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Abstract

We show that the partial sums (Snf)nen of a power series f with
radius of convergence one tend to oo in capacity on (arbitrarily large)
compact subsets of the complement of the closed unit disk, if f does not
have so-called Hadamard-Ostrowski gaps. Regarding a recent result of
Gardiner, this covers a large class of functions f holomorphic in the unit
disk.

Nous montrons que les sommes partielles (S, f)nen d’une série entiere
f de rayon de convergence 1 tendent vers oo en capacité sur les ensem-
bles compacts (arbitrairement grands) du complémentaire du disque unité
fermé, si f ne contient pas de lacunes de Hadamard-Ostrowski. Tenant
compte d’un résultat récent de Gardiner, ceci couvre une grande classe de
fonctions f holomorphes sur le disque unité.
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1 Introduction and main result

For a power series f(z) = Y., , a,z” with radius of convergence one, we denote

the partial sums by
Snf(z) = Z a,z’ .
v=0
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Then (S, f)(z0) is unbounded at each point zy with |zp| > 1. More precisely,
we have

limsup | S, f(20)|*™ = |20 (1)
n—oo
and, for R > 1,
lim sup nTaX 1S, f(z)Y"=R. (2)

n—oo \Z =R

This does not prevent subsequences of (S, f) from being convergent, even on
large subsets of the plane. Indeed, it is well-known (see e.g. the expository
articles [6] and [§]) that there exist functions f holomorphic in the unit disk D
having the property that the sequence (S, f)nen is universal outside D in the
sense that for each compact set K C C\ D with connected complement and
each continuous function h : K — C which is holomorphic in the interior of K,
there is a subsequence of (S, f)nen tending to h uniformly on K.

It turns out that for such power series the sequence of coefficients (a,),en,
necessarily exhibits a strong kind of irregularity in the sense of having so-called
Ostrowski gaps (see [5], [10], [I2]). In contrast, if the sequence (a,),en, behaves
regularly, as for example in the case of the geometric series f(z) = Z;O:O z¥, the
partial sums (S, f(2))nen tend to be attracted by oco for z outside the closed
unit disk. Our aim is to show that, for a reasonable class of power series, this
turns out to be true in a certain sense.

In the sequel, we use the term capacity for logarithmic capacity. For unex-
plained notions from potential theory see [13].

Definition 1.1 A sequence (hy,)nen of Borel-measurable functions is said to
converge in capacity to co on a set D C C, if for every M > 0 we have

lim cap({z € D: |hn(2)] < M})=0.
n— oo

Furthermore, if D is open, (h,) is said to converge locally in capacity on D to
0o, if the sequence converges in capacity to oo on every (non-polar) compact
subset of D.

This definition is in accordance with the definition of convergence in capacity
to finite limit functions, as considered e.g. in [9]. The notion of convergence
in capacity is well-known in Padé approximation (see, e.g. [l Section 6.6]).
Since cap(K) > /| K|/m, where | K| denotes the area of a compact plane set K,
convergence in capacity implies convergence in (plane Lebesgue) measure.

Definition 1.2 Let f(z) = > - a,2" have radius of convergence one. We say
that f possesses Hadamard-Ostrowski gaps if there are sequences (pg)ren and
(Qk)keN in N with p; < ¢1 <p2 < g2 <..., such that

1. liminf & > 1,
k—oco Pk

2. limsup|a,,|% <1forI:= U{pk+l,pk+2,...,qk—l}.
Idv—o00 keN



Remark 1.3 A recent result of Gardiner [3, Cor. 3] states that a power series
f(z) = Y02 a,z” which converges on D and is analytically continuable to a
domain © D I, but not to a neighbourhood of a given point £ € JD, has no
Hadamard-Ostrowski gaps, if C\ 2 is thin at £. In particular, it follows that all
functions holomorphic in D which have an isolated singularity at some point &
on the boundary of D do not have Hadamard-Ostrowski gaps. It is easily seen
that the same is true for all (repeated) antiderivatives of such functions. Thus,
for a large class of functions holomorphic in I this turns out to be the case.

Our main result is the following. The proof is given in the next section.

Theorem 1.4 Let f(z) = >.07 a,z" be a power series with radius of conver-
gence one and without Hadamard-Ostrowski gaps. Then S, f — oo locally in
capacity on C\ D.

Under the conditions of the theorem, S, f does not need to tend to oo (globally)
in capacity on any open annulus {z:1 < |z| < R}, where R > 1. As an example,
on the semi-circular arcs

B, ={z€C:Rez<0,|z| =1+ 1/n}

the partial sums S, f(2) = (2" — 1)(2 — 1)7! of the geometric series f are
uniformly bounded, more precisely

max |8, f(2)] < 5/V2,

while cap(B,,) = (14+1/n)cap(B) > cap(B), where B is the corresponding semi-
circular arc on the unit circle. This also shows that pointwise convergence to
oo on the annulus does not imply convergence in capacity there.

