Examples of quantitative universal approximation

Thomas Kalmes, ${ }^{*}$ Markus Nieß ${ }^{\dagger}$ Thomas Ransford ${ }^{\ddagger \S}$

20 September 2011

Abstract

Let $\mathcal{L}:=\left(L_{j}\right)$ be a sequence of continuous maps from a complete metric space $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ to a separable metric space $\left(\mathcal{Y}, d_{\mathcal{Y}}\right)$. An element $x \in \mathcal{X}$ is called \mathcal{L}-universal for a subset \mathcal{M} of \mathcal{Y} if $F(x, \mathcal{M}, \varepsilon)<\infty$ for all $\varepsilon>0$, where $$
F(x, \mathcal{M}, \varepsilon):=\sup _{y \in \mathcal{M}} \inf \left\{j \in \mathbb{N}: d_{\mathcal{Y}}\left(y, L_{j} x\right)<\varepsilon\right\} .
$$

In this article we obtain quantitative estimates for $F(x, \mathcal{M}, \varepsilon)$ in a variety of examples arising in the theory of universal approximation.

2010 Mathematics Subject Classification. Primary 30K05, Secondary 30D45, 30E10

1 Introduction

Let $\left(\mathcal{X}, d_{\mathcal{X}}\right)$ be a complete metric space, let $\left(\mathcal{Y}, d_{\mathcal{Y}}\right)$ a separable metric space, and let $\mathcal{L}:=\left(L_{j}\right)_{j \in \mathbb{N}}$ be a sequence of continuous mappings $L_{j}: \mathcal{X} \rightarrow \mathcal{Y}$. An element $x \in \mathcal{X}$ is called \mathcal{L}-universal if

$$
\forall n \in \mathbb{N} \forall y \in \mathcal{Y} \exists N \in \mathbb{N}: d_{\mathcal{Y}}\left(y, L_{N} x\right)<\frac{1}{n}
$$

We denote the set of all \mathcal{L}-universal elements by $\mathcal{U}(\mathcal{L})$. It is a G_{δ}-set, due to the separability of \mathcal{Y}. The sequence \mathcal{L} is called universal if $\mathcal{U}(\mathcal{L}) \neq \emptyset$.

Given a subset $\mathcal{M} \subset \mathcal{Y}$, one might ask how fast the elements of \mathcal{M} can be approximated by some \mathcal{L}-universal element x, that is, how many elements of the sequence $\left(L_{j} x\right)_{j \in \mathbb{N}}$ are needed to cover \mathcal{M} by $B\left(L_{j} x, \varepsilon\right), j=1, \ldots, N$, the

[^0]ε-balls around $L_{j} x$? Evidently, the answer will be expressed in terms of the numbers:
$$
F(x, \mathcal{M}, \varepsilon)=F(x, \varepsilon):=\sup _{y \in \mathcal{M}} \inf \left\{j \in \mathbb{N}: d_{\mathcal{Y}}\left(y, L_{j} x\right)<\varepsilon\right\}
$$

Note that $F(x, \mathcal{M}, \varepsilon)$ also depends on the metric $d_{\mathcal{Y}}$. Obviously, if $F(x, \mathcal{M}, \varepsilon)$ is finite for every $\varepsilon>0$, then \mathcal{M} must be totally bounded (that is, \mathcal{M} can be covered by a finite number of ε-balls for every $\varepsilon>0$).

When \mathcal{Y} is a Fréchet space, a natural metric to consider is

$$
\begin{equation*}
d_{\mathcal{Y}}(y, z):=\sup _{n \in \mathbb{N}}\left(\min \left\{p_{n}(y-z), \frac{1}{n}\right\}\right), \tag{1.1}
\end{equation*}
$$

where $\left(p_{n}\right)_{n \in \mathbb{N}}$ is an increasing sequence of seminorms defining the topology on \mathcal{Y}. In this case $d_{\mathcal{Y}}(y, z)<1 / n$ if and only if $p_{n}(y-z)<1 / n$. If \mathcal{Y} is a Fréchet space, then the totally bounded subsets \mathcal{M} of \mathcal{Y} are precisely the relatively compact ones.

The above question was first studied in [10] for sequences of composition and differentiation operators on spaces $H(\Omega)$ of holomorphic functions on a simply connected domain Ω equipped with the compact-open topology. This is the Fréchet-space topology defined by the seminorms

$$
\begin{equation*}
p_{n}(f):=\|f-g\|_{K_{n}}:=\max _{z \in K_{n}}|f(z)-g(z)|, \tag{1.2}
\end{equation*}
$$

where $\mathcal{K}:=\left(K_{n}\right)_{n \in \mathbb{N}}$ is a compact exhaustion of Ω, (i.e., $K_{n} \subseteq \Omega$ compact, K_{n} is contained in the interior of K_{n+1} for each $n \in \mathbb{N}$, and $\cup_{n \in \mathbb{N}} K_{n}=\Omega$). Recall that, in this situation, the totally bounded subsets of $H(\Omega)$ are exactly the normal families.

Consider the sequence $\mathcal{C}:=\left(C_{n}\right)_{n \in \mathbb{N}}$ of composition operators, defined by

$$
C_{n}: H\left(\Omega_{2}\right) \rightarrow H\left(\Omega_{1}\right), f \mapsto f \circ \varphi_{n}
$$

where $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is a sequence of injective holomorphic mappings $\varphi_{n}: \Omega_{1} \rightarrow \Omega_{2}$ between open subsets Ω_{1}, Ω_{2} of \mathbb{C}. Recall that $\left(\varphi_{n}\right)$ is called runaway if, for every pair of compact sets $K \subseteq \Omega_{1}, L \subseteq \Omega_{2}$, there exists an $N \in \mathbb{N}$ with $\varphi_{N}(K) \cap L=\emptyset$. This property characterizes the existence of \mathcal{C}-universal elements when $\Omega_{1}=\Omega_{2}$ and Ω_{1} is not conformally equivalent to $\mathbb{C} \backslash\{0\}$, cf. [3].

Now consider the sequence of differentiation operators $\mathcal{D}:=\left(D^{n}\right)_{n \in \mathbb{N}}$, where

$$
D: H(\Omega) \rightarrow H(\Omega), f \mapsto f^{\prime}
$$

In this case, the existence of \mathcal{D}-universal elements is equivalent to Ω being simply connected, cf. [15].

In order to summarize the main results from [10] we introduce the following notation which will be used throughout this article. For a totally bounded subset \mathcal{M} of an arbitrary metric space \mathcal{Y} we define the n-th covering number

$$
\lambda_{n}:=\lambda_{n}(\mathcal{M}):=\min \left\{l \in \mathbb{N}: \exists y_{1}, \ldots, y_{l} \in \mathcal{Y}: \mathcal{M} \subseteq \bigcup_{j=1}^{l} B\left(y_{j}, 1 / n\right)\right\}
$$

Obviously, the sequence $\left(\lambda_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ measures the size of \mathcal{M} in a metrical sense.

For totally bounded subsets \mathcal{M} of $\mathcal{Y}=H(\Omega)$, i.e. for normal families over Ω, we need two more sequences. The first one, $\left(\gamma_{n}\right)_{n \in \mathbb{N}}=\left(\gamma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ measures the approximative behavior of the Taylor/Faber expansions and is defined as the smallest integers with

$$
\left\|T_{\gamma_{n}} f-f\right\|_{K_{n}}<\frac{1}{n} \quad \forall f \in \mathcal{M},
$$

where $T_{k} f$ denotes the k-th Taylor/Faber polynomial on the compact set K_{n}. The second sequence $\left(\sigma_{n}\right)_{n \in \mathbb{N}}=\left(\sigma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ measures the speed of convergence of the anti-derivatives to 0 and is defined as the smallest integers with

$$
\left\|\left(T_{m} f\right)^{(-j)}\right\|_{K_{n}}<\frac{1}{n^{2}} \quad \forall f \in \mathcal{M}, m \in \mathbb{N} \cup\{0\}, j \geq \sigma_{n}
$$

Using this notation, the main results in [10] are summarized in the following theorem.

Theorem 1. (i) In case of \mathcal{C} (composition operators): For any normal family \mathcal{M}, there exists a \mathcal{C}-universal function f with

$$
F(f, \mathcal{M}, 2 / n) \leq n\left(\lambda_{n}+1\right) \quad(n \in \mathbb{N}) .
$$

The set of all \mathcal{C}-universal functions satisfying the above estimate contains a G_{δ}-set, but is never dense. The set of \mathcal{C}-universal functions f satisfying

$$
F(f, \mathcal{M}, 2 / n)=O\left(n \lambda_{n}\right) \quad(n \rightarrow \infty)
$$

is dense.
(ii) In case of \mathcal{D} (differentiation operators): Let Ω be bounded. For any normal family \mathcal{M}, there exists a \mathcal{D}-universal function f with

$$
F(f, \mathcal{M}, 3 / n) \leq n\left(\lambda_{n}+1\right)\left(\gamma_{n}+\sigma_{n\left(\lambda_{n}+1\right)}\right) \quad(n \in \mathbb{N})
$$

For $\Omega=\mathbb{D}$, the unit disk, $\gamma_{n}=O\left(n \log \left(n M_{2 n+1}\right)\right)$ and $\sigma_{n}=O\left(\log \left(n^{2} M_{2 n+1}\right)\right)$ as $n \rightarrow \infty$, where $M_{n}:=\sup _{f \in \mathcal{M}}\|f\|_{K_{n}}$. Hence, in this case,

$$
F(f, \mathcal{M}, 1 / n)=O\left(n^{2} \lambda_{3 n} \log \left(n \lambda_{3 n} \max \left\{1, M_{12 n \lambda_{3 n}+1}\right\}\right)\right) \quad(n \rightarrow \infty)
$$

We introduce a special kind of fast approximating universal behavior.
Definition 2. A family of operators \mathcal{L} is called m-polynomial universal for \mathcal{M} if there is a \mathcal{L}-universal element x such that

$$
F(x, \mathcal{M}, 1 / n)=O\left(n^{m}\right) \quad(n \rightarrow \infty)
$$

For a totally bounded set $\mathcal{M} \subseteq \mathcal{Y}$ with covering numbers λ_{n}, i.e., λ_{n} functions $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in \mathcal{Y}$ cover \mathcal{M} with their $\frac{1}{n}$-neighborhoods, the set of all m-polynomial universal functions is given by

$$
\bigcup_{c \in \mathbb{N}}\left(\bigcap_{n \in \mathbb{N}} \bigcap_{j=1}^{\lambda_{n}} \bigcup_{N=1}^{c \cdot n^{m}} L_{N}^{-1}\left(B\left(f_{j}^{(n)}, 1 / n\right)\right) \cap \mathcal{U}(\mathcal{L})\right) .
$$

This is a $G_{\delta \sigma}$-set. It is unknown if it is also a G_{δ}-set.

In Section 2 we consider the above question for sequences of composition operators on kernels of differential operators and obtain exactly the same estimates as in the holomorphic case (compare Theorem 1 and Theorem 5). Section 3 contains an investigation of similar questions for universal Taylor series and comparisons of the results with those from [10] for differentiation operators. Finally, in Section 4, we consider some classic examples of normal families, like the set of normalized univalent functions S, and their covering numbers.

2 Composition operators on kernels of differential operators

In this section, let $\Omega \subset \mathbb{R}^{d}$ be open and let $P \in \mathbb{C}\left[X_{1}, \ldots, X_{d}\right]$ be a non-zero polynomial. As usual, we equip $C^{\infty}(\Omega)$ with the Fréchet-space topology induced by the family of semi-norms

$$
q_{K_{n}, n}(f):=\max _{x \in K_{n},|\alpha| \leq n}\left|\partial^{\alpha} f(x)\right|
$$

where $\left(K_{n}\right)_{n \in \mathbb{N}}$ is a compact exhaustion of Ω. We denote this Fréchet space by $\mathscr{E}(\Omega)$ and the metric defined in (1.1) by d. As the differential operator $P(D)$ is continuous on $\mathscr{E}(\Omega)$, it follows that the kernel of $P(D)$ in $\mathscr{E}(\Omega)$, namely

$$
\mathscr{N}_{P}(\Omega):=\{f \in \mathscr{E}(\Omega): P(D) f=0\}
$$

is a closed subspace of $\mathscr{E}(\Omega)$, and hence is itself a Fréchet space in a natural way. As is well known, $\mathscr{E}(\Omega)$ is separable, so the same is true for $\mathscr{N}_{P}(\Omega)$.

