Composition and Differentiation Operators and Fast Approximation*

Thomas Kalmes, Markus Nieß

Abstract

Let $\mathcal{C}=\left(C_{n}\right)_{n \in \mathbb{N}}$ and $\mathcal{D}=\left(D^{n}\right)_{n \in \mathbb{N}}$ be families of composition and differentiation operators, respectively, i.e.,

$$
C_{n} f=f \circ \varphi_{n}, \quad D f=f^{\prime},
$$

where f is holomorphic on some domain $\Omega \subseteq \mathbb{C}$. Our main question is: How fast can a totally bounded set \mathcal{M} of holomorphic functions, in other words a normal family, be approximated by the "orbit" $\left\{C_{n} f: n \in \mathbb{N}\right\}$ or $\left\{D^{n} f: n \in \mathbb{N}\right\}$ respectively, of one suitably constructed function f ? Our answer consists of upper bounds for the numbers

$$
\begin{aligned}
F(f, 1 / n):=\inf \{N \in \mathbb{N}: & \text { Any } g \in \mathcal{M} \text { is approximable with error }<1 / n \\
& \text { by the first } N \text { elements of the orbit of } f\}, n \in \mathbb{N} .
\end{aligned}
$$

In particular, we calculate such bounds for well-known classical normal families, like the biholomorphisms of the unit disk \mathbb{D}, or the set

$$
S:=\left\{f \text { biholomorphic on } \mathbb{D}: f(0)=0, f^{\prime}(0)=1\right\}
$$

Keywords. Rate of convergence, Composition operators, Faber expansions, Normal families, Approximation in the complex plane, Universality.
2010 Mathematics subject classification. Primary: 47B33 Secondary: 30D45, 30E10, 42C40

1 Introduction and notation

Let (\mathcal{X}, d) be a complete metric space, (\mathcal{Y}, d) a separable metric space, $\mathcal{M} \subseteq \mathcal{Y}$, and $\mathcal{L}=\left(L_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continuous mappings $L_{n}: \mathcal{X} \rightarrow \mathcal{Y}$. The sequence \mathcal{L} is called universal for \mathcal{M}, if there is $x \in \mathcal{X}$ such that \mathcal{M} is contained in the closure of the orbit of x under \mathcal{L}, that is

$$
\mathcal{M} \subseteq \overline{\left\{L_{n} x: n \in \mathbb{N}\right\}}
$$

i.e., for every $y \in \mathcal{M}$ and for every $\varepsilon>0$, there exists $N \in \mathbb{N}$ with $d\left(y, L_{N} x\right)<\varepsilon$. Such x are called \mathcal{L}-universal for \mathcal{M} and we denote the set of all \mathcal{L}-universal elements for \mathcal{M}

[^0]by $\mathcal{U}(\mathcal{L}, \mathcal{M})$. In case of $\mathcal{M}=\mathcal{Y}$, we simply speak of \mathcal{L}-universality etc., and write $\mathcal{U}(\mathcal{L})$ instead of $\mathcal{U}(\mathcal{L}, \mathcal{M})$.
We consider the question, how fast certain given elements $y \in \mathcal{Y}$ can be approximated by $\left(L_{n} x\right)_{n \in \mathbb{N}}$ for some $x \in \mathcal{U}(\mathcal{L})$. With this in mind, given $x \in \mathcal{X}$ and $\mathcal{M} \subseteq \mathcal{Y}$, we define
$$
F(x, \varepsilon):=F(x, \mathcal{L}, \mathcal{M}, d, \varepsilon):=\sup _{y \in \mathcal{M}} \inf \left\{N \in \mathbb{N}: d\left(y, L_{N} x\right)<\varepsilon\right\} .
$$

For $x \in \mathcal{U}(\mathcal{L})$, we clearly have that $F(x, \varepsilon)$ is finite for every $\varepsilon>0$ if and only if \mathcal{M} is totally bounded (pre-compact), that is, \mathcal{M} can be covered by a finite number of ε-balls for every $\varepsilon>0$. If the metric space \mathcal{Y} is complete, then, \mathcal{M} is totally bounded if and only if \mathcal{M} is relatively compact, cf. [14, Corollary 4.10]. Moreover, if $\mathcal{M} \subseteq \mathcal{Y}$ is totally bounded and $y_{1}^{(n)}, \ldots, y_{\lambda_{n}}^{(n)} \in \mathcal{Y}$ satisfy

$$
\mathcal{M} \subseteq \bigcup_{j=1}^{\lambda_{n}} B\left(y_{j}^{(n)}, \frac{1}{n}\right),
$$

where $B(z, r)=\{y \in \mathcal{Y}: d(y, z)<r\}$ is the open ball with center z and radius r, then, for each $x \in \mathcal{U}(\mathcal{L})$, there is $k_{n} \in \mathbb{N}$ satisfying

$$
\forall 1 \leq j \leq \lambda_{n} \exists 1 \leq N \leq k_{n}: d\left(L_{N} x, y_{j}^{(n)}\right)<\frac{1}{n} .
$$

In particular, if \mathcal{L} is universal, then, for any totally bounded set $\mathcal{M} \subseteq \mathcal{Y}$, there is a sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that

$$
\left\{x \in \mathcal{U}(\mathcal{L}): F(x, \mathcal{L}, \mathcal{M}, 2 / n) \leq k_{n} \forall n \in \mathbb{N}\right\}
$$

containing

$$
\begin{equation*}
\mathcal{U}(\mathcal{L}) \cap \bigcap_{n \in \mathbb{N} j=1}^{\lambda_{n}} \bigcup_{N=1}^{k_{n}} L_{N}^{-1}\left(B\left(y_{j}^{(n)}, \frac{1}{n}\right)\right) \tag{1}
\end{equation*}
$$

is not empty. We are interested in upper bounds for k_{n} depending on \mathcal{M}. Therefore, we introduce the following notation. For a given totally bounded subset \mathcal{M} of \mathcal{Y} and $n \in \mathbb{N}$, we define

$$
\lambda_{n}:=\lambda_{n}(\mathcal{M}):=\min \left\{l \in \mathbb{N}: \exists y_{1}, \ldots, y_{l} \in \mathcal{Y} \text { with } \mathcal{M} \subseteq \bigcup_{j=1}^{l} B\left(y_{j}, 1 / n\right)\right\}
$$

to be the n-th covering number of \mathcal{M}. Since \mathcal{M} is totally bounded, λ_{n} is well-defined and the sequence $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$ is obviously increasing. It should be noted that λ_{n} depends on the given metric d on \mathcal{Y} ! For each $x \in \mathcal{X}$, we obviously have

$$
\forall n \in \mathbb{N}: \lambda_{n} \leq F(x, \mathcal{L}, \mathcal{M}, d, 1 / n) .
$$

In this paper, we investigate special sequences of continuous linear operators between spaces of holomorphic functions $H(\Omega)$ on an open subset Ω of \mathbb{C}. As usual, we endow $H(\Omega)$ with the compact-open topology, that is, the locally convex topology on $H(\Omega)$ induced by the increasing sequence of seminorms $\|f\|_{K_{n}}=\sup \left\{|f(z)|: z \in K_{n}\right\}, n \in \mathbb{N}$, where $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ is a compact exhaustion of Ω, i.e., $K_{n} \subseteq \Omega$ compact, K_{n} is contained
in the interior of K_{n+1} for each $n \in \mathbb{N}$, and $\cup_{n \in \mathbb{N}} K_{n}=\Omega$. This makes $H(\Omega)$ a Fréchet space; a metric defining the topology is given by

$$
\begin{equation*}
d_{\mathcal{K}}(f, g):=\sup _{n \in \mathbb{N}} \min \left\{\|f-g\|_{K_{n}}, \frac{1}{n}\right\} . \tag{2}
\end{equation*}
$$

It should be noted at this point that $d_{\mathcal{K}}(f, g)<1 / n$ if (and only if) $\|f-g\|_{K_{n}}<1 / n$.
In particular, we consider $\Omega=\mathbb{D}$, the open unit disk. For this special situation, we will always choose the natural standard compact exhaustion

$$
\begin{equation*}
\mathcal{K}_{\mathbb{D}}:=\left(K_{n}\right)_{n \in \mathbb{N}}, \text { where } K_{n}:=\frac{n}{n+1} \overline{\mathbb{D}} \tag{3}
\end{equation*}
$$

Recall, a subset \mathcal{M} of $H(\Omega)$ is bounded, by definition, if $\sup _{f \in \mathcal{M}}\|f\|_{K_{n}}<\infty$ for each $n \in \mathbb{N}$, i.e., if and only if \mathcal{M} is locally bounded. By Montel's Theorem, every bounded subset \mathcal{M} of $H(\Omega)$ is relatively compact. Obviously, the converse is always true. Therefore, the bounded subsets of $H(\Omega)$ are precisely the totally bounded subsets, which are also called normal families in this context. Examples will be given in Section 4.

2 Composition Operators and Fast Approximation

In this section, we consider composition operators on spaces of holomorphic functions, that is, for a given sequence $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ of injective holomorphic mappings $\varphi_{n}: \Omega_{1} \rightarrow \Omega_{2}$ between open sets Ω_{1}, Ω_{2} in \mathbb{C}, we consider the sequence $\mathcal{C}=\left(C_{n}\right)_{n \in \mathbb{N}}$ of linear operators

$$
C_{n}: H\left(\Omega_{2}\right) \rightarrow H\left(\Omega_{1}\right), f \mapsto f \circ \varphi_{n}
$$

Universality of such composition operators has been investigated by several authors, e.g. Bernal and Montes [4, followed by many others and also on different function spaces, see e.g. [2], [3], [5], 7], [6], [10], [11]. Recall, $\left(\varphi_{n}\right)$ is called run away, if for every pair of compact sets $K \subseteq \Omega_{1}, L \subseteq \Omega_{2}$, there exists an $N \in \mathbb{N}$ with

$$
\varphi_{N}(K) \cap L=\emptyset
$$

This property characterizes the existence of a \mathcal{C}-universal element if $\Omega_{1}=\Omega_{2}$ is not conformally equivalent to $\mathbb{C} \backslash\{0\}$, cf. [4]. In view of the following theorem, it is important to have run away sequences tending in a "controlled" manner towards the boundary of Ω_{2}. Thoughout this section, we assume the open sets Ω_{1}, Ω_{2} to consist of simply connected components, and every compact exhaustion $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ of them should also have only simply connected components, see e.g. [16, Theorem 13.3].
If Ω is a domain in \mathbb{C}, a sequence of sets $\left(L_{n}\right)_{n \in \mathbb{N}}$ is said to tend to infinity provided that, given a compact set $L \subseteq \Omega$, there is $n_{0} \in \mathbb{N}$ such that $L_{n} \cap L=\emptyset$ for all $n \geq n_{0}$. Observe that, if $\Omega^{\star}=\Omega \cup\{\omega\}$ denotes the one-point compactification of Ω, then $\left(L_{n}\right)_{n \in \mathbb{N}}$ tends to infinity if and only if $\lim _{n \rightarrow \infty} \max \left\{\chi(z, \omega): z \in L_{n}\right\}=0$, where χ is any distance on Ω^{\star} defining its topology.