Remark 1.5 Let h,, be a sequence of meromorphic functions in the plane.
According to [II}, Thm. 2], convergence in capacity of h,, — h on a bounded set
D c C implies that there exists a subsequence (ny)ken in N such that h,, — h
quasi-everywhere on D, i.e.

cap({z € D: hy, () /4 h(z)}) = 0.

Corollary 1.6 Let f(z) = >0 a,z” be a power series with radius of con-
vergence one and without Hadamard-Ostrowski gaps. Then every subsequence
(Sny, fken of (Snf)nen contains a subsequence (Snkj f)jen with l/Snkjf -0

quasi-everywhere on C\ D.

The proof follows with a standard diagonal sequence argument from Theo-

rem [[.4¢
The annuli K; := {z : 14+1/1 < |z| < 1+1} (I € N) form a compact exhaustion
of C\D. Let (Sy, f)ren be any subsequence of (S, f)nen. By Theorem and

Remark |1.5] there exists a subsequence (n,(cl))keN of (ng)ren such that

1/Sn<1)f — 0 quasi-everywhere on K.
k



Preceding in this way, there exists a subsequence (nf))keN of (ng))keN such
that

l/Sn<2)f — 0 quasi-everywhere on Ko,
k

and so on. The diagonal sequence (n,(ck))keN is a subsequence of (ng)gen for

which cap({z € K 1/S wf # 0}) = 0 for all € N. Since countable unions of
k
polar sets are polar, this implies cap({|z| > 1: /S w f # 0}) = 0.
k

2 Proof of the main theorem

For r > 1 we set D, := {¢ € C: |¢|] < r}. The following purely potential
theoretic result will play the key role for our argumentation.

Lemma 2.1 Suppose that (u;) is a sequence of upper bounded and subharmonic
functions on D. If

limsup supu; <0
j—oo D

and if there is a sequence (E;) of compact subsets of Ds for some § < 1 with
cap(E;) > o> 0 and

B = limsup maxu; <0
j—o00 E;

then, for all v € (8,1), a positive constant ¢(d,r) exists so that
c(6,r)
limsup maxu; < f——~— .
TSP = Pig 1)

Proof. In view of the maximum principle (for subharmonic functions) we
may suppose that the sets C\ E; are connected. Let € > 0 be fixed. Then there
exists an integer jo = jo(&) with

supu; < e and H}Eaxuj<ﬁ+e (7> jo) -
D i

Let wp\g, denote the harmonic measure of D \ E;. According to the two-
constant-theorem (see, e.g. [I3, Theorem 4.3.7]) we get, for ¢ € D\ E; and

JZ jOa
u;(C) < (B + €)wm\g, (¢, Ej) + (1 —wn\g, (¢, Ej)) = Bwpg, (¢, Ej) +¢.

Moreover, from a result in [4, p.123], we obtain the existence of a positive
constant ¢(d,r) with

‘ c(d,r) c(0,7)
maxwo\s; (G F5) 2 10 eap(By)) = Tog(1/a)

and thus the maximum principle yields

c(0,7) L
S%})uj < 5m +e (4> o)



Since € > 0 was arbitrary, the conclusion follows. O

Now, we are prepared for the Proof of Theorem

1. We show in a first step that S, f(1/{) — oo locally in capacity on D.

For this purpose, let f(z) = > .2 a,2” be a power series with radius of
convergence one. Assume that (¢ — S,f(1/¢))nen does not tend to oo in
capacity on a non-polar compact set E C D. We have to show that f has
Hadamard-Ostrowski gaps.

By assumption, there exist M > 0, o > 0, and a sequence (n;);en in N
tending to infinity such that the compact sets

Ej:={Ce E:|Sy, f(1/Q < M} (j €N)
all satisfy cap(E;) > a. We define
. 1
u;(€) = log |, f(1/¢)¢™ [V = log (| + —log|Sa; f(1/Q)] (D).
J
Then the u; are subharmonic in C (note that S, f(1/¢)¢" is a polynomial in ().
Moreover, implies

lim sup max S, f(1/¢)['/" =1

n—oo [C]

and therefore (by the maximum principle)

limsup supu; <0.
j—o0 D

Since E; C E C Dys for some ¢ < 1, we further obtain
1
Hjli%x uj < log(d) + - log M

and thus
lim sup max u; < log(d) < 0. (3)

Jj—oo J

Since cap(E;) > o, Lemma [2.1] yields

. c(0,7)
lim sup maxu; < log(d)——"—~
i T = 00 o017

for 6 < r <1 (note that a < cap(E;) < cap(Ds) = ¢ < 1). If we fix such an
r € (4,1), for R:=1/r € (1,1/6) this estimate implies

lim sup H|1a>}§c |Snjf(z)\1/”j < R.

