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Abstract

Let C = (Cn)n∈N and D = (Dn)n∈N be families of composition and differentiation
operators, respectively, i.e.,

Cnf = f ◦ ϕn, Df = f ′,

where f is holomorphic on some domain Ω ⊆ C. Our main question is: How fast can
a totally bounded set M of holomorphic functions, in other words a normal family,
be approximated by the “orbit” {Cnf : n ∈ N} or {Dnf : n ∈ N} respectively, of one
suitably constructed function f? Our answer consists of upper bounds for the numbers

F (f, 1/n) := inf{N ∈ N : Any g ∈M is approximable with error < 1/n

by the first N elements of the orbit of f}, n ∈ N.

In particular, we calculate such bounds for well-known classical normal families, like
the biholomorphisms of the unit disk D, or the set

S := {f biholomorphic on D : f(0) = 0, f ′(0) = 1}.

Keywords. Rate of convergence, Composition operators, Faber expansions, Normal
families, Approximation in the complex plane, Universality.
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1 Introduction and notation

Let (X , d) be a complete metric space, (Y, d) a separable metric space, M ⊆ Y, and
L = (Ln)n∈N be a sequence of continuous mappings Ln : X → Y. The sequence L is called
universal for M, if there is x ∈ X such that M is contained in the closure of the orbit of
x under L, that is

M⊆ {Lnx : n ∈ N},

i.e., for every y ∈ M and for every ε > 0, there exists N ∈ N with d(y, LNx) < ε. Such
x are called L-universal for M and we denote the set of all L-universal elements for M
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by U(L,M). In case of M = Y, we simply speak of L-universality etc., and write U(L)
instead of U(L,M).
We consider the question, how fast certain given elements y ∈ Y can be approximated by
(Lnx)n∈N for some x ∈ U(L). With this in mind, given x ∈ X and M⊆ Y, we define

F (x, ε) := F (x,L,M, d, ε) := sup
y∈M

inf
{
N ∈ N : d(y, LNx) < ε

}
.

For x ∈ U(L), we clearly have that F (x, ε) is finite for every ε > 0 if and only if M is
totally bounded (pre-compact), that is,M can be covered by a finite number of ε-balls for
every ε > 0. If the metric space Y is complete, then, M is totally bounded if and only if
M is relatively compact, cf. [14, Corollary 4.10]. Moreover, if M⊆ Y is totally bounded

and y
(n)
1 , . . . , y

(n)
λn
∈ Y satisfy

M⊆
λn⋃
j=1

B(y
(n)
j ,

1

n
),

where B(z, r) = {y ∈ Y : d(y, z) < r} is the open ball with center z and radius r, then,
for each x ∈ U(L), there is kn ∈ N satisfying

∀ 1 ≤ j ≤ λn ∃ 1 ≤ N ≤ kn : d(LNx, y
(n)
j ) <

1

n
.

In particular, if L is universal, then, for any totally bounded set M ⊆ Y, there is a
sequence (kn)n∈N of natural numbers such that{

x ∈ U(L) : F (x,L,M, 2/n) ≤ kn ∀n ∈ N
}

containing

U(L) ∩
⋂
n∈N

λn⋂
j=1

kn⋃
N=1

L−1N
(
B(y

(n)
j ,

1

n
)
)

(1)

is not empty. We are interested in upper bounds for kn depending on M. Therefore, we
introduce the following notation. For a given totally bounded subset M of Y and n ∈ N,
we define

λn := λn(M) := min

l ∈ N : ∃ y1, . . . , yl ∈ Y with M⊆
l⋃

j=1

B(yj , 1/n)

 ,

to be the n-th covering number of M. SinceM is totally bounded, λn is well-defined and
the sequence (λn)n∈N is obviously increasing. It should be noted that λn depends on the
given metric d on Y! For each x ∈ X , we obviously have

∀n ∈ N : λn ≤ F (x,L,M, d, 1/n).

In this paper, we investigate special sequences of continuous linear operators between
spaces of holomorphic functions H(Ω) on an open subset Ω of C. As usual, we endow
H(Ω) with the compact-open topology, that is, the locally convex topology on H(Ω)
induced by the increasing sequence of seminorms

∥∥f∥∥
Kn

= sup{
∣∣f(z)

∣∣ : z ∈ Kn}, n ∈ N,
where K = (Kn)n∈N is a compact exhaustion of Ω, i.e., Kn ⊆ Ω compact, Kn is contained
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in the interior of Kn+1 for each n ∈ N, and ∪n∈NKn = Ω. This makes H(Ω) a Fréchet
space; a metric defining the topology is given by

dK(f, g) := sup
n∈N

min

{∥∥f − g∥∥
Kn
,

1

n

}
. (2)

It should be noted at this point that dK(f, g) < 1/n if (and only if)
∥∥f − g∥∥

Kn
< 1/n.

In particular, we consider Ω = D, the open unit disk. For this special situation, we will
always choose the natural standard compact exhaustion

KD := (Kn)n∈N, where Kn :=
n

n+ 1
D̄. (3)

Recall, a subset M of H(Ω) is bounded, by definition, if supf∈M
∥∥f∥∥

Kn
< ∞ for each

n ∈ N, i.e., if and only if M is locally bounded. By Montel’s Theorem, every bounded
subsetM of H(Ω) is relatively compact. Obviously, the converse is always true. Therefore,
the bounded subsets of H(Ω) are precisely the totally bounded subsets, which are also
called normal families in this context. Examples will be given in Section 4.

2 Composition Operators and Fast Approximation

In this section, we consider composition operators on spaces of holomorphic functions,
that is, for a given sequence (ϕn)n∈N of injective holomorphic mappings ϕn : Ω1 → Ω2

between open sets Ω1,Ω2 in C, we consider the sequence C = (Cn)n∈N of linear operators

Cn : H(Ω2)→ H(Ω1), f 7→ f ◦ ϕn.

Universality of such composition operators has been investigated by several authors, e.g.
Bernal and Montes [4], followed by many others and also on different function spaces, see
e.g. [2], [3], [5], [7], [6], [10], [11]. Recall, (ϕn) is called run away, if for every pair of
compact sets K ⊆ Ω1, L ⊆ Ω2, there exists an N ∈ N with

ϕN (K) ∩ L = ∅.

