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Abstract. For Ω ⊂ Rd open, we characterize when cosine operator functions generated
by second order partial differential operators on Lp(Ω, µ) and C0,ρ(Ω), respectively, are

hypercyclic and prove that this happens if and only if they are weakly mixing. In the

case of d = 1 we give an easy to check characterization of when this happens. Moreover,
mixing of these cosine operator functions is also characterized.
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1. Introduction

A continuous linear operator T on a separable Banach space X is called hypercyclic if
there is a hypercyclic vector x ∈ X for T which means that {Tnx; n ∈ N} is dense in X.
There are a number of articles dealing with hypercyclic operators, for a survey see e.g. [11],
[12].

Analogously, a family (Tι)ι∈I of continuous linear operators on X, is called hypercyclic
if there exists an element x ∈ X such that {Tιx; ι ∈ I} is dense in X. In this case x is
again called hypercyclic vector for the family (Tι)ι∈I . Apart from single operators, there are
various results on hypercyclic C0-semigroups, see e.g. [8], [2], [5], [4], [6], [13], [14] [1], [7].

A notion closely related to hypercyclicity is that of transitivity. A family of continuous
linear operators (Tι)ι∈I on a Banach space X is called transitive if for each pair of non-
empty, open subsets U, V of X there is ι ∈ I such that T−1

ι (U) ∩ V 6= ∅. It was shown by
Grosse-Erdmann that (Tι)ι∈I is transitive if and only if (Tι)ι∈I is hypercyclic and the set
of hypercyclic vectors is dense [10, Satz 1.2.2 and its proof]. Moreover, Peris proved that a
commuting family of continuous linear operators (Tι)ι∈I for which each Tι has dense range
is hypercyclic if and only if the set of hypercyclic vectors is dense [11, Proposition 1]. In
particular, an arbitrary commuting family of continuous linear operators (Tι)ι∈I for which
each Tι has dense range is hypercyclic if and only if it is transitive.

A family of continuous linear operators (Tι)ι∈I on a Banach space X is called weakly
mixing if (Tι ⊕ Tι)ι∈I is transitive on X ⊕ X. And finally, a family of continuous linear
operators (Tt)t∈R is called mixing if for each pair of non-empty, open subsets U, V of X
there is t0 ∈ R such that T−1

t (U) ∩ V 6= ∅ for every t ≥ t0.
A cosine operator function on a Banach space X is a strongly continuous mapping C from

the real line into the space of continuous linear operators on X satisfying C(0) = id and the
d’Alembert functional equation 2C(t)C(s) = C(t+s)+C(t−s) for all s, t ∈ R. If T is a C0-
group it is easily seen that C(t) := 1

2 (T (t) + T (−t)) defines a cosine operator function. The

generator of a cosine operator function is defined asAf := limt→0
2
t2 (C(t)f−f) for f ∈ D(A),
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i.e. for those f for which the limit exists. If T is a C0-group with generator (A,D(A)) then
the cosine operator function defined by C(t) = 1

2 (T (t) + T (−t)) has generator (A2, D(A2)).
Transitive cosine operator functions on Banach spaces were first considered by Bonilla

and Miana in [3]. Among other things they gave a sufficient condition for the translation
cosine function on Lpρ(R) and C0,ρ(R), respectively, to be transitive and characterized when
it is mixing. Moreover, they showed that there is a topologically mixing cosine operator
function on any separable infinite dimensional Banach space.

The paper is organized as follows. In section 2 we show that at least for cosine opera-
tor functions stemming from strongly continuous groups hypercyclicity and transitivity are
equivalent. In section 3 we give sufficient conditions for hypercyclicity of cosine operator
functions generated by second order partial differential operators on space of integrable
functions and continuous functions, respectively. Moreover, we show that under some mild
additional conditions these sufficient conditions are also necessary and that then hyper-
cyclicity is equivalent to weak mixing. Furthermore, mixing of the same cosine operator
functions is characterized as well. Since the given conditions might be difficult to check for
concrete examples we concentrate on the one-dimensional case in section 4 and considerably
simplify the conditions characterizing hypercyclicity and mixing. Several examples are given
to illustrate the given results.

2. A general observation

In this short section we show that for cosine operator functions defined via a C0-group
hypercyclicity is indeed equivalent to transitivity. We begin with a general proposition.

Proposition 1. Let T be a C0-group on the Banach space X and define C(t) := 1
2 (T (t) +

T (−t)), t ∈ R. If the cosine operator function C = (C(t))t∈R is hypercyclic then σp(T (t)∗) =
∅ for all t > 0, where σp(T (t)∗) denotes the point spectrum of the transpose of T (t).

Proof: Assume there is t0 > 0 such that σp(T (t0)∗) 6= ∅. Let (A,D(A)) be the generator
of T . Since T (t0) is one-to-one and onto it follows from the spectral mapping theorem for
the residual spectrum (cf. [9, Theorems IV.3.7 and 3.8]), that there are λ ∈ σp(A

∗) and
x′ ∈ X ′\{0} such that etλ ∈ σp(T (t)∗) and T (t)∗x′ = etλx′ for all t > 0. From this we get
C(t)∗x′ = cosh(tλ)x′ for t > 0.

Let x be a hypercyclic vector for C. Then, since x′ 6= 0 we get

K = {x′(C(t)x); t ≥ 0} = {cosh(tλ)x′(x); t ≥ 0} = {cosh(tλ); t ≥ 0}x′(x)

giving a contradiction. �

Corollary 2. Let T be a C0-group on the Banach space X and let C(t) := 1
2 (T (t) +

T (−t)), t ∈ R. If the cosine operator function C = (C(t))t∈R is hypercyclic then the set of
hypercyclic vectors for C is a dense Gδ-set in X. In particular, C is hypercyclic if and only
if C is transitive.

Proof: We have C(t) = 1
2 (T (2t) + id)T (−t). Because T (−t) is one-to-one and onto,

C(t) has dense range if T (2t) + id has dense range, i.e. if −1 /∈ σp(T (2t)∗) which is true
by the above proposition. Since C(s)C(r) = C(r)C(s) for all r, s ∈ R it follows from [11,
Proposition 1] that the set of hypercyclic vectors for C is dense in X. From [3, Theorem
1.1] we obtain that C is hypercyclic if and only if C is transitive. �

Remark 3. It seems to be still unknown whether for general cosine operator functions
hypercyclicity and transitivity are equivalent properties.
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3. Characterizations of hypercyclicity and mixing in arbitrary dimensions

In this section we characterize when cosine operator functions generated by second order
differential operators are hypercyclic or mixing, respectively. Observe that by taking t = 0
in the d’Alembert equation we get C(s) = C(−s) for all s ∈ R so that C is hypercyclic
(mixing) if and only if (C(s))s≥0 is hypercyclic (mixing).