Proposition 1. Let $\varphi_{n}: \Omega_{1} \rightarrow \Omega_{2}, n \in \mathbb{N}$, be a sequence of injective holomorphic mappings which is run away. Then, for each compact exhaustion $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω_{1}, there is a sequence $\left(m_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that $\varphi_{m_{n}}\left(K_{n}\right)(n \in \mathbb{N})$ is pairwise disjoint and tends to infinity.

Note, the image $\varphi(G)$ of a simply connected domain G under an injective holomorphic mapping φ is also simply connected. Thus, the sets $\varphi_{m_{n}}\left(K_{n}\right)(n \in \mathbb{N})$ above have also connected complements.

Proof. Fix any compact exhaustion $\left(L_{n}\right)_{n \in \mathbb{N}}$ of Ω_{2}. Set $m_{1}:=1$. Since $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ is run away, there is $m_{2} \in \mathbb{N}$ such that

$$
\varphi_{m_{2}}\left(K_{2}\right) \cap\left(\varphi_{m_{1}}\left(K_{1}\right) \cup L_{1}\right)=\emptyset
$$

If $m_{1}, m_{2}, \ldots, m_{n}$ have been found, there is, by hypothesis, $m_{n+1} \in \mathbb{N}$ such that

$$
\varphi_{m_{n+1}}\left(K_{n+1}\right) \cap\left(\bigcup_{j=1}^{n} \varphi_{m_{j}}\left(K_{j}\right) \cup L_{n}\right)=\emptyset
$$

Clearly $\varphi_{m_{n}}\left(K_{n}\right)(n \in \mathbb{N})$ fulfills the requirements of the assertion.
For the following we abbreviate $\mathcal{C}:=\left(C_{m_{n}}\right)_{n \in \mathbb{N}}$. Before stating our first main result, we provide an approximation lemma based on Arakelian's Approximation Theorem, cf. [1], [9].

Lemma 2. Let Ω be a domain, $\left(K_{n}\right)_{n \in \mathbb{N}}$ a sequence of pairwise disjoint compact sets in Ω, whose complements are connected. Assume that $\left(K_{n}\right)_{n \in \mathbb{N}}$ tends to infinity and that $f_{n} \in A\left(K_{n}\right)$, i.e., f_{n} is continuous on K_{n} and holomorphic in the interior of K_{n}. Then, there exists $f \in H(\Omega)$ with

$$
\forall n \in \mathbb{N}: \max _{z \in K_{n}}\left|f(z)-f_{n}(z)\right|<\frac{1}{n}
$$

Proof. Define

$$
\delta(z):=-\ln n, \quad q(z):=f_{n}(z), \quad z \in K_{n} .
$$

The union $U:=\bigcup_{n \in \mathbb{N}} K_{n}$ is closed in Ω and obviously satisfies that $\Omega^{\star} \backslash U$ is connected and locally connected at ω. Thus, by Arakelian's Theorem, there exist $g, h \in H(\Omega)$ with

$$
|\delta(z)-g(z)|<1, \quad\left|\frac{q(z)}{e^{g(z)-1}}-h(z)\right|<1, \quad z \in U
$$

For $f(z):=h(z) \cdot e^{g(z)-1}$ and $z \in K_{n}$, we obtain

$$
\left|f(z)-f_{n}(z)\right|=|f(z)-q(z)|<e^{\operatorname{Re} g(z)-1} \leq e^{|g(z)-\delta(z)|-1+\delta(z)}<e^{\delta(z)}=\frac{1}{n}
$$

Theorem 3. Let $\varphi_{n}: \Omega_{1} \rightarrow \Omega_{2}, n \in \mathbb{N}$, be a sequence of injective holomorphic mappings which is run away and let \mathcal{K} be a compact exhaustion of Ω_{1}. Then, there is a subsequence $\left(\varphi_{m_{n}}\right)_{n \in \mathbb{N}}$ of $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ and a universal function $f \in \mathcal{U}(\mathcal{C})$ such that for each normal family \mathcal{M} in $H\left(\Omega_{1}\right)$ with covering numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=\left(\lambda_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, we have

$$
\forall n \in \mathbb{N}: \quad F\left(f, \mathcal{C}, \mathcal{M}, d_{\mathcal{K}}, \frac{2}{n}\right) \leq n\left(\lambda_{n}+1\right)
$$

Proof. 1. Let $\left(m_{n}\right)_{n \in \mathbb{N}}$ be a strictly increasing sequence of natural numbers corresponding to the compact exhaustion $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$, as in Proposition 1. Then, the sets $\varphi_{m_{n}}\left(K_{n}\right)(n \in \mathbb{N})$ are pairwise disjoint, have connected complements and tend to infinity.
2. According to Mergelian's Theorem, the set of polynomials with coefficients in $\mathbb{Q}+i \mathbb{Q}$ is dense in $\left(H\left(\Omega_{1}\right), d_{\mathcal{K}}\right)$. Let $\left(q_{n}\right)$ be an enumeration of them, and let $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in$ $H\left(\Omega_{1}\right)$ be those functions whose $\frac{1}{n}$-neighborhoods cover \mathcal{M}. We define $\left(f_{N}\right)$ as the following sequence

$$
f_{1}^{(1)}, f_{2}^{(1)}, \ldots, f_{\lambda_{1}}^{(1)}, q_{1}, f_{1}^{(2)}, f_{2}^{(2)}, \ldots, f_{\lambda_{2}}^{(2)}, q_{2}, f_{1}^{(3)}, f_{2}^{(3)}, \ldots, f_{\lambda_{3}}^{(3)}, q_{3}, \ldots
$$

3. According to Lemma 2, there exists a function $f \in H\left(\Omega_{2}\right)$, such that

$$
\max _{\varphi_{m_{N}}\left(K_{N}\right)}\left|f(z)-f_{N}\left(\varphi_{m_{N}}^{-1}(z)\right)\right|<\frac{1}{N}, \quad N \in \mathbb{N}
$$

or equivalently,

$$
\left\|C_{m_{N}} f-f_{N}\right\|_{K_{N}}=\left\|\left(f \circ \varphi_{m_{N}}\right)-f_{N}\right\|_{K_{N}}<\frac{1}{N}, \quad N \in \mathbb{N}
$$

By definition of the metric $d_{\mathcal{K}}$ this implies

$$
d_{\mathcal{K}}\left(C_{m_{N}} f, f_{N}\right)<\frac{1}{N}, \quad N \in \mathbb{N}
$$

4. Fix $g \in \mathcal{M}$ and $n \in \mathbb{N}$. According to the second step, we find a function f_{N} with

$$
n \leq N \leq \sum_{j=1}^{n-1}\left(\lambda_{j}+1\right)+\lambda_{n} \leq n\left(\lambda_{n}+1\right) \quad \text { and } \quad d_{\mathcal{K}}\left(f_{N}, g\right)<\frac{1}{n}
$$

Together with the third step, we have

$$
d_{\mathcal{K}}\left(C_{m_{N}} f, g\right)<\frac{1}{n}+\frac{1}{N} \leq \frac{2}{n}
$$

Moreover,

$$
d_{\mathcal{K}}\left(C_{m_{k}} f, q_{n}\right)<\frac{1}{k}, \quad n \in \mathbb{N}
$$

with $k=\sum_{j=1}^{n}\left(\lambda_{j}+1\right)$ showing that $f \in \mathcal{U}(\mathcal{C})$ satisfies the desired property.

Remark 4.

(i) Roughly speaking, for a sequence of composition operators between spaces of holomorphic functions, the speed of approximating the elements of a normal family \mathcal{M} by a universal function is only governed by the size of \mathcal{M}, measured by the covering numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$.
(ii) In [4], it is proved that, in case of $\Omega_{1}=\Omega_{2}$ not being conformally equivalent to $\mathbb{C} \backslash\{0\}$, the set $\mathcal{U}(\mathcal{C})$ is a dense G_{δ}-set, if non-empty. The above theorem states that there is

$$
f \in \mathcal{U}(\mathcal{C}) \cap \bigcap_{n \in \mathbb{N}} \bigcap_{j=1}^{\lambda_{n}} \bigcup_{N=1}^{n\left(\lambda_{n}+1\right)} C_{m_{N}}^{-1}\left(B\left(f_{j}^{(n)}, \frac{1}{n}\right)\right)
$$

where $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)}$ are the centers of open $1 / n$-balls covering the normal family \mathcal{M}. The continuity of the operators $C_{m_{N}}$ implies that the above set is a G_{δ}-set. But in general it is not dense.
To see this, let $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ be the compact exhaustion of Ω_{1} giving the metric $d_{\mathcal{K}}$ and let $\mathcal{M}=\{0\}$. Then, one has $\lambda_{n}=1$ and one can take $f_{1}^{(n)}=0, n \in \mathbb{N}$. Assume, there is a sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ of natural numbers such that

$$
\begin{aligned}
& \bigcap_{n \in \mathbb{N}} \bigcup_{N=1}^{k_{n}} C_{m_{N}}^{-1}\left(B\left(0, \frac{1}{n}\right)\right) \\
& \quad=\left\{f \in H\left(\Omega_{2}\right): \forall n \in \mathbb{N} \exists 1 \leq N \leq k_{n} \text { with } \sup _{z \in K_{n}}\left|f\left(\varphi_{m_{N}}(z)\right)\right|<\frac{1}{n}\right\}
\end{aligned}
$$

is dense in $H\left(\Omega_{2}\right)$. Let $K \subseteq \Omega_{2}$ be compact such that $\bigcup_{N=1}^{k_{1}} \varphi_{m_{N}}\left(K_{1}\right) \subseteq K$. By assumption, there is

$$
g \in\left\{f \in H\left(\Omega_{2}\right):\|f-2\|_{K}<1\right\} \cap \bigcap_{n \in \mathbb{N}} \bigcup_{N=1}^{k_{n}} C_{m_{N}}^{-1}\left(B\left(0, \frac{1}{n}\right)\right)
$$