This property characterizes the existence of a C-universal element if Ω1 = Ω2 is not
conformally equivalent to C\{0}, cf. [4]. In view of the following theorem, it is important
to have run away sequences tending in a “controlled” manner towards the boundary of Ω2.
Thoughout this section, we assume the open sets Ω1,Ω2 to consist of simply connected
components, and every compact exhaustion K = (Kn)n∈N of them should also have only
simply connected components, see e.g. [16, Theorem 13.3].
If Ω is a domain in C, a sequence of sets (Ln)n∈N is said to tend to infinity provided that,
given a compact set L ⊆ Ω, there is n0 ∈ N such that Ln ∩ L = ∅ for all n ≥ n0. Observe
that, if Ω? = Ω ∪ {ω} denotes the one-point compactification of Ω, then (Ln)n∈N tends to
infinity if and only if limn→∞max{χ(z, ω) : z ∈ Ln} = 0, where χ is any distance on Ω?

defining its topology.

Proposition 1. Let ϕn : Ω1 → Ω2, n ∈ N, be a sequence of injective holomorphic map-
pings which is run away. Then, for each compact exhaustion K = (Kn)n∈N of Ω1, there
is a sequence (mn)n∈N of natural numbers such that ϕmn(Kn) (n ∈ N) is pairwise disjoint
and tends to infinity.
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Note, the image ϕ(G) of a simply connected domain G under an injective holomorphic
mapping ϕ is also simply connected. Thus, the sets ϕmn(Kn) (n ∈ N) above have also
connected complements.

Proof. Fix any compact exhaustion (Ln)n∈N of Ω2. Set m1 := 1. Since (ϕn)n∈N is run
away, there is m2 ∈ N such that

ϕm2(K2) ∩
(
ϕm1(K1) ∪ L1

)
= ∅.

If m1,m2, . . . ,mn have been found, there is, by hypothesis, mn+1 ∈ N such that

ϕmn+1(Kn+1) ∩

 n⋃
j=1

ϕmj (Kj) ∪ Ln

 = ∅.

Clearly ϕmn(Kn) (n ∈ N) fulfills the requirements of the assertion.

For the following we abbreviate C := (Cmn)n∈N. Before stating our first main result, we
provide an approximation lemma based on Arakelian’s Approximation Theorem, cf. [1], [9].

Lemma 2. Let Ω be a domain, (Kn)n∈N a sequence of pairwise disjoint compact sets
in Ω, whose complements are connected. Assume that (Kn)n∈N tends to infinity and that
fn ∈ A(Kn), i.e., fn is continuous on Kn and holomorphic in the interior of Kn. Then,
there exists f ∈ H(Ω) with

∀n ∈ N : max
z∈Kn

∣∣f(z)− fn(z)
∣∣ < 1

n
.

Proof. Define
δ(z) := − lnn, q(z) := fn(z), z ∈ Kn.

The union U :=
⋃
n∈NKn is closed in Ω and obviously satisfies that Ω? \ U is connected

and locally connected at ω. Thus, by Arakelian’s Theorem, there exist g, h ∈ H(Ω) with

∣∣δ(z)− g(z)
∣∣ < 1,

∣∣∣∣ q(z)eg(z)−1
− h(z)

∣∣∣∣ < 1, z ∈ U.

For f(z) := h(z) · eg(z)−1 and z ∈ Kn, we obtain∣∣f(z)− fn(z)
∣∣ =

∣∣f(z)− q(z)
∣∣ < eRe g(z)−1 ≤ e|g(z)−δ(z)|−1+δ(z) < eδ(z) =

1

n
.

Theorem 3. Let ϕn : Ω1 → Ω2, n ∈ N, be a sequence of injective holomorphic mappings
which is run away and let K be a compact exhaustion of Ω1. Then, there is a subsequence
(ϕmn)n∈N of (ϕn)n∈N and a universal function f ∈ U(C) such that for each normal family
M in H(Ω1) with covering numbers (λn)n∈N =

(
λn(M)

)
n∈N, we have

∀n ∈ N : F (f, C,M, dK,
2

n
) ≤ n(λn + 1).
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Proof. 1. Let (mn)n∈N be a strictly increasing sequence of natural numbers correspond-
ing to the compact exhaustion K = (Kn)n∈N, as in Proposition 1. Then, the sets
ϕmn(Kn) (n ∈ N) are pairwise disjoint, have connected complements and tend to
infinity.

2. According to Mergelian’s Theorem, the set of polynomials with coefficients in Q+iQ
is dense in (H(Ω1), dK). Let (qn) be an enumeration of them, and let f

(n)
1 , . . . , f

(n)
λn
∈

H(Ω1) be those functions whose 1
n -neighborhoods cover M. We define (fN ) as the

following sequence

f
(1)
1 , f

(1)
2 , . . . , f

(1)
λ1
, q1, f

(2)
1 , f

(2)
2 , . . . , f

(2)
λ2
, q2, f

(3)
1 , f

(3)
2 , . . . , f

(3)
λ3
, q3, . . .

3. According to Lemma 2, there exists a function f ∈ H(Ω2), such that

max
ϕmN

(KN )

∣∣f(z)− fN (ϕ−1mN
(z))

∣∣ < 1

N
, N ∈ N,

or equivalently,∥∥CmN f − fN
∥∥
KN

=
∥∥(f ◦ ϕmN )− fN

∥∥
KN

<
1

N
, N ∈ N.

By definition of the metric dK this implies

dK(CmN f, fN ) <
1

N
, N ∈ N.

4. Fix g ∈M and n ∈ N. According to the second step, we find a function fN with

n ≤ N ≤
n−1∑
j=1

(λj + 1) + λn ≤ n(λn + 1) and dK(fN , g) <
1

n
.

Together with the third step, we have

dK(CmN f, g) <
1

n
+

1

N
≤ 2

n
.

Moreover,

dK(Cmk
f, qn) <

1

k
, n ∈ N,

with k =
∑n

j=1(λj + 1) showing that f ∈ U(C) satisfies the desired property.

Remark 4.

(i) Roughly speaking, for a sequence of composition operators between spaces of holo-
morphic functions, the speed of approximating the elements of a normal family M
by a universal function is only governed by the size ofM, measured by the covering
numbers (λn)n∈N.