We consider an open subset Ω of Rd and a locally Lipschitz continuous vector field F on
Ω such that for every x0 ∈ Ω the unique solution ϕ(·, x0) of the initial value problem

ẋ = F (x), x(0) = x0

is defined on R. Moreover, let h : Ω→ R be a continuous function.
We call a locally finite Borel measure µ on Ω p-admissible for F and h, if T (t)f(x) :=

exp(
∫ t

0
h(ϕ(r, x)) dr)f(ϕ(t, x)), t ∈ R, defines a C0-group on Lp(µ), where p ∈ [1,∞).

For t ∈ R we define the Borel measures νp,t(B) :=
∫
ϕ(−t,B)

hpt dµ, where ht(x) :=

exp(
∫ t

0
h(ϕ(r, x)) dr) for t ∈ R. Note that these are well defined since ϕ(t, ·) is a home-

omorphism of Ω with ϕ(t, ·)−1(B) = ϕ(−t, B) for each t ∈ R and B ⊂ Ω Borel measurable.
Moreover, a function ρ : Ω → (0,∞) is called C0-admissible for F and h, if T (t) defined

as above gives a C0-group on C0,ρ(Ω), where

C0,ρ(Ω) := {f ∈ C(Ω);∀ε > 0 : {x ∈ Ω; |f(x)|ρ(x) ≥ ε} is compact}

is equipped with the norm ‖f‖ := supx∈Ω |f(x)|ρ(x). Since Ω is locally compact and µ is
locally finite the subspace Cc(Ω) of compactly supported continuous functions is dense in
Lp(µ). The same obviously holds for C0,ρ(Ω).

As [13, Theorem 4.7, Proposition 4.12, Remark 3.10 and the remark following Theorem
4.11] one proofs the following theorem which we give only for completeness’ sake. Observe
that by our hypotheses we have ϕ(t,Ω) = Ω for all t ∈ R and that {ht(x)ρ(x) ≥ δ} ∩
ϕ(−t,K), δ > 0, is always compact if ρ is upper semicontinuous. Recall that x 7→ ϕ(t, x) is
continuously differentiable if F is continuously differentiable. In case of existence we denote
the Jacobian of x 7→ ϕ(t, x) by Dϕ(t, x).

Theorem 4. Let µ be a locally finite Borel measure on Ω and let F and h be as above.

a) The following are equivalent.
i) µ is p-admissible for F and h.
ii) νp,t has a µ-density gp,t ∈ L∞(µ) and there are constants M ≥ 1, ω ∈ R such

that ‖gp,t‖∞ ≤Meω|t| for all t ∈ R.
b) Assume that µ has a positive Lebesgue density ρ. If F is continuously differentiable

the following are equivalent.
i) µ is p-admissible for F and h.
ii) There are M ≥ 1, ω ∈ R such that for t ∈ R and λd-almost all x ∈ Ω

hpt (x)ρ(x) ≤Meω|t|ρ(ϕ(t, x))|detDϕ(t, x)|,

where λd denotes d-dimensional Lebesgue measure.
c) Let µ be p-admissible for F and h and assume that µ has a positive Lebesgue density

ρ. If F is differentiable a µ-density of νp,t, resp. νp,−t, is given by

ρ(ϕ(−t, ·))|detDϕ(−t, ·)|
ρ hp−t

,

resp.

ρ(ϕ(t, ·))|detDϕ(t, ·)|
ρ hpt

.

d) Let ρ : Ω→ (0,∞). Then i) implies ii).
i) ρ is C0-admissible for F and h.
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ii) There are constants M ≥ 1 and ω ∈ R such that for all t ∈ R and x ∈ Ω

ht(x)ρ(x) ≤Meω|t|ρ(ϕ(t, x)).

Moreover, if ρ is upper semicontinuous the above are equivalent.
e) Let F and h be twice continuously differentiable, µ be p-admissible, and ρ C0-

admissible for F and h. Let X be either Lp(µ) or C0,ρ(Ω). The generator of the
cosine operator function on X defined via

(C(t)f)(x) =
1

2
(ht(x)f(ϕ(t, x)) + h−t(x)f(ϕ(−t, x)))

is given by the closure of the operator

C2
c (Ω)→ X,

f 7→
d∑

j,k=1

FjFk∂j∂kf +

d∑
j=1

(2hFj +

d∑
k=1

Fk∂kFj)∂jf + (h2 +

d∑
j=1

Fj∂jh)f.

In particular, if F ≡ a ∈ Rd and h ≡ α ∈ R it follows that for a p-admissible mea-
sure µ, respectively a C0-admissible ρ, the generator of the cosine operator function under
consideration is the closure of the operator

C2
c (Ω)→ X, f 7→ 〈a,∇2f a〉+ 2α〈a,∇f〉+ α2f,

where ∇2 denotes the Hessian of f .

Theorem 5. Let µ be p-admissible for F and h. For the cosine operator function C(t) :=
1
2 (T (t) +T (−t)) with T (t)f(x) = ht(x)f(ϕ(t, x)), among the following, i) implies ii) and ii)
implies iii).

i) For each compact subset K of Ω there are sequences (L+
n )n∈N and (L−n )n∈N of Borel

subsets of K and a sequence (tn)n∈N of positive numbers such that for Ln := L+
n ∪L−n

one has

lim
n→∞

µ(K\Ln) = lim
n→∞

νp,tn(Ln) = lim
n→∞

νp,−tn(Ln) = 0

and
lim
n→∞

νp,2tn(L+
n ) = lim

n→∞
νp,−2tn(L−n ) = 0.

ii) C is weakly mixing on Lp(µ).
iii) C is hypercyclic on Lp(µ).

Moreover, if for every compact subset K of Ω one has lim|t|→∞ µ(K∩ϕ(t,K)) = 0 the above
are equivalent.

Proof: In order to show that i) implies ii) let Uj , Vj , j = 1, 2, be open, non-empty subsets
of Lp(µ) and fj ∈ Uj ∩ Cc(Ω), gj ∈ Vj ∩ Cc(Ω), j = 1, 2. Then K := supp f1 ∪ supp f2 ∪
supp g1 ∪ supp g2 is compact. Choose (L+

n )n, (L−n )n∈N and (tn)n∈N as in i) for K. We can
assume without loss of generality that L+

n ∩ L−n = ∅.
Setting for n ∈ N, j = 1, 2

vj,n := htn(·)gj(ϕ(tn, ·))χL+
n

(ϕ(tn, ·)) + h−tn(·)gj(ϕ(−tn, ·))χL−
n

(ϕ(−tn, ·))
it follows from

‖vj,n‖ ≤
(∫

hptn |gj(ϕ(tn, ·))|pχϕ(−tn,L+
n ) dµ

)1/p

+

(∫
hp−tn |gj(ϕ(−tn, ·))|pχϕ(tn,L

−
n ) dµ

)1/p

≤ ‖gj‖∞
(
νp,tn(L+

n )1/p + νp,−tn(L−n )1/p
)
,

(where by ‖ · ‖∞ we denote the sup-norm) that (fjχLn + vj,n)n∈N converges to fj in Lp(µ).
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Moreover,

C(tn)(fjχLn + vj,n) = gjχLn +
1

2

(
htn(·)fj(ϕ(tn, ·))χϕ(−tn,Ln)

+ h−tn(·)fj(ϕ(−tn, ·))χϕ(tn,Ln)

+ h2tn(·)gj(ϕ(2tn, ·))χϕ(−2tn,L
+
n )

+ h−2tn(·)gj(ϕ(−2tn, ·))χϕ(2tn,L
−
n )

)
,

so that

‖C(tn)(fjχLn + vj,n)− gj‖ ≤ ‖gj‖∞µ(K\Ln)1/p

+
‖fj‖∞

2

(
νp,tn(L+

n )1/p + νp,−tn(L−n )1/p
)

+
‖gj‖∞

2

(
νp,2tn(L+

n )1/p + νp,−2tn(L−n )1/p
)
.