Hence, there exists an $1 \leq N \leq k_{1}$ with

$$
\|g-0\|_{\varphi_{m_{N}}\left(K_{1}\right)}=\left\|C_{m_{N}} g-0\right\|_{K_{1}}<1
$$

which gives a contradiction to $\|g-2\|_{K}<1$.
Let \mathcal{X}, \mathcal{Y} be metric spaces and $\mathcal{L}=\left(L_{N}\right)_{N \in \mathbb{N}}$ a universal sequence of continuous mappings from \mathcal{X} to \mathcal{Y}. If $\mathcal{M} \subseteq \mathcal{Y}$ is totally bounded, we have just seen that for any sequence of natural numbers $\left(k_{n}\right)_{n \in \mathbb{N}}$ the $G_{\delta^{-}}$-set in (1) need not be dense in \mathcal{X} although there is always some sequence $\left(k_{n}\right)_{n \in \mathbb{N}}$ such that the above set is non-empty, cf. the introduction.
However, if one weakens the requirement

$$
\forall n \in \mathbb{N}: \quad F(x, \mathcal{L}, \mathcal{M}, 2 / n) \leq k_{n}
$$

to (we use the standard Landau notations)

$$
(F(x, \mathcal{L}, \mathcal{M}, 2 / n))_{n \in \mathbb{N}} \in O\left(\left(k_{n}\right)_{n \in \mathbb{N}}\right), \quad \text { shortly } F(x, \mathcal{L}, \mathcal{M}, 2 / n) \in O\left(k_{n}\right)
$$

then the corresponding set is dense, see the next result. Whenever the index, mostly $n \in \mathbb{N}$, is clear, we will shorten the Landau notation from $\left(a_{n}\right)_{n \in \mathbb{N}} \in O\left(\left(b_{n}\right)_{n \in \mathbb{N}}\right)$ to $a_{n} \in O\left(b_{n}\right)$.

Theorem 5. Let $\varphi_{n}: \Omega_{1} \rightarrow \Omega_{2}, n \in \mathbb{N}$, be a sequence of injective holomorphic mappings which is run away, and let \mathcal{K} be a compact exhaustion of Ω_{1}. Then, there is a subsequence $\left(\varphi_{m_{n}}\right)_{n \in \mathbb{N}}$ of $\left(\varphi_{n}\right)_{n \in \mathbb{N}}$ and a dense set of universal functions $f \in \mathcal{U}(\mathcal{C})$ in $H\left(\Omega_{2}\right)$, such that
for every choice of countably many normal families \mathcal{M}_{i} in $H\left(\Omega_{1}\right), i \in \mathbb{N}$, with covering numbers $\left(\lambda_{n, i}\right)_{n \in \mathbb{N}}=\left(\lambda_{n}\left(\mathcal{M}_{i}\right)\right)_{n \in \mathbb{N}}$, we have

$$
\begin{equation*}
\forall i \in \mathbb{N}: \quad F\left(f, \mathcal{C}, \mathcal{M}_{i}, d_{\mathcal{K}}, \frac{2}{n}\right) \in O\left(n \lambda_{n, i}\right) \tag{4}
\end{equation*}
$$

Proof. 1. Let $\left(m_{n}\right)_{n \in \mathbb{N}}$ be again a strictly increasing sequence of natural numbers corresponding to the compact exhaustion $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$, as in Proposition 1 . Then, the sets $\varphi_{m_{n}}\left(K_{n}\right)(n \in \mathbb{N})$ are pairwise disjoint, have connected complements and tend to infinity. We have to show that for given $h \in H\left(\Omega_{2}\right), K \subseteq \Omega_{2}$ compact and $\varepsilon>0$, there exists a universal function $f \in \mathcal{U}(\mathcal{C})$ with the desired property and

$$
\|f-h\|_{K}<\varepsilon
$$

Since $\varphi_{m_{n}}\left(K_{n}\right)(n \in \mathbb{N})$ tends to infinity, there is some $M \in \mathbb{N}$ such that $K \cap$ $\varphi_{m_{n}}\left(K_{n}\right)=\emptyset$ for all $n>M$.
2. Also, let $\left(q_{n}\right)$ be as in the proof of Theorem 3, and let $f_{1}^{(n, i)}, \ldots, f_{\lambda_{n, i}}^{(n, i)} \in H\left(\Omega_{1}\right)$ be those functions whose $\frac{1}{n}$-neighborhoods cover \mathcal{M}_{i}, merged in sequences $\left(f_{n}^{(i)}\right)_{n \in \mathbb{N}}$ defined as

$$
f_{1}^{(1, i)}, f_{2}^{(1, i)}, \ldots, f_{\lambda_{1}}^{(1, i)}, f_{1}^{(2, i)}, f_{2}^{(2, i)}, \ldots, f_{\lambda_{2}}^{(2, i)} f_{1}^{(3, i)}, f_{2}^{(3, i)}, \ldots, f_{\lambda_{3}}^{(3, i)}, \ldots
$$

With these sequences we build $\left(f_{N}\right)$ as follows: Every $(2 j-1)$-st element of $\left(f_{N}\right)$ is $q_{j}, j \in \mathbb{N}$. From the remaining elements every $(2 j-1)$-st element is $f_{j}^{(1)}, j \in \mathbb{N}$. Again, from the remaining every $(2 j-1)$-st element is $f_{j}^{(2)}, j \in \mathbb{N}$, and so on.
3. According to Lemma 2, there exists a function $f \in H\left(\Omega_{2}\right)$, such that

$$
\|f-h\|_{K}<\varepsilon \text { and } \max _{\varphi_{m_{M+N}}\left(K_{M+N}\right)}\left|f(z)-f_{N}\left(\varphi_{m_{M+N}}^{-1}(z)\right)\right|<\frac{1}{M+N}, \quad N \in \mathbb{N}
$$

or equivalently,

$$
\left\|C_{m_{M+N}} f-f_{N}\right\|_{K_{M+N}}=\left\|\left(f \circ \varphi_{m_{M+N}}\right)-f_{N}\right\|_{K_{M+N}}<\frac{1}{M+N}, \quad N \in \mathbb{N}
$$

By definition of the metric $d_{\mathcal{K}}$, this implies

$$
d_{\mathcal{K}}\left(C_{m_{M+N}} f, f_{M+N}\right)<\frac{1}{M+N}, \quad N \in \mathbb{N}
$$

4. Fix $g \in \mathcal{M}_{i}$ and $n \in \mathbb{N}$. According to the second step, we find a function f_{N} with

$$
\begin{equation*}
n \leq M+N \leq \tilde{c}_{i} \cdot n\left(\lambda_{n, i}+1\right) \leq c_{i} n \lambda_{n, i} \tag{5}
\end{equation*}
$$

for appropriately chosen constants \tilde{c}_{i}, c_{i}, and

$$
d_{\mathcal{K}}\left(f_{N}, g\right)<\frac{1}{n}
$$

Together with the third step, we have

$$
d_{\mathcal{K}}\left(C_{m_{M+N}} f, g\right)<\frac{1}{n}+\frac{1}{M+N} \leq \frac{2}{n}
$$

Moreover,

$$
d_{\mathcal{K}}\left(C_{m_{M+2 n-1}} f, q_{n}\right)<\frac{1}{M+2 n-1}, \quad n \in \mathbb{N}
$$

showing that $f \in \mathcal{U}(\mathcal{C})$ satisfies the desired property.

In equation (4), we have seen

$$
\forall i, n \in \mathbb{N}: \quad F\left(f, \mathcal{C}, \mathcal{M}_{i}, d_{\mathcal{K}}, \frac{2}{n}\right) \leq c_{i} n \lambda_{n, i}
$$

where the constants c_{i} as given in (5) grow exponentially in i, more precisely $\left(c_{i}\right)_{i \in \mathbb{N}} \in$ $\Theta\left(\left(2^{i}\right)_{i \in \mathbb{N}}\right)$, i.e., $\left(c_{i}\right)_{i \in \mathbb{N}} \in O\left(\left(2^{i}\right)_{i \in \mathbb{N}}\right)$ and $\left(2^{i}\right)_{i \in \mathbb{N}} \in O\left(\left(c_{i}\right)_{i \in \mathbb{N}}\right)$, as we see from the second step of the above proof.

3 Differentiation Operators and Fast Approximation

In this section, we consider the differentiation operator

$$
D: H(\Omega) \rightarrow H(\Omega), f \mapsto f^{\prime}
$$

on spaces of holomorphic functions on a simply connected bounded domain $\Omega \subseteq \mathbb{C}$, as well as the sequence $\mathcal{D}:=\left(D^{n}\right)_{n \in \mathbb{N}}$. It is known that the existence of $f \in \mathcal{U}(\mathcal{D})$ is equivalent to Ω being simply connected, cf. [18]. Therefore, without loss of generality, we may and will assume Ω to be simply connected throughout the whole paragraph. Since differentiation commutes with translations, we can assume $0 \in \Omega$ without loss of generality. More precisely, we may assume that 0 is contained in the interior of K_{1} for a compact exhaustion $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω.
Moreover, there is a compact exhaustion $\mathcal{K}=\left(K_{n}\right)_{n \in \mathbb{N}}$ of Ω such that K_{n} is connected and simply connected for every $n \in \mathbb{N}$, see e.g. [16, Theorem 13.3]. Therefore, we assume without loss of generality that for the metric $d_{\mathcal{K}}$ inducing the compact-open topology on $H(\Omega)$, cf. (2), we have K_{n} connected and simply connected.
Furthermore, we denote the m-th Faber polynomial for K_{n} by $F_{n, m}, m \in \mathbb{N}_{0}$. Then, $F_{n, m}$ is a polynomial of degree m which is obtained in the following way, see e.g. [9] or [13].
By the Riemann Mapping Theorem, there is a unique conformal mapping $\varphi_{n}: \mathbb{C} \backslash K_{n} \rightarrow$ $\mathbb{C} \backslash \overline{\mathbb{D}}$ with $\varphi_{n}(\infty)=\infty$ and $\varphi_{n}^{\prime}(\infty)>0$. Hence, for some $c>0$, we have for $|z|$ sufficiently large

$$
\varphi_{n}(z)=\frac{1}{c} z+c_{0}+\sum_{\nu=1}^{\infty} c_{\nu} z^{-\nu}
$$

Moreover, for $|z|$ sufficiently large and every $m \in \mathbb{N}$, we have

$$
\varphi_{n}^{m}(z)=F_{n, m}(z)+\sum_{\nu=1}^{\infty} \alpha_{\nu} z^{-\nu}
$$

that is, $F_{n, m}$ is the analytic part of the Laurent expansion of φ_{n}^{m}. With $\psi_{n}:=\varphi_{n}^{-1}$: $\mathbb{C} \backslash \overline{\mathbb{D}} \rightarrow \mathbb{C} \backslash K_{n}$, we have