5



(ii) In [4], it is proved that, in case of Ω1 = Ω2 not being conformally equivalent to
C\{0}, the set U(C) is a dense Gδ-set, if non-empty. The above theorem states that
there is

f ∈ U(C) ∩
⋂
n∈N

λn⋂
j=1

n(λn+1)⋃
N=1

C−1mN

(
B(f

(n)
j ,

1

n
)
)
,

where f
(n)
1 , . . . , f

(n)
λn

are the centers of open 1/n-balls covering the normal familyM.
The continuity of the operators CmN implies that the above set is a Gδ-set. But in
general it is not dense.
To see this, let K = (Kn)n∈N be the compact exhaustion of Ω1 giving the metric dK

and letM = {0}. Then, one has λn = 1 and one can take f
(n)
1 = 0, n ∈ N. Assume,

there is a sequence (kn)n∈N of natural numbers such that

⋂
n∈N

kn⋃
N=1

C−1mN

(
B(0,

1

n
)
)

=

{
f ∈ H(Ω2) : ∀n ∈ N ∃ 1 ≤ N ≤ kn with sup

z∈Kn

∣∣f(ϕmN (z))
∣∣ < 1

n

}
is dense in H(Ω2). Let K ⊆ Ω2 be compact such that

⋃k1
N=1 ϕmN (K1) ⊆ K. By

assumption, there is

g ∈
{
f ∈ H(Ω2) :

∥∥f − 2
∥∥
K
< 1

}
∩
⋂
n∈N

kn⋃
N=1

C−1mN

(
B(0,

1

n
)
)
.

Hence, there exists an 1 ≤ N ≤ k1 with∥∥g − 0
∥∥
ϕmN

(K1)
=
∥∥CmN g − 0

∥∥
K1

< 1,

which gives a contradiction to
∥∥g − 2

∥∥
K
< 1.

Let X ,Y be metric spaces and L = (LN )N∈N a universal sequence of continuous mappings
from X to Y. If M ⊆ Y is totally bounded, we have just seen that for any sequence of
natural numbers (kn)n∈N the Gδ-set in (1) need not be dense in X although there is always
some sequence (kn)n∈N such that the above set is non-empty, cf. the introduction.
However, if one weakens the requirement

∀ n ∈ N : F (x,L,M, 2/n) ≤ kn

to (we use the standard Landau notations)(
F (x,L,M, 2/n)

)
n∈N ∈ O

(
(kn)n∈N

)
, shortly F (x,L,M, 2/n) ∈ O(kn),

then the corresponding set is dense, see the next result. Whenever the index, mostly n ∈ N,
is clear, we will shorten the Landau notation from (an)n∈N ∈ O

(
(bn)n∈N

)
to an ∈ O(bn).

Theorem 5. Let ϕn : Ω1 → Ω2, n ∈ N, be a sequence of injective holomorphic mappings
which is run away, and let K be a compact exhaustion of Ω1. Then, there is a subsequence
(ϕmn)n∈N of (ϕn)n∈N and a dense set of universal functions f ∈ U(C) in H(Ω2), such that
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for every choice of countably many normal families Mi in H(Ω1), i ∈ N, with covering
numbers (λn,i)n∈N =

(
λn(Mi)

)
n∈N, we have

∀ i ∈ N : F (f, C,Mi, dK,
2

n
) ∈ O(nλn,i). (4)

Proof. 1. Let (mn)n∈N be again a strictly increasing sequence of natural numbers cor-
responding to the compact exhaustion K = (Kn)n∈N, as in Proposition 1. Then, the
sets ϕmn(Kn) (n ∈ N) are pairwise disjoint, have connected complements and tend
to infinity. We have to show that for given h ∈ H(Ω2), K ⊆ Ω2 compact and ε > 0,
there exists a universal function f ∈ U(C) with the desired property and∥∥f − h∥∥

K
< ε.

Since ϕmn(Kn) (n ∈ N) tends to infinity, there is some M ∈ N such that K ∩
ϕmn(Kn) = ∅ for all n > M .

2. Also, let (qn) be as in the proof of Theorem 3, and let f
(n,i)
1 , . . . , f

(n,i)
λn,i

∈ H(Ω1)

be those functions whose 1
n -neighborhoods coverMi, merged in sequences (f

(i)
n )n∈N

defined as

f
(1,i)
1 , f

(1,i)
2 , . . . , f

(1,i)
λ1

, f
(2,i)
1 , f

(2,i)
2 , . . . , f

(2,i)
λ2

f
(3,i)
1 , f

(3,i)
2 , . . . , f

(3,i)
λ3

, . . .

With these sequences we build (fN ) as follows: Every (2j − 1)-st element of (fN )

is qj , j ∈ N. From the remaining elements every (2j − 1)-st element is f
(1)
j , j ∈ N.

Again, from the remaining every (2j − 1)-st element is f
(2)
j , j ∈ N, and so on.

3. According to Lemma 2, there exists a function f ∈ H(Ω2), such that∥∥f − h∥∥
K
< ε and max

ϕmM+N
(KM+N )

∣∣f(z)− fN (ϕ−1mM+N
(z))

∣∣ < 1

M +N
, N ∈ N,

or equivalently,∥∥CmM+N f − fN
∥∥
KM+N

=
∥∥(f ◦ ϕmM+N )− fN

∥∥
KM+N

<
1

M +N
, N ∈ N.

By definition of the metric dK, this implies

dK(CmM+N f, fM+N ) <
1

M +N
, N ∈ N.

4. Fix g ∈Mi and n ∈ N. According to the second step, we find a function fN with

n ≤M +N ≤ c̃i · n(λn,i + 1) ≤ ci nλn,i, (5)

for appropriately chosen constants c̃i, ci, and

dK(fN , g) <
1

n
.

Together with the third step, we have

dK(CmM+N f, g) <
1

n
+

1

M +N
≤ 2

n
.
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Moreover,

dK(CmM+2n−1f, qn) <
1

M + 2n− 1
, n ∈ N,

showing that f ∈ U(C) satisfies the desired property.

In equation (4), we have seen

∀ i, n ∈ N : F (f, C,Mi, dK,
2

n
) ≤ ci nλn,i,

where the constants ci as given in (5) grow exponentially in i, more precisely (ci)i∈N ∈
Θ
(
(2i)i∈N

)
, i.e., (ci)i∈N ∈ O

(
(2i)i∈N

)
and (2i)i∈N ∈ O

(
(ci)i∈N

)
, as we see from the second

step of the above proof.