In case of P being hypoelliptic, the above mentioned Fréchet-space topology of $\mathscr{N}_{P}(\Omega)$ is induced by the family of semi-norms $\left(q_{K_{n}, 0}\right)_{n \in \mathbb{N}}$, see for example [8, Theorem 4.4.2]. We denote the corresponding metric defined in (1.1) by d_{0}. In particular, when dealing with the Cauchy-Riemann operator or the Laplace operator, we consider the spaces of holomorphic functions and harmonic functions respectively, equipped with the compact-open topology. As is well known, $\mathscr{N}_{P}(\Omega)$ is a Montel space if P is hypoelliptic (this follows for example from [8, Theorem 4.4.2]), so in this case $\mathcal{M} \subset \mathscr{N}_{P}(\Omega)$ is relatively compact if and only if \mathcal{M} is bounded, i.e., if and only if for every compact $K \subset \Omega$ we have

$$
\sup _{f \in \mathcal{M}} q_{K, 0}(f)<\infty
$$

Definition 3. (i) Let $\varphi: \Omega \rightarrow \Omega$ be a C^{∞}-diffeomorphism. Then P is called φ invariant if, for any $f \in C^{\infty}(\Omega)$, we have $f \circ \varphi \in \mathscr{N}_{P}(\Omega)$ whenever $f \in \mathscr{N}_{P}(\Omega)$. If P is φ-invariant and φ^{-1}-invariant, then we call P completely φ-invariant.
(ii) An open subset $U \subset \Omega$ is called P-approximable in Ω if $\left\{\left.f\right|_{U}: f \in\right.$ $\left.\mathscr{N}_{P}(\Omega)\right\}$ is dense in $\mathscr{N}_{P}(U)$.

Remark 4. (i) If P is φ-invariant, then the mapping

$$
C_{\varphi}: \mathscr{N}_{P}(\Omega) \rightarrow \mathscr{N}_{P}(\Omega), \quad f \mapsto f \circ \varphi
$$

is well-defined and linear. Moreover, for compact $K \subset \mathbb{R}^{d}$ and $n \in \mathbb{N}_{0}$, we obviously have $q_{K, n}\left(C_{\varphi} f\right) \leq M q_{\varphi(K), n}(f)$ for all $f \in \mathscr{E}(\Omega)$, where $M>0$ is
a suitable constant depending on K and n. Thus C_{φ} is a continuous, linear operator on $\mathscr{N}_{P}(\Omega)$.
(ii) If, for the C^{∞}-diffeomorphism $\varphi: \Omega \rightarrow \Omega$, there is $g \in \mathscr{E}(\Omega)$ such that the set $\{x \in \Omega: g(x)=0\}$ is nowhere dense in Ω and $P(D)\left(C_{\varphi}(f)\right)=g C_{\varphi}(P(D) f)$ for every $f \in \mathscr{E}(\Omega)$, then it follows immediately that P is completely φ-invariant. In case of $P(D)$ being the Cauchy-Riemann, Laplace or heat operator, it is shown in [9, Proposition 3.6] that this condition on φ is already necessary for P to be φ-invariant. Moreover, the same is true in case of $P(D)$ being the wave operator, under the mild additional assumption that φ does not mingle the time variable with the space variables and vice versa. It should be noted that in [9] the term " φ-invariance" is used for what we call complete φ-invariance here. Nevertheless, the proof of [9, Proposition 3.6] uses only that $f \circ \varphi \in \mathscr{N}_{P}(\Omega)$ for every $f \in \mathscr{N}_{P}(\Omega)$.

Let $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ be a sequence of C^{∞}-diffeomorphisms of Ω such that P is completely φ_{n}-invariant for every $n \in \mathbb{N}$. There are several articles dealing with the existence of universal functions for $\left(C_{\varphi_{n}}\right)_{n \in \mathbb{N}}$ for special $P(D)$, in particular for the Cauchy-Riemann or the Laplace operator, see e.g. [3], [4], [6]. For arbitrary P, a characterization is given in [9] for the case that Ω has convex components.

Our first result in this section is the following theorem.
Theorem 5. Let $\left(\varphi_{m}\right)_{m \in \mathbb{N}}$ be a sequence of C^{∞}-diffeomorphisms on Ω such that P is completely φ_{m}-invariant for every m in \mathbb{N}. Assume that, for every compact subset K of Ω, there are a bounded open neighborhood $U \subset \Omega$ of K with $\bar{U} \subset \Omega$ and $m \in \mathbb{N}$ such that $\varphi_{m}(U) \cup U$ is P-approximable and $\varphi_{m}(U) \cap U=\emptyset$. Then there is a strictly increasing sequence of natural numbers $\left(m_{n}\right)_{n \in \mathbb{N}}$ such that, for any $\mathcal{M} \subset \mathscr{N}_{P}(\Omega)$ relatively compact, there is a universal function u for $\left(C_{\varphi_{m_{n}}}\right)_{n \in \mathbb{N}}$ such that

$$
F(u, \mathcal{M}, 2 / n) \leq n\left(\lambda_{n}+1\right) \quad \forall n \in \mathbb{N} .
$$

In order to make the proof of the above theorem more transparent, we first prove the following lemma.

Lemma 6. Under the hypotheses of Theorem 5, for any compact exhaustion $\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω, there is a strictly increasing sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that, for any sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathscr{N}_{P}(\Omega)$, there is $v \in \mathscr{N}_{P}(\Omega)$ with

$$
q_{K_{n}, n}\left(f_{n}-C_{\varphi_{m_{n}}}(v)\right)<\frac{1}{n} \quad \forall n \in \mathbb{N}
$$

Proof. Fix a compact exhaustion $\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω and a sequence $\left(f_{n}\right)_{n \in \mathbb{N}}$ in $\mathscr{N}_{P}(\Omega)$. We simply write C_{n} in place of $C_{\varphi_{n}}$.

We start by constructing a sequence of bounded, open subsets $\left(U_{n}\right)_{n \in \mathbb{N}}$ of Ω, sequences of natural numbers $\left(m_{n}\right)_{n \in \mathbb{N}}$ and $\left(r_{n}\right)_{n \in \mathbb{N}}$, and a sequence $\left(M_{n}\right)_{n \in \mathbb{N}}$ in $(1, \infty)$, such that:
(i) $\forall n \in \mathbb{N}: K_{n} \subset U_{n} \subset \overline{U_{n}} \subset \Omega$,
(ii) $\forall n \in \mathbb{N}: \varphi_{m_{n}}\left(U_{n}\right) \cap U_{n}=\emptyset$ and $\varphi_{m_{n}}\left(U_{n}\right) \cup U_{n}$ is P-approximable in Ω,
(iii) $\left(m_{n}\right)_{n \in \mathbb{N}}$ and $\left(r_{n}\right)_{n \in \mathbb{N}}$ are strictly increasing, with $r_{n} \geq n+1$ for each $n \in \mathbb{N}$,
(iv) $\left(M_{n}\right)_{n \in \mathbb{N}}$ is non-decreasing,
(v) $\forall n \in \mathbb{N}, f \in \mathscr{N}_{P}(\Omega): q_{K_{n}, n}\left(C_{m_{n}}(f)\right) \leq M_{n} q_{K_{r_{n}}, n}(f)$,
(vi) $\forall n \in \mathbb{N}: K_{r_{n}} \subset U_{n+1}$.

By hypothesis, there exists a bounded open neighborhood $U_{1} \subset \Omega$ of K_{1} with $\overline{U_{1}} \subset \Omega$, and there exists $m_{1} \in \mathbb{N}$ with $\varphi_{m_{1}}\left(U_{1}\right) \cap U_{1}=\emptyset$ and $\varphi_{m_{1}}\left(U_{1}\right) \cup U_{1}$ being P-approximable in Ω. Moreover, by the continuity of $C_{m_{1}}$, there are $r_{1} \in \mathbb{N}, r_{1} \geq 2$ and $M_{1}>1$ with $q_{K_{1}, 1}\left(C_{m_{1}}(f)\right) \leq M_{1} q_{K_{r_{1}, 1}}(f)$.

Assume that $U_{1}, \ldots, U_{n}, m_{1}, \ldots, m_{n}, r_{1}, \ldots, r_{n}$ and M_{1}, \ldots, M_{n} have already been constructed. For the compact set

$$
K:=\overline{U_{n}} \cup K_{r_{n}+1} \cup \bigcup_{j=1}^{m_{n}} \varphi_{j}\left(\overline{U_{n}}\right)
$$

there exist, by hypothesis, a bounded open neighborhood $U_{n+1} \subset \overline{U_{n+1}} \subset \Omega$ and $m_{n+1} \in \mathbb{N}$ with $U_{n+1} \cap \varphi_{m_{n+1}}\left(U_{n+1}\right)=\emptyset$ and $U_{n+1} \cup \varphi_{m_{n+1}}\left(U_{n+1}\right)$ being P-approximable in Ω. From $U_{n+1} \cap \varphi_{m_{n+1}}\left(U_{n+1}\right)=\emptyset$ and the definition of K, it follows that $m_{n+1}>m_{n}$. By the continuity of $C_{m_{n+1}}$, there are M_{n+1} and r_{n+1} with

$$
q_{K_{n+1}, n+1}\left(C_{m_{n+1}}(f)\right) \leq M_{n+1} q_{K_{r_{n+1}, n+1}}(f)
$$

for any $f \in \mathscr{N}_{P}(\Omega)$, where, without loss of generality, we may assume that $M_{n+1} \geq M_{n}$ and $r_{n+1}>\max \left\{r_{n}, n+2\right\}$.

We observe that, by (iii) and (vi), we have $K_{n+1} \subseteq K_{r_{n}} \subseteq U_{n+1}$ for every $n \in \mathbb{N}$.

Next, we recursively construct a sequence $\left(v_{n}\right)_{n \in \mathbb{N}}$ in $\mathscr{N}_{P}(\Omega)$ such that:
(a) $\forall n \in \mathbb{N}: q_{K_{n}, n}\left(f_{n}-C_{m_{n}}\left(v_{n}\right)\right)<\frac{1}{2 n}$,
(b) $\forall n \in \mathbb{N}: q_{K_{r_{n}}, n}\left(v_{n+1}-v_{n}\right)<\frac{1}{2^{n+1} M_{n+1}}$.