Hence, (C(tn)(fjχLn +vj,n)−gj)n∈N converges to gj in Lp(µ) which shows that C(tn)(Uj)∩
Vj 6= ∅ for j = 1, 2 and sufficiently large n, i.e. C is weakly mixing.

Obviously, ii) implies iii).
Now, assume that lim|t|→∞ µ(K∩ϕ(t,K)) = 0 for every compact subset K of Ω. In order

to show that iii) implies i) let K be a compact subset of Ω and ε ∈ (0, 1). By Corollary 2
there are v ∈ Lp(µ) and t > 0 such that ‖v−χK‖p < ε2 and ‖C(t)v+χK‖p < ε2 and without
loss of generality we can assume that µ(K∩ϕ(2t,K)) < ε2 as well as µ(K∩ϕ(−2t,K)) < ε2.

By the continuity of the mapping Lp(µ,C) → Lp(µ,R), f 7→ Ref and the fact that C
commutes with it, we can assume without loss of generality that v is real-valued.

Furthermore, for measurable subsets B ⊆ Ω we have ‖C(t)(fχB)‖ ≤ ‖C(t)f‖ for arbitrary
t ∈ R and all f ∈ Lp(µ). Obviously the mapping Lp(µ,R) → Lp(µ,R), f 7→ f+, where
f+ := max{0, f}, satisfies ‖(f + g)+‖ ≤ ‖f+ + g+‖ and commutes with C so that for
measurable A ⊂ Ω

‖(C(t)(v+χB))χA‖ ≤ ‖(C(t)v)+‖ = ‖(C(t)v − (−χK) + (−χK))+‖
≤ ‖(C(t)v − (−χK))+‖+ ‖(−χK)+‖
= ‖(C(t)v − (−χK))+‖ ≤ ‖C(t)v + χK‖ < ε2/p

and ‖v − χK‖p < ε2 implies

‖v−χB‖ ≤ ‖v−‖ = ‖(−v)+‖ = ‖(χK − v − χK)+‖
≤ ‖χK − v‖+ ‖(−χK)+‖ = ‖χK − v‖ < ε2/p,

where v− := max{0,−v}.
Setting L := K ∩ {|1− v|p ≤ ε} ∩ {|1 +C(t)v|p ≤ ε} it follows that µ(K\L) < 2ε as well

as v|L ≥ 1− ε1/p > 0 and (C(t)v)|L ≤ ε1/p − 1 < 0.

Now, define L− := {x ∈ L; (T (t)v)(x) ≤ ε1/p − 1} and L+ := L\L−.
Using the fact that

∫
f dνp,t =

∫
hpt (·)f(ϕ(t, ·)) dµ for positive, measurable f we obtain

ε2 > ‖C(t)(v+χL)‖p

≥
∫
hpt v

+(ϕ(t, ·))pχL(ϕ(t, ·)) dµ+

∫
hp−t(·)v+(ϕ(−t, ·))pχL(ϕ(−t, ·)) dµ

=

∫
L

(v+)p dνp,t +

∫
L

(v+)p dνp,−t ≥ (1− ε1/p)p(νp,t(L) + νp,−t(L)),

so that the first part of condition i) follows, since ε was arbitrary.
By definition of L− we have (T (t)v)(x) ≤ ε1/p − 1 for x ∈ L− and it follows from

(C(t)v)|L ≤ ε1/p − 1 that (T (−t)v)(x) ≤ ε1/p − 1 for x ∈ L+. These inequalities give

1−ε1/p ≤ (T (t)v−)|L− which implies by bijectivity of ϕ(−t, ·) and ht(ϕ(−t, ·)) = 1/h−t that

1− ε1/p ≤ (T (t)v−)(ϕ(−t, x)) = h−t(ϕ(−t, x))v−(x) = v−(x)/h−t(x)
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for x ∈ ϕ(t, L−). Analogously it follows that v−(x)/ht(x) ≥ 1− ε1/p for x ∈ ϕ(−t, L+).
Using this, hr(x)hs(ϕ(r, x)) = hr+s(x) for all r, s ∈ R, and the positivity of the operator

T (−t) we have

(1− ε1/p)pνp,2t(L
+) =

∫
(1− ε1/p)php2t(x)χL+(ϕ(2t, x)) dµ(x)

=

∫
(1− ε1/p)phpt (x)ht(ϕ(t, x))pχϕ(−t,L+)(ϕ(t, x)) dµ(x)

=

∫
(1− ε1/p)phpt (x)χϕ(−t,L+)(x) dνp,t(x)

≤
∫

(v−)p(x)/hpt (x) hpt (x)χϕ(−t,L+)(x) dνp,t(x)

=

∫
hpt (x)(v−(ϕ(t, x))pχϕ(−t,L+)(ϕ(t, x)) dµ(x)

=

∫
ϕ(−2t,L+)

(T (t)v−)p(x) dµ(x)

≤ 2p+1

∫
ϕ(−2t,L+)

(C(t)v−)p(x) dµ(x)

= 2p+1‖(C(t)v−)χϕ(−2t,L+)‖p

= 2p+1‖(C(t)(v+ − v))χϕ(−2t,L+)‖p

= 2p+1‖(C(t)v+)χϕ(−2t,L+) − (C(t)v + χK)χϕ(−2t,L+)

+χK∩ϕ(−2t,L+)‖p

≤ 2p+1(2p‖C(t)v+‖p + 2p‖C(t)v + χK‖p

+2p‖χK∩ϕ(−2t,L+)‖p)
≤ 23p+1(2ε2 + µ(K ∩ ϕ(−2t,K)))

< 23(p+1)ε2.

In the same way one shows

(1− ε1/p)pνp,−2t(L
−) < 23(p+1)ε2,

so that the second part of condition i) follows as well. �

Remark 6. Note that in the above proof we did not need neither the strong continuity of
t 7→ T (t) nor the group law T (t)T (s) = T (t+ s).