3 Differentiation Operators and Fast Approximation

In this section, we consider the differentiation operator

D : H(Ω)→ H(Ω), f 7→ f ′,

on spaces of holomorphic functions on a simply connected bounded domain Ω ⊆ C, as
well as the sequence D := (Dn)n∈N. It is known that the existence of f ∈ U(D) is
equivalent to Ω being simply connected, cf. [18]. Therefore, without loss of generality, we
may and will assume Ω to be simply connected throughout the whole paragraph. Since
differentiation commutes with translations, we can assume 0 ∈ Ω without loss of generality.
More precisely, we may assume that 0 is contained in the interior of K1 for a compact
exhaustion K = (Kn)n∈N of Ω.
Moreover, there is a compact exhaustion K = (Kn)n∈N of Ω such that Kn is connected
and simply connected for every n ∈ N, see e.g. [16, Theorem 13.3]. Therefore, we assume
without loss of generality that for the metric dK inducing the compact-open topology on
H(Ω), cf. (2), we have Kn connected and simply connected.
Furthermore, we denote the m-th Faber polynomial for Kn by Fn,m, m ∈ N0. Then, Fn,m
is a polynomial of degree m which is obtained in the following way, see e.g. [9] or [13].
By the Riemann Mapping Theorem, there is a unique conformal mapping ϕn : C\Kn →
C\D with ϕn(∞) =∞ and ϕ′n(∞) > 0. Hence, for some c > 0, we have for |z| sufficiently
large

ϕn(z) =
1

c
z + c0 +

∞∑
ν=1

cνz
−ν .

Moreover, for |z| sufficiently large and every m ∈ N, we have

ϕmn (z) = Fn,m(z) +

∞∑
ν=1

ανz
−ν ,

that is, Fn,m is the analytic part of the Laurent expansion of ϕmn . With ψn := ϕ−1n :
C\D→ C\Kn, we have

ψn(w) = cw + d0 +

∞∑
ν=1

dνw
−ν , |w| > 1.
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For R > 1, we set Γn,R := {ψn(w) : |w| = R}. Then, Γn,R is a closed Jordan curve, and
for each n ∈ N, there is Rn > 1, such that Γn,R ⊆ Ω for all 1 < R < Rn. Denoting by In,R
the bounded (open) component of C\Γn,R, we obtain Kn ⊆ In,R ⊆ Ω for every n ∈ N and
1 < R < Rn.
If f is a complex function holomorphic in a neighborhood In,R of Kn, we define for ν ∈ N0

aν(f,Kn) :=
1

2πi

∫
|w|=r

f(ψn(w))

wν+1
dw,

which is independent of r ∈ (1, R). Then

f(z) =
∞∑
ν=0

aν(f,Kn)Fn,ν(z),

where the series converges uniformly and absolutely on In,R, in particular, on Kn. Thus,
this expansion is valid in In,Rn for every f ∈ H(Ω). Moreover, the above so-called
Faber expansion of f is unique, see again e.g. [9] or [13]. From this, and the fact
that Fn,m is a polynomial of degree m, it follows that for every polynomial p, we have
p =

∑m
ν=0 aν(p,Kn)Fn,ν , whenever m ≥ deg(p). In case of Kn = {z ∈ C : |z − z0| ≤ ρ},

the above expansion of f is nothing but the Taylor expansion of f about z0.
From [13, Lemma preceding Theorem 3.16], it follows

1

2
Rν <

∣∣Fn,ν(z)
∣∣ < 3

2
Rν , (6)

for all 1 < R < Rn, for every z ∈ Γn,R, and ν ∈ N0.
For f ∈ H(Ω) and n,m ∈ N, we define

Tn,mf : C→ C, Tn,mf(z) :=

m∑
ν=0

aν(f,Kn)Fn,ν(z),

that is, Tn,mf is a polynomial of degree ≤ m.
Moreover, we denote by f (−j) the j-th anti-derivative of f , i.e.,

f (0)(z) := f(z), f (−j)(z) :=

z∫
0

f (−j+1)(ζ)dζ, j ∈ N, z ∈ Ω.

Recall, we assume without restriction 0 ∈ Ω. It is very well-known that for every f ∈ H(Ω)
the sequence (Ijf)j∈N0 converges to zero in H(Ω), where Ij : H(Ω)→ H(Ω), Ijf := f (−j),
j ∈ N0, see e.g. [12, Lemma 1].
The next Lemma is rather technical. Its conclusions simplify in case of Ω = D, which will
be stated separately as Corollary 7 below.

Lemma 6. Let K be a compact exhaustion of Ω and M ⊆ H(Ω) a normal family. For
n ∈ N, let

Mn := Mn(M) := sup
f∈M

max
|w|= 1

2
(1+Rn)

∣∣f(ψn(w)
)∣∣.

9



1. There is an increasing sequence

γn(M) ∈ O
(
Rn + 1

Rn − 1
ln
(
n
Rn + 1

Rn − 1
Mn

))
,

of natural numbers tending to infinity such that, for every f ∈M, we have∥∥Tn,γnf − f∥∥Kn
<

1

n
.

Moreover, if there is k ∈ N0 such that Mn(M) ∈ O(nk), then,

γn(M) ∈ O
(
Rn + 1

Rn − 1
ln
(
n
Rn + 1

Rn − 1

))
.

2. There is a sequence
(
σn(M)

)
n∈N of natural numbers tending to infinity, such that

for every f ∈M, n ∈ N, and m ∈ N0, we have∥∥(Tn,mf)(−j)
∥∥
Kn

<
1

n2
,

whenever j ≥ σn(M).

We point out that the above sequences
(
γn(M)

)
n∈N and

(
σn(M)

)
n∈N depend on the

compact exhaustion K of Ω!

Proof. Let n ∈ N be arbitrary. Note, Mn <∞ by the total boundedness of M.

1. For f ∈M and 1 < R < Rn, we have by the maximum principle

∥∥Tn,mf − f∥∥Kn
≤

∞∑
ν=m+1

∣∣aν(f,Kn)
∣∣ ∥∥Fn,ν∥∥Kn

≤
(6)

3

2

∞∑
ν=m+1

∣∣aν(f,Kn)
∣∣Rν .

Moreover, for the Faber coefficients we obtain

∣∣aν(f,Kn)
∣∣ =

1

2π

∣∣∣∣∣
∫
|w|= 1

2
(1+Rn)

f(ψn(w))

wν+1
dw

∣∣∣∣∣ ≤
(

2

1 +Rn

)ν
Mn,

so, for 1 < R < 2
3 + 1

3Rn = 1
3(2 +Rn),

3

2

∞∑
ν=m+1

∣∣aν(f,Kn)
∣∣Rν ≤ 3

2
Mn

∞∑
ν=m+1

(
2R

1 +Rn

)ν
=

3

2
Mn

(
2R

1 +Rn

)m+1 1

1− 2R
1+Rn

≤ 3

2
Mn

(
4 + 2Rn
3 + 3Rn

)m+1

3
1 +Rn
Rn − 1

≤ 5
Rn + 1

Rn − 1
Mn

(
4 + 2Rn
3 + 3Rn

)m+1

.