Indeed, for $n=1$, consider

$$
w_{1}: U_{1} \cup \varphi_{m_{1}}\left(U_{1}\right) \rightarrow \mathbb{C}, \quad w_{1}(x):= \begin{cases}0, & \text { if } x \in U_{1} \\ f_{1}\left(\varphi_{m_{1}}^{-1}(x)\right), & \text { if } x \in \varphi_{m_{1}}\left(U_{1}\right)\end{cases}
$$

Since $U_{1} \cap \varphi_{m_{1}}\left(U_{1}\right)=\emptyset$, the map w_{1} is well-defined, and $w_{1} \in \mathscr{N}_{P}\left(U_{1} \cup \varphi_{m_{1}}\left(U_{1}\right)\right)$ follows from the complete $\varphi_{m_{1}}$-invariance of P. Fix $\psi_{1} \in \mathscr{D}\left(U_{1}\right)$ such that $\psi_{1}=1$ in a neighborhood of K_{1}. Obviously, $\psi_{1} \circ \varphi_{m_{1}}^{-1} \in \mathscr{D}\left(\varphi_{m_{1}}\left(U_{1}\right)\right)$, so that, for any $f \in \mathscr{N}_{P}\left(U_{1} \cup \varphi_{m_{1}}\left(U_{1}\right)\right)$, we have $\left(\psi_{1} \circ \varphi_{m_{1}}^{-1}\right) f \in C^{\infty}(\Omega)$ in a natural way. Therefore,

$$
p_{1}(f):=q_{K_{r_{1}}, 1}\left(\left(\psi_{1} \circ \varphi_{m_{1}}^{-1}\right) f\right)
$$

defines a continuous semi-norm on $\mathscr{N}_{P}\left(U_{1} \cup \varphi_{m_{1}}\left(U_{1}\right)\right)$. The P-approximability of $U_{1} \cup \varphi_{m_{1}}\left(U_{1}\right)$ in Ω and the continuity of the seminorm p_{1} imply the existence of $v_{1} \in \mathscr{N}_{P}(\Omega)$ with

$$
p_{1}\left(v_{1}-w_{1}\right)<\frac{1}{4 M_{1}} .
$$

Since, from the definition of w_{1}, we have $\left(\psi_{1} \circ \varphi_{m_{1}}^{-1}\right) w_{1}=\left(\psi_{1} \circ \varphi_{m_{1}}^{-1}\right)\left(f_{1} \circ \varphi_{m_{1}}^{-1}\right)$, and because $\psi_{1}=1$ in a neighborhood of K_{1}, this implies

$$
\begin{aligned}
q_{K_{1}, 1}\left(f_{1}-C_{m_{1}}\left(v_{1}\right)\right) & =q_{K_{1}, 1}\left(C_{m_{1}}\left(\left(\psi_{1} \circ \varphi_{m_{1}}^{-1}\right)\left(f_{1} \circ \varphi_{m_{1}}^{-1}-v_{1}\right)\right)\right) \\
& \leq M_{1} q_{K_{r_{1}}, 1}\left(\left(\psi_{1} \circ \varphi_{m_{1}}^{-1}\right)\left(f_{1} \circ \varphi_{m_{1}}^{-1}-v_{1}\right)\right) \\
& =M_{1} p_{1}\left(\left(w_{1}-v_{1}\right)\right)<\frac{1}{4},
\end{aligned}
$$

where we used (v) in the second step.
Assuming that v_{1}, \ldots, v_{n} have already been constructed, we consider

$$
\begin{aligned}
& w_{n+1}: U_{n+1} \cup \varphi_{m_{n+1}}\left(U_{n+1}\right) \rightarrow \mathbb{C}, \\
& w_{n+1}(x):= \begin{cases}v_{n}(x), & \text { if } x \in U_{n+1}, \\
f_{n+1}\left(\varphi_{m_{n+1}}^{-1}(x)\right), & \text { if } x \in \varphi_{m_{n+1}}\left(U_{n+1}\right) .\end{cases}
\end{aligned}
$$

Then, as for w_{1}, we have $w_{n+1} \in \mathscr{N}_{P}\left(U_{n+1} \cup \varphi_{m_{n+1}}\left(U_{n+1}\right)\right)$. Fix $\psi_{n+1} \in$ $\mathscr{D}\left(U_{n+1}\right)$ such that $\psi_{n+1}=1$ in a neighborhood of $K_{r_{n}} \supseteq K_{n+1}$. As above,

$$
p_{n+1}(f):=q_{K_{r_{n+1}, n+1}}\left(\left(\psi_{n+1} \circ \varphi_{m_{n+1}}^{-1}\right) f\right)+q_{K_{r_{n}}, n}(f)
$$

defines a continuous semi-norm on $\mathscr{N}_{P}\left(U_{n+1} \cup \varphi_{m_{n+1}}\left(U_{n+1}\right)\right)$, so that the P approximability of $U_{n+1} \cup \varphi_{m_{n+1}}\left(U_{n+1}\right)$ in Ω yields $v_{n+1} \in \mathscr{N}_{P}(\Omega)$ with

$$
p_{n+1}\left(v_{n+1}-w_{n+1}\right)<\frac{1}{2^{n+1} M_{n+1}}
$$

Again, since $\left(\psi_{n+1} \circ \varphi_{m_{n+1}}^{-1}\right) w_{n+1}=\left(\psi_{n+1} \circ \varphi_{m_{n+1}}^{-1}\right)\left(f_{n+1} \circ \varphi_{m_{n+1}}^{-1}\right)$, and as $\psi_{m_{n+1}}=1$ in a neighborhood of $K_{r_{n}} \supseteq K_{n+1}$, this implies

$$
\begin{aligned}
q_{K_{n+1}, n+1} & \left(f_{n+1}-C_{m_{n+1}}\left(v_{n+1}\right)\right) \\
& =q_{K_{n+1}, n+1}\left(C_{m_{n+1}}\left(\left(\psi_{1} \circ \varphi_{m_{n+1}}^{-1}\right)\left(f_{n+1} \circ \varphi_{m_{n+1}}^{-1}-v_{n+1}\right)\right)\right) \\
& \leq M_{n+1} q_{K_{r_{n+1}}, n+1}\left(\left(\psi_{n+1} \circ \varphi_{m_{n+1}}^{-1}\right)\left(f_{n+1} \circ \varphi_{m_{n+1}}^{-1}-v_{n+1}\right)\right) \\
& =M_{n+1} q_{K_{r_{n+1}, n+1}}\left(\left(\psi_{n+1} \circ \varphi_{m_{n+1}}^{-1}\right)\left(w_{n+1}-v_{n+1}\right)\right) \\
& \leq M_{n+1} p_{n+1}\left(v_{n+1}-w_{n+1}\right)<\frac{1}{2^{n+1}}<\frac{1}{2(n+1)},
\end{aligned}
$$

where we used (v) in the second step. Moreover, since $K_{r_{n}} \subset U_{n+1}$, and since, by definition, $\left.v_{n}\right|_{U_{n+1}}=\left.w_{n+1}\right|_{U_{n+1}}$, we obtain
$q_{K_{r_{n}}, n}\left(v_{n+1}-v_{n}\right)=q_{K_{r_{n}}, n}\left(v_{n+1}-w_{n+1}\right) \leq p_{n+1}\left(v_{n+1}-w_{n+1}\right)<\frac{1}{2^{n+1} M_{n+1}}$,
thereby finishing the construction of $\left(v_{n}\right)_{n \in \mathbb{N}}$.
Because of the inclusion $K_{r_{n}} \supseteq K_{n}$, the fact that $M_{n} \geq 1$ and (b), we have

$$
\forall n \in \mathbb{N}: q_{K_{n}, n}\left(v_{n+1}-v_{n}\right)<\frac{1}{2^{n+1}},
$$

so that $\left(v_{n}\right)_{n \in \mathbb{N}}$ is a Cauchy sequence in $\mathscr{N}_{P}(\Omega)$, and hence convergent. We set $v:=\lim _{n \rightarrow \infty} v_{n}$, and observe that $v=v_{n}+\sum_{j=n}^{\infty}\left(v_{j+1}-v_{j}\right)$ for every $n \in \mathbb{N}$.

From the continuity of $C_{m_{n}}$, and using (a), (v), (b), and (iv), we finally get that, for $n \in \mathbb{N}$,

$$
\begin{aligned}
q_{K_{n}, n}\left(f_{n}-C_{m_{n}}(v)\right) & =q_{K_{n}, n}\left(f_{n}-C_{m_{n}}\left(v_{n}\right)-\sum_{j=n}^{\infty} C_{m_{n}}\left(v_{j+1}-v_{j}\right)\right) \\
& \leq \frac{1}{2 n}+\sum_{j=n}^{\infty} q_{K_{n}, n}\left(C_{m_{n}}\left(v_{j+1}-v_{j}\right)\right) \\
& \leq \frac{1}{2 n}+\sum_{j=n}^{\infty} M_{n} q_{K_{r_{n}, n}}\left(v_{j+1}-v_{j}\right) \\
& \leq \frac{1}{2 n}+\sum_{j=n}^{\infty} M_{n} q_{K_{r_{j}}, j}\left(v_{j+1}-v_{j}\right) \\
& \leq \frac{1}{2 n}+\sum_{j=n}^{\infty} \frac{M_{n}}{2^{j+1} M_{j+1}}<\frac{1}{n}
\end{aligned}
$$

This completes the proof of the lemma.
Proof of Theorem 5. Let $\left(K_{n}\right)_{n \in \mathbb{N}}$ be the compact exhaustion of Ω defining the metric d on $\mathscr{N}_{P}(\Omega)$. For $n \in \mathbb{N}$, let $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in \mathscr{N}_{P}(\Omega)$ be such that

$$
\mathcal{M} \subseteq \bigcup_{j=1}^{\lambda_{n}} B\left(f_{j}^{(n)}, 1 / n\right)
$$

and let $\left(g_{n}\right)_{n \in \mathbb{N}}$ be a dense sequence in $\mathscr{N}_{P}(\Omega)$. We define $\left(f_{n}\right)_{n \in \mathbb{N}}$ to be the sequence

$$
f_{1}^{(1)}, \ldots, f_{\lambda_{1}}^{(1)}, g_{1}, f_{1}^{(2)}, \ldots, f_{\lambda_{2}}^{(2)}, g_{2}, f_{1}^{(3)}, \ldots, f_{\lambda_{3}}^{(3)}, g_{3}, \ldots
$$

Applying Lemma 6 gives an increasing sequence of natural numbers $\left(m_{n}\right)_{n \in \mathbb{N}}$ and $u \in \mathscr{N}_{P}(\Omega)$ such that

$$
q_{K_{n}, n}\left(f_{n}-C_{\varphi_{m_{n}}}(u)\right)<\frac{1}{n} .
$$

Since $\left\{g_{n}: n \in \mathbb{N}\right\}$ is dense in $\mathscr{N}_{P}(\Omega)$, it follows that u is universal for $\left(C_{\varphi_{m_{n}}}\right)_{n \in \mathbb{N}}$. Now fix $f \in \mathcal{M}$ and $n \in \mathbb{N}$. Then $d\left(f, f_{j}^{(n)}\right)<1 / n$ for some $1 \leq j \leq \lambda_{n}$. Because $f_{j}^{(n)}=f_{N}$ for some $n \leq N \leq \sum_{j=1}^{n}\left(\lambda_{j}+1\right) \leq n\left(\lambda_{n}+1\right)$, and because

$$
q_{K_{N}, N}\left(f_{N}-C_{\varphi_{M_{N}}}(u)\right)<\frac{1}{N}
$$

that is

$$
d\left(f_{j}^{(n)}, C_{\varphi_{m_{N}}}(u)\right)<\frac{1}{N}
$$

the result follows.
In order to verify the hypothesis of Theorem 5 in some concrete situations we recall the following results about approximation of zero solutions of differential equations. Part (i) of the next theorem is the Malgrange-Lax Theorem, cf. [8, Theorem 4.4.5], while part (ii) is due to Hörmander, see e.g. [8, Theorem 10.5.2].

Theorem 7. Let $U \subseteq \Omega$ be open.
(i) Assume that P is elliptic. If $\Omega \backslash U$ is not the disjoint union $F \cup K$, where K is compact and non-empty and F is closed in Ω, then U is P-approximable in Ω.
(ii) Suppose that every $\mu \in \mathscr{E}^{\prime}(\bar{\Omega})$ with supp $P(-D) \mu \subset U$ already belongs to $\mathscr{E}^{\prime}(U)$. Then U is P-approximable in Ω.
Remark 8. (i) Let $\hat{\Omega}$ denote the one-point compactification of Ω. It is easily seen that the condition in (i) of Theorem 7 is equivalent to $\hat{\Omega} \backslash U$ being connected while part (ii) immediately implies the P-approximability in Ω of every $U \subset \Omega$ with convex components.
(ii) It is shown in [9, Proof of Corollary 4.6] that, if φ satisfies the condition under (ii) of Remark 4, and if $K \subset \Omega$ is compact, has only convex components and satisfies $\varphi(K) \cap K=\emptyset$, then $\varphi\left(K^{\circ}\right) \cup K^{\circ}$ is P-approximable in Ω, where K° denotes the interior of K.
(iii) Assume that Ω has only convex components and that every element of the sequence $\left(\varphi_{m}\right)_{m \in \mathbb{N}}$ of C^{∞}-diffeomorphisms satisfies the condition (ii) of Remark 4. Then it follows from (ii) above that the assumption of Theorem 5 is fulfilled if and only if, for every compact subset K of Ω, there is $m \in \mathbb{N}$ with $\varphi_{m}(K) \cap K=\emptyset$.
Corollary 9. Let $\left(\varphi_{m}\right)_{m \in \mathbb{N}}$ be a sequence of C^{∞}-diffeomorphisms of Ω such that P is completely φ_{m}-invariant for every $m \in \mathbb{N}$. Assume, further, that for any compact subset $K \subset \Omega$, there is $m \in \mathbb{N}$ with $\varphi_{m}(K) \cap K=\emptyset$. Then there is an increasing sequence of natural numbers $\left(m_{n}\right)_{n \in \mathbb{N}}$ for which the following hold:
(i) Assume that Ω is contractible and that Ω has the complementation property, i.e., given any compact subset $K \subset \Omega$, there is at most one component of $\Omega \backslash K$ whose closure in Ω is not compact. If P is elliptic, then, for any relatively compact subset \mathcal{M} of $\mathscr{N}_{P}(\Omega)$, there is a universal function $u \in \mathscr{N}_{P}(\Omega)$ for $\left(C_{\varphi_{m_{n}}}\right)_{n \in \mathbb{N}}$ such that $F(u, \mathcal{M}, 2 / n) \leq n\left(\lambda_{n}+1\right)$ for each $n \in \mathbb{N}$.
(ii) If P is arbitrary, each φ_{m} satisfies the condition (ii) from Remark 4, and Ω has only convex components, then, for any relatively compact subset \mathcal{M} of $\mathscr{N}_{P}(\Omega)$, there is a universal function $u \in \mathscr{N}_{P}(\Omega)$ for $\left(C_{\varphi_{m_{n}}}\right)_{n \in \mathbb{N}}$ such that $F(u, \mathcal{M}, 2 / n) \leq n\left(\lambda_{n}+1\right)$ for each $n \in \mathbb{N}$.
Proof. Part (ii) follows from the hypothesis, Remark 8, and Theorem 5.
In order to show (i), it is straightforward to verify that, with