$$
\psi_{n}(w)=c w+d_{0}+\sum_{\nu=1}^{\infty} d_{\nu} w^{-\nu},|w|>1
$$

For $R>1$, we set $\Gamma_{n, R}:=\left\{\psi_{n}(w):|w|=R\right\}$. Then, $\Gamma_{n, R}$ is a closed Jordan curve, and for each $n \in \mathbb{N}$, there is $R_{n}>1$, such that $\Gamma_{n, R} \subseteq \Omega$ for all $1<R<R_{n}$. Denoting by $I_{n, R}$ the bounded (open) component of $\mathbb{C} \backslash \Gamma_{n, R}$, we obtain $K_{n} \subseteq I_{n, R} \subseteq \Omega$ for every $n \in \mathbb{N}$ and $1<R<R_{n}$.
If f is a complex function holomorphic in a neighborhood $I_{n, R}$ of K_{n}, we define for $\nu \in \mathbb{N}_{0}$

$$
a_{\nu}\left(f, K_{n}\right):=\frac{1}{2 \pi i} \int_{|w|=r} \frac{f\left(\psi_{n}(w)\right)}{w^{\nu+1}} d w
$$

which is independent of $r \in(1, R)$. Then

$$
f(z)=\sum_{\nu=0}^{\infty} a_{\nu}\left(f, K_{n}\right) F_{n, \nu}(z)
$$

where the series converges uniformly and absolutely on $I_{n, R}$, in particular, on K_{n}. Thus, this expansion is valid in $I_{n, R_{n}}$ for every $f \in H(\Omega)$. Moreover, the above so-called Faber expansion of f is unique, see again e.g. 9] or [13]. From this, and the fact that $F_{n, m}$ is a polynomial of degree m, it follows that for every polynomial p, we have $p=\sum_{\nu=0}^{m} a_{\nu}\left(p, K_{n}\right) F_{n, \nu}$, whenever $m \geq \operatorname{deg}(p)$. In case of $K_{n}=\left\{z \in \mathbb{C}:\left|z-z_{0}\right| \leq \rho\right\}$, the above expansion of f is nothing but the Taylor expansion of f about z_{0}.
From [13, Lemma preceding Theorem 3.16], it follows

$$
\begin{equation*}
\frac{1}{2} R^{\nu}<\left|F_{n, \nu}(z)\right|<\frac{3}{2} R^{\nu} \tag{6}
\end{equation*}
$$

for all $1<R<R_{n}$, for every $z \in \Gamma_{n, R}$, and $\nu \in \mathbb{N}_{0}$.
For $f \in H(\Omega)$ and $n, m \in \mathbb{N}$, we define

$$
T_{n, m} f: \mathbb{C} \rightarrow \mathbb{C}, \quad T_{n, m} f(z):=\sum_{\nu=0}^{m} a_{\nu}\left(f, K_{n}\right) F_{n, \nu}(z),
$$

that is, $T_{n, m} f$ is a polynomial of degree $\leq m$.
Moreover, we denote by $f^{(-j)}$ the j-th anti-derivative of f, i.e.,

$$
f^{(0)}(z):=f(z), \quad f^{(-j)}(z):=\int_{0}^{z} f^{(-j+1)}(\zeta) d \zeta, \quad j \in \mathbb{N}, z \in \Omega
$$

Recall, we assume without restriction $0 \in \Omega$. It is very well-known that for every $f \in H(\Omega)$ the sequence $\left(I_{j} f\right)_{j \in \mathbb{N}_{0}}$ converges to zero in $H(\Omega)$, where $I_{j}: H(\Omega) \rightarrow H(\Omega), I_{j} f:=f^{(-j)}$, $j \in \mathbb{N}_{0}$, see e.g. [12, Lemma 1].
The next Lemma is rather technical. Its conclusions simplify in case of $\Omega=\mathbb{D}$, which will be stated separately as Corollary 7 below.

Lemma 6. Let \mathcal{K} be a compact exhaustion of Ω and $\mathcal{M} \subseteq H(\Omega)$ a normal family. For $n \in \mathbb{N}$, let

$$
M_{n}:=M_{n}(\mathcal{M}):=\sup _{f \in \mathcal{M}|w|=\frac{1}{2}\left(1+R_{n}\right)} \max \left|f\left(\psi_{n}(w)\right)\right| .
$$

1. There is an increasing sequence

$$
\gamma_{n}(\mathcal{M}) \in O\left(\frac{R_{n}+1}{R_{n}-1} \ln \left(n \frac{R_{n}+1}{R_{n}-1} M_{n}\right)\right)
$$

of natural numbers tending to infinity such that, for every $f \in \mathcal{M}$, we have

$$
\left\|T_{n, \gamma_{n}} f-f\right\|_{K_{n}}<\frac{1}{n}
$$

Moreover, if there is $k \in \mathbb{N}_{0}$ such that $M_{n}(\mathcal{M}) \in O\left(n^{k}\right)$, then,

$$
\gamma_{n}(\mathcal{M}) \in O\left(\frac{R_{n}+1}{R_{n}-1} \ln \left(n \frac{R_{n}+1}{R_{n}-1}\right)\right) .
$$

2. There is a sequence $\left(\sigma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ of natural numbers tending to infinity, such that for every $f \in \mathcal{M}, n \in \mathbb{N}$, and $m \in \mathbb{N}_{0}$, we have

$$
\left\|\left(T_{n, m} f\right)^{(-j)}\right\|_{K_{n}}<\frac{1}{n^{2}},
$$

whenever $j \geq \sigma_{n}(\mathcal{M})$.
We point out that the above sequences $\left(\gamma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ and $\left(\sigma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ depend on the compact exhaustion \mathcal{K} of Ω !

Proof. Let $n \in \mathbb{N}$ be arbitrary. Note, $M_{n}<\infty$ by the total boundedness of \mathcal{M}.

1. For $f \in \mathcal{M}$ and $1<R<R_{n}$, we have by the maximum principle

$$
\left\|T_{n, m} f-f\right\|_{K_{n}} \leq \sum_{\nu=m+1}^{\infty}\left|a_{\nu}\left(f, K_{n}\right)\right|\left\|F_{n, \nu}\right\|_{K_{n}} \leq \frac{3}{\sqrt[66]{6}} \frac{3}{2} \sum_{\nu=m+1}^{\infty}\left|a_{\nu}\left(f, K_{n}\right)\right| R^{\nu} .
$$

Moreover, for the Faber coefficients we obtain

$$
\left|a_{\nu}\left(f, K_{n}\right)\right|=\frac{1}{2 \pi}\left|\int_{|w|=\frac{1}{2}\left(1+R_{n}\right)} \frac{f\left(\psi_{n}(w)\right)}{w^{\nu+1}} d w\right| \leq\left(\frac{2}{1+R_{n}}\right)^{\nu} M_{n}
$$

so, for $1<R<\frac{2}{3}+\frac{1}{3} R_{n}=\frac{1}{3}\left(2+R_{n}\right)$,

$$
\begin{aligned}
\frac{3}{2} \sum_{\nu=m+1}^{\infty}\left|a_{\nu}\left(f, K_{n}\right)\right| R^{\nu} & \leq \frac{3}{2} M_{n} \sum_{\nu=m+1}^{\infty}\left(\frac{2 R}{1+R_{n}}\right)^{\nu} \\
& =\frac{3}{2} M_{n}\left(\frac{2 R}{1+R_{n}}\right)^{m+1} \frac{1}{1-\frac{2 R}{1+R_{n}}} \\
& \leq \frac{3}{2} M_{n}\left(\frac{4+2 R_{n}}{3+3 R_{n}}\right)^{m+1} 3 \frac{1+R_{n}}{R_{n}-1} \\
& \leq 5 \frac{R_{n}+1}{R_{n}-1} M_{n}\left(\frac{4+2 R_{n}}{3+3 R_{n}}\right)^{m+1}
\end{aligned}
$$

Thus, in order that $\left\|T_{n, m} f-f\right\|_{K_{n}}<\frac{1}{n}$, it suffices

$$
\ln \left(5 n \frac{R_{n}+1}{R_{n}-1} M_{n}\right)<(m+1) \ln \left(\frac{3+3 R_{n}}{4+2 R_{n}}\right)=(m+1) \ln \left(1+\frac{R_{n}-1}{2\left(2+R_{n}\right)}\right) .
$$

Using the elementary inequality

$$
\forall x \geq 0: \frac{x}{1+x} \leq \ln (1+x)
$$

the above inequality is surely satisfied if

$$
\ln \left(5 n \frac{R_{n}+1}{R_{n}-1} M_{n}\right)<(m+1) \frac{\frac{R_{n}-1}{2\left(2+R_{n}\right)}}{1+\frac{R_{n}-1}{2\left(2+R_{n}\right)}}=(m+1) \frac{R_{n}-1}{3\left(R_{n}+1\right)} .
$$

Taking all this together, we conclude

$$
\sum_{\nu=m+1}^{\infty}\left|a_{\nu}\left(f, K_{n}\right)\right|\left\|F_{n, \nu}\right\|_{K_{n}}<\frac{1}{n}
$$

for $n \in \mathbb{N}$, and for all $f \in \mathcal{M}$, provided that

$$
\begin{equation*}
m \geq 3 \frac{R_{n}+1}{R_{n}-1} \ln \left(5 n \frac{R_{n}+1}{R_{n}-1} M_{n}\right) . \tag{7}
\end{equation*}
$$

