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Abstract

We show that the partial sums (Snf)n∈N of a power series f with
radius of convergence one tend to ∞ in capacity on (arbitrarily large)
compact subsets of the complement of the closed unit disk, if f does not
have so-called Hadamard-Ostrowski gaps. Regarding a recent result of
Gardiner, this covers a large class of functions f holomorphic in the unit
disk.

Nous montrons que les sommes partielles (Snf)n∈N d’une série entière
f de rayon de convergence 1 tendent vers ∞ en capacité sur les ensem-
bles compacts (arbitrairement grands) du complémentaire du disque unité
fermé, si f ne contient pas de lacunes de Hadamard-Ostrowski. Tenant
compte d’un résultat récent de Gardiner, ceci couvre une grande classe de
fonctions f holomorphes sur le disque unité.
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1 Introduction and main result

For a power series f(z) =
∑∞
ν=0 aνz

ν with radius of convergence one, we denote
the partial sums by

Snf(z) =

n∑
ν=0

aνz
ν .
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Then (Snf)(z0) is unbounded at each point z0 with |z0| > 1. More precisely,
we have

lim sup
n→∞

|Snf(z0)|1/n = |z0| (1)

and, for R ≥ 1,
lim sup
n→∞

max
|z|=R

|Snf(z)|1/n = R . (2)

This does not prevent subsequences of (Snf) from being convergent, even on
large subsets of the plane. Indeed, it is well-known (see e.g. the expository
articles [6] and [8]) that there exist functions f holomorphic in the unit disk D
having the property that the sequence (Snf)n∈N is universal outside D in the
sense that for each compact set K ⊂ C \ D with connected complement and
each continuous function h : K → C which is holomorphic in the interior of K,
there is a subsequence of (Snf)n∈N tending to h uniformly on K.

It turns out that for such power series the sequence of coefficients (aν)ν∈N0

necessarily exhibits a strong kind of irregularity in the sense of having so-called
Ostrowski gaps (see [5], [10], [12]). In contrast, if the sequence (aν)ν∈N0

behaves
regularly, as for example in the case of the geometric series f(z) =

∑∞
ν=0 z

ν , the
partial sums (Snf(z))n∈N tend to be attracted by ∞ for z outside the closed
unit disk. Our aim is to show that, for a reasonable class of power series, this
turns out to be true in a certain sense.

In the sequel, we use the term capacity for logarithmic capacity. For unex-
plained notions from potential theory see [13].

Definition 1.1 A sequence (hn)n∈N of Borel-measurable functions is said to
converge in capacity to ∞ on a set D ⊂ C, if for every M > 0 we have

lim
n→∞

cap({z ∈ D: |hn(z)| ≤M}) = 0 .

Furthermore, if D is open, (hn) is said to converge locally in capacity on D to
∞, if the sequence converges in capacity to ∞ on every (non-polar) compact
subset of D.

This definition is in accordance with the definition of convergence in capacity
to finite limit functions, as considered e.g. in [9]. The notion of convergence
in capacity is well-known in Padé approximation (see, e.g. [1, Section 6.6]).
Since cap(K) ≥

√
|K|/π, where |K| denotes the area of a compact plane set K,

convergence in capacity implies convergence in (plane Lebesgue) measure.

Definition 1.2 Let f(z) =
∑∞
ν=0 aνz

ν have radius of convergence one. We say
that f possesses Hadamard-Ostrowski gaps if there are sequences (pk)k∈N and
(qk)k∈N in N with p1 < q1 ≤ p2 < q2 ≤ . . ., such that

1. lim inf
k→∞

qk
pk

> 1,

2. lim sup
I3ν→∞

|aν |
1
ν < 1 for I :=

⋃
k∈N
{pk + 1, pk + 2, . . . , qk − 1}.
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Remark 1.3 A recent result of Gardiner [3, Cor. 3] states that a power series
f(z) =

∑∞
ν=0 aνz

ν which converges on D and is analytically continuable to a
domain Ω ⊃ D, but not to a neighbourhood of a given point ξ ∈ ∂D, has no
Hadamard-Ostrowski gaps, if C \Ω is thin at ξ. In particular, it follows that all
functions holomorphic in D which have an isolated singularity at some point ξ
on the boundary of D do not have Hadamard-Ostrowski gaps. It is easily seen
that the same is true for all (repeated) antiderivatives of such functions. Thus,
for a large class of functions holomorphic in D this turns out to be the case.