j—oo 2=
Hence, there is v < 1 so that

max [Sn; (2)] < (vR)™



for j sufficiently large. For every v < n;, Cauchy’s formula implies

1 1 Snjf(z) ng i q
|ay|u: Tm / Wdz Sf‘yu.Ru gf}/R
|z|=R

<@

-1

Now, if g € (0,1) is arbitrary and gn; < v < n;, we obtain
a7 <y- R

and hence .
. 1 1_9q
limsup max |a,|v <7 -Ra .
j—oo qnj<v<n;

Finally, we can choose ¢ < 1 close enough to 1 so that 71%%71 < 1 which gives

. 1
limsup max J|a,|¥ < 1.
j—oo qnjSv<n;

This implies that f has Hadamard-Ostrowski gaps.

2. From [I3] Theorem 5.3.1] it is easily seen that convergence in capacity
is preserved under bi-Lipschitz mappings: Let K C C be a compact set and
¢ : K — C bi-Lipschitz. For any sequence (h;) of Borel-measurable functions
on p(K) we have h,, — oo in capacity on ¢(K) if and only if h, o o — oo in
capacity on K. If we apply this for arbitrary compact subsets K of C\ D and
¢(z) = 1/z on K, the conclusion follows from the first part of the proof with

hn(€) = Snf(1/€). O

3 Further Remarks

1. A closer inspection of the proof of our main theorem shows that the existence
of a sequence of compact subsets K; of an annulus {z : R < |z| < S}, where
1 < R < S, with infjen cap(K;) > 0 and

1
lim sup max —|S,,. f(2)|"/™ < 1 4
msp max 0[S, 1(2) (@)

implies that f has Hadamard-Ostrowski gaps (in this case we still have

lim sup maxu; < 0
j—o0 J

in the estimate (3)), where again E; := 1/K). In particular, is satisfied if

lim sup max |Snjf(z)‘1/nj <R.

j—oo 2€



J

growth compared to the full sequence on the compact sets K.

With regard to (1)) and 7 this means that the subsequence (S, ) has a reduced

2. Consider a power series f of radius of convergence one and being analyt-
ically continuable to a domain €2 strictly larger than . From a classical result
of Ostrowski on overconvergence (see e.g. [7, Thm. 16.7.1]), it follows that the
conclusion of Corollary does no longer hold if f has Hadamard-Ostrowski
gaps.

More precisely, let £ € QNID. If (py )ken and (g )ren are as in Dcﬁnition the
subsequence (Sp, f)ren converges uniformly on some open disk U with centre
& (to the continuation of f). Thus, in particular, no subsequence of (Sp, f)ren
can tend to infinity quasi-everywhere on U \ D.

In contrast, there exist f having D as its natural boundary and having Hadamard-
Ostrowski gaps so that (S, f)(z) — oo for all |z] > 1. A simple example is given

by the gap series
floy =>4+,
k=0

where one may choose py = 2% and qi, = Pk+1-

3. In [2] it was shown that, for functions f having no Hadamard-Ostrowski
gaps, pointwise (finite) limit functions of (S, f)nen on sets E C C\ D can only
exist if F' is polar. This also appears now as consequence of Corollary

4. Let Hy denote the space of all functions holomorphic in the punctured
sphere C \ {1} (where Co, := CU {o0}) and vanishing at infinity. From the
result of Gardiner mentioned in Remark[L.3] it follows that functions in Ho\{0}
do not have Hadamard-Ostrowski gaps. According to 3., finite limit functions
can only exist on polar sets £ C C\ D. As is shown by the geometric series f,
finite limit functions may exist on sets of positive capacity on the boundary 0D
of the unit disk. Indeed, if K C 0D\ {1} is a Dirichlet set (see e.g. [§]), then a
subsequence of

Suf(2) = (2"~ 1)z — 1)

tends to 0 uniformly on K. It is known that Dirichlet sets of Hausdorff dimension
1 exist. Polar sets, however, necessarily have vanishing Hausdorff dimension.

On the other hand, from a result of Melas [9], it easily follows that for all
countable sets E C C\D there is a residual set in Hy (where Hy is endowed with
the topology of locally uniform convergence) consisting of functions which are
universal on F in the sense that for each function h: E — C a subsequence of
(Snf)nen tends to h pointwise on E. Moreover, |2, Thm. 2] shows that there is
a residual set of functions in Hy so that {S,, f:n € N} is (uniformly) dense in the
space C'(K) of continuous functions on K for "many” perfect sets K C C\ D.
This shows in particular that, for a residual set of functions in Hy, uncountable
exceptional sets F C C\ D exist on which the sequence (S, f)nen turns out to
be far away from tending pointwise to oo.
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