2. (i) Now, we consider $T_{n, m}$ as a continuous linear operator from $H(\Omega)$ into $H\left(I_{n, R_{n}}\right)$ and, first, we show that $\mathcal{N}:=\bigcup_{m \in \mathbb{N}_{0}} T_{n, m}(\mathcal{M})$ is a normal family in $H\left(I_{n, R_{n}}\right)$:
From the above mentioned properties of the Faber expansion, it follows that for every $f \in H(\Omega)$ the sequence $\left(T_{n, m} f\right)_{m \in \mathbb{N}_{0}}$ converges in $H\left(I_{n, R_{n}}\right)$ to $\left.f\right|_{I_{n, R_{n}}}$. Since $H(\Omega)$ is a Fréchet space, the equicontinuity of the sequence of operators $\left(T_{n, m}\right)_{m \in \mathbb{N}_{0}}$ follows from the Uniform Boundedness Principle.
Next, let U be an absolutely convex zero neighborhood in $H\left(I_{n, R_{n}}\right)$. By the equicontinuity of $\left(T_{n, m}\right)_{m \in \mathbb{N}_{0}}$, there is an absolutely convex zero neighborhood V in $H(\Omega)$ such that $T_{n, m}(V) \subseteq U$ for every $m \in \mathbb{N}_{0}$. Since \mathcal{M} is a normal family, hence, bounded in $H(\Omega)$, there is $\rho>0$ with $\mathcal{M} \subseteq \rho V$, implying $\mathcal{N}:=\bigcup_{m \in \mathbb{N}_{0}} T_{n, m}(\mathcal{M}) \subseteq$ ρU. Since U was arbitrary this gives the boundedness of \mathcal{N} in $H\left(I_{n, R_{n}}\right)$. Thus, \mathcal{N} is relatively compact, i.e., a normal family.
(ii) Since we assumed $0 \in K_{1}$, the above-explained mappings $I_{j}: H\left(I_{n, R_{n}}\right) \rightarrow$ $H\left(I_{n, R_{n}}\right)$ are well-defined, continuous and linear. Moreover, for each $f \in H\left(I_{n, R_{n}}\right)$ the sequence $\left(I_{j} f\right)_{j \in \mathbb{N}_{0}}$ tends to zero in $H\left(I_{n, R_{n}}\right)$. The Uniform Boundedness Principle implies, again, the equicontinuity of $\left(I_{j}\right)_{j \in \mathbb{N}_{0}}$. Because $K_{n} \subseteq I_{n, R_{n}}$, we can find a zero neighborhood V such that $\left\|I_{j} f\right\|_{K_{n}}<\frac{1}{2 n^{2}}$ for every $f \in V$ and every $j \in \mathbb{N}_{0}$. Since for every $f \in H\left(I_{n, R_{n}}\right)$ there is $j(f) \in \mathbb{N}$ with $\left\|I_{j} f\right\|_{K_{n}}<\frac{1}{2 n^{2}}$ for each $j \geq j(f)$,

$$
\left\|I_{j} g\right\|_{K_{n}} \leq\left\|I_{j}(g-f)\right\|_{K_{n}}+\left\|I_{j} f\right\|_{K_{n}}<\frac{1}{n^{2}}
$$

holds for every $g \in f+V$ and $j \geq j(f)$.

Because $\mathcal{N} \subseteq \bigcup_{f \in \mathcal{N}}(f+V)$ is totally bounded, there are $f_{1}, \ldots, f_{k} \in \mathcal{N}$ such that

$$
\bigcup_{m \in \mathbb{N}_{0}} T_{n, m}(\mathcal{M})=\mathcal{N} \subseteq \bigcup_{l=1}^{k}\left(f_{l}+V\right)
$$

Setting $\sigma_{n}:=\max \left\{j\left(f_{1}\right), \ldots, j\left(f_{k}\right)\right\}$, we finally obtain $\left\|\left(T_{n, m} f\right)^{(-j)}\right\|_{K_{n}}<\frac{1}{n^{2}}$ for each $f \in \mathcal{M}, m \in \mathbb{N}_{0}$, and $j \geq \sigma_{n}$.

Corollary 7. Let $\mathcal{M} \subseteq H(\mathbb{D})$ be a normal family and $\mathcal{K}_{\mathbb{D}}$ be the standard compact exhaustion of \mathbb{D}, cf. (3).

1. For each $n \in \mathbb{N}$, we have $M_{n}=M_{n}(\mathcal{M})=\sup _{f \in \mathcal{M}}\|f\|_{K_{2 n+1}}$.
2. For the sequence $\left(\gamma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, we have

$$
\gamma_{n}(\mathcal{M}) \in O\left(n \ln \left(n M_{n}\right)\right)
$$

and if $M_{n}(\mathcal{M}) \in O\left(n^{k}\right)$ for some $k \in \mathbb{N}_{0}$, then,

$$
\gamma_{n}(\mathcal{M}) \in O(n \ln (n))
$$

3. For the sequence $\left(\sigma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, we can assume without restriction

$$
\sigma_{n}(\mathcal{M}) \in O\left(\ln \left(n^{2} M_{n}\right)\right)
$$

Proof. For the compact set $K_{n}=\frac{n}{n+1} \overline{\mathbb{D}}$, we have $\varphi_{n}: \mathbb{C} \backslash K_{n} \rightarrow \mathbb{C} \backslash \overline{\mathbb{D}}, \varphi_{n}(z)=\frac{n+1}{n} z$. Thus, $\psi_{n}(z)=\frac{n}{n+1} z$ and $R_{n}=\frac{n+1}{n}$. Moreover, because $\varphi_{n}^{\nu}(z)=\left(\frac{n+1}{n}\right)^{\nu} z^{\nu}$, we have $F_{n, \nu}(z)=\left(\frac{n+1}{n}\right)^{\nu} z^{\nu}$. So, we obtain for sufficiently small $1<r$

$$
\begin{aligned}
a_{\nu}\left(f, K_{n}\right) & =\frac{1}{2 \pi i} \int_{|w|=r} \frac{f\left(\psi_{n}(w)\right)}{w^{\nu+1}} d w \\
& =\left(\frac{n}{n+1}\right)^{\nu} \frac{1}{2 \pi i} \int_{|w|=\frac{n}{n+1} r} \frac{f(w)}{w^{\nu+1}} d w \\
& =\left(\frac{n}{n+1}\right)^{\nu} a_{\nu}(f),
\end{aligned}
$$

where $a_{\nu}(f)$ denotes the ν-th Taylor coefficient of f expanded about the origin. Therefore, for every $f \in H(\mathbb{D}), n \in \mathbb{N}$, and $\nu \in \mathbb{N}_{0}$, we have

$$
\begin{equation*}
\forall z \in K_{n}: a_{\nu}\left(f, K_{n}\right) F_{n, \nu}(z)=a_{\nu}(f) z^{\nu} \tag{8}
\end{equation*}
$$

1. For each $f \in \mathcal{M}$, we have

$$
\max _{|w|=\frac{1}{2}\left(1+R_{n}\right)}\left|f\left(\psi_{n}(w)\right)\right|=\max _{|z|=\frac{2 n+1}{2 n+2}}|f(z)|=\|f\|_{K_{2 n+1}} .
$$

2. From inequality $\sqrt{77}$, equation (8), and $\frac{R_{n}+1}{R_{n}-1}=2 n+1$, we obtain for every $f \in \mathcal{M}$ and each $n \in \mathbb{N}$ that

$$
\sum_{\nu=m+1}^{\infty}\left|a_{\nu}(f)\right|\left(\frac{n}{n+1}\right)^{\nu}<\frac{1}{n}
$$

whenever

$$
\begin{equation*}
m \geq 3(2 n+1) \ln \left(5 n(2 n+1) M_{n}(\mathcal{M})\right) \tag{9}
\end{equation*}
$$

3. As shown above, the m-th partial sums $T_{n, m}$ of the Faber expansions are independent of n and coincide with the m-th Taylor polynomials expanded about the origin. Because $K_{n}=\frac{n}{n+1} \overline{\mathbb{D}}$, it follows

$$
\begin{equation*}
\left|a_{\nu}(f)\right|=\left|\frac{1}{2 \pi i} \int_{|z|=\frac{2 n+1}{2 n+2}} \frac{f(z)}{z^{\nu+1}} d z\right| \leq\left(\frac{2 n+2}{2 n+1}\right)^{\nu} \cdot\|f\|_{K_{2 n+1}}, \tag{10}
\end{equation*}
$$

which leads, for every $n \in \mathbb{N}, m \in \mathbb{N}_{0}, j \geq 2$, and $f \in \mathcal{M}$, to

$$
\begin{aligned}
\left\|\left(T_{n, m} f\right)^{(-j)}\right\|_{K_{n}} & =\left\|\sum_{\nu=0}^{m} \frac{a_{\nu}(f)}{(\nu+1) \cdots(\nu+j)} z^{\nu+j}\right\|_{K_{n}} \leq \frac{1}{j!} \sum_{\nu=0}^{\infty}\left|a_{\nu}(f)\right|\left(\frac{n}{n+1}\right)^{\nu+j} \\
& \leq \frac{1}{5!}\left(\frac{n}{n+1}\right)^{j}\|f\|_{K_{2 n+1}} \cdot \sum_{\nu=0}^{\infty}\left(\frac{n(2 n+2)}{(n+1)(2 n+1)}\right)^{\nu} \leq \frac{(2 n+1) M_{n}}{j!} \\
& \leq \frac{3 n M_{n}}{j!} .
\end{aligned}
$$

If j satisfies $j!>3 n^{2} M_{n}$, we get $\left\|\left(T_{n, m} f\right)^{(-j)}\right\|_{K_{n}}<\frac{1}{n^{2}}$ for all $f \in \mathcal{M}$. In particular, by applying Stirling's Formula, we can choose $\sigma_{n}(\mathcal{M}) \in O\left(\ln \left(n^{2} M_{n}\right)\right)$.

Theorem 8. Let \mathcal{K} be a compact exhaustion of Ω and \mathcal{M} be a normal family in $H(\Omega)$ with covering numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=\left(\lambda_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, as well as the sequences $\left(\gamma_{n}\right)_{n \in \mathbb{N}}=$ $\left(\gamma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ and $\left(\sigma_{n}\right)_{n \in \mathbb{N}}=\left(\sigma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$ from Lemma 6 . Then, there exists a universal function $f \in \mathcal{U}(\mathcal{D})$ such that

$$
\forall n \in \mathbb{N}: F\left(f, \mathcal{D}, \mathcal{M}, d_{\mathcal{K}}, \frac{3}{n}\right) \leq n\left(\lambda_{n}+1\right)\left(\gamma_{n}+\sigma_{n\left(\lambda_{n}+1\right)}\right) .
$$

Proof. 1. Let $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in H(\Omega)$ be those functions whose $\frac{1}{n}$-neighborhoods cover \mathcal{M}. Moreover, let $\mathcal{Q}=\left\{q_{n}:=f_{\lambda_{n}+1}^{(n)}: n \in \mathbb{N}\right\}$ be a dense set of polynomials in $H(\Omega)$, which exists by Mergelian's Theorem and our general assumption that Ω is simply connected. Without restriction, we may assume $\operatorname{deg}\left(q_{n}\right) \leq \gamma_{n}$, as well as $\left\|q_{n}^{(-j)}\right\|_{K_{n}}<1 / n^{2}$ for every $j \geq \sigma_{n}$, holds for every $n \in \mathbb{N}$. Otherwise, we elongate the sequence $\left(q_{n}\right)$ by adding the zero polynomial several times, noticing $\left(\gamma_{n}\right),\left(\sigma_{n}\right)$ may be chosen to tend to ∞, as $n \rightarrow \infty$.
Now, we define $\left(f_{k}\right)_{k \in \mathbb{N}}$ as the following sequence

$$
f_{1}^{(1)}, f_{2}^{(1)}, \ldots, f_{\lambda_{1}+1}^{(1)}, f_{1}^{(2)}, f_{2}^{(2)}, \ldots, f_{\lambda_{2}+1}^{(2)}, \ldots, f_{1}^{(n)}, f_{2}^{(n)}, \ldots, f_{\lambda_{n}+1}^{(n)}, \ldots
$$