$$
U_{n}:=\left\{x \in \Omega:|x|<n \text { and } \operatorname{dist}\left(x, \Omega^{c}\right)>1 / n\right\},
$$

the set $\Omega \backslash U_{n}$ is not the disjoint union of a non-empty, compact set K and a set F closed in Ω. As φ_{m} is a homeomorphism, the same holds for $\varphi_{m}\left(U_{n}\right)$ for arbitrary m. By hypothesis, there is m_{0} such that $U_{n} \cap \varphi_{m_{0}}\left(U_{n}\right)=\emptyset$. The contractibility of Ω easily gives that every continuous mapping $g: \Omega \rightarrow S^{1}$ is homotopic to a constant. Together with the complementation property of Ω, this implies the unicoherence of $\hat{\Omega}$ (see e.g. [5, Theorem 4.12]), so that for the two connected and closed sets $\hat{\Omega} \backslash U_{n}$ and $\hat{\Omega} \backslash \varphi_{m_{0}}\left(U_{n}\right)$ covering $\hat{\Omega}$, their intersection $\hat{\Omega} \backslash\left(U_{n} \cup \varphi_{m_{0}}\left(U_{n}\right)\right)$ is also connected. Therefore, $U_{n} \cup \varphi_{m_{0}}\left(U_{n}\right)$ is P-approximable in Ω, by Theorem 7 (i). Part (i) now follows from this and from Theorem 5.

3 Universal Taylor series

Let $\Omega \subseteq \mathbb{C}$ be a simply connected domain. For $L \subset \mathbb{C} \backslash \Omega$ compact with connected complement and $\zeta \in \Omega$, we consider the sequence $\mathcal{T}_{L}^{\zeta}=\left(T_{L, n}^{\zeta}\right)_{n \in \mathbb{N}}$ of linear operators

$$
T_{L, n}^{(\zeta)}: H(\Omega) \rightarrow A(L), \quad f \mapsto T_{L, n}^{(\zeta)} f(z):=T_{n}^{\zeta} f(z):=\sum_{\nu=0}^{n} a_{\nu}^{(\zeta)}(z-\zeta)^{\nu},
$$

where $a_{\nu}^{(\zeta)}$ denotes the ν-th Taylor coefficient of f expanded about ζ, and $A(L)$ denotes the space of all continuous functions on L that are holomorphic in the interior of L. Endowing $A(L)$ with the sup-norm $\|f\|_{L}$, it follows from Mergelyan's theorem that $\left\{\left.f\right|_{L}: f \in A(\tilde{L})\right\}$ is dense in $A(L)$ for any compact superset \tilde{L} of L.

As shown in [13, Lemma 2.1], there exists a sequence $\left(L_{k}\right)_{k \in \mathbb{N}}$ of compact sets $L_{k} \subset \mathbb{C} \backslash \Omega$ with connected complement such that, for every compact subset $L \subset \mathbb{C} \backslash \Omega$ with connected complement, there is $k_{0} \in \mathbb{N}$ with $L \subset L_{k_{0}}$. The set of all universal Taylor series in the sense of [13] is then given by

$$
\mathcal{U}(\zeta):=\bigcap_{k \in \mathbb{N}} \mathcal{U}\left(\mathcal{T}_{L_{k}}^{(\zeta)}\right)
$$

and it is shown in [12, Theorem 2] that

$$
\mathcal{U}\left(\zeta_{1}\right)=\mathcal{U}\left(\zeta_{2}\right)
$$

for any $\zeta_{1}, \zeta_{2} \in \Omega$. Abusing our former notation we simply write $\mathcal{U}(\mathcal{T})$ for these equal sets, that is, $f \in \mathcal{U}(\mathcal{T})$ if and only if the set of the Taylor polynomials of f expanded about an arbitrary $\zeta \in \Omega$ is dense in any $A(L)$, where $L \subset \mathbb{C} \backslash \Omega$ is compact and has connected complement.

Our first aim is to compare how fast a normal family \mathcal{M} may be approximated by the partial sums of a universal Taylor series $f \in \mathcal{U}(\mathcal{T})$ with the speed of approximation by the derivatives of a function $g \in \mathcal{U}(\mathcal{D})$. In a second step we then estimate the possible speed of approximation for $f \in \mathcal{U}(\mathcal{T})$. To help us in pursuit of these goals, we introduce the following notion:

Definition 10. Let $\Omega \subseteq \mathbb{C}$ be open, let $L_{k} \subset \mathbb{C} \backslash \Omega$ be compact, and let $f_{k} \in$ $A\left(L_{k}\right)$. We say $f \in H(\Omega)$ has a uniformly universal power series in $\zeta_{1} \in \Omega$ for $\left(f_{k}, L_{k}\right)_{k \in \mathbb{N}}$ if there is a sequence of natural numbers $\left(N_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\forall 1 \leq j \leq k \exists 1 \leq n \leq N_{k}:\left\|f_{j}-T_{n}^{\left(\zeta_{1}\right)} f\right\|_{L_{j}}<\frac{1}{j^{2}} .
$$

Let $\mathcal{P}_{\mathbb{Q}}$ be the set of all polynomials with coefficients in $\mathbb{Q}+i \mathbb{Q}$, and let $\mathcal{K}_{\mathbb{C} \backslash \Omega}:=\left(L_{k}\right)$ be a sequence of compact sets in $\mathbb{C} \backslash \Omega$ as above. If Ω is simply connected and if $\left(f_{k}, L_{k}\right)$ contains each element $(p, L) \in \mathcal{P}_{\mathbb{Q}} \times \mathcal{K}_{\mathbb{C} \backslash \Omega}$ infinitely often, then a uniformly universal power series f for $\left(f_{k}, L_{k}\right)$ is a universal Taylor series, i.e. $f \in \mathcal{U}(\mathcal{T})$.
Remark 11. (i) Let $\Omega=\mathbb{D}$, let f be a uniformly universal power series in $\zeta_{1}=0$ for $\left(f_{k}, L_{k}\right), k>2$, with

$$
f_{k} \equiv 0, \quad L_{k}:=\left\{z:\left|z-\frac{3}{2} k\right| \leq k\right\}
$$

and let $\left(N_{k}\right)$ be a sequence of numbers as in Definition 10. Assume only that $\left\|T_{N_{k}}^{(0)} f\right\|_{L_{k}} \leq 1$ for each $k>2$. Then the Taylor coefficients satisfy

$$
\left|a_{\nu}\right|^{1 / \nu} \leq k^{\log \frac{5}{2}-1} \quad \text { for all } \nu \text { with } \tilde{N}_{k}:=\left[\frac{N_{k}}{\log k}\right]+1 \leq \nu \leq N_{k}
$$

cf. [7, p.84]. Thus approximation by partial sums occurs with rather large blocks of small coefficients. Assume, further, that $f \in \mathcal{U}(\mathcal{T})$, so in particular the radius of convergence of f is 1 . Since

$$
\limsup _{\substack{\nu \rightarrow \infty \\ \nu \in I}}\left|a_{\nu}\right|^{1 / \nu}=0, \quad I:=\mathbb{N} \cap \bigcup_{k \in \mathbb{N}}\left[\tilde{N}_{k}, N_{k}\right],
$$

for every $\varepsilon>0$ the power series of f must also have infinitely many Taylor coefficients a_{ν} with $\left|a_{\nu}\right|^{1 / \nu} \geq 1-\varepsilon, \nu \in \mathbb{N} \backslash I$. More precisely, the set of indices
$\kappa:=\left\{k \in \mathbb{N}: \exists \nu \in\left(N_{k-1}, \tilde{N}_{k}\right)\right.$ with $\left.\left|a_{\nu}\right|^{1 / \nu}>k^{\log \frac{5}{2}-1}\right\} \subset\left\{k \in \mathbb{N}: N_{k-1}<\tilde{N}_{k}\right\}$
is infinite. Thus, on the infinite set κ we have

$$
\frac{N_{k}}{N_{k-1}} \geq \log k, \quad k \in \kappa
$$

The same holds if f has finite radius of convergence, without necessarily belonging to $\mathcal{U}(\mathcal{T})$.
(ii) We compare the above quotient N_{k} / N_{k-1} with a similar one for a function $g \in \mathcal{U}(\mathcal{D})$. In [10, Theorem 8], a function $g \in \mathcal{U}(\mathcal{D}) \cap H(\Omega)$ (where $H(\Omega)$ is endowed with the natural metric as in (1.1) and seminorms as in (1.2)) is constructed, which is fast approximating for a normal family \mathcal{M}. For appropriate functions $f_{j}, j=1, \ldots, k$, define $\left(N_{k}\right)$ to be a sequence of natural numbers with

$$
\forall 1 \leq j \leq k \exists 1 \leq n \leq N_{k}:\left\|f_{j}-g^{(n)}\right\|_{K_{j}}<\frac{1}{j}
$$

For the constructed function $g \in \mathcal{U}(\mathcal{D})$, we obtain from [10, Proof of Theorem 8] that $N_{k} \leq N_{k-1}+\sigma_{k}+\gamma_{k}$, where σ_{k} and γ_{k} are defined as in the paragraph preceding Theorem 1. Considering $\mathcal{M}=\{0\}$, i.e. $f_{j} \equiv 0$, as in (i), $\sigma_{k}=\gamma_{k}:=k$ is a possible choice, and so is $N_{k}:=k(k+1)$. Hence

$$
\frac{N_{k}}{N_{k-1}}=\frac{k+1}{k-1}
$$

which is bounded, and not strictly increasing to ∞ on a subsequence κ, as is the case for $f \in \mathcal{U}(\mathcal{T})$.

This simple example already illustrates the tremendous difference between the speeds of approximation by $f \in \mathcal{U}(\mathcal{T})$ and $g \in \mathcal{U}(\mathcal{D})$. To elucidate this difference, we remark that successive derivatives of a function may change rather quickly, while in universal approximation successive partial sums change rather slowly, which is expressed by large blocks of rather small coefficients, namely so-called Ostrowski gaps, cf. [7]. Even the boundedness of the partial sums on a non-polar set $E \subset \mathbb{C} \backslash \overline{\mathbb{D}}$ causes small coefficients, in this case so-called Hadamard-Ostrowski gaps, as recently shown in [2].

Nevertheless, we also want to give results in the other direction by showing which speeds of approximation are possible, this time by estimating possible upper bounds, not for $F(f, \mathcal{M}, 1 / n)$, but for the numbers N_{k} as defined in Definition 10. In order to construct a universal function f with small $F(f, \mathcal{M}, 1 / n)$, we first find a sequence $\left(f_{k}\right)$ containing appropriately chosen centers, whose balls $B\left(f_{k}, 1 / n\right)$ cover \mathcal{M}. Their number is $\lambda_{n}(\mathcal{M})$, the n-covering number of \mathcal{M}. Then these centers f_{k} will be approximated by the first N_{k} Taylor polynomials of f, i.e., by $T_{j}^{(\zeta)} f, j \in\left\{1, \ldots, N_{k}\right\}$. Finally, $F(f, \mathcal{M}, 1 / n)$ and N_{k} are connected, since $F(f, \mathcal{M}, 1 / n) \leq N_{k}$ for some k which may depend on $\lambda_{n}(\mathcal{M})$.