In fact, we only need µ to be a locally finite Borel measure on a locally compact, σ-
compact Hausdorff space Ω such that T (t)f = ht(·) f(ϕt(·)) is a continuous operator for
every t from some index set, where ht is a positive continuous function on Ω and ϕt a
homeomorphism of Ω. For example, one could equip Ω = Z with the discrete topology and a
measure µ with a positive counting density (βn)n∈Z on Z, define ϕt(n) = n+ t, n ∈ Z, for all
t ∈ Z. Then T (t)(xn)n∈Z = (xn+t)n∈Z. Obviously, T := T (1) is a well-defined operator on
`p(β) if and only if supn∈Z βn/βn+1 <∞. An analogue of the above theorem then reads that
under the assumption of supn∈Z βn/βn+1 < ∞ the sequence of operators (Tn + T−n)n∈N
is hypercyclic on `p(Z, β) if and only if for each finite subset K of Z there are a strictly
increasing sequence (nl)l∈N of natural numbers and a sequence (σl)l∈N in {−1, 1} such that

lim
l→∞

∑
k∈K

βk+nl
= lim
l→∞

∑
k∈K

βk−nl
= lim
l→∞

∑
k∈K

βk+2σlnl
= 0.

From supn∈Z βn/βn+1 <∞ it is easily deduced that the last condition is equivalent to that
for every k ∈ Z there are a strictly increasing sequence (nl)l∈N of natural numbers and a
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sequence (σl)l∈N in {−1, 1} such that

lim
l→∞

βk+nl
= lim
l→∞

βk−nl
= lim
l→∞

βk+2σlnl
= 0,

(compare [13, Example 2.7]).

An obvious modification of the proof of Theorem 5 gives the following result.

Theorem 7. Let µ be p-admissible for F and h. For the cosine function C defined by
C(t) := 1

2 (T (t) + T (−t)) with T (t)f(x) = ht(x)f(ϕ(t, x)), the following condition i) implies
ii).

i) For each compact subset K of Ω there are families (L+
t )t≥0 and (L−t )t≥0 of Borel

subsets of K such that with Lt := L+
t ∪ L−t

lim
t→∞

µ(K\Lt) = lim
t→∞

νp,t(Lt) = lim
t→∞

νp,−t(Lt) = 0

and
lim
t→∞

νp,2t(L
+
t ) = lim

t→∞
νp,−2t(L

−
t ) = 0

ii) C is mixing on Lp(µ).

If additionally lim|t|→∞ µ(K ∩ ϕ(t,K)) = 0 for all compact subsets K of Ω the above are
equivalent.

Corollary 8. Let µ be p-admissible for F and h such that lim|t|→∞ µ(K ∩ ϕ(t,K)) = 0 for
every compact subset K of Ω.

a) If the cosine operator function C defined by C(t) := 1
2 (T (t)+T (−t)) with T (t)f(x) =

ht(x)f(ϕ(t, x)) is hypercyclic on Lp(µ) then the C0-semigroup (T (t))t≥0 is hyper-
cyclic, too.

b) If the cosine operator function C defined by C(t) := 1
2 (T (t)+T (−t)) with T (t)f(x) =

ht(x)f(ϕ(t, x)) is mixing on Lp(µ) then the C0-semigroup (T (t))t≥0 is mixing, too.

Proof. From hypercyclicity, resp. mixing, of C it follows from Theorem 5, resp. Theorem
7 that

lim
n→∞

µ(K\Ln) = lim
n→∞

νp,tn(Ln) = lim
t→∞

νp,−tn(Ln) = 0

for suitable (tn)n∈N and (Ln)n∈N, resp.

lim
t→∞

µ(K\Lt) = lim
t→∞

νp,t(Lt) = lim
t→∞

νp,−t(Lt) = 0

for suitable (Lt)t≥0. Applying [13, Theorem 4.10], resp. [13, Theorem 5.1 a)], now gives the
corollary. �

For the case of continuous functions one has the following result.

Theorem 9. Let ρ be a C0-admissible function for F and h on Ω. For the cosine operator
function C defined by C(t) := 1

2 (T (t) + T (−t)) with T (t)f(x) = ht(x)f(ϕ(t, x)), among the
following i) implies ii) and ii) implies iii).

i) For every compact subset K of Ω there are sequences of positive numbers (tn)n∈N
and open subsets (U+

n )n∈N, (U
−
n )n∈N of Ω with K ⊂ U+

n ∪ U−n for every n ∈ N such
that

lim
n→∞

sup
x∈K

ρ(ϕ(−tn, x))

h−tn(x)
= lim
n→∞

sup
x∈K

ρ(ϕ(tn, x))

htn(x)
= 0

as well as

lim
n→∞

sup
x∈K∩U−

n

ρ(ϕ(−2tn, x))

h−2tn(x)
= lim
n→∞

sup
x∈K∩U+

n

ρ(ϕ(2tn, x))

h2tn(x)
= 0.

ii) C is weakly mixing on C0,ρ(Ω).
iii) C is hypercyclic on C0,ρ(Ω).
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Moreover, if for every compact subset K of Ω lim|t|→∞ supx∈K∩ϕ(t,K) ρ(x) = 0 and infx∈K ρ(x) >
0 hold, the above are equivalent.

Proof: In order to show that i) implies ii) let Wj , Vj ⊂ C0,ρ(Ω) be open and non-empty,
j = 1, 2. Let fj ∈Wj ∩Cc(Ω), gj ∈ Vj ∩Cc(Ω), j = 1, 2 and define K := supp f1 ∪ supp f2 ∪
supp g1∪supp g2. Choose (U+

n )n∈N, (U
−
n )n∈N, and (tn)n∈N as in i) for K. Since K ⊂ U+

n ∪U−n
there are C∞-functions ψ+

n ≥ 0 and ψ−n ≥ 0 such that suppψ+
n ⊂ U+

n , suppψ−n ⊂ U−n and
ψ+
n + ψ−n ≡ 2 in a neighbourhood of K.
We define for n ∈ N and j = 1, 2

vj,n := htn(·)gj(ϕ(tn, ·))ψ−n (ϕ(tn, ·)) + h−tn(·)gj(ϕ(−tn, ·))ψ+
n (ϕ(−tn, ·)).

Then, vj,n ∈ C0,ρ(Ω) and taking into account that ψ+
n + ψ−n ≡ 2 in a neighbourhood of K,

a straightforward calculation gives

C(tn)vj,n =
1

2
(h2tn(·)gj(ϕ(2tn, ·))ψ−n (ϕ(2tn, ·))

+h−2tn(·)gj(ϕ(−2tn, ·))ψ+
n (ϕ(−2tn, ·))) + gj .