For every $k \in \mathbb{N}$, there are unique $n=n(k) \in \mathbb{N}, n \leq k$, and $1 \leq j \leq \lambda_{n}+1$ such that $f_{k}=f_{j}^{(n)}$. According to Lemma $\sqrt[6]{6}$ and the fact that the degree of q_{n} does not exceed γ_{n}, it holds for $P_{k}:=T_{n, \gamma_{n}} f_{k}=T_{n(k), \gamma_{n(k)}} f_{k}$ that

$$
\left\|P_{k}-f_{k}\right\|_{K_{n}}=\left\|T_{n, \gamma_{n}} f_{k}-f_{k}\right\|_{K_{n}}<\frac{1}{n}
$$

Therefore, by the definition of our metric, this implies

$$
\begin{equation*}
d_{\mathcal{K}}\left(f_{k}, P_{k}\right)<\frac{1}{n} \tag{11}
\end{equation*}
$$

for every $k \in \mathbb{N}$. Note, in case of $f_{k}=f_{\lambda_{n}+1}^{(n)}=q_{n}$, we have $P_{k}=T_{n, \gamma_{n}} q_{n}=q_{n}$, because q_{n} is a polynomial of degree not exceeding γ_{n}.
Next, we define

$$
N_{1}:=\sigma_{1}+1, \quad N_{k}:=\gamma_{n(k)}+\sigma_{k}+N_{k-1}, k \geq 2,
$$

and the function f as

$$
f(z):=\sum_{j=1}^{\infty} P_{j}^{\left(-N_{j}\right)}(z) .
$$

Since, for every $n \leq l$, we have

$$
\sum_{j=l}^{l+m}\left\|P_{j}^{\left(-N_{j}\right)}\right\|_{K_{n}} \leq \sum_{j=l}^{l+m}\left\|P_{j}^{\left(-N_{j}\right)}\right\|_{K_{j}} \leq \sum_{j=l}^{l+m} \frac{1}{j^{2}}
$$

by Lemma 6 and the choice of \mathcal{Q}, f is a well-defined holomorphic function in Ω.
2. Let $k \in \mathbb{N}$. For all $1 \leq j<k$, we have $N_{k}-N_{j}>\gamma_{n(k)} \geq \gamma_{n(j)}$. It follows

$$
f^{\left(N_{k}\right)}(z)=P_{k}(z)+\sum_{j=k+1}^{\infty} P_{j}^{\left(-N_{j}+N_{k}\right)}(z)
$$

For $j \geq k+1$, we have $N_{j}-N_{k} \geq \sigma_{j}$. Since $k \geq n$, we estimate

$$
\begin{aligned}
\left\|f^{\left(N_{k}\right)}-P_{k}\right\|_{K_{n}} & =\left\|\sum_{j=k+1}^{\infty} P_{j}^{\left(-N_{j}+N_{k}\right)}\right\|_{K_{n}} \leq \sum_{j=k+1}^{\infty}\left\|P_{j}^{\left(-N_{j}+N_{k}\right)}\right\|_{K_{j}} \\
& =\sum_{j=k+1}^{\infty}\left\|\left(T_{n(j), \gamma_{n(j)}} f_{j}\right)^{\left(-N_{j}+N_{k}\right)}\right\|_{K_{j}} \\
& \leq \sum_{j=k+1}^{\infty} \frac{1}{j^{2}}<\frac{1}{k}<\frac{1}{n} .
\end{aligned}
$$

Therefore, by the definition of our metric $d_{\mathcal{K}}$, we obtain

$$
\begin{equation*}
d_{\mathcal{K}}\left(D^{N_{k}} f, P_{k}\right)<\frac{1}{n} . \tag{12}
\end{equation*}
$$

3. Let given an arbitrary function $g \in \mathcal{M}$. Hence, there exists a function f_{k} with $k \leq n \cdot\left(\lambda_{n}+1\right)$ and

$$
d_{\mathcal{K}}\left(f_{k}, g\right)<\frac{1}{n} .
$$

Together with (11) and (12), it follows

$$
d_{\mathcal{K}}\left(D^{N_{k}} f, g\right) \leq d_{\mathcal{K}}\left(D^{N_{k}} f, P_{k}\right)+d_{\mathcal{K}}\left(P_{k}, f_{k}\right)+d_{\mathcal{K}}\left(f_{k}, g\right)<\frac{3}{n} .
$$

We calculate

$$
N_{k}=\sum_{j=1}^{k} \gamma_{n(j)}+\sigma_{j} \leq k\left(\gamma_{n(k)}+\sigma_{k}\right) \leq n\left(\lambda_{n}+1\right)\left(\gamma_{n}+\sigma_{n\left(\lambda_{n}+1\right)}\right),
$$

as proposed.
4. Moreover, by construction, we have $P_{k}=q_{n}$ for every $k \in \mathbb{N}$ with $f_{k}=q_{n}$. From (12), we conclude

$$
d_{\mathcal{K}}\left(D^{N_{k}} f, q_{n}\right)<\frac{1}{n}
$$

for such k, which finally shows $f \in \mathcal{U}(\mathcal{D})$.

Combining the above Theorem 8 with Corollary 7 , we immediately get the following.
Corollary 9. Let $\mathcal{K}_{\mathbb{D}}$ be the standard exhaustion of \mathbb{D} and $\mathcal{M} \subseteq H(\mathbb{D})$ be a normal family with covering numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$. Then, there is a universal function $f \in \mathcal{U}(\mathcal{D})$ such that

$$
F\left(f, \frac{3}{n}\right) \in O\left(n^{2} \lambda_{n} \ln \left(n \lambda_{n} \max \left\{1, M_{2 n \lambda_{n}}\right\}\right)\right)
$$

or equivalently

$$
F\left(f, \frac{1}{n}\right) \in O\left(n^{2} \lambda_{3 n} \ln \left(n \lambda_{3 n} \max \left\{1, M_{6 n \lambda_{3 n}}\right\}\right)\right),
$$

where $M_{n}=M_{n}(\mathcal{M})=\sup _{f \in \mathcal{M}}\|f\|_{K_{2 n+1}}$.
Remark 10. In contrast to sequences of composition operators, the speed of approximating elements of a normal family \mathcal{M} by universal functions for the differentiation operator is not only governed by the size of \mathcal{M}, measured by the covering numbers $\left(\lambda_{n}\right)_{n \in \mathbb{N}}$.
In case of $\Omega=\mathbb{D}$, also the growth of the members of \mathcal{M}, given by the sequence $\left(M_{n}\right)_{n \in \mathbb{N}}$, comes into play. In the general case, the sequences $\left(\gamma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, quantizing the approximative behavior of the Faber expansion, and $\left(\sigma_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, giving the speed of convergence towards zero of the anti-derivatives, are relevant.

4 Examples of normal families

We conclude with some examples of normal families in $H(\mathbb{D})$ and apply our results from the previous sections. Throughout, we choose the standard compact exhaustion $\mathcal{K}_{\mathbb{D}}$ of \mathbb{D}, cf. (3). Therefore, we omit the reference to the fixed metric $d_{\mathcal{K}_{\mathbb{D}}}$ in the notation of this
section.
Trivially, every finite subset $E=\left\{f_{1}, \ldots, f_{k}\right\}$ of $H(\mathbb{D})$ is a normal family with eventually constant sequence $\lambda_{n}(E)=k$. Applying Theorem 3 and Corollary 9 respectively yields the following result.

Corollary 11. Let \mathcal{C} be a sequence of composition operators as in Theorem 3, \mathcal{D} the sequence of differentiation operators. For every finite subset $E=\left\{f_{1}, \ldots, f_{k}\right\}$ of $H(\mathbb{D})$, there are $f \in \mathcal{U}(\mathcal{C})$ and $g \in \mathcal{U}(\mathcal{D})$ such that

$$
F\left(f, \mathcal{C}, E, \frac{1}{n}\right) \in O(n)
$$

and

$$
F\left(g, \mathcal{D}, E, \frac{1}{n}\right) \in O\left(n^{2} \ln \left(n \max \left\{1, M_{6 k n}(E)\right\}\right)\right)
$$

respectively.
Moreover, the unit ball

$$
B^{\infty}:=\{f \in H(\mathbb{D}):|f(z)| \leq 1 \text { for all } z \in \mathbb{D}\}
$$

of $H^{\infty}(\mathbb{D})$ is a normal family in $H(\mathbb{D})$ because, obviously, it is locally bounded. It is immediately seen that the corresponding sequence $\left(M_{n}\left(B^{\infty}\right)\right)_{n \in \mathbb{N}}$ is constantly equal to one. Hence, taking $\ln (n) \in O\left(n^{\varepsilon}\right)$ for each $\varepsilon>0$ into account, another application of Theorem 3 and Corollary 9 gives the next corollary.

Corollary 12. Let \mathcal{C} be a sequence of composition operators as in Theorem 3, \mathcal{D} the sequence of differentiation operators. There is $f \in \mathcal{U}(\mathcal{C})$ with

$$
F\left(f, \mathcal{C}, B^{\infty}, \frac{1}{n}\right) \in O\left(n \lambda_{2 n}\left(B^{\infty}\right)\right)
$$

Moreover, there is $g \in \mathcal{U}(\mathcal{D})$ such that

$$
F\left(g, \mathcal{D}, B^{\infty}, \frac{1}{n}\right) \in O\left(n^{2+\varepsilon}\left(\lambda_{3 n}\left(B^{\infty}\right)\right)^{1+\varepsilon}\right),
$$

for every $\varepsilon>0$.
By Corollary 9 the covering numbers $\left(\lambda_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, as well as the sequence $\left(M_{n}(\mathcal{M})\right)_{n \in \mathbb{N}}$, determine how fast the approximation of a normal family $\mathcal{M} \subseteq H(\mathbb{D})$ by a universal function may be.
In order to get a better impression of the concrete error terms involved, we shall consider the following example. It is very well-known, cf. [16, Theorem 12.6], that the set of holomorphic one-to-one mappings of \mathbb{D} onto itself, $\operatorname{Aut}(\mathbb{D})$, is given by

$$
\operatorname{Aut}(\mathbb{D})=\left\{f_{\gamma, a}(z)=e^{i \gamma} \frac{z-a}{1-\bar{a} z}: \gamma \in[0,2 \pi), a \in \mathbb{D}\right\} .
$$

Since $f_{\gamma, a}(\mathbb{D})=\mathbb{D}, \operatorname{Aut}(\mathbb{D})$ is bounded in $H(\mathbb{D})$, so a normal family, and $M_{n}(\operatorname{Aut}(\mathbb{D}))=1$ for every $n \in \mathbb{N}$. Next, we give bounds for $\lambda_{n}(\operatorname{Aut}(\mathbb{D}))$.