With regard to estimate N_{k}, we start by recalling some results on best polynomial approximation, cf. [1]. For a continuous complex-valued function f on a compact set K in the plane, let

$$
d_{n}:=d_{n}(f, K):=\inf \left\{\|f-p\|_{K}: p \in \mathcal{P}_{n}\right\}
$$

where \mathcal{P}_{n} is the vector space of complex polynomials of degree at most n. Recall that a Green's function g_{K} for $\mathbb{C} \backslash K$ is a continuous function $g_{K}: \mathbb{C} \rightarrow[0,+\infty)$ which is identically equal to zero on K, harmonic on $\mathbb{C} \backslash K$, and has a logarithmic singularity at infinity, in the sense that $g_{K}(z)-\log |z|$ is harmonic at infinity.
Theorem 12 (Walsh). Let K be a compact subset of the plane such that $\mathbb{C} \backslash K$ is connected and has a Green's function g_{K}. For $R>1$, let $D_{R}:=\{z \in \mathbb{C}$: $\left.g_{K}<\log R\right\}$. Let f be continuous on K. Then $\lim \sup _{n \rightarrow \infty} d_{n}(f, K)^{1 / n} \leq 1 / R$ if and only if f is the restriction to K of a function holomorphic in D_{R}.

The proof of the "if" part of this theorem for the case $K=[-1,1]$, given in [1, Section 2] by the use of duality theory, in fact provides the following result which will be crucial for our considerations. We include its proof here for the reader's convenience.
Lemma 13. Let Ω be an open subset of \mathbb{C}, and let K be a compact subset of Ω such that $\mathbb{C} \backslash K$ is connected and has a Green's function g_{K}. Let $R>1$ be such that $\overline{D_{R}} \subset \Omega$. Then, for every $f \in H(\Omega)$, we have
$\forall 1<r<\rho<R: \quad d_{n}(f, K) \leq\|f\|_{\partial D_{R}}\left(\frac{r}{\rho}\right)^{n} \frac{8 \lambda\left(D_{R} \backslash D_{\rho}\right)}{\pi \operatorname{dist}\left(\partial D_{R}, D_{\rho}\right) \operatorname{dist}\left(\partial D_{r}, K\right)}$,
where λ denotes Lebesgue measure on \mathbb{C}.
Proof. Let $1<r<\rho<R$. Choose $\phi \in \mathscr{D}(\Omega)$ with supp $\phi \subseteq D_{R}$ and $\phi=1$ in a neighborhood of D_{ρ}, and set $F:=\phi f \in \mathscr{D}(\Omega) \subset \mathscr{D}\left(\mathbb{R}^{2}\right)$. Then it follows, as in [1, Section 2], that

$$
\begin{equation*}
d_{n}=d_{n}(f, K)=\int_{D_{R} \backslash D_{\rho}} \tilde{\mu}(z) \frac{\partial}{\partial \bar{z}} F(z) d \lambda(z) \tag{3.1}
\end{equation*}
$$

where λ denotes Lebesgue measure on \mathbb{C}, and $\tilde{\mu} \in H(\mathbb{C} \backslash K)$ satisfies

$$
\forall z \in \mathbb{C} \backslash D_{r}: \quad|\tilde{\mu}(z)| \leq \frac{1}{\pi \operatorname{dist}\left(\partial D_{r}, K\right)}\left(\exp \left(\log r-g_{K}(z)\right)\right)^{n}
$$

In particular, for all $z \in \mathbb{C} \backslash D_{\rho}$, we have

$$
|\tilde{\mu}(z)| \leq \frac{1}{\pi \operatorname{dist}\left(\partial D_{r}, K\right)}(\exp (\log r-\log \rho))^{n}=\frac{1}{\pi \operatorname{dist}\left(\partial D_{r}, K\right)}\left(\frac{r}{\rho}\right)^{n}
$$

so that, by (3.1), by the identity $\frac{\partial}{\partial \bar{z}} F(z)=f(z) \frac{\partial}{\partial \bar{z}} \phi(z)$ and by the maximum principle applied to f, we have

$$
\begin{align*}
d_{n} & \leq \frac{1}{\pi \operatorname{dist}\left(\partial D_{r}, K\right)}\left(\frac{r}{\rho}\right)^{n} \int_{D_{R} \backslash D_{\rho}}\left|f(z) \frac{\partial}{\partial \bar{z}} \phi(z)\right| d \lambda(z) \tag{3.2}\\
& \leq\|f\|_{\partial D_{R}}\left(\frac{r}{\rho}\right)^{n} \frac{1}{\pi \operatorname{dist}\left(\partial D_{r}, K\right)} \sup _{z \in D_{R}}\left|\frac{\partial}{\partial \bar{z}} \phi(z)\right| \lambda\left(D_{R} \backslash D_{\rho}\right) .
\end{align*}
$$

Let $\delta:=\operatorname{dist}\left(\partial D_{R}, D_{\rho}\right)$ be the distance from D_{ρ} to the complement of D_{R}. According to [8, Proof of Theorem 1.4.2], we can choose ϕ with

$$
\forall \alpha \in \mathbb{N}^{2},|\alpha|=k, x \in \mathbb{R}^{2}:\left|\partial^{\alpha} \phi(x)\right| \leq 8^{k} /\left(\delta_{1} \ldots \delta_{k}\right)
$$

where $\left(\delta_{j}\right)_{j \in \mathbb{N}}$ is any decreasing sequence of positive numbers with $\sum_{j=1}^{\infty} \delta_{j}<\delta$. In particular, we can choose ϕ such that

$$
\forall z \in \mathbb{C}: \quad\left|\frac{\partial}{\partial \bar{z}} \phi(z)\right| \leq \frac{8}{\delta_{1}},
$$

with $0<\delta_{1}<\delta$ arbitrary. Combining this with (3.2) gives

$$
\forall 0<\delta_{1}<\delta: \quad d_{n} \leq\|f\|_{\partial D_{R}}\left(\frac{r}{\rho}\right)^{n} \frac{8}{\pi \operatorname{dist}\left(\partial D_{r}, K\right) \delta_{1}} \lambda\left(D_{R} \backslash D_{\rho}\right),
$$

and, letting δ_{1} tend to δ, we have

$$
\forall 1<r<\rho<R: \quad d_{n} \leq\|f\|_{\partial D_{R}}\left(\frac{r}{\rho}\right)^{n} \frac{8 \lambda\left(D_{R} \backslash D_{\rho}\right)}{\pi \operatorname{dist}\left(\partial D_{R}, D_{\rho}\right) \operatorname{dist}\left(\partial D_{r}, K\right)} .
$$

This completes the proof.
To formulate our next result conveniently, we introduce the following notion. Let K, L be two non-empty, disjoint, compact subsets of \mathbb{C} such that $\mathbb{C} \backslash(K \cup L)$ has a Green's function g. We call $R>1$ separating for K and L if no component of $D_{R}:=\{z \in \mathbb{C}: g(z)<\log R\}$ contains elements of both K and L. That is, if U_{R} is the union of the components of D_{R} intersecting K, and if $V_{R}:=$ $D_{R} \backslash U_{R}$, then U_{R}, V_{R} are open, disjoint neighborhoods of K, L, respectively with $U_{R} \cup V_{R}=D_{R}$.

Proposition 14. Let $\Omega \subseteq \mathbb{C}$ be open and simply connected, let $\zeta \in \Omega$, and let $\left(K_{k}\right)_{k \in \mathbb{N}}$ be a compact exhaustion of Ω such that $\zeta \in K_{1}$ and $\mathbb{C} \backslash K_{k}$ is connected for every $k \in \mathbb{N}$. Also, for $k \in \mathbb{N}$, let $\Omega_{k} \subset \mathbb{C}$ be open, let $L_{k} \subset \Omega_{k}$ be compact, and let $f_{k} \in H\left(\Omega_{k}\right)$. Assume that $\mathbb{C} \backslash L_{k}$ is connected, that $K_{k} \cap L_{k}=\emptyset$, and that $\mathbb{C} \backslash\left(K_{k} \cup L_{k}\right)$ has a Green's function g_{k} for every $k \in \mathbb{N}$. Let $R_{k}>1$ be separating for K_{k}, L_{k}, and suppose further that $D_{k}:=D_{R_{k}}=\left\{z \in \mathbb{C}: g_{k}(z)<\right.$ $\left.\log R_{k}\right\} \subset \Omega \cup \Omega_{k}$.

Then, for every choice of $1<r_{k}<\rho_{k}<R_{k}(k \in \mathbb{N})$, there exists $f \in H(\Omega)$ with uniformly universal power series in ζ for $\left(f_{k}, L_{k}\right)_{k \in \mathbb{N}}$ such that

$$
\forall k \geq 2: \quad N_{k}<N_{k-1}+\frac{\log ^{+}\left(k^{2}\left\|f_{k}-T_{N_{k-1}}^{(\zeta)} f\right\|_{\overline{V_{k}}} q_{k}^{N_{k-1}} C_{k}\right)}{\log \left(\frac{\rho_{k}}{r_{k}}\right)}+1
$$

where

$$
V_{k}:=V_{R_{k}}, \quad q_{k}:=\frac{\operatorname{diam}\left(K_{k} \cup L_{k}\right)}{\operatorname{dist}\left(K_{k}, \overline{V_{k}}\right)}
$$

and

$$
C_{k}:=C\left(r_{k}, \rho_{k}, R_{k}\right):=\frac{8 \lambda\left(D_{R_{k}} \backslash D_{\rho_{k}}\right)}{\pi \operatorname{dist}\left(\partial D_{R_{k}}, D_{\rho_{k}}\right) \operatorname{dist}\left(\partial D_{r_{k}}, K_{k} \cup L_{k}\right)} .
$$

Proof. Like in [11, Proof of Theorem 2] we begin by constructing a sequence of polynomials $\left(P_{k}\right)_{k \in \mathbb{N}_{0}}$ and a strictly increasing sequence of integers $\left(N_{k}\right)_{k \in \mathbb{N}_{0}}$ with the following properties: the degree of P_{k} satisfies $\operatorname{deg} P_{k}=N_{k}$, the point ζ is a zero of P_{k} of multiplicity at least N_{k-1}, and

$$
\begin{equation*}
\forall k \geq 1:\left\|P_{k}\right\|_{K_{k}}<\frac{1}{k^{2}}, \tag{3.3}
\end{equation*}
$$

as well as

$$
\begin{equation*}
\forall k \geq 1:\left\|\sum_{\nu=0}^{k} P_{\nu}-f_{k}\right\|_{L_{k}}<\frac{1}{k^{2}} \tag{3.4}
\end{equation*}
$$

We set $P_{0}(z) \equiv 1$ and $N_{0}=0$. Suppose that, for some $k \in \mathbb{N}$, the polynomials P_{0}, \ldots, P_{k-1} and the integers N_{0}, \ldots, N_{k-1} have already been determined. Because R_{k} is separating for K_{k} and L_{k}, we have, with $U_{k}:=U_{R_{k}}$ and $V_{k}:=V_{R_{k}}$, disjoint open neighborhoods of K_{k} and L_{k} with $U_{k} \cup V_{k}=D_{k}$. Consider the function

$$
h_{k}: U_{k} \cup V_{k} \rightarrow \mathbb{C}, \quad z \mapsto \begin{cases}0, & \text { if } z \in U_{k} \\ \frac{f_{k}(z)-\sum_{\nu=0}^{k-1} P_{\nu}(z)}{(z-\zeta)^{N_{k-1}}}, & \text { if } z \in V_{k}\end{cases}
$$

which is well-defined and holomorphic. From Lemma 13, we obtain that

$$
d_{n}\left(h_{k}, K_{k} \cup L_{k}\right) \leq\left\|h_{k}\right\|_{\partial D_{k}}\left(\frac{r_{k}}{\rho_{k}}\right)^{n} C_{k} \leq\left\|h_{k}\right\|_{\overline{V_{k}}}\left(\frac{r_{k}}{\rho_{k}}\right)^{n} C_{k},
$$

where, in the last step, we used the maximum principle and the fact that $\left.h_{k}\right|_{U_{k}}=$ 0 . Hence, in order to have

$$
\begin{equation*}
d_{n}\left(h_{k}, K_{k} \cup L_{k}\right)<\frac{1}{k^{2} \max _{K_{k} \cup L_{k}}|z-\zeta|^{N_{k-1}}}, \tag{3.5}
\end{equation*}
$$

it suffices that

$$
k^{2} \max _{K_{k} \cup L_{k}}|z-\zeta|^{N_{k-1}}\left\|h_{k}\right\|_{\overline{V_{k}}} C_{k}<\left(\frac{\rho_{k}}{r_{k}}\right)^{n} .
$$