Since h2tn(ϕ(2tn, x)) = 1/h−2tn(x) it follows that

sup
x∈Ω

h2tn(x)|gj(ϕ(2tn, x))|ψ−n (ϕ(2tn, x))ρ(x)

= sup
x∈ϕ(−2tn,K)

h2tn(x)|gj(ϕ(2tn, x))|ψ−n (ϕ(2tn, x))ρ(x)

= sup
x∈K

h2tn(ϕ(−2tn, x))|gj(x)|ψ−n (x)ρ(ϕ(−2tn, x))

≤ 2‖gj‖∞ sup
x∈K∩U−

n

ρ(ϕ(−2tn, x))

h−2tn(x)

and analogously

sup
x∈Ω

h−2tn(x)|gj(ϕ(−2tn, x))|ψ+
n (ϕ(−2tn, x))ρ(x) ≤ 2‖gj‖∞ sup

x∈K∩U+
n

ρ(ϕ(2tn, x))

h2tn(x)
,

which implies limn→∞ C(tn)vj,n = gj in C0,ρ(Ω).
In the same way one shows that limn→∞ vj,n = 0 in C0,ρ(Ω).
Because

sup
x∈Ω
|htn(x)fj(ϕ(tn, x)) + h−tn(x)fj(ϕ(−tn, x))|ρ(x)

≤ sup
x∈ϕ(−tn,K)

htn(x)|fj(ϕ(tn, x))|ρ(x) + sup
x∈ϕ(tn,K)

h−tn(x)|fj(ϕ(−tn, x))|ρ(x)

≤ ‖fj‖∞(sup
x∈K

ρ(ϕ(−tn, x))

htn(x)
+ sup
x∈K

ρ(ϕ(tn, x))

htn(x)
)

we have limn→∞ C(tn)fj = 0 in C0,ρ(Ω).
Altogether this gives

lim
n→∞

(fj + vj,n) = fj

and

lim
n→∞

C(tn)(fj + vj,n) = gj , j = 1, 2

so that C(tn)(Wj) ∩ Vj 6= ∅ for j = 1, 2 and sufficiently large n so that ii) follows.
Trivially, ii) implies iii).
Now we assume that lim|t|→∞ supx∈K∩ϕ(t,K) ρ(x) = 0 and infx∈K ρ(x) > 0 hold for every

compact subset K of Ω. In order to prove that iii) implies i) let K be a compact subset
of Ω and ε ∈ (0, infx∈K ρ(x)). Let f ∈ Cc(Ω) be such that 0 ≤ f ≤ 1 and f ≡ 1 in a
neighbourhood of K.
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By Corollary 2 there are t > 0, v ∈ C0,ρ(Ω) with ‖v − f‖ < ε and ‖C(t)v + f‖ < ε.
Without loss of generality we can assume that

sup
x∈M∩ϕ(2t,M)

ρ(x) + sup
x∈M∩ϕ(−2t,M)

ρ(x) < ε

where M := supp f .
As in the proof of Theorem 5 we can assume v to be real-valued and we obtain ‖C(t)v+‖ <

ε and ‖v−‖ < ε.
Because of

ε > ‖C(t)v + f‖ ≥ sup
x∈K
|C(t)v + 1|ρ(x)

and the choice of ε we get

∀x ∈ K : C(t)v(x) <
ε

ρ(x)
− 1 < −1

2
.

In the same way one derives from ε > ‖v − f‖ that

∀x ∈ K : v(x) > 1− ε

ρ(x)
>

1

2
,

i.e. v+ > 1/2 on K.
From this we obtain

ε > ‖C(t)v+‖ =
1

2
sup
x∈Ω

(ht(x)v+(ϕ(t, x)) + h−t(x)v+(ϕ(−t, x)))ρ(x)

≥ 1

4
( sup
x∈ϕ(−t,K)

ht(x)v+(ϕ(t, x))ρ(x) + sup
x∈ϕ(t,K)

h−t(x)v+(ϕ(−t, x))ρ(x))

≥ 1

8
(sup
x∈K

ρ(ϕ(−t, x))

h−t(x)
+ sup
x∈K

ρ(ϕ(t, x))

ht(x)
).

Since T (t)v and T (−t)v are continuous functions it follows that the sets U+ := {x ∈
Ω; (T (t)v)(x) < −1/4} and U− := {x ∈ Ω; (T (−t)v)(x) < −1/4} are open and because of
C(t)v < −1/2 on K we have K ⊂ U+ ∪ U−.

Because of ϕ(t, ·) and ϕ(−t, ·) are one-to-one and onto we obtain

∀x ∈ ϕ(t, U+) :
1

2
≤ (T (t)v−)(ϕ(−t, x)) =

v−(x)

h−t(x)

and

∀x ∈ ϕ(−t, U−) :
1

2
≤ (T (−t)v−)(ϕ(t, x)) =

v−(x)

ht(x)
.
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Having in mind that ht(x)h−t(ϕ(t, x)) = 1 for every x ∈ Ω we get

1

2
sup

x∈K∩U−

ρ(ϕ(−2t, x))

h−2t(x)
=

1

2
sup

x∈ϕ(−t,K∩U−)

ρ(ϕ(−t, x))

h−2t(ϕ(t, x))

≤ sup
x∈ϕ(−t,K∩U−)

v−(x)ρ(ϕ(−t, x))

ht(x)h−2t(ϕ(t, x))

= sup
x∈ϕ(−t,K∩U−)

ht(ϕ(−t, x))v−(ϕ(t, ϕ(−t, x)))

ht(ϕ(−t, x))h−t(ϕ(t, ϕ(−t, x)))
ρ(ϕ(−t, x))

= sup
x∈ϕ(−t,K∩U−)

(T (t)v−)(ϕ(−t, x))ρ(ϕ(−t, x))

= sup
x∈ϕ(−2t,K∩U−)

(T (t)v−)(x)ρ(x)

≤ 2 sup
x∈ϕ(−2t,K∩U−)

(C(t)v−)(x)ρ(x)

= 2 sup
x∈ϕ(−2t,K∩U−)

(C(t)(v+ − v))(x)ρ(x)

≤ 2( sup
x∈ϕ(−2t,K∩U−)

(C(t)v+)(x)ρ(x)

+ sup
x∈ϕ(−2t,K∩U−)

|(C(t)v)(x) + f(x)|ρ(x)

+ sup
x∈ϕ(−2t,K∩U−)

|f(x)|ρ(x))

≤ 2(‖C(t)v+‖+ ‖C(t)v + f‖+ sup
x∈ϕ(−2t,M)∩M

ρ(x))

≤ 6ε.

In the same way one verifies

1

2
sup

x∈K∩U+

ρ(ϕ(2t, x))

h2t(x)
< 6ε.

Since ε was chosen arbitrarily small, i) finally follows. �

Obvious modifications of the above proof yield the next result.

Theorem 10. Let ρ be a C0-admissible function for F and h on Ω. For the cosine operator
function C(t) := 1

2 (T (t) + T (−t)) with T (t)f(x) = ht(x)f(ϕ(t, x)), the following condition
i) implies ii).

i) For every compact subset K of Ω there are open subsets (U+
t )t≥0, (U

−
t )t≥0 of Ω with

K ⊂ U+
t ∪ U−t for every t ≥ 0 such that

lim
t→∞

sup
x∈K

ρ(ϕ(−t, x))

h−t(x)
= lim
t→∞

sup
x∈K

ρ(ϕ(t, x))

ht(x)
= 0

as well as

lim
t→∞

sup
x∈K∩U−

t

ρ(ϕ(−2t, x))

h−2t(x)
= lim
t→∞

sup
x∈K∩U+

t

ρ(ϕ(2t, x))

h2t(x)
= 0.

ii) C is mixing on C0,ρ(Ω).