Lemma 13. For the normal family $\operatorname{Aut}(\mathbb{D})$ in $H(\mathbb{D})$, we have $\lambda_{n}(\operatorname{Aut}(\mathbb{D})) \in O\left(n^{7}\right)$.

Proof. Fix two functions $f_{\gamma_{j}, a_{j}} \in \operatorname{Aut}(\mathbb{D})(j=1,2)$. Because $\left|f_{0, a_{2}}(z)\right| \leq 1$, we have for every $z \in K_{n}$ that

$$
\begin{aligned}
\left|f_{\gamma_{1}, a_{1}}(z)-f_{\gamma_{2}, a_{2}}(z)\right|= & \left|e^{i \gamma_{1}} \frac{z-a_{1}}{1-\bar{a}_{1} z}-e^{i \gamma_{2}} \frac{z-a_{2}}{1-\bar{a}_{2} z}\right| \\
= & \left|e^{i \gamma_{1}}\left(f_{0, a_{1}}(z)-f_{0, a_{2}}(z)\right)+\left(e^{i \gamma_{1}}-e^{i \gamma_{2}}\right) f_{0, a_{2}}(z)\right| \\
\leq & \left|\frac{\left(z-a_{1}\right)\left(1-\bar{a}_{2} z\right)-\left(z-a_{2}\right)\left(1-\bar{a}_{1} z\right)}{\left(1-\bar{a}_{1} z\right)\left(1-\bar{a}_{2} z\right)}\right|+\left|e^{i\left(\gamma_{1}-\gamma_{2}\right)}-1\right| \\
\leq & \frac{1}{\left(1-\left(\frac{n}{n+1}\right)\right)^{2}}\left|a_{2}-a_{1}+\left(a_{1} \bar{a}_{2}-a_{2} \bar{a}_{1}\right) z+\left(\bar{a}_{1}-\bar{a}_{2}\right) z^{2}\right| \\
& +\left|i \int_{0}^{\gamma_{1}-\gamma_{2}} e^{i t} d t\right| \\
\leq & (n+1)^{2}\left(2\left|a_{1}-a_{2}\right|+\left|a_{1} \bar{a}_{2}-a_{2} \bar{a}_{1}\right|\right)+\left|\gamma_{1}-\gamma_{2}\right| \\
\leq & 4(n+1)^{2}\left|a_{1}-a_{2}\right|+\left|\gamma_{1}-\gamma_{2}\right|
\end{aligned}
$$

Thus, for $\left\|f_{\gamma_{1}, a_{1}}-f_{\gamma_{2}, a_{2}}\right\|_{K_{n}}<1 / n$ to hold, only $O(n)$ different γ and $O\left(n^{6}\right)$ different $a \in \mathbb{D}$ are needed. Since, by the definition of the metric $d_{\mathcal{K}}$, the inequality $\left\|f_{\gamma_{1}, a_{1}}-f_{\gamma_{2}, a_{2}}\right\|_{K_{n}}<$ $1 / n$ implies $d_{\mathcal{K}}\left(f_{\gamma_{1}, a_{1}}, f_{\gamma_{2}, a_{2}}\right)<1 / n$, we obtain $\lambda_{n} \in O\left(n^{7}\right)$.

Remark 14. If one considers, instead of $\operatorname{Aut}(\mathbb{D})$, the smaller set

$$
\begin{aligned}
\mathcal{M} & :=\left\{f \in \operatorname{Aut}(\mathbb{D}): \text { the only zero } z_{0} \text { of } f \text { satisfies }\left|z_{0}\right| \leq r\right\} \\
& =\left\{f_{\gamma, a}:|a| \leq r, \gamma \in[0,2 \pi)\right\}
\end{aligned}
$$

for fixed $r \in(0,1)$, a similar calculation as in the proof of Lemma 13 gives $\lambda_{n}(\mathcal{M}) \in O\left(n^{3}\right)$. These growth estimations motivate to introduce the following notion.

Definition 15. Let (\mathcal{X}, d) be a complete metric space, (\mathcal{Y}, d) a separable metric space, $\mathcal{M} \subseteq \mathcal{Y}$ be totally bounded, and $\mathcal{L}=\left(L_{n}\right)_{n \in \mathbb{N}}$ be a sequence of continuous mappings $L_{n}: \mathcal{X} \rightarrow \mathcal{Y}$. We say that an element $x \in \mathcal{X}$ is m-polynomial \mathcal{L}-universal for \mathcal{M} if $x \in \mathcal{U}(\mathcal{L})$ and

$$
F(x, \mathcal{L}, \mathcal{M}, 1 / n) \in O\left(n^{m}\right)
$$

We abbreviate the set of all such x by $\mathcal{U}_{m}(\mathcal{L}, \mathcal{M})$. \mathcal{L} is called m-polynomial universal for \mathcal{M} if $\mathcal{U}_{m}(\mathcal{L}, \mathcal{M}) \neq \emptyset$.

Again, taking $\ln (n) \in O\left(n^{\varepsilon}\right)$ for each $\varepsilon>0$ into account, Theorem 3. Corollary 9 and Lemma 13 immediately give us

Corollary 16. Let \mathcal{C} be a sequence of composition operators as in Theorem 3, \mathcal{D} the sequence of differentiation operators. Consider the normal family $\operatorname{Aut}(\mathbb{D})$ in $H(\mathbb{D})$. Then, there exist
(i) 8 -polynomial \mathcal{C}-universal functions for $\operatorname{Aut}(\mathbb{D})$,
(ii) ($9+\varepsilon$)-polynomial \mathcal{D}-universal functions for $\operatorname{Aut}(\mathbb{D})$ for each $\varepsilon>0$.

Remark 17.

(i) If the covering numbers $\lambda_{n}=\lambda_{n}(\mathcal{M})$ of a totally bounded subset \mathcal{M} satisfy $\lambda_{n} \in$ $O\left(n^{m}\right)$, the number m is related to the so-called box-counting dimension of \mathcal{M}.
(ii) Let $\mathcal{M} \subseteq \mathcal{Y}$ be totally bounded with covering numbers $\left(\lambda_{n}\right)$. Hence, for every $n \in \mathbb{N}$, there are $f_{1}^{(n)}, \ldots, f_{\lambda_{n}}^{(n)} \in \mathcal{Y}$ which cover \mathcal{M} with their $\frac{1}{n}$-neighborhoods. Then, we have

$$
\begin{equation*}
\mathcal{U}_{m}(\mathcal{L}, \mathcal{M})=\bigcup_{c \in \mathbb{N}} \bigcap \bigcap_{n \in \mathbb{N}} \bigcap_{j=1}^{\lambda_{n}} \bigcup_{N=1}^{c \cdot n^{m}} L_{N}^{-1}\left(U_{1 / n}\left(f_{j}^{(n)}\right)\right) \tag{13}
\end{equation*}
$$

From the description (13), we deduce that the polynomial universal elements form a countable union of G_{δ}-sets, which is called a $G_{\delta \sigma}$-set in the literature. A natural question is: Is it also G_{δ} ?

A very prominent example of a normal family in $H(\mathbb{D})$ is the set

$$
S=\left\{f \in H(\mathbb{D}): f \text { one-to-one, } f(0)=0, f^{\prime}(0)=1\right\}
$$

From the well-known inequality due to Koebe, see e.g. [15, Satz 15.15]:

$$
\begin{equation*}
\forall f \in S, z \in \mathbb{D}:|f(z)| \leq \frac{|z|}{(1-|z|)^{2}}, \tag{14}
\end{equation*}
$$

follows the boundedness of S in $H(\mathbb{D})$, in fact, S is a normal family and

$$
\begin{equation*}
M_{n}(S)=(2 n+1)(2 n+2) \in O\left(n^{2}\right) \tag{15}
\end{equation*}
$$

A special subset of S is given by

$$
K:=\left\{f_{\alpha}: \alpha \in[0,2 \pi)\right\} \subseteq S, \quad f_{0}(z)=\frac{z}{(1-z)^{2}}, \quad f_{\alpha}(z)=e^{-i \alpha} f_{0}\left(e^{i \alpha} z\right)
$$

the so-called Koebe extremal functions. Obviously, K is a normal family also with $M_{n}(K) \in$ $O\left(n^{2}\right)$. As Taylor expansions about the origin, one gets

$$
f_{0}(z)=\sum_{\nu=1}^{\infty} \nu z^{\nu}, \quad f_{\alpha}(z)=\sum_{\nu=1}^{\infty} \nu e^{i(\nu-1) \alpha} z^{\nu} .
$$

Lemma 18. For the normal family K in $H(\mathbb{D})$, we have $\lambda_{n}(K) \in O\left(n^{2} \ln (n)\right)$.
Proof. Consider

$$
T_{m} f_{\beta}(z)=\sum_{\nu=1}^{m} \nu e^{i(\nu-1) \beta} z^{\nu}, m \in \mathbb{N}, \beta \in[0.2 \pi),
$$

where $T_{m} f$ denotes, again, the m-th Taylor polynomial of f expanded about the origin. By Corollary 7, there is a sequence $\gamma_{n} \in O(n \ln (n))$ with $\left\|T_{\gamma_{2 n}} f-f\right\|_{K_{n}}<\frac{1}{2 n}$ for all $f \in S$. Using the simple estimate

$$
\begin{equation*}
\left|e^{i(\nu-1) \alpha}-e^{i(\nu-1) \beta}\right|=\left|\int_{\beta}^{\alpha} \frac{1}{i(\nu-1)} e^{i(\nu-1) t} d t\right| \leq \frac{1}{\nu-1}|\alpha-\beta|, \tag{16}
\end{equation*}
$$

we obtain, for $f \in K$ and $z \in K_{n}$,

$$
\begin{aligned}
\left|f_{\alpha}(z)-T_{\gamma_{2 n}} f_{\beta}(z)\right| & \leq \sum_{\nu=2}^{\gamma_{2 n}} \nu\left|e^{i(\nu-1) \alpha}-e^{i(\nu-1) \beta}\right|+\left\|f_{\alpha}-T_{\gamma_{2 n}} f_{\alpha}\right\|_{K_{n}} \\
& \frac{<}{16]}
\end{aligned} \sum_{\nu=2}^{\gamma_{2 n}} \frac{\nu}{\nu-1}|\alpha-\beta|+\frac{1}{2 n}<2 \gamma_{2 n}|\alpha-\beta|+\frac{1}{2 n} .
$$

Thus, for $\left\|f_{\alpha}-T_{\gamma_{2 n}} f_{\beta}\right\|_{K_{n}}<1 / n$ to hold for some $\beta \in[0,2 \pi)$ only $O\left(n^{2} \ln (n)\right)$ values of β are needed.