The latter is obviously the case if

$$
k^{2}\left\|f_{k}-\sum_{\nu=0}^{k-1} P_{\nu}\right\|_{\overline{V_{k}}}\left(\frac{\max _{K_{k} \cup L_{k}}|z-\zeta|}{\frac{\min }{\overline{V_{k}}}|z-\zeta|}\right)^{N_{k-1}} C_{k}<\left(\frac{\rho_{k}}{r_{k}}\right)^{n}
$$

Moreover, $\min _{\overline{V_{k}}}|z-\zeta| \geq \operatorname{dist}\left(K_{k}, \overline{V_{k}}\right)$ and $\max _{K_{k} \cup L_{k}}|z-\zeta| \leq \operatorname{diam}\left(K_{k} \cup L_{k}\right)$, the diameter of $K_{k} \cup L_{k}$, so that (3.5) is satisfied if

$$
\begin{equation*}
n \geq \frac{\log ^{+}\left(k^{2}\left\|f_{k}-\sum_{\nu=0}^{k-1} P_{\nu}\right\|_{\overline{V_{k}}} q_{k}^{N_{k-1}} C_{k}\right)}{\log \left(\frac{\rho_{k}}{r_{k}}\right)}=: c(k) \tag{3.6}
\end{equation*}
$$

By the above, if we fix $n \in \mathbb{N} \cap[c(k), c(k)+1]$, then there is $\Pi_{n} \in \mathcal{P}_{n}$ satisfying

$$
\left\|\Pi_{n}\right\|_{K_{k}}<\frac{1}{k^{2} \cdot \max _{K_{k} \cup L_{k}}|z-\zeta|^{N_{k-1}}}
$$

and

$$
\left\|\Pi_{n}-\frac{f_{k}-\sum_{\nu=0}^{k-1} P_{\nu}}{(z-\zeta)^{N_{k-1}}}\right\|_{L_{k}}<\frac{1}{k^{2} \cdot \max _{K_{k} \cup L_{k}}|z-\zeta|^{N_{k-1}}}
$$

By adding a sufficiently small multiple of the identity to Π_{n}, we can assume without loss of generality that $\operatorname{deg} \Pi_{n} \geq 1$. Setting $P_{k}(z):=(z-\zeta)^{N_{k-1}} \Pi_{n}(z)$, we thus obtain that ζ is a zero of P_{k} of multiplicity at least N_{k-1}, that $N_{k}:=$ $\operatorname{deg} P_{k} \leq N_{k-1}+n$ and $\operatorname{deg} P_{k}>N_{k-1}$, and that P_{k} fulfils (3.3) and (3.4).

With the P_{k} constructed, we now define $f: \Omega \rightarrow \mathbb{C}, z \mapsto \sum_{k=0}^{\infty} P_{k}(z)$. Because of (3.3), the function f is well-defined and holomorphic in Ω. Since $\operatorname{deg} P_{k}=N_{k}$ and $P_{k}(z)=(z-\zeta)^{N_{k-1}} \Pi_{k}(z)$ for some polynomial Π_{k} of strictly positive degree, it follows that $T_{N_{k}}^{(\zeta)} f=\sum_{\nu=0}^{k} P_{\nu}$ for every $k \in \mathbb{N}$. On the one hand, by (3.4), this implies that

$$
\begin{equation*}
\forall k \geq 1: \quad\left\|f_{k}-T_{N_{k}}^{(\zeta)} f\right\|_{L_{k}}<\frac{1}{k^{2}} \tag{3.7}
\end{equation*}
$$

and on the other hand, by (3.6) and the maximum principle, we have

$$
\begin{aligned}
N_{k} & =\operatorname{deg} P_{k} \leq N_{k-1}+n \\
& \leq N_{k-1}+\frac{\log ^{+}\left(k^{2}\left\|f_{k}-T_{N_{k-1}}^{(\zeta)} f\right\|_{\overline{V_{k}}} q_{k}^{N_{k-1}} C_{k}\right)}{\log \left(\frac{\rho_{k}}{r_{k}}\right)}+1
\end{aligned}
$$

Thus f has all the required properties.
Obviously, the result stated in Proposition 14 contains too many unknown quantities in order to allow an explicit (non-recursive) estimate for the growth of N_{k}. But nevertheless, in the general context, we already see that the N_{k} grow slower if L_{k} is farther away from Ω (respectively K_{k}), since q_{k} is smaller then.

Let us say that $f \in H(\mathbb{D})$ has a universal Taylor series in 0 for $H(\Omega)$ if the Taylor polynomials of f about 0 are dense in $H(\Omega)$, where $\Omega \subset \mathbb{C} \backslash \mathbb{D}$ is open. Instead of constructing a holomorphic function f with a universal Taylor series about the origin in the sense of [13], we construct $f \in H(\mathbb{D})$ having a universal Taylor series in 0 for $H(c+\mathbb{D})$ for some $c \in \mathbb{C}$, and we investigate how fast the elements of a given normal family \mathcal{M} in $H(c+\mathbb{D})$ can be approximated by the Taylor polynomials of f.

Also in this situation the N_{k} grow slower, as we will see later, since the sets L_{k} and the functions f_{k} to approximate on L_{k} can be chosen closer to their predecessors L_{k-1} and f_{k-1}. Indeed, by (3.7), $T_{N_{k-1}}^{(\zeta)} f$ is close to f_{k-1} on L_{k-1}. If additionally L_{k} is close to L_{k-1} and f_{k} is close to f_{k-1}, then $\left\|f_{k}-T_{N_{k-1}}^{(\zeta)} f\right\|_{\overline{V_{k}}}$ remains rather small.

We consider the standard compact exhaustions of \mathbb{D} and $c+\mathbb{D}$, respectively, that is $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ and $\mathcal{K}_{c}=\left(K_{c, n}\right)_{n \in \mathbb{N}}$, where

$$
\begin{equation*}
K_{n}:=\frac{n}{n+1} \overline{\mathbb{D}}, \quad K_{c, n}:=c+K_{n}, \quad n \in \mathbb{N} . \tag{3.8}
\end{equation*}
$$

Since we are now dealing with disks, we have the following approximation result at our disposal, which will replace the use of Lemma 13.

Lemma 15. Let $L=L_{1} \cup L_{2}:=\bar{D}\left(a_{1}, R_{1}\right) \cup \bar{D}\left(a_{2}, R_{2}\right)$ be the union of two disjoint closed disks. Let $K=K_{1} \cup K_{2}:=\bar{D}\left(a_{1}, r_{1}\right) \cup \bar{D}\left(a_{2}, r_{2}\right)$, where $0<r_{j}<$ $R_{j}(j=1,2)$. Given f holomorphic on a neighborhood of L and $n \geq 1$, there exists a polynomial p such that $\operatorname{deg} p<2 n$ and

$$
\|f-p\|_{K} \leq\|f\|_{L} \frac{2 \alpha^{n}}{(1-\alpha)}\left(\frac{\operatorname{diam}(K)}{\operatorname{dist}\left(L_{1}, L_{2}\right)}\right)^{n}
$$

where $\alpha:=\max \left\{r_{1}, r_{2}\right\} / \min \left\{R_{1}, R_{2}\right\}$.
Proof. Set $q(z):=\left(z-a_{1}\right)^{n}\left(z-a_{2}\right)^{n}$. We consider the special kind of Hermite interpolation polynomial

$$
p(w):=\frac{1}{2 \pi i} \int_{\partial L} \frac{f(z)}{q(z)} \frac{q(z)-q(w)}{z-w} d z
$$

and we shall show that this works.
Since $(q(z)-q(w)) /(z-w)$ is a polynomial in z, w of degree at most $2 n-1$ in each variable, it follows that $p(w)$ is a polynomial of degree at most $2 n-1$.

Also, by Cauchy's integral formula, if $w \in K$, then

$$
f(w)=\frac{1}{2 \pi i} \int_{\partial L} \frac{f(z)}{z-w} d z
$$

and so

$$
f(w)-p(w)=\frac{1}{2 \pi i} \int_{\partial L} \frac{f(z)}{z-w} \frac{q(w)}{q(z)} d z
$$

It follows that

$$
\|f-p\|_{K} \leq \frac{\|f\|_{L}\|q\|_{K}}{2 \pi \operatorname{dist}(\partial L, K)} \int_{\partial L} \frac{|d z|}{|q(z)|}
$$

Now, if $w \in K_{1}$, then $|q(w)| \leq r_{1}^{n}(\operatorname{diam} K)^{n}$. An analogous estimate holds for $w \in K_{2}$. Hence

$$
\|q\|_{K} \leq \max \left\{r_{1}, r_{2}\right\}^{n}(\operatorname{diam} K)^{n} .
$$

Also, we clearly have

$$
\operatorname{dist}(\partial L, K) \geq \min \left\{R_{1}-r_{1}, R_{2}-r_{2}\right\}
$$

Further, if $z \in \partial L_{1}$, then $|q(z)| \geq R_{1}^{n} \operatorname{dist}\left(L_{1}, L_{2}\right)^{n}$. Hence

$$
\int_{\partial L_{1}} \frac{|d z|}{|q(z)|} \leq \frac{2 \pi R_{1}}{R_{1}^{n} \operatorname{dist}\left(L_{1}, L_{2}\right)^{n}}
$$

An analogous estimate holds for the integral over ∂L_{2}. Putting together these estimates, we get

$$
\|f-p\|_{K} \leq\|f\|_{L} \frac{\max \left\{r_{1}, r_{2}\right\}^{n}(\operatorname{diam} K)^{n}}{\min \left\{R_{1}-r_{1}, R_{2}-r_{2}\right\} \operatorname{dist}\left(L_{1}, L_{2}\right)^{n}}\left(\frac{1}{R_{1}^{n-1}}+\frac{1}{R_{2}^{n-1}}\right)
$$

If we set $r:=\max \left\{r_{1}, r_{2}\right\}$ and $R:=\min \left\{R_{1}, R_{2}\right\}$, then we obtain

$$
\|f-p\|_{K} \leq\|f\|_{L} \frac{r^{n}(\operatorname{diam} K)^{n}}{(R-r) \operatorname{dist}\left(L_{1}, L_{2}\right)^{n}}\left(\frac{2}{R^{n-1}}\right) .
$$

The result follows from this.
In the situation of the above lemma, let us choose $K=K_{k} \cup K_{c, k}$, that is $a_{1}=0, a_{2}=c \in \mathbb{C}, r_{1}=r_{2}=\frac{k}{k+1}<1$, and let $R_{1}=R_{2}=: R>1$. The disks L_{1}, L_{2} are disjoint as long as $\operatorname{dist}\left(L_{1}, L_{2}\right)=|c|-2 R>0$. Further, we obtain

$$
\alpha \frac{\operatorname{diam}(K)}{\operatorname{dist}\left(L_{1}, L_{2}\right)}<\frac{1}{R} \frac{|c|+2}{|c|-2 R}=: q(R, c),
$$

and the inequality in Lemma 15 reads

$$
\begin{equation*}
\|f-p\|_{K} \leq\|f\|_{L} \frac{2 R}{R-1} q(R, c)^{n} \tag{3.9}
\end{equation*}
$$

Lemma 16. Let $R>1$ and $c \in \mathbb{C}$ with $|c|>2 R$ and $q(R, c)<1$. For any sequence of polynomials $\left(f_{k}\right)_{k \in \mathbb{N}}$, there is $f \in H(\mathbb{D})$ having a uniformly universal Taylor series in the origin for $\left(f_{k}, K_{c, k}\right)_{k \in \mathbb{N}}$ such that the corresponding sequence $\left(N_{k}\right)_{k \in \mathbb{N}}$ is strictly increasing, $T_{N_{k}}^{(0)} f$ and N_{k} depend only on f_{1}, \ldots, f_{k-1} and, for $k \geq 7$, we have

$$
\begin{equation*}
N_{k} \leq N_{k-1}+1+\frac{2 \log ^{+}(A)}{\log \left(q(R, c)^{-1}\right)} \tag{3.10}
\end{equation*}
$$

where
$A:=\frac{2 R}{R-1}(2 R)^{\max \left\{\operatorname{deg} f_{k}, N_{k-1}\right\}}\left(\frac{2|c|+2}{|c|-R}\right)^{N_{k-1}}\left(\left\|f_{k}-f_{k-1}\right\|_{K_{c, k-1}}+\frac{1}{(k-1)^{2}}\right)$.
Proof. The proof is very similar to that of Proposition 14, only we use Lemma 15 instead of Lemma 13.