10



Thus, in order that
∥∥Tn,mf − f∥∥Kn

< 1
n , it suffices

ln

(
5n

Rn + 1

Rn − 1
Mn

)
< (m+ 1) ln

(
3 + 3Rn
4 + 2Rn

)
= (m+ 1) ln

(
1 +

Rn − 1

2(2 +Rn)

)
.

Using the elementary inequality

∀x ≥ 0 :
x

1 + x
≤ ln(1 + x),

the above inequality is surely satisfied if

ln

(
5n

Rn + 1

Rn − 1
Mn

)
< (m+ 1)

Rn−1
2(2+Rn)

1 + Rn−1
2(2+Rn)

= (m+ 1)
Rn − 1

3(Rn + 1)
.

Taking all this together, we conclude

∞∑
ν=m+1

∣∣aν(f,Kn)
∣∣ ∥∥Fn,ν∥∥Kn

<
1

n

for n ∈ N, and for all f ∈M, provided that

m ≥ 3
Rn + 1

Rn − 1
ln

(
5n

Rn + 1

Rn − 1
Mn

)
. (7)

2. (i) Now, we consider Tn,m as a continuous linear operator from H(Ω) into H(In,Rn)
and, first, we show that N :=

⋃
m∈N0

Tn,m(M) is a normal family in H(In,Rn):

From the above mentioned properties of the Faber expansion, it follows that for
every f ∈ H(Ω) the sequence (Tn,mf)m∈N0 converges in H(In,Rn) to f |In,Rn

. Since
H(Ω) is a Fréchet space, the equicontinuity of the sequence of operators (Tn,m)m∈N0

follows from the Uniform Boundedness Principle.

Next, let U be an absolutely convex zero neighborhood in H(In,Rn). By the equicon-
tinuity of (Tn,m)m∈N0 , there is an absolutely convex zero neighborhood V in H(Ω)
such that Tn,m(V ) ⊆ U for every m ∈ N0. Since M is a normal family, hence,
bounded in H(Ω), there is ρ > 0 with M ⊆ ρV , implying N :=

⋃
m∈N0

Tn,m(M) ⊆
ρU . Since U was arbitrary this gives the boundedness of N in H(In,Rn). Thus, N
is relatively compact, i.e., a normal family.

(ii) Since we assumed 0 ∈ K1, the above-explained mappings Ij : H(In,Rn) →
H(In,Rn) are well-defined, continuous and linear. Moreover, for each f ∈ H(In,Rn)
the sequence (Ijf)j∈N0 tends to zero in H(In,Rn). The Uniform Boundedness Prin-
ciple implies, again, the equicontinuity of (Ij)j∈N0 . Because Kn ⊆ In,Rn , we can
find a zero neighborhood V such that

∥∥Ijf∥∥Kn
< 1

2n2 for every f ∈ V and every

j ∈ N0. Since for every f ∈ H(In,Rn) there is j(f) ∈ N with
∥∥Ijf∥∥Kn

< 1
2n2 for each

j ≥ j(f), ∥∥Ijg∥∥Kn
≤
∥∥Ij(g − f)

∥∥
Kn

+
∥∥Ijf∥∥Kn

<
1

n2

holds for every g ∈ f + V and j ≥ j(f).
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Because N ⊆
⋃
f∈N (f + V ) is totally bounded, there are f1, . . . , fk ∈ N such that

⋃
m∈N0

Tn,m(M) = N ⊆
k⋃
l=1

(fl + V ).

Setting σn := max{j(f1), . . . , j(fk)}, we finally obtain
∥∥(Tn,mf)(−j)

∥∥
Kn

< 1
n2 for

each f ∈M, m ∈ N0, and j ≥ σn.

Corollary 7. Let M ⊆ H(D) be a normal family and KD be the standard compact ex-
haustion of D, cf. (3).

1. For each n ∈ N, we have Mn = Mn(M) = supf∈M
∥∥f∥∥

K2n+1
.

2. For the sequence
(
γn(M)

)
n∈N, we have

γn(M) ∈ O
(
n ln(nMn)

)
,

and if Mn(M) ∈ O(nk) for some k ∈ N0, then,

γn(M) ∈ O
(
n ln(n)

)
.

3. For the sequence
(
σn(M)

)
n∈N, we can assume without restriction

σn(M) ∈ O
(

ln(n2Mn)
)
.

Proof. For the compact set Kn = n
n+1D, we have ϕn : C\Kn → C\D, ϕn(z) = n+1

n z.

Thus, ψn(z) = n
n+1z and Rn = n+1

n . Moreover, because ϕνn(z) = (n+1
n )νzν , we have

Fn,ν(z) = (n+1
n )νzν . So, we obtain for sufficiently small 1 < r

aν(f,Kn) =
1

2πi

∫
|w|=r

f(ψn(w))

wν+1
dw

=

(
n

n+ 1

)ν 1

2πi

∫
|w|= n

n+1
r

f(w)

wν+1
dw

=

(
n

n+ 1

)ν
aν(f),

where aν(f) denotes the ν-th Taylor coefficient of f expanded about the origin. Therefore,
for every f ∈ H(D), n ∈ N, and ν ∈ N0, we have

∀ z ∈ Kn : aν(f,Kn)Fn,ν(z) = aν(f)zν . (8)

1. For each f ∈M, we have

max
|w|= 1

2
(1+Rn)

∣∣f(ψn(w)
)∣∣ = max

|z|= 2n+1
2n+2

∣∣f(z)
∣∣ =

∥∥f∥∥
K2n+1

.
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2. From inequality (7), equation (8), and Rn+1
Rn−1 = 2n + 1, we obtain for every f ∈ M

and each n ∈ N that
∞∑

ν=m+1

∣∣aν(f)
∣∣ ( n

n+ 1

)ν
<

1

n
,

whenever
m ≥ 3(2n+ 1) ln(5n(2n+ 1)Mn(M)). (9)

3. As shown above, the m-th partial sums Tn,m of the Faber expansions are independent
of n and coincide with the m-th Taylor polynomials expanded about the origin.
Because Kn = n

n+1 D̄, it follows

∣∣aν(f)
∣∣ =

∣∣∣∣∣ 1

2πi

∫
|z|= 2n+1

2n+2

f(z)

zν+1
dz

∣∣∣∣∣ ≤
(

2n+ 2

2n+ 1

)ν
·
∥∥f∥∥

K2n+1
, (10)

which leads, for every n ∈ N, m ∈ N0, j ≥ 2, and f ∈M, to

∥∥(Tn,mf)(−j)
∥∥
Kn

=

∥∥∥∥∥
m∑
ν=0

aν(f)

(ν + 1) · · · (ν + j)
zν+j

∥∥∥∥∥
Kn

≤ 1

j!