As above, we deduce from the results of the previous section and Lemma 18;
Corollary 19. Let \mathcal{C} be a sequence of composition operators as in Theorem 3, \mathcal{D} the sequence of differentiation operators. Consider the normal family K of Koebe extremal functions in $H(\mathbb{D})$. Then, there exist
(i) $(2+\varepsilon)$-polynomial \mathcal{C}-universal functions for K for each $\varepsilon>0$,
(ii) ($4+\varepsilon$)-polynomial \mathcal{D}-universal functions for K for each $\varepsilon>0$.

Before we give (what we think to be rather coarse) bounds for the growth of $\left(\lambda_{n}(S)\right)_{n \in \mathbb{N}}$, we apply Theorem 3 and Corollary 9 to S.

Corollary 20. Let \mathcal{C} be a sequence of composition operators as in Theorem 3, \mathcal{D} the sequence of differentiation operators, and $\left(\lambda_{n}\right)_{n \in \mathbb{N}}=\left(\lambda_{n}(S)\right)_{n \in \mathbb{N}}$. Then, there are some $f \in \mathcal{U}(\mathcal{C})$ and $g \in \mathcal{U}(\mathcal{D})$ with

$$
F\left(f, \mathcal{C}, S, \frac{1}{n}\right) \in O\left(n \lambda_{2 n}\right),
$$

respectively

$$
F\left(g, \mathcal{D}, S, \frac{1}{n}\right) \in O\left(n^{2} \lambda_{3 n} \ln \left(n \lambda_{3 n}\right)\right)
$$

The next result gives bounds for $\left(\lambda_{n}(S)\right)_{n \in \mathbb{N}}$.
Lemma 21. We have

$$
\lambda_{n}(S) \in O\left(\exp \left(n^{1+\varepsilon}\right)\right),
$$

for every $\varepsilon>0$.
Proof. 1. Let $n \in \mathbb{N}$ be fixed. Consider for $f \in S$ its Taylor expansion $f(z)=z+$ $\sum_{\nu=2}^{\infty} a_{\nu}(f) z^{\nu}$ about 0 . By de Branges' famous proof of Bieberbach's Conjecture [8, we know $a_{\nu}(f) \in \nu \overline{\mathbb{D}}$ for all $\nu \geq 2$. In (9), we obtained

$$
\sum_{\nu=m+1}^{\infty}\left|a_{\nu}(f)\right|\left(\frac{n}{n+1}\right)^{\nu}<\frac{1}{n}
$$

whenever

$$
\begin{equation*}
m \geq m_{n}:=3(2 n+1)\left\lceil\ln \left(5 n(2 n+1) M_{n}(S)\right)\right\rceil ; \tag{17}
\end{equation*}
$$

as mentioned earlier $M_{n}(S)=(2 n+1)(2 n+2)$.
2. As we will see from the following estimate, any function

$$
g(z):=z+\sum_{\nu=2}^{m_{2 n}} b_{\nu} z^{\nu},
$$

whose coefficients b_{ν} fulfill $\left|a_{\nu}(f)-b_{\nu}\right| \leq \frac{1}{2 n^{2}}$ for each $2 \leq \nu \leq m_{2 n}$, satisfies $d_{\mathcal{K}}(f, g)<\frac{1}{n}$. Counting how many of these functions g are at most needed, so that for any $f \in S$ there is at least one such g with $d_{\mathcal{K}}(f, g)<\frac{1}{n}$, will give us an upper bound for $\lambda_{n}(S)$ in the next step. But before, we estimate

$$
\begin{aligned}
\|f-g\|_{K_{n}} & \leq \sum_{\nu=2}^{m_{2 n}}\left|a_{\nu}(f)-b_{\nu}\right|\left(\frac{n}{n+1}\right)^{\nu}+\sum_{\nu=m_{2 n}+1}^{\infty} \nu\left(\frac{n}{n+1}\right)^{\nu} \\
& <\frac{1}{2 n^{2}} \sum_{\nu=1}^{\infty}\left(\frac{n}{n+1}\right)^{\nu}+\frac{1}{2 n}=\frac{1}{n}
\end{aligned}
$$

By the definition of our metric $d_{\mathcal{K}}$, this implies $d_{\mathcal{K}}(f, g)<\frac{1}{n}$.
3. For fixed $\nu \in\left[2, m_{2 n}\right] \cap \mathbb{N}$, we set a grid of points b_{ν}, spaced at intervals of $\frac{1}{2 n^{2}}$ parallel to the real and imaginary axes, on the disk $\nu \overline{\mathbb{D}}$. This shows that there are at most $16 n^{4}(\nu+1)^{2}$ points b_{ν} needed, so that for any $f \in S$ there is at least one b_{ν} with $\left|a_{\nu}(f)-b_{\nu}\right| \leq \frac{1}{2 n^{2}}$. Hence,

$$
\begin{equation*}
\lambda_{n}(S) \leq \prod_{\nu=2}^{m_{2 n}} 16 n^{4}(\nu+1)^{2} \leq 16^{m_{2 n}} n^{4 m_{2 n}}\left(\left(m_{2 n}+1\right)!\right)^{2} \tag{18}
\end{equation*}
$$

Using $\left(m_{2 n}+1\right)!=\Gamma\left(m_{2 n}+2\right)$, as well as

$$
\lim _{z \rightarrow \infty} \frac{\Gamma(z+2)}{z \sqrt{2 \pi z}\left(\frac{z}{e}\right)^{z}}=1
$$

cf. [15, page 59], there is $C>1$ such that

$$
\begin{equation*}
\forall n \in \mathbb{N}:\left(\left(m_{2 n}+1\right)!\right)^{2} \leq C m_{2 n}^{3}\left(\frac{m_{2 n}}{e}\right)^{2 m_{2 n}}<C m_{2 n}^{2 m_{2 n}+3}<C m_{2 n}^{3 m_{2 n}} . \tag{19}
\end{equation*}
$$

Combining equations (18) and 19), we obtain

$$
\begin{equation*}
\lambda_{n}(S) \leq C(16 n)^{m_{2 n}}\left(n m_{2 n}\right)^{3 m_{2 n}} . \tag{20}
\end{equation*}
$$

From (17), it follows $m_{2 n} \in O(n \ln (n))$ Together with 20, we conclude

$$
\lambda_{n}(S) \in O\left(\exp \left(n \ln ^{2}(n)\right)\right)
$$

Since $\lim _{x \rightarrow \infty} \frac{\ln ^{2}(x)}{x^{\varepsilon}}=0$ for every $\varepsilon>0$, this finally implies the lemma.

For further examples of normal families one may consult [17].
Acknowledgment. We thank Jürgen Müller for pointing our attention to Faber polynomials and the referee for the useful comments/suggestions.

References

[1] N. U. Arakelian, Uniform and tangential approximations by analytic functions, Izv. Akad. Nauk Armjan. SSR Ser. Mat. 3 (1968), 273-286 [Russian].
[2] L. Bernal-González, Universal entire functions for affine endomorphisms of \mathbb{C}^{N}, J. Math. Anal. Appl. 305 (2005), 690-697.
[3] L. Bernal-González, A. Bonilla, M.C. Calderón-Moreno, Compositional universality on the unit ball of \mathbb{C}^{N}, Analysis 26 (2006), 365-372.
[4] L. Bernal-González, A. Montes-Rodríguez, Universal functions for composition operators, Complex Variables Theory Appl. 27 (1995), 47-56.
[5] F. Bayart, S. Grivaux, R. Mortini, Common bounded universal functions for composition operators, Illinois J. Math. 52 (2008), 995-1006.
[6] A. Bonilla, M.C. Calderón-Moreno, On universality of composition operators in several variables, Houston J. Math. 27 (2001), 907-918.
[7] P.S. Bourdon, J.H. Shapiro, Cyclic phenomena for composition operators, Memoirs of the American Mathematical Society 596, Providence, Rhode Island (1997).
[8] L. de Branges, A proof of the Bieberbach conjecture, Acta Math. 154 (1985), 137-152.
[9] D. Gaier, Vorlesung über Approximation im Komplexen, Birkhäuser (1980).
[10] K.G. Grosse-Erdmann, R. Mortini, Universal functions for composition operators with nonautomorphic symbol, J. Anal. Math. 107 (2009), 355-376.
[11] T. Kalmes, M. Nieß, Universal zero solutions of linear partial differential operators, Studia Math. 198 (2010), 33-51.
[12] W. Luh, Approximation by Antiderivatives, Constr. Approx. 2 (1986), 179-187.
[13] A.I. Markushevich, Theory of Functions of a Complex Variable, Volume III, Chelsea Publishing Company (1977).
[14] R. Meise, D. Vogt, Introduction to Functional Analysis, Clarendon Press, Oxford (1997).
[15] R. Remmert, G. Schumacher, Funktionentherie II, Springer, Berlin (2007).
[16] W. Rudin, Real and Complex Analysis, McGraw-Hill Book Company (1987).
[17] J.L. Schiff, Normal Families, Springer (1993).
[18] J.H. Shapiro, Simple connectivity and linear chaos, in Aiena, P. (ed.) International workshop on Operator theory, Cefalù, Italy, July 14-19, 1997. Palermo: Circulo Matematico di Palermo, Suppl. Rend. Circ. Mat. Palermo, II Ser. 56 (1998), 27-48.
T. Kalmes, Faculty of Mathematics, Chemnitz Technical University, 09107 Chemnitz, Germany
E-mail address: thomas.kalmes@math.tu-chemnitz.de
M. Niess, Christian-Albrechts-University Kiel, Ludewig-Meyn-Str. 4, 24118 Kiel, Germany
E-mail address: niess@math.uni-kiel.de

[^0]: *(C)2012. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
 Published in: Journal of Approximation Theory, Volume 164, Issue 1, Pages 57-76
 DOI: 10.1016/j.jat.2011.09.007
 https://doi.org/10.1016/j.jat.2011.09.007