Moreover, if for every compact subset K of Ω lim|t|→∞ supx∈K∩ϕ(t,K) ρ(x) = 0 and infx∈K ρ(x) >
0 hold, the above are equivalent.
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4. The one-dimensional case

In case of d = 1, that is Ω ⊂ R, we can considerably simplify the conditions characterizing
hypercyclicity, resp. mixing, derived in the previous section. One tool for this will be the
next lemma. For a proof see [14, Lemma 7]. In this section we simply write ∂2ϕ(t, x) for
the Jacobian of x 7→ ϕ(t, x).

Lemma 11. Let Ω ⊂ R be open and [a, b] ⊂ {F 6= 0}. Assume that ρ : Ω → (0,∞)
is measurable and satisfies hpt (x)ρ(x) ≤ Meωtρ(ϕ(t, x))|∂2ϕ(t, x)| for some constants M ≥
1, ω ≥ 0 and for every t ≥ 0, x ∈ [a, b].

Then there is C > 0 such that 1/C < ρ(y) < C for all y ∈ [a, b] and

hpt (ϕ(−t, c))ρ(ϕ(−t, c))|∂2ϕ(−t, c)|χ
ϕ(t,Ω)

(c)

≤ Chpt (ϕ(−t, y))ρ(ϕ(−t, y))|∂2ϕ(−t, y)|χ
ϕ(t,Ω)

(y)

≤ C2hpt (ϕ(−t, d))ρ(ϕ(−t, d))|∂2ϕ(−t, d)|χ
ϕ(t,Ω)

(d)

as well as

h−pt (c)ρ(ϕ(t, c))|∂2ϕ(t, c)| ≤ Ch−pt (y)ρ(ϕ(t, y))|∂2ϕ(t, y)|
≤ C2h−pt (d)ρ(ϕ(t, d))|∂2ϕ(t, d)|.

for all t ≥ 0, where c := a, d := b if F|[a,b] > 0, respectively c := b, d := a if F|[a,b] < 0.

Now we come to a characterization of hypercyclicity on Lp(µ) which is more applicable
in concrete situations than the one given by Theorem 5. We denote by λm m-dimensional
Lebesgue measure and simply write λ instead of λ1.

Theorem 12. Let Ω ⊂ R be open and F continuously differentiable. Assume the locally
finite p-admissible measure µ has a positive Lebesgue density ρ. Then the following are
equivalent.

i) The cosine operator function C defined via

(C(t)f)(x) =
1

2
(ht(x)f(ϕ(t, x)) + h−t(x)f(ϕ(−t, x)))

is weakly mixing on Lp(µ).
ii) The cosine operator function C is hypercyclic on Lp(µ).

iii) λ({F = 0}) = 0 and for every m ∈ N for which there are m different components
Ω1, . . . ,Ωm of Ω\{F = 0}, for λm-almost all choices of xj ∈ Ωj , j = 1, . . . ,m,
there are a sequence of positive numbers (tn)n∈N tending to infinity and a sequence
(σn)n∈N ∈ {1,−1}N such that

lim
n→∞

h−ptn (xj)ρ(ϕ(tn, xj))∂2ϕ(tn, xj) = 0,

lim
n→∞

h−p−tn(xj)ρ(ϕ(−tn, xj))∂2ϕ(−tn, xj) = 0,

and

lim
n→∞

h−p2σntn
(xj)ρ(ϕ(2σntn, xj))∂2ϕ(2σntn, xj) = 0

for j = 1, . . . ,m.

Proof: That i) implies ii) is again trivial. In order to show that ii) implies iii) observe
that ϕ(t, x) = x if F (x) = 0 so that ht(x)f(ϕ(t, x)) = exp(th(x))f(x) for every f ∈ Lp(µ) on
{F = 0}. From this it follows easily that C cannot be hypercyclic if λ({F = 0}) > 0. Hence,
Lp(µ) = Lp(Ω\{F = 0}, µ). Because of ϕ(t,Ω\{F = 0}) ⊂ Ω\{F = 0} we can therefore
consider C on Lp(Ω\{F = 0}, µ) rather than on Lp(µ). Obviously, C is hypercyclic on
Lp(Ω\{F = 0}, µ) by ii). But for a compact subset of Ω\{F = 0} we obviously have
K ∩ ϕ(t,K) = ∅ for |t| large enough, in particular lim|t|→∞ µ(K ∩ ϕ(t,K)) = 0.
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Let x1, . . . , xm be from different components of Ω\{F = 0} which, by Theorem 4 b), we
assume without loss of generality to satisfy

ht(xj)ρ(xj) ≤Meωtρ(ϕ(t, xj))|∂2ϕ(t, xj)|

for all t ≥ 0, j = 1, . . . ,m. Since Ω is open there is r < 0 such that ϕ(t, xj) is well defined for
all t ∈ [r,∞), j = 1, . . . ,m and the aforementioned inequality is valid for ϕ(r, xj) in place of
xj , too. For j = 1, . . . ,m we define Kj := {ϕ(t, xj); 0 ≤ t ≤ 1} if F (xj) > 0, respectively
Kj := {ϕ(t, xj); r ≤ t ≤ 0} if F (xj) < 0. Then the Kj ’s are compact intervals contained
in Ω\{F = 0} satisfying λ(Kj) > 0, since F (xj) 6= 0, and Kj = [xj , ϕ(1, xj)] if F (xj) > 0,
respectively Kj = [xj , ϕ(r, xj)] if F (xj) < 0. In particular µ(Kj) > 0.

For the compact set K := ∪1≤j≤mKj choose measurable subsets (L+
n )n∈N, (L

−
n )n∈N and

a sequence of positive numbers (tn)n∈N according to i) of Theorem 5. Without loss of
generality we can assume that L+

n ∩ L−n = ∅ for all n ∈ N. Set Ln := L+
n ∪ L−n .

Since C is weakly mixing, it follows from Theorem 4 b) that ω > 0, because otherwise
{‖T (t)‖; t ∈ R} was bounded, implying the boundedness of each orbit under C. Defining
Ln := L+

n ∪ L−n and Ln,j := Ln ∩Kj , n ∈ N, 1 ≤ j ≤ m we obtain from Theorem 4 c) and
Lemma 11 that for some constant Cj > 0

νp,−tn(Ln,j) =

∫
Ln,j

h−ptn (y)ρ(ϕ(tn, y))|∂2ϕ(tn, y)|
ρ(y)

dµ(y)

≥ Cjh
−p
tn (xj)ρ(ϕ(tn, xj))|∂2ϕ(tn, xj)|µ(Ln,j).

Because limn→∞ µ(Ln,j) = µ(Kj) > 0 it follows from limn→∞ νp,tn(Ln,j) = 0 that

lim
n→∞

h−ptn (xj)ρ(ϕ(tn, xj))|∂2ϕ(tn, xj)| = 0

for all j = 1, . . . ,m and the continuity of (s, y) 7→ hs(y), ϕ, and ∂2ϕ together with Lemma
11 imply that (tn)n∈N has to converge to infinity.