∞∑
ν=0

∣∣aν(f)
∣∣ ( n

n+ 1

)ν+j
≤
(10)

1

j!

(
n

n+ 1

)j ∥∥f∥∥
K2n+1

·
∞∑
ν=0

(
n(2n+ 2)

(n+ 1)(2n+ 1)

)ν
≤ (2n+ 1)Mn

j!

≤3nMn

j!
.

If j satisfies j! > 3n2Mn, we get
∥∥(Tn,mf)(−j)

∥∥
Kn

< 1
n2 for all f ∈M. In particular,

by applying Stirling’s Formula, we can choose σn(M) ∈ O
(

ln(n2Mn)
)
.

Theorem 8. Let K be a compact exhaustion of Ω and M be a normal family in H(Ω)
with covering numbers (λn)n∈N =

(
λn(M)

)
n∈N, as well as the sequences (γn)n∈N =(

γn(M)
)
n∈N and (σn)n∈N =

(
σn(M)

)
n∈N from Lemma 6. Then, there exists a univer-

sal function f ∈ U(D) such that

∀n ∈ N : F (f,D,M, dK,
3

n
) ≤ n(λn + 1)

(
γn + σn(λn+1)

)
.

Proof. 1. Let f
(n)
1 , . . . , f

(n)
λn
∈ H(Ω) be those functions whose 1

n -neighborhoods cover

M. Moreover, let Q = {qn := f
(n)
λn+1 : n ∈ N} be a dense set of polynomials in

H(Ω), which exists by Mergelian’s Theorem and our general assumption that Ω is
simply connected. Without restriction, we may assume deg(qn) ≤ γn, as well as∥∥q(−j)n

∥∥
Kn

< 1/n2 for every j ≥ σn, holds for every n ∈ N. Otherwise, we elongate
the sequence (qn) by adding the zero polynomial several times, noticing (γn), (σn)
may be chosen to tend to ∞, as n→∞.

Now, we define (fk)k∈N as the following sequence

f
(1)
1 , f

(1)
2 , . . . , f

(1)
λ1+1, f

(2)
1 , f

(2)
2 , . . . , f

(2)
λ2+1, . . . , f

(n)
1 , f

(n)
2 , . . . , f

(n)
λn+1, . . .

13



For every k ∈ N, there are unique n = n(k) ∈ N, n ≤ k, and 1 ≤ j ≤ λn + 1 such

that fk = f
(n)
j . According to Lemma 6 and the fact that the degree of qn does not

exceed γn, it holds for Pk := Tn,γnfk = Tn(k),γn(k)
fk that

∥∥Pk − fk∥∥Kn
=
∥∥Tn,γnfk − fk∥∥Kn

<
1

n
.

Therefore, by the definition of our metric, this implies

dK(fk, Pk) <
1

n
(11)

for every k ∈ N. Note, in case of fk = f
(n)
λn+1 = qn, we have Pk = Tn,γnqn = qn,

because qn is a polynomial of degree not exceeding γn.

Next, we define

N1 := σ1 + 1, Nk := γn(k) + σk +Nk−1, k ≥ 2,

and the function f as

f(z) :=

∞∑
j=1

P
(−Nj)
j (z).

Since, for every n ≤ l, we have

l+m∑
j=l

∥∥P (−Nj)
j

∥∥
Kn
≤

l+m∑
j=l

∥∥P (−Nj)
j

∥∥
Kj
≤

l+m∑
j=l

1

j2

by Lemma 6 and the choice of Q, f is a well-defined holomorphic function in Ω.

2. Let k ∈ N. For all 1 ≤ j < k, we have Nk −Nj > γn(k) ≥ γn(j). It follows

f (Nk)(z) = Pk(z) +

∞∑
j=k+1

P
(−Nj+Nk)
j (z)

For j ≥ k + 1, we have Nj −Nk ≥ σj . Since k ≥ n, we estimate

∥∥f (Nk) − Pk
∥∥
Kn

=

∥∥∥∥∥∥
∞∑

j=k+1

P
(−Nj+Nk)
j

∥∥∥∥∥∥
Kn

≤
∞∑

j=k+1

∥∥P (−Nj+Nk)
j

∥∥
Kj

=

∞∑
j=k+1

∥∥(Tn(j),γn(j)
fj)

(−Nj+Nk)
∥∥
Kj

≤
∞∑

j=k+1

1

j2
<

1

k
<

1

n
.

Therefore, by the definition of our metric dK, we obtain

dK(DNkf, Pk) <
1

n
. (12)
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3. Let given an arbitrary function g ∈ M. Hence, there exists a function fk with
k ≤ n · (λn + 1) and

dK(fk, g) <
1

n
.

Together with (11) and (12), it follows

dK(DNkf, g) ≤ dK(DNkf, Pk) + dK(Pk, fk) + dK(fk, g) <
3

n
.

We calculate

Nk =

k∑
j=1

γn(j) + σj ≤ k
(
γn(k) + σk

)
≤ n(λn + 1)

(
γn + σn(λn+1)

)
,

as proposed.

4. Moreover, by construction, we have Pk = qn for every k ∈ N with fk = qn. From
(12), we conclude

dK(DNkf, qn) <
1

n

for such k, which finally shows f ∈ U(D).

Combining the above Theorem 8 with Corollary 7, we immediately get the following.

Corollary 9. Let KD be the standard exhaustion of D and M⊆ H(D) be a normal family
with covering numbers (λn)n∈N. Then, there is a universal function f ∈ U(D) such that

F
(
f,

3

n
) ∈ O

(
n2λn ln(nλn max{1,M2nλn})

)
or equivalently

F
(
f,

1

n
) ∈ O

(
n2λ3n ln(nλ3n max{1,M6nλ3n})

)
,

where Mn = Mn(M) = supf∈M
∥∥f∥∥

K2n+1
.

Remark 10. In contrast to sequences of composition operators, the speed of approximat-
ing elements of a normal family M by universal functions for the differentiation operator
is not only governed by the size of M, measured by the covering numbers

(
λn
)
n∈N.

In case of Ω = D, also the growth of the members of M, given by the sequence (Mn)n∈N,
comes into play. In the general case, the sequences

(
γn(M)

)
n∈N, quantizing the approxi-

mative behavior of the Faber expansion, and
(
σn(M)

)
n∈N, giving the speed of convergence

towards zero of the anti-derivatives, are relevant.