As in the proof of Proposition 14, we construct recursively a sequence of polynomials $\left(P_{k}\right)_{k \in \mathbb{N}_{0}}$ and a strictly increasing sequence of integers $\left(N_{k}\right)_{k \in \mathbb{N}_{0}}$ such that the degree of P_{k} satisfies $\operatorname{deg} P_{k}=N_{k}$, the origin is a zero of P_{k} of multiplicity at least N_{k-1}, and

$$
\begin{equation*}
\forall k \geq 1: \quad\left\|P_{k}\right\|_{K_{k}}<\frac{1}{k^{2}} \text { and }\left\|\sum_{\nu=0}^{k} P_{\nu}-f_{k}\right\|_{K_{c, k}}<\frac{1}{k^{2}} \tag{3.11}
\end{equation*}
$$

Let $P_{0}(z) \equiv 1$, and $N_{0}:=0$. If, for some $k \in \mathbb{N}$, the polynomials P_{0}, \ldots, P_{k-1} and the integers N_{0}, \ldots, N_{k-1} have already been constructed, then we consider

$$
h_{k}: \overline{B(0, R)} \cup \overline{B(c, R)} \rightarrow \mathbb{C}, \quad z \mapsto \begin{cases}0, & \text { if } z \in \overline{B(0, R)} \\ \frac{f_{k}(z)-\sum_{\nu=0}^{k-1} P_{\nu}(z)}{z^{N_{k-1}}}, & \text { if } z \in \overline{B(c, R)}\end{cases}
$$

which is well-defined and holomorphic in a neighborhood of $\overline{B(0, R)} \cup \overline{B(c, R)}$, since $|c|>2 R$. Lemma 15 and inequality (3.9) yield, for any $n \in \mathbb{N}$, the existence of a polynomial Π_{n} of degree not exceeding $2 n-1$, with
$\left\|h_{k}-\Pi_{n}\right\|_{K_{k} \cup K_{c, k}} \leq\left\|h_{k}\right\|_{\overline{B(0, R)} \cup \overline{B(c, R)}} \frac{2 R}{R-1} q(R, c)^{n}=\left\|h_{k}\right\|_{\overline{B(c, R)}} \frac{2 R}{R-1} q(R, c)^{n}$, where we used $\left.h_{k}\right|_{\overline{B(0, R)}}=0$. As $\max _{K_{k} \cup K_{c, k}}|z|=\max _{K_{c, k}}|z|=|c|+\frac{k}{k+1}<$ $|c|+1$, as well as $\min \frac{}{B(c, R)}|z|=|c|-R$, as in the proof of Proposition 14 we obtain that, in order to have

$$
\left\|h_{k}-\Pi_{n}\right\|_{K_{k} \cup K_{c, k}}<\frac{1}{k_{K_{k} \cup K_{c, k}}^{2} \max |z|^{N_{k-1}}}
$$

it is sufficient to have

$$
\begin{equation*}
k^{2}\left\|f_{k}-\sum_{\nu=0}^{k-1} P_{\nu}\right\|_{\frac{B(c, R)}{}}\left(\frac{|c|+1}{|c|-R}\right)^{N_{k-1}} \frac{2 R}{R-1}<q(R, c)^{-n} . \tag{3.12}
\end{equation*}
$$

An application of Bernstein's lemma, cf. [14, Theorem 5.5.7], and (3.11) yields

$$
\begin{aligned}
\left\|f_{k}-\sum_{\nu=0}^{k-1} P_{\nu}\right\|_{\overline{B(c, R)}} & \leq\left\|f_{k}-\sum_{\nu=0}^{k-1} P_{\nu}\right\|_{K_{c, k-1}}\left(\frac{R k}{k-1}\right)^{\max \left\{\operatorname{deg} f_{k}, N_{k-1}\right\}} \\
& \leq\left(\left\|f_{k}-f_{k-1}\right\|_{K_{c, k-1}}+\frac{1}{(k-1)^{2}}\right)(2 R)^{\max \left\{\operatorname{deg} f_{k}, N_{k-1}\right\}}
\end{aligned}
$$

Therefore, $n \in \mathbb{N}$ satisfies (3.12) if $n>\alpha(k)$, where $\alpha(k)$ is given by

$$
\begin{equation*}
\frac{\log ^{+}\left(\frac{2 R k^{2}}{R-1}(2 R)^{\max \left\{\operatorname{deg} f_{k}, N_{k-1}\right\}}\left(\frac{|c|+1}{|c|-R}\right)^{N_{k-1}}\left(\left\|f_{k}-f_{k-1}\right\|_{K_{c, k-1}}+\frac{1}{(k-1)^{2}}\right)\right)}{\log \left(q(R, c)^{-1}\right)} . \tag{3.13}
\end{equation*}
$$

Fixing $n \in \mathbb{N} \cap[\alpha(k), 1+\alpha(k)]$, we continue as in the proof of Proposition 14, to construct P_{k} and $N_{k}:=\operatorname{deg} P_{k} \leq N_{k-1}+2 n-1$.

As in the proof of Proposition 14, it follows that $f: \mathbb{D} \rightarrow \mathbb{C}, z \mapsto \sum_{k=0}^{\infty} P_{k}(z)$ is holomorphic and has a uniformly universal Taylor series in 0 for $\left(f_{k}, K_{c, k}\right)_{k \in \mathbb{N}}$. For the corresponding sequence $\left(N_{k}\right)_{k \in \mathbb{N}}$, we have

$$
N_{k}=\operatorname{deg} P_{k} \leq N_{k-1}+2 n-1 \leq N_{k-1}+1+2 \alpha(k) .
$$

If $k \geq 7$, then, because $k^{2} \leq 2^{k-1}\left(\leq 2^{N_{k-1}}\right)$, we obtain from (3.13) that $\alpha(k)$ is majorized by

$$
\frac{\log ^{+}\left(\frac{2 R}{R-1}(2 R)^{\max \left\{\operatorname{deg} f_{k}, N_{k-1}\right\}}\left(\frac{2|c|+2}{|c|-R}\right)^{N_{k-1}}\left(\left\|f_{k}-f_{k-1}\right\|_{K_{c, k-1}}+\frac{1}{(k-1)^{2}}\right)\right)}{\log \left(q(R, c)^{-1}\right)} .
$$

This completes the proof.
Remark 17. Proposition 14 and Lemma 16 show how small the values of the sequence $\left(N_{k}\right)_{k \in \mathbb{N}}$ can be chosen. Nevertheless, inspection of their proofs gives that, at each step, N_{k} can be chosen arbitrarily large.

Lemma 18. Suppose that \mathcal{M} be a normal family in $H(c+\mathbb{D})$. Let $M_{n}:=$ $1+\sup _{f \in \mathcal{M}}\|f\|_{K_{c, n}}$ and let $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ be the covering numbers of \mathcal{M}, i.e., there are functions $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in H(c+\mathbb{D})$ whose $\frac{1}{n}$-neighborhoods cover \mathcal{M}. If

$$
m \geq \tau_{n+1}(\mathcal{M}):=(n+1)^{2} \log \left((n+1)^{3} M_{n+1}\right)
$$

then

$$
\left\|g-T_{m}^{(c)} g\right\|_{K_{c, n}}<\frac{1}{n} \quad \forall g \in \mathcal{M} \cup\left\{f_{1}^{(n+1)}, \ldots, f_{\lambda_{n+1}}^{(n+1)}\right\}
$$

Proof. Let $g=f_{j}^{(n+1)}$ for some $1 \leq j \leq \lambda_{n+1}$. Then there is $f \in \mathcal{M}$ such that $\|g-f\|_{K_{c, n+1}} \leq \frac{1}{n+1}$, which implies

$$
\|g\|_{K_{c, n+1}} \leq\|f\|_{K_{c, n+1}}+\frac{1}{n+1} \leq M_{n+1}
$$

This last estimate obviously also holds for $g \in \mathcal{M}$. By Cauchy's estimate, we get

$$
\left\|g-T_{m}^{(c)} g\right\|_{K_{c, n}} \leq M_{n+1} \sum_{\nu=m+1}^{\infty}\left(\frac{n(n+2)}{(n+1)^{2}}\right)^{\nu}=M_{n+1} n(n+2)\left(\frac{n(n+2)}{(n+1)^{2}}\right)^{m}
$$

The last term is less than $1 / n$ provided that

$$
m \geq(n+1)^{2} \log \left((n+1)^{3} M_{n+1}\right) \geq \frac{\log \left(n^{2}(n+2) M_{n+1}\right)}{\log \left(\frac{(n+1)^{2}}{n(n+2)}\right)}
$$

This completes the proof.
By choosing an appropriate sequence of polynomials $\left(f_{k}\right)$ in Lemma 16, we can construct a function $f \in H(\mathbb{D})$ which has a universal Taylor series in 0 for $H(c+\mathbb{D})$ for some center $c \in \mathbb{C}$, which is fast approximating for a normal family $\mathcal{M} \subset H(c+\mathbb{D})$, and such that the corresponding sequence $\left(N_{k}\right)$ has bounded quotients N_{k} / N_{k-1} (compare with Remark 11).

Theorem 19. Let $c \in \mathbb{C}$ with $|c|>10$. Let \mathcal{M} be a normal family in $H(c+\mathbb{D})$ with covering numbers $\left(\lambda_{n}\right)$, and suppose that $M_{n}=O\left(\exp \left(n^{l}\right)\right)$ for some $l \in$ $\mathbb{N} \cup\{0\}$. Then there exists a function $f \in H(\mathbb{D})$ which has a universal Taylor series for $H(c+\mathbb{D})$, which is fast approximating for \mathcal{M} in the sense that

$$
F(f, \mathcal{M}, 2 / n) \leq N_{(n+1)\left(\lambda_{n+1}+1\right)}
$$

and which has bounded quotients N_{k} / N_{k-1}.

Proof. For $R=2$, we have $|c|>10>2 R$ and $q(2, c)<1$. Let $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in$ $H(c+\mathbb{D})$ be functions whose $\frac{1}{n}$-neighborhoods cover \mathcal{M}. Let $\left(q_{n}\right)$ be a sequence of polynomials which is dense in $H(c+\mathbb{D})$, and consider the sequence $\left(g_{k}\right)$ given by

$$
f_{1}^{(1)}, \ldots, f_{\lambda_{1}}^{(1)}, q_{1}, f_{1}^{(2)}, \ldots, f_{\lambda_{2}}^{(2)}, q_{2}, \ldots, f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)}, q_{n}, \ldots
$$

If $g_{k}:=f_{j}^{(n)}$ for some j, n, then n is uniquely determined by k, and we have $n \leq k$. In this case, we set $f_{k}:=T_{\tau_{n}(\mathcal{M})}^{(c)} g_{k}$. Using Lemma 18, we deduce

$$
\begin{equation*}
\operatorname{deg} f_{k}=n^{2} \log \left(n^{3} M_{n}\right) \quad \text { and } \quad\left\|g_{k}-f_{k}\right\|_{K_{c, n-1}}<\frac{1}{n-1} \tag{3.14}
\end{equation*}
$$

If, on the other hand, g_{k} is one of the $\left(q_{n}\right)$, then we define $f_{k}:=g_{k}$. Without loss of generality $\operatorname{deg} f_{k} \leq k$ and $\left\|f_{k}\right\|_{K_{c, k}} \leq k$.