Furthermore, we get from Theorem 4 c) and Lemma 11

νp,tn(Ln,j) =

∫
Ln,j

hptn(ϕ(−tn, y))ρ(ϕ(−tn, y))|∂2ϕ(−tn, y)|
ρ(y)

dµ(y)

≥ Cjh
p
tn(ϕ(−tn, xj))ρ(ϕ(−tn, xj))|∂2ϕ(−tn, xj)|µ(Ln,j).

Observing that htn(ϕ(−tn, ·)) = 1/h−tn this shows by the same arguments as above that

lim
n→∞

h−p−tn(xj)ρ(ϕ(−tn, xj))|∂2ϕ(−tn, xj)| = 0.

Moreover, by the same reasoning we obtain for some other Cj > 0

νp,2tn(L+
n ) ≥ Cjh−p2tn

(xj)ρ(ϕ(2tn, xj))|∂2ϕ(2tn, xj)|µ(L+
n )

and

νp,−2tn(L−n ) ≥ Cjh−p−2tn
(xj)ρ(ϕ(−2tn, xj))|∂2ϕ(−2tn, xj)|µ(L−n ).

Since µ(Ln) = µ(L+
n ) + µ(L−n ) tends to µ(K) > 0 for n to infinity, iii) follows.

In order to show that iii) implies i) let K be a compact subset of Ω. Since obviously
Lp(Ω, µ) = Lp(Ω\{F = 0}, µ) and ϕ(t,Ω\{F = 0}) ⊂ Ω\{F = 0} for all t ≥ 0 we can
assume without loss of generality that K ⊂ Ω\{F = 0}.

Therefore, there are finitely many intervals [aj , bj ] ⊂ Ω\{F = 0} such that each [aj , bj ]
is contained in a different component of Ω\{F = 0} and K ⊂ ∪1≤j≤m[aj , bj ]. We define
xj := aj if F|[aj ,bj ] > 0, respectively xj := bj if F|[aj ,bj ] < 0, where without loss of generality
we assume iii) to be true for x1, . . . , xm. Let (tn)n∈N be a sequence of positive numbers
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according to iii) for x1, . . . , xm. From Lemma 11 it follows that for some Cj > 0

νp,−tn(K) ≤
m∑
j=1

νp,tn([aj , bj ]) =

m∑
j=1

∫
[aj ,bj ]

h−pt (y)ρ(ϕ(tn, y))|∂2ϕ(tn, y)|
ρ(y)

dµ(y)

≤
m∑
j=1

Cjµ([aj , bj ])h
−p
tn (xj)ρ(ϕ(tn, xj))|∂2ϕ(tn, xj)|

so that limn→∞ νp,tn(K) = 0.
Analogously, one shows that limn→∞ νp,tn(K) = limn→∞ νp,2σntn(K) = 0 as well. Setting

L+
n := K,L−n := ∅ in case of σn = 1 and L+

n := ∅, L−n := K in case of σn = −1 now shows
that condition i) of Theorem 5 is satisfied so that i) follows. �

Using the same arguments one gets the following result.

Theorem 13. Let Ω ⊂ R be open and F continuously differentiable. Assume the locally
finite p-admissible measure µ has a positive Lebesgue density ρ. Then the following are
equivalent.

i) The cosine operator function C defined via

(C(t)f)(x) =
1

2
(ht(x)f(ϕ(t, x)) + h−t(x)f(ϕ(−t, x)))

is mixing on Lp(µ).
ii) λ({F = 0}) = 0 and for every m ∈ N for which there are m different components

Ω1, . . . ,Ωm of Ω\{F = 0}, for λm-almost all choices of xj ∈ Ωj , j = 1, . . . ,m, there
is a family (σt)t∈R ∈ {1,−1}R such that

lim
t→∞

h−pt (xj)ρ(ϕ(t, xj))∂2ϕ(t, xj) = 0,

lim
t→∞

h−p−t (xj)ρ(ϕ(−t, xj))∂2ϕ(−t, xj) = 0,

and
lim
t→∞

h−p2σtt
(xj)ρ(ϕ(2σtt, xj))∂2ϕ(2σtt, xj) = 0

for j = 1, . . . ,m.

Using the next lemma instead of Lemma 11 one can derive analogously to Theorem 12 a
result for the case of continuous functions. A proof of the next lemma can be found in [13,
Lemma 10].

Lemma 14. Let Ω ⊂ R be open and [a, b] ⊂ {F 6= 0}. Assume that ρ : Ω→ (0,∞) satisfies
ht(x)ρ(x) ≤Meωtρ(ϕ(t, x)) for some M ≥ 1, ω ∈ R and all x ∈ [a, b], t ≥ 0.

Then there is C > 0 such that 1/C < ρ(y) < C for all y ∈ [a, b] and

hpt (ϕ(−t, c))ρ(ϕ(−t, c))χ
ϕ(t,Ω)

(c) ≤ Chpt (ϕ(−t, y))ρ(ϕ(−t, y))χ
ϕ(t,Ω)

(y)

≤ C2hpt (ϕ(−t, d))ρ(ϕ(−t, d))χ
ϕ(t,Ω)

(d)

as well as

h−pt (c)ρ(ϕ(t, c)) ≤ Ch−pt (y)ρ(ϕ(t, y))

≤ C2h−pt (d)ρ(ϕ(t, d)).

for all t ≥ 0 and all y ∈ [a, b], where c := a, d := b if F|[a,b] > 0, respectively c := b, d := a if
F|[a,b] < 0.

Having at hand the above lemma the proofs of the next results are so similar to the one
of Theorem 12 that we omit them.

Theorem 15. Let Ω ⊂ R be open, F continuously differentiable and ρ be a positive function
on Ω C0-admissible for F and h. Then the following are equivalent.
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i) The cosine operator function C defined via

(C(t)f)(x) =
1

2
(ht(x)f(ϕ(t, x)) + h−t(x)f(ϕ(−t, x)))

is weakly mixing on C0,ρ(Ω).
ii) The cosine operator function C is hypercyclic on C0,ρ(Ω).

iii) {F = 0} = ∅ and for all x ∈ Ω, there are a sequence of positive numbers (tn)n∈N
tending to infinity and a sequence (σn)n∈N ∈ {1,−1}N such that

lim
n→∞

ρ(ϕ(tn, x))

htn(x)
= lim
n→∞

ρ(ϕ(−tn, x))

h−tn(x)
= 0

and

lim
n→∞

ρ(ϕ(2σntn, x))

h2σntn(x)
= 0.

is

Theorem 16. Let Ω ⊂ R be open, F continuously differentiable and ρ be a positive function
on Ω C0-admissible for F and h. Then the following are equivalent.

i) The cosine operator function C defined via

(C(t)f)(x) =
1

2
(ht(x)f(ϕ(t, x)) + h−t(x)f(ϕ(−t, x)))

is mixing on C0,ρ(Ω).
ii) {F = 0} = ∅ and for all x ∈ Ω, there is a family (σt)t∈R ∈ {1,−1}R such that

lim
t→∞

ρ(ϕ(t, x))

ht(x)
= lim
t→∞

ρ(ϕ(−t, x))

h−t(x)
= 0

and

lim
t→∞

ρ(ϕ(2σtt, x))

h2σtt(x)
= 0.