Our main result is the following. The proof is given in the next section.

Theorem 1.4 Let f(z) =
∑∞
ν=0 aνz

ν be a power series with radius of conver-
gence one and without Hadamard-Ostrowski gaps. Then Snf → ∞ locally in
capacity on C \ D.

Under the conditions of the theorem, Snf does not need to tend to∞ (globally)
in capacity on any open annulus {z: 1 < |z| < R}, where R > 1. As an example,
on the semi-circular arcs

Bn := {z ∈ C: Re z ≤ 0, |z| = 1 + 1/n}

the partial sums Snf(z) = (zn+1 − 1)(z − 1)−1 of the geometric series f are
uniformly bounded, more precisely

max
z∈Bn

|Snf(z)| ≤ 5/
√

2,

while cap(Bn) = (1+1/n)cap(B) ≥ cap(B), where B is the corresponding semi-
circular arc on the unit circle. This also shows that pointwise convergence to
∞ on the annulus does not imply convergence in capacity there.

Remark 1.5 Let hn be a sequence of meromorphic functions in the plane.
According to [11, Thm. 2], convergence in capacity of hn → h on a bounded set
D ⊂ C implies that there exists a subsequence (nk)k∈N in N such that hnk → h
quasi-everywhere on D, i.e.

cap
(
{z ∈ D:hnk(z) 6→ h(z)}

)
= 0.

Corollary 1.6 Let f(z) =
∑∞
ν=0 aνz

ν be a power series with radius of con-
vergence one and without Hadamard-Ostrowski gaps. Then every subsequence
(Snkf)k∈N of (Snf)n∈N contains a subsequence (Snkj f)j∈N with 1/Snkj f → 0

quasi-everywhere on C \ D.

The proof follows with a standard diagonal sequence argument from Theo-
rem 1.4:

The annuliKl := {z : 1+1/l ≤ |z| ≤ 1+l} (l ∈ N) form a compact exhaustion
of C\D. Let (Snkf)k∈N be any subsequence of (Snf)n∈N. By Theorem 1.4 and

Remark 1.5, there exists a subsequence (n
(1)
k )k∈N of (nk)k∈N such that

1/S
n
(1)
k

f → 0 quasi-everywhere on K1.
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Preceding in this way, there exists a subsequence (n
(2)
k )k∈N of (n

(1)
k )k∈N such

that
1/S

n
(2)
k

f → 0 quasi-everywhere on K2,

and so on. The diagonal sequence (n
(k)
k )k∈N is a subsequence of (nk)k∈N for

which cap
(
{z ∈ Kl: 1/S

n
(k)
k

f 6→ 0}
)

= 0 for all l ∈ N. Since countable unions of

polar sets are polar, this implies cap
(
{|z| > 1: 1/S

n
(k)
k

f 6→ 0}
)

= 0.

2 Proof of the main theorem

For r > 1 we set Dr := {ζ ∈ C : |ζ| < r}. The following purely potential
theoretic result will play the key role for our argumentation.

Lemma 2.1 Suppose that (uj) is a sequence of upper bounded and subharmonic
functions on D. If

lim sup
j→∞

sup
D
uj ≤ 0

and if there is a sequence (Ej) of compact subsets of Dδ for some δ < 1 with
cap(Ej) ≥ α > 0 and

β := lim sup
j→∞

max
Ej

uj < 0

then, for all r ∈ (δ, 1), a positive constant c(δ, r) exists so that

lim sup
j→∞

max
Dr

uj ≤ β
c(δ, r)

log(1/α)
.

Proof. In view of the maximum principle (for subharmonic functions) we
may suppose that the sets C\Ej are connected. Let ε > 0 be fixed. Then there
exists an integer j0 = j0(ε) with

sup
D
uj < ε and max

Ej
uj < β + ε (j ≥ j0) .