4 Examples of normal families

We conclude with some examples of normal families in H(D) and apply our results from
the previous sections. Throughout, we choose the standard compact exhaustion KD of D,
cf. (3). Therefore, we omit the reference to the fixed metric dKD in the notation of this
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section.

Trivially, every finite subset E = {f1, . . . , fk} of H(D) is a normal family with eventually
constant sequence λn(E) = k. Applying Theorem 3 and Corollary 9 respectively yields
the following result.

Corollary 11. Let C be a sequence of composition operators as in Theorem 3, D the
sequence of differentiation operators. For every finite subset E = {f1, . . . , fk} of H(D),
there are f ∈ U(C) and g ∈ U(D) such that

F (f, C, E, 1

n
) ∈ O(n)

and

F
(
g,D, E, 1

n
) ∈ O

(
n2 ln(n max{1,M6kn(E)})

)
respectively.

Moreover, the unit ball

B∞ :=
{
f ∈ H(D) :

∣∣f(z)
∣∣ ≤ 1 for all z ∈ D

}
of H∞(D) is a normal family in H(D) because, obviously, it is locally bounded. It is
immediately seen that the corresponding sequence

(
Mn(B∞)

)
n∈N is constantly equal to

one. Hence, taking ln(n) ∈ O
(
nε
)

for each ε > 0 into account, another application of
Theorem 3 and Corollary 9 gives the next corollary.

Corollary 12. Let C be a sequence of composition operators as in Theorem 3, D the
sequence of differentiation operators. There is f ∈ U(C) with

F (f, C, B∞, 1

n
) ∈ O

(
nλ2n(B∞)

)
.

Moreover, there is g ∈ U(D) such that

F (g,D, B∞, 1

n
) ∈ O

(
n2+ε(λ3n(B∞))1+ε

)
,

for every ε > 0.

By Corollary 9 the covering numbers
(
λn(M)

)
n∈N, as well as the sequence

(
Mn(M)

)
n∈N,

determine how fast the approximation of a normal family M ⊆ H(D) by a universal
function may be.
In order to get a better impression of the concrete error terms involved, we shall consider
the following example. It is very well-known, cf. [16, Theorem 12.6], that the set of
holomorphic one-to-one mappings of D onto itself, Aut(D), is given by

Aut(D) =

{
fγ,a(z) = eiγ

z − a
1− āz

: γ ∈ [0, 2π), a ∈ D
}
.

Since fγ,a(D) = D, Aut(D) is bounded in H(D), so a normal family, and Mn(Aut(D)) = 1
for every n ∈ N. Next, we give bounds for λn(Aut(D)).

Lemma 13. For the normal family Aut(D) in H(D), we have λn(Aut(D)) ∈ O(n7).
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Proof. Fix two functions fγj ,aj ∈ Aut(D) (j = 1, 2). Because
∣∣f0,a2(z)

∣∣ ≤ 1, we have for
every z ∈ Kn that

∣∣fγ1,a1(z)− fγ2,a2(z)
∣∣ =

∣∣∣∣eiγ1 z − a11− ā1z
− eiγ2 z − a2

1− ā2z

∣∣∣∣
=

∣∣eiγ1 (f0,a1(z)− f0,a2(z)) + (eiγ1 − eiγ2)f0,a2(z)
∣∣

≤
∣∣∣∣(z − a1)(1− ā2z)− (z − a2)(1− ā1z)

(1− ā1z)(1− ā2z)

∣∣∣∣+
∣∣ei(γ1−γ2) − 1

∣∣
≤ 1

(1− ( n
n+1))2

∣∣a2 − a1 + (a1ā2 − a2ā1)z + (ā1 − ā2)z2
∣∣

+
∣∣i∫ γ1−γ2

0
eitdt

∣∣
≤ (n+ 1)2

(
2
∣∣a1 − a2∣∣+

∣∣a1ā2 − a2ā1∣∣)+
∣∣γ1 − γ2∣∣

≤ 4(n+ 1)2
∣∣a1 − a2∣∣+

∣∣γ1 − γ2∣∣
Thus, for

∥∥fγ1,a1−fγ2,a2∥∥Kn
< 1/n to hold, only O(n) different γ and O(n6) different a ∈ D

are needed. Since, by the definition of the metric dK, the inequality
∥∥fγ1,a1 − fγ2,a2∥∥Kn

<

1/n implies dK(fγ1,a1 , fγ2,a2) < 1/n, we obtain λn ∈ O(n7).

Remark 14. If one considers, instead of Aut(D), the smaller set

M :=
{
f ∈ Aut(D) : the only zero z0 of f satisfies |z0| ≤ r

}
=
{
fγ,a : |a| ≤ r, γ ∈ [0, 2π)

}
for fixed r ∈ (0, 1), a similar calculation as in the proof of Lemma 13 gives λn(M) ∈ O(n3).

These growth estimations motivate to introduce the following notion.

Definition 15. Let (X , d) be a complete metric space, (Y, d) a separable metric space,
M ⊆ Y be totally bounded, and L = (Ln)n∈N be a sequence of continuous mappings
Ln : X → Y. We say that an element x ∈ X is m-polynomial L-universal for M if
x ∈ U(L) and

F (x,L,M, 1/n) ∈ O(nm).

We abbreviate the set of all such x by Um(L,M). L is called m-polynomial universal for
M if Um(L,M) 6= ∅.

Again, taking ln(n) ∈ O
(
nε
)

for each ε > 0 into account, Theorem 3, Corollary 9 and
Lemma 13 immediately give us

Corollary 16. Let C be a sequence of composition operators as in Theorem 3, D the
sequence of differentiation operators. Consider the normal family Aut(D) in H(D). Then,
there exist

(i) 8-polynomial C-universal functions for Aut(D),

(ii) (9+ε)-polynomial D-universal functions for Aut(D) for each ε > 0.
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Remark 17.

(i) If the covering numbers λn = λn(M) of a totally bounded subset M satisfy λn ∈
O(nm), the number m is related to the so-called box-counting dimension of M.

(ii) LetM⊆ Y be totally bounded with covering numbers (λn). Hence, for every n ∈ N,

there are f
(n)
1 , . . . , f

(n)
λn
∈ Y which cover M with their 1

n -neighborhoods. Then, we
have

Um(L,M) =
⋃
c∈N

⋂
n∈N

λn⋂
j=1

c·nm⋃
N=1

L−1N
(
U1/n(f

(n)
j )

)
. (13)

From the description (13), we deduce that the polynomial universal elements form
a countable union of Gδ-sets, which is called a Gδσ-set in the literature. A natural
question is: Is it also Gδ?

