliptic, or

of principal type. If

P (D) : D ′(X)→ D ′(X)

is surjective then its kernel has the property (PΩ).

On the other hand, it is shown in [8] that i) and ii) of the above theorem are
also equivalent to the surjectivity of P (D) on the space of ultradistributions of
Beurling type D ′(ω)(X) in the sense of Braun, Meise, and Taylor [2] for any/some

non-quasianalytic weight function ω.
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[1] J. Bonet, P. Domański, Parameter dependence of solutions of differential equations on spaces

of distributions and the splitting of short exact sequences, J. Funct. Anal. 230 (2006), 329-381
[2] R.W. Braun, R. Meise, B.A. Taylor, Ultradifferentiable functions and Fourier analysis, Re-

sults Math. 17 (1990), 206-237.

[3] L. Frerick, T. Kalmes, Some results on surjectivity of augmented semi-elliptic differential
operators, Math. Ann. 347 (2010), 81-94
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