Let ωD\Ej denote the harmonic measure of D \ Ej . According to the two-
constant-theorem (see, e.g. [13, Theorem 4.3.7]) we get, for ζ ∈ D \ Ej and
j ≥ j0,

uj(ζ) ≤ (β + ε)ωD\Ej (ζ, Ej) + ε(1− ωD\Ej (ζ, Ej)) = βωD\Ej (ζ, Ej) + ε .

Moreover, from a result in [4, p.123], we obtain the existence of a positive
constant c(δ, r) with

max
|ζ|=r

ωD\Ej (ζ, Ej) ≥
c(δ, r)

log(1/cap(Ej))
≥ c(δ, r)

log(1/α)

and thus the maximum principle yields

sup
Dr

uj ≤ β
c(δ, r)

log(1/α)
+ ε (j > j0) .
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Since ε > 0 was arbitrary, the conclusion follows. �

Now, we are prepared for the Proof of Theorem 1.4:
1. We show in a first step that Snf(1/ζ)→∞ locally in capacity on D.
For this purpose, let f(z) =

∑∞
ν=0 aνz

ν be a power series with radius of
convergence one. Assume that (ζ 7→ Snf(1/ζ))n∈N does not tend to ∞ in
capacity on a non-polar compact set E ⊂ D. We have to show that f has
Hadamard-Ostrowski gaps.

By assumption, there exist M > 0, α > 0, and a sequence (nj)j∈N in N
tending to infinity such that the compact sets

Ej := {ζ ∈ E: |Snjf(1/ζ)| ≤M} (j ∈ N)

all satisfy cap(Ej) ≥ α. We define

uj(ζ) := log |Snjf(1/ζ)ζnj |1/nj = log |ζ|+ 1

nj
log |Snjf(1/ζ)| (ζ ∈ D) .

Then the uj are subharmonic in C (note that Snf(1/ζ)ζn is a polynomial in ζ).
Moreover, (2) implies

lim sup
n→∞

max
|ζ|=1

|Snf(1/ζ)|1/n = 1

and therefore (by the maximum principle)

lim sup
j→∞

sup
D
uj ≤ 0 .

Since Ej ⊂ E ⊂ Dδ for some δ < 1, we further obtain

max
Ej

uj ≤ log(δ) +
1

nj
logM

and thus
lim sup
j→∞

max
Ej

uj ≤ log(δ) < 0 . (3)

Since cap(Ej) ≥ α, Lemma 2.1 yields

lim sup
j→∞

max
Dr

uj ≤ log(δ)
c(δ, r)

log(1/α)
< 0

for δ < r < 1 (note that α ≤ cap(Ej) ≤ cap(Dδ) = δ < 1). If we fix such an
r ∈ (δ, 1), for R := 1/r ∈ (1, 1/δ) this estimate implies

lim sup
j→∞

max
|z|=R

|Snjf(z)|1/nj < R.

Hence, there is γ < 1 so that

max
|z|=R

|Snjf(z)| < (γR)nj
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for j sufficiently large. For every ν ≤ nj , Cauchy’s formula implies

|aν |
1
ν =

∣∣∣∣∣∣∣
1

2πi

∫
|z|=R

Snjf(z)

zν+1
dz

∣∣∣∣∣∣∣
1
ν

≤ γ
nj
ν ·R

nj
ν −1 ≤ γ ·R

nj
ν −1.

Now, if q ∈ (0, 1) is arbitrary and qnj ≤ ν ≤ nj , we obtain

|aν |
1
ν ≤ γ ·R

1
q−1,

and hence
lim sup
j→∞

max
qnj≤ν≤nj

|aν |
1
ν ≤ γ ·R

1
q−1.

Finally, we can choose q < 1 close enough to 1 so that γR
1
q−1 < 1 which gives

lim sup
j→∞

max
qnj≤ν≤nj

|aν |
1
ν < 1.

This implies that f has Hadamard-Ostrowski gaps.