A very prominent example of a normal family in H(D) is the set

S = {f ∈ H(D) : f one-to-one, f(0) = 0, f ′(0) = 1}.

From the well-known inequality due to Koebe, see e.g. [15, Satz 15.15]:

∀ f ∈ S, z ∈ D :
∣∣f(z)

∣∣ ≤ |z|
(1− |z|)2

, (14)

follows the boundedness of S in H(D), in fact, S is a normal family and

Mn(S) = (2n+ 1)(2n+ 2) ∈ O(n2). (15)

A special subset of S is given by

K :=
{
fα : α ∈ [0, 2π)

}
⊆ S, f0(z) =

z

(1− z)2
, fα(z) = e−iαf0(e

iαz),

the so-called Koebe extremal functions. Obviously, K is a normal family also withMn(K) ∈
O(n2). As Taylor expansions about the origin, one gets

f0(z) =
∞∑
ν=1

νzν , fα(z) =
∞∑
ν=1

νei(ν−1)αzν .

Lemma 18. For the normal family K in H(D), we have λn(K) ∈ O
(
n2 ln(n)

)
.

Proof. Consider

Tmfβ(z) =

m∑
ν=1

νei(ν−1)βzν , m ∈ N, β ∈ [0.2π),

where Tmf denotes, again, the m-th Taylor polynomial of f expanded about the origin.
By Corollary 7, there is a sequence γn ∈ O

(
n ln(n)

)
with

∥∥Tγ2nf − f
∥∥
Kn

< 1
2n for all

f ∈ S. Using the simple estimate

∣∣ei(ν−1)α − ei(ν−1)β∣∣ =

∣∣∣∣∫ α

β

1

i(ν − 1)
ei(ν−1)tdt

∣∣∣∣ ≤ 1

ν − 1

∣∣α− β∣∣, (16)
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we obtain, for f ∈ K and z ∈ Kn,

∣∣fα(z)− Tγ2nfβ(z)
∣∣ ≤

γ2n∑
ν=2

ν
∣∣ei(ν−1)α − ei(ν−1)β∣∣+

∥∥fα − Tγ2nfα∥∥Kn

<
(16)

γ2n∑
ν=2

ν

ν − 1

∣∣α− β∣∣+
1

2n
< 2γ2n

∣∣α− β∣∣+
1

2n
.

Thus, for
∥∥fα − Tγ2nfβ∥∥Kn

< 1/n to hold for some β ∈ [0, 2π) only O(n2 ln(n)) values of
β are needed.

As above, we deduce from the results of the previous section and Lemma 18:

Corollary 19. Let C be a sequence of composition operators as in Theorem 3, D the
sequence of differentiation operators. Consider the normal family K of Koebe extremal
functions in H(D). Then, there exist

(i) (2+ε)-polynomial C-universal functions for K for each ε > 0,

(ii) (4+ε)-polynomial D-universal functions for K for each ε > 0.

Before we give (what we think to be rather coarse) bounds for the growth of
(
λn(S)

)
n∈N,

we apply Theorem 3 and Corollary 9 to S.

Corollary 20. Let C be a sequence of composition operators as in Theorem 3, D the
sequence of differentiation operators, and (λn)n∈N =

(
λn(S)

)
n∈N. Then, there are some

f ∈ U(C) and g ∈ U(D) with

F (f, C, S, 1

n
) ∈ O

(
nλ2n

)
,

respectively

F (g,D, S, 1

n
) ∈ O

(
n2λ3n ln(nλ3n)

)
.

The next result gives bounds for
(
λn(S)

)
n∈N.

Lemma 21. We have
λn(S) ∈ O

(
exp(n1+ε)

)
,

for every ε > 0.

Proof. 1. Let n ∈ N be fixed. Consider for f ∈ S its Taylor expansion f(z) = z +∑∞
ν=2 aν(f)zν about 0. By de Branges’ famous proof of Bieberbach’s Conjecture [8],

we know aν(f) ∈ νD̄ for all ν ≥ 2. In (9), we obtained

∞∑
ν=m+1

∣∣aν(f)
∣∣ ( n

n+ 1

)ν
<

1

n
,

whenever
m ≥ mn := 3(2n+ 1)dln(5n(2n+ 1)Mn(S))e; (17)

as mentioned earlier Mn(S) = (2n+ 1)(2n+ 2).
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2. As we will see from the following estimate, any function

g(z) := z +

m2n∑
ν=2

bνz
ν ,

whose coefficients bν fulfill
∣∣aν(f) − bν

∣∣ ≤ 1
2n2 for each 2 ≤ ν ≤ m2n, satisfies

dK(f, g) < 1
n . Counting how many of these functions g are at most needed, so that

for any f ∈ S there is at least one such g with dK(f, g) < 1
n , will give us an upper

bound for λn(S) in the next step. But before, we estimate

∥∥f − g∥∥
Kn

≤
m2n∑
ν=2

∣∣aν(f)− bν
∣∣ ( n

n+ 1

)ν
+

∞∑
ν=m2n+1

ν

(
n

n+ 1

)ν
<

1

2n2

∞∑
ν=1

(
n

n+ 1

)ν
+

1

2n
=

1

n
.

By the definition of our metric dK, this implies dK(f, g) < 1
n .

3. For fixed ν ∈ [2,m2n] ∩ N, we set a grid of points bν , spaced at intervals of 1
2n2

parallel to the real and imaginary axes, on the disk νD̄. This shows that there are
at most 16n4(ν + 1)2 points bν needed, so that for any f ∈ S there is at least one bν
with

∣∣aν(f)− bν
∣∣ ≤ 1

2n2 . Hence,

λn(S) ≤
m2n∏
ν=2

16n4(ν + 1)2 ≤ 16m2n n4m2n ((m2n + 1)!)2 . (18)

Using (m2n + 1)! = Γ(m2n + 2), as well as

lim
z→∞

Γ(z + 2)

z
√

2πz( ze )z
= 1,

cf. [15, page 59], there is C > 1 such that

∀n ∈ N : ((m2n + 1)!)2 ≤ Cm3
2n

(m2n

e

)2m2n

< Cm2m2n+3
2n < Cm3m2n

2n . (19)

Combining equations (18) and (19), we obtain

λn(S) ≤ C(16n)m2n (nm2n)3m2n . (20)

From (17), it follows m2n ∈ O
(
n ln(n)

)
Together with (20), we conclude

λn(S) ∈ O
(

exp(n ln2(n))
)
.

Since limx→∞
ln2(x)
xε = 0 for every ε > 0, this finally implies the lemma.

For further examples of normal families one may consult [17].
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