Now let $f \in H(\mathbb{D})$ be the function constructed in Lemma 16, that is, f has a uniformly universal Taylor series in the origin for $\left(f_{k}, K_{c, k}\right)$ with the corresponding sequence $\left(N_{k}\right)$ satisfying (3.10). In view of (3.10), we can estimate the degree of f_{k} in case $g_{k}=f_{j}^{(n)}$:

$$
\operatorname{deg} f_{k}=n^{2} \log \left(n^{3} M_{n}\right) \leq k^{2} \log \left(k^{3} M_{k}\right)=O\left(k^{l+3}\right)
$$

since $n \leq k$ and $M_{k}=O\left(\exp \left(k^{l}\right)\right)$. Hence, by Bernstein's lemma, cf. [14, Theorem 5.5.7],

$$
\left\|f_{k}\right\|_{K_{c, k}} \leq\left\|f_{k}\right\|_{K_{c, n}}\left(\frac{k}{k+1} \frac{n+1}{n}\right)^{\operatorname{deg} f_{k}} \leq M_{n} e^{n^{2} \log \left(n^{3} M_{n}\right)}
$$

Thus, independently of whether $g_{k}=f_{j}^{(n)}$ or $g_{k}=q_{n}$, we obtain

$$
\log \left(\left\|f_{k}-f_{k-1}\right\|_{K_{c, k-1}}+\frac{1}{(k-1)^{2}}\right)=O\left(k^{l+3}\right)
$$

Hence, using the fact that $\max \left\{\operatorname{deg} f_{k}, N_{k-1}\right\} \leq \operatorname{deg} f_{k}+N_{k-1}$, inequality (3.10) reads

$$
N_{k} \leq \alpha_{1} N_{k-1}+\alpha_{2} k^{l+3}
$$

where α_{1}, α_{2} are constants. As mentioned in Remark 17, it is possible to increase N_{k} at each step. So, let us choose

$$
\begin{equation*}
N_{k}:=\max \left\{\alpha_{1} N_{k-1}+\alpha_{2} k^{l+3},(k+1)^{l+3}\right\} \tag{3.15}
\end{equation*}
$$

which guarantees $N_{k-1} \geq k^{l+3}$ for every $k \in \mathbb{N}$. Depending on where the maximum in (3.15) is attained, N_{k} / N_{k-1} is either bounded by the constant $\alpha_{1}+\alpha_{2}$ or by $\left(\frac{k+1}{k}\right)^{l+3}$. Either way, N_{k} / N_{k-1} remains bounded as $k \rightarrow \infty$.

To each $g \in \mathcal{M}$ is associated $g_{k}=f_{j}^{(n+1)}$ with $\left\|g_{k}-g\right\|_{K_{c, n+1}}<\frac{1}{n+1}$. Using (3.14), we have $\left\|f_{k}-g_{k}\right\|_{K_{c, n}}<1 / n$, which implies $\left\|f_{k}-g\right\|_{K_{c, n}}^{c, n+1} \leq 2 / n$. By the choice of f and the sequences $\left(f_{k}\right),\left(g_{k}\right)$, we obtain $k \leq(n+1)\left(\lambda_{n+1}+1\right)$ and hence $F(f, \mathcal{M}, 2 / n) \leq N_{k}$.

Since $\left(q_{n}\right)$ is dense in $H(c+\mathbb{D})$, by construction so are the Taylor polynomials of f about 0 , and hence f has a universal Taylor series for $H(c+\mathbb{D})$.

In the next section we shall encounter several examples of normal families \mathcal{M} for which $M_{n}=O(1)$, and so Theorem 19 is applicable with $l=0$.

4 Normal families and covering numbers

In order to get some impression of the speed of approximation, we conclude with some examples of normal families in $H(\mathbb{D})$. Throughout this section, we suppose ε to be an arbitrarily small positive number, and consider the standard compact exhaustion (3.8) of \mathbb{D} to define the seminorms in (1.2) and hence the natural metric on $H(\mathbb{D})$ in (1.1).

Let $E:=\left\{f_{1}, \ldots, f_{k}\right\}$ be a finite subset of $H(\mathbb{D})$, let $B^{\infty}:=\{f \in H(\mathbb{D})$: $\left.\sup _{\mathbb{D}}|f| \leq 1\right\}$, and let

$$
S:=\left\{f \in H(\mathbb{D}): f \text { one-to-one, } f(0)=0, f^{\prime}(0)=1\right\} .
$$

For each of these three normal families, we obtain the existence of \mathcal{C} - or \mathcal{D} universal functions f with rates of approximation as follows:

\mathcal{M}	$F(f, \mathcal{M}, 1 / n)($ for $\mathcal{C})$	$F(f, \mathcal{M}, 1 / n)($ for $\mathcal{D})$
E	$O(n)$	$O\left(n^{2} \log \left(n \max \left\{1, M_{12 k n+1}\right\}\right)\right)$
B^{∞}	$O\left(n \lambda_{2 n}\right)$	$O\left(n\left(n \lambda_{3 n}\right)^{1+\varepsilon}\right)$
S	$O\left(n \lambda_{2 n}\right)$	$O\left(n^{2} \lambda_{3 n} \log \left(n \lambda_{3 n}\right)\right)$

where $M_{n}:=\sup _{f \in \mathcal{M}}\|f\|_{K_{n}}$ and λ_{n} denotes the n-th covering number of \mathcal{M}.
Furthermore, \mathcal{C} is 8 - and \mathcal{D} is $(9+\varepsilon)$-polynomial universal for the automorphism group

$$
\operatorname{Aut}(\mathbb{D})=\left\{f_{\gamma, a}(z):=e^{i \gamma} \frac{z-a}{1-\bar{a} z}: \gamma \in[0,2 \pi), a \in \mathbb{D}\right\}
$$

and \mathcal{C} is $(2+\varepsilon)$ - and $\mathcal{D}(4+\varepsilon)$-polynomial universal for the set of all Koebe extremal functions

$$
K:=\left\{f_{\alpha}=e^{-i \alpha} f_{0}\left(e^{i \alpha} z\right): \alpha \in[0,2 \pi)\right\} \subseteq S, \quad f_{0}(z)=\frac{z}{(1-z)^{2}}
$$

For all this and further details, see [10].
In this context, the question arises, interesting in its own right, to estimate the n-th covering number λ_{n} for S, or, going back one step, to estimate the minimal number $N(\delta)$ of balls of radius δ required to cover S. The following theorem provides upper and lower bounds for $N(\delta)$.
Theorem 20. There exist constants $c, C>0$ such that

$$
e^{c / \sqrt{\delta}} \leq N(\delta) \leq e^{(C / \delta) \log ^{2}(1 / \delta)}
$$

In particular, $N(\delta)$ grows faster than any power of $1 / \delta$ as $\delta \rightarrow 0$. The proof of the upper bound is given in [10]. We give here the proof of the lower bound. It is based on an elementary lemma.
Lemma 21. Let $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$, where $\sum_{k=2}^{\infty} k\left|a_{k}\right|<1$. Then $f \in S$.
Proof. Let $z, w \in \mathbb{D}$. Then $\left|z^{k}-w^{k}\right| \leq k|z-w|$ for all k, so

$$
|f(z)-f(w)| \geq|z-w|-\sum_{k=2}^{\infty}\left|a_{k}\right|\left|z^{k}-w^{k}\right| \geq|z-w|\left(1-\sum_{k=2}^{\infty} k\left|a_{k}\right|\right)
$$

It follows that f is injective. Thus $f \in S$.

Proof of the lower bound. Let $f, g \in H(\mathbb{D})$, say $f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}$, and $g(z)=$ $\sum_{k=0}^{\infty} b_{k} z^{k}$. By the maximum principle and the standard Cauchy estimates, for each $k \in \mathbb{N}$ we have

$$
\|f-g\|_{K_{k}}=\max _{|z|=k /(k+1)}|f(z)-g(z)| \geq\left|a_{k}-b_{k}\right|\left(\frac{k}{k+1}\right)^{k} \geq \frac{\left|a_{k}-b_{k}\right|}{4}
$$

and consequently

$$
\begin{equation*}
d(f, g) \geq \sup _{k \in \mathbb{N}} \min \left(\frac{\left|a_{k}-b_{k}\right|}{4}, \frac{1}{k}\right) \tag{4.1}
\end{equation*}
$$

Now let $n \geq 2$, and consider the family \mathcal{F}_{n} of polynomials f of the form

$$
f(z):=z+\frac{1}{n^{2}} \sum_{k=2}^{n} \varepsilon_{k} z^{k}, \quad\left(\varepsilon_{k} \in\{-1,1\}, k=2, \ldots, n\right)
$$

By Lemma 21, we clearly have $\mathcal{F}_{n} \subset S$. Also, by (4.1), the distance between distinct polynomials $f, g \in \mathcal{F}_{n}$ is at least $1 /\left(2 n^{2}\right)$. Thus, in any covering by balls of radius $1 /\left(4 n^{2}\right)$, each of the polynomials of \mathcal{F}_{n} must belong to a different ball. There are 2^{n-1} elements in the family \mathcal{F}_{n}. Therefore

$$
N\left(1 / 4 n^{2}\right) \geq 2^{n-1}
$$

As this holds for each $n \geq 2$, the lower bound follows.
Acknowledgment. We want to thank the referee for a careful reading of the article and for his comments and suggestions which helped to improve the presentation of the results.

References

[1] T. Bagby, N. Levenberg, Bernstein theorems, New Zealand J. Math. 22 (1993), 1-20.
[2] P. Beise, T. Meyrath, J. Müller, Universality properties of Taylor series inside the domain of holomorphy, J. Math. Anal. Appl. 383 (2011), 234238.
[3] L. Bernal-González, A. Montes-Rodríguez, Universal functions for composition operators, Complex Variables Theory Appl. 27 (1995), 47-56.
[4] M. C. Calderón-Moreno, J. Müller, Universal holomorphic and harmonic functions with additional properties, Acta Math. Hungar. 105 (2004), 1-15.
[5] A. García-Máynez, A. Illanes, A survey on unicoherence and related topics, An. Inst. Mat. Univ. Nac. Autónoma México 29, (1989), 17-67.
[6] P. M. Gauthier, M. R. Pouryayevali, Universal (pluri)subharmonic functions, Analysis (Munich) 27 (2007), 273-284.
[7] W. Gehlen, W. Luh, J. Müller, On the existence of O-universal functions, Complex Variables Theory Appl. 41 (2000), 81-90.
[8] L. Hörmander, The Analysis of Linear Partial Differential Operators I and II, Springer-Verlag, Berlin, 1983.
[9] T. Kalmes, M. Niess, Universal zero solutions of linear partial differential operators, Studia Math. 198 (2010), 33-51.
[10] T. Kalmes, M. Niess, Composition and differentiation operators and fast approximation, J. Approx. Theory, to appear.
[11] W. Luh, Universal approximation properties of overconvergent power series on open sets, Analysis 6 (1986), 191-207.
[12] J. Müller, V. Vlachou, A. Yavrian, Universal overconvergence and Ostrowski-gaps, Bull. London Math. Soc. 38 (2006), 597-606.
[13] V. Nestoridis, Universal Taylor series, Ann. Inst. Fourier Grenoble 46 (1996), 1293-1306.
[14] T. Ransford, Potential Theory in the Complex Plane, Cambridge University Press, Cambridge, 1995.
[15] J.H. Shapiro, Simple connectivity and linear chaos, International Workshop on Operator Theory (Cefalù, 1997), Rend. Circ. Mat. Palermo (2) Suppl. 1998, no. 56, 27-48.

[^0]: *Thomas Kalmes, Universität Trier, Fachbereich IV - Mathematik, D-54286 Trier, Germany, e-mail: kalmesth(at)uni-trier.de
 ${ }^{\dagger}$ Markus Nieß, Katholische Universität Eichstätt-Ingolstadt, Mathematisch-Geographische Fakultät, D-85071 Eichstätt, Germany, e-mail: markus.niess(at)ku-eichstaett.de
 \ddagger Thomas Ransford, Université Laval, Département de mathématiques et de statistique, Pavillon Alexandre-Vachon, Québec, QC G1V 0A6, Canada, e-mail: ransford(at)mat.ulaval.ca
 ${ }^{\S}$ Second author supported by grants from DAAD. Third author supported by grants from NSERC and the Canada Research Chairs program.