2. From [13, Theorem 5.3.1] it is easily seen that convergence in capacity
is preserved under bi-Lipschitz mappings: Let K ⊂ C be a compact set and
ϕ : K → C bi-Lipschitz. For any sequence (hn) of Borel-measurable functions
on ϕ(K) we have hn → ∞ in capacity on ϕ(K) if and only if hn ◦ ϕ → ∞ in
capacity on K. If we apply this for arbitrary compact subsets K of C \ D and
ϕ(z) = 1/z on K, the conclusion follows from the first part of the proof with
hn(ζ) = Snf(1/ζ). �

3 Further Remarks

1. A closer inspection of the proof of our main theorem shows that the existence
of a sequence of compact subsets Kj of an annulus {z : R ≤ |z| ≤ S}, where
1 < R ≤ S, with infj∈N cap(Kj) > 0 and

lim sup
j→∞

max
z∈Kj

1

|z|
|Snjf(z)|1/nj < 1 (4)

implies that f has Hadamard-Ostrowski gaps (in this case we still have

lim sup
j→∞

max
Ej

uj < 0

in the estimate (3), where again Ej := 1/Kj). In particular, (4) is satisfied if

lim sup
j→∞

max
z∈Kj

|Snjf(z)|1/nj < R .
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With regard to (1) and (2), this means that the subsequence (Snj ) has a reduced
growth compared to the full sequence on the compact sets Kj .

2. Consider a power series f of radius of convergence one and being analyt-
ically continuable to a domain Ω strictly larger than D. From a classical result
of Ostrowski on overconvergence (see e.g. [7, Thm. 16.7.1]), it follows that the
conclusion of Corollary 1.6 does no longer hold if f has Hadamard-Ostrowski
gaps.
More precisely, let ξ ∈ Ω∩∂D. If (pk)k∈N and (qk)k∈N are as in Definition 1.2, the
subsequence (Spkf)k∈N converges uniformly on some open disk U with centre
ξ (to the continuation of f). Thus, in particular, no subsequence of (Spkf)k∈N
can tend to infinity quasi-everywhere on U \ D.
In contrast, there exist f having ∂D as its natural boundary and having Hadamard-
Ostrowski gaps so that (Snf)(z)→∞ for all |z| > 1. A simple example is given
by the gap series

f(z) =

∞∑
k=0

z2
k

,

where one may choose pk = 2k and qk = pk+1.

3. In [2] it was shown that, for functions f having no Hadamard-Ostrowski
gaps, pointwise (finite) limit functions of (Snf)n∈N on sets E ⊂ C \ D can only
exist if E is polar. This also appears now as consequence of Corollary 1.6.

4. Let H0 denote the space of all functions holomorphic in the punctured
sphere C∞ \ {1} (where C∞ := C ∪ {∞}) and vanishing at infinity. From the
result of Gardiner mentioned in Remark 1.3, it follows that functions in H0\{0}
do not have Hadamard-Ostrowski gaps. According to 3., finite limit functions
can only exist on polar sets E ⊂ C \ D. As is shown by the geometric series f ,
finite limit functions may exist on sets of positive capacity on the boundary ∂D
of the unit disk. Indeed, if K ⊂ ∂D \ {1} is a Dirichlet set (see e.g. [8]), then a
subsequence of

Snf(z) = (zn+1 − 1)(z − 1)−1

tends to 0 uniformly onK. It is known that Dirichlet sets of Hausdorff dimension
1 exist. Polar sets, however, necessarily have vanishing Hausdorff dimension.

On the other hand, from a result of Melas [9], it easily follows that for all
countable sets E ⊂ C\D there is a residual set in H0 (where H0 is endowed with
the topology of locally uniform convergence) consisting of functions which are
universal on E in the sense that for each function h:E → C a subsequence of
(Snf)n∈N tends to h pointwise on E. Moreover, [2, Thm. 2] shows that there is
a residual set of functions in H0 so that {Snf :n ∈ N} is (uniformly) dense in the
space C(K) of continuous functions on K for ”many” perfect sets K ⊂ C \ D.
This shows in particular that, for a residual set of functions in H0, uncountable
exceptional sets E ⊂ C \ D exist on which the sequence (Snf)n∈N turns out to
be far away from tending pointwise to ∞.
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