For the special case of F ≡ 1 and h ≡ 0 we obtain the so-called left translation group
(T (t)f)(x) = f(x+ t). Since the generator of the corresponding cosine operator function is
given by the closure of the operator

C2
c (R)→ Lp(µ), f 7→ d2

dx2
f

it is closely related to the wave equation. For this special case we have the following corollary
which should be compared with [3, Theorem 2.2]

Corollary 17. Let µ be p-admissible for F ≡ 1 and h ≡ 0 on R, admitting a positive
Lebesgue density ρ. Then for the cosine operator function C defined by (C(t)f)(x) = 1

2 (f(x+
t) + f(x− t)) the following are equivalent.

i) C is hypercyclic on Lp(µ).
ii) For almost all x ∈ R there are a sequence of positive numbers (tn)n∈N tending to

infinity and a sequence (σn)n∈N ∈ {1,−1}N such that

lim
n→∞

ρ(x+ tn) = lim
n→∞

ρ(x− tn) = lim
n→∞

ρ(x+ 2σntn) = 0.

Clearly, if in the above corollary for ρ there are M ≥ 1 and ω ∈ R such that for all t ∈ R
ρ(x) ≤Meω|t|ρ(x+ t)

not only for λ-almost all x but for all x (as is the case in [3, Theorem 2.2]) then ii) is
equivalent to

ii’) There are a sequence of positive numbers (tn)n∈N tending to infinity and a sequence
(σn)n∈N ∈ {1,−1}N such that

lim
n→∞

ρ(tn) = lim
n→∞

ρ(−tn) = lim
n→∞

ρ(2σntn) = 0.
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Example (perturbed wave equation). Let F ≡ 1, h ≡ α ∈ R and µ = λ on R. It
follows that ϕ(t, x) = x+ t and ht(x) = exp(α|t|) so that by Theorem 4 b) λ is p-admissible
for F and h for arbitrary p ∈ [1,∞). By Theorem 4 e) the generator (A,D(A)) of the
corresponding cosine operator function is given by the closure of the operator

C2
c (R)→ Lp(λ), f 7→ f ′′ + 2αf ′ + α2f,

i.e. for f ∈ D(A) we have

∂2

∂t2
C(t)f(x) =

∂2

∂x2
C(t)f(x) + 2α

∂

∂x
C(t)f(x) + α2C(t)f(x)

in a generalized sense.
Since h−pt (x) = exp(−pα|t|) it follows immediately from Theorem 12 that the cosine

operator function is mixing, in particular hypercyclic on Lp(µ) for every p ∈ [1,∞) if and
only if this is true for some p ∈ [1,∞) if and only if α > 0.

In the same way one shows that ρ ≡ 1 is C0-admissible for F and h and that C is hyper-
cyclic on C0,ρ(R) if and only if it is mixing if and only if α > 0.

Example (exponential translation). Let Ω = (0,∞) and F (x) = x, h ≡ 0, so that
ϕ(t, x) = xet. Let µ be the measure on (0,∞) with Lebesgue density ρ(x) = χ(0,1)(x) +
1
x2χ[1,∞)(x). Using Theorem 4 b) it is not hard to see that the locally finite measure µ is
p-admissible for F and h. By Theorem 4 e) the generator (A,D(A)) of the corresponding
cosine operator function is given by the closure of the operator

C2
c (0,∞)→ Lp(λ), f 7→ (x 7→ x2f ′′(x) + xf ′(x)),

i.e. for f ∈ D(A) we have

∂2

∂t2
C(t)f(x) = x2 ∂

2

∂x2
C(t)f(x) + x

∂

∂x
C(t)f(x)

in a generalized sense.
Since limt→∞ ρ(xet)et = limt→∞ ρ(xe−t)e−t = limt→∞ ρ(xe2t)e2t = 0 for every x ∈

(0,∞) it follows immediately from Theorem 12 that the cosine operator function is mixing,
in particular hypercyclic on Lp(µ) for every p ∈ [1,∞).

Moreover, ρ is C0-admissible for F and h but it follows from Theorem 15 that C is not
hypercyclic on C0,ρ(0,∞).

Acknowledgement. I want to thank P. Butzer for turning my attention to cosine operator

functions.
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[2] T. Bermúdez, A. Bonilla, J. A. Conejero, A. Peris, Hypercyclic, topologically mixing and chaotic semi-
groups on Banach spaces, Studia Math. 170 (2005), 57-75

[3] A. Bonilla, P. Miana, Hypercyclic and topologically mixing cosine functions on Banach spaces, Proc.
Amer. Math. Soc. 136 (2008), 519-528

[4] J. A. Conejero, A. Peris, Linear transitivity criteria, Topology Appl. 153 (2005), 767-773

[5] J. A. Conejero, V. Müller, A. Peris, Hypercyclic behaviour of operators in a hypercyclic C0-semigroup,
J. Funct. Anal. 244 (2007), 342-348

[6] J. A. Conejero, E. M. Mangino, Hypercyclic semigroups generated by Ornstein-Uhlenbeck operators, to

appear in Mediterr. J. Math.
[7] G. Costakis, A. Peris, Hypercyclic semigroups and somewhere dense orbits, C. R. Acad. Sci. Paris, Ser.

I 335 (2002), 895-898

[8] W. Desch, W. Schappacher, G. F. Webb, Hypercyclic and chaotic semigroups of linear operators,
Ergodic Theory Dynam. Systems 17 (1997), 793-819

[9] K. J. Engel, R. Nagel, One-Parameter Semigroups for Linear Evolution Equations, Springer, Berlin,

Heidelberg, New York, 2000



16 T. KALMES

[10] K. G. Grosse-Erdmann, Holomorphe Monster und universelle Funktionen, Mitt. Math. Sem. Giessen

176 (1987)

[11] K. G. Grosse-Erdmann, Universal families and hypercyclic operators, Bull. Amer. Math. Soc. 36 (1999),
no. 3, 345-381

[12] K. G. Grosse-Erdmann, Recent developments in hypercyclicity, RACSAM Rev. R. Acad. Cienc. Exactas
F́ıs. Nat. Ser. A Mat. 97 (2003), no. 2, 273-286

[13] T. Kalmes, Hypercyclic, mixing, and chaotic C0-semigroups induced by semiflows, Ergodic Theory

Dynam. Systems, 27 (2007), no. 5, 1599-1631
[14] T. Kalmes, Hypercyclic C0-semigroups and evolution families generated by first order differential op-

erators, Proc. Amer. Math. Soc. 137 (2009), 3833-3848

E-mail address: thomas.kalmes@math.tu-chemnitz.de

Faculty of Mathematics, Chemnitz Technical University, 09107 Chemnitz, Germany


	1. Introduction
	2. A general observation
	3. Characterizations of hypercyclicity and mixing in arbitrary dimensions
	4. The one-dimensional case
	References
	References

