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IN RICORDO DI ENRICO

We introduce a metric topology on the space of Dirichlet forms and study com-
pactness and closure properties of families of local and non-local forms. © 1994

Academic Press, Inc.

INTRODUCTION

Loosely speaking, a composite medium is a body which exhibits a
fragmented and physically heterogeneous structure at a “microscopic”
scale—as in the case of a fine mixture of two materials of different physical
characteristics—and whose behavior is observed at a larger “macroscopic”
scale.

An adequate mathematical description, for example of the spectral
properties of the body, can be based on a variational principle of a suitable
asymptotic character. The general pattern can be outlined as follows. A
sequence of approximate energy forms is first written down, which matches
the specific fine structure of the body. A limit form is shown to exist, which
is interpreted as the energy form of the underlying composite. An explicit
integral expression is then given to the energy, builded on effective charac-
teristics for the composite.

For mixtures that are periodically spaced, this method is known as
homogenization. The approximate energies are then simply obtained by
scaling-down an initial energy form possessing a suitable periodic structure
and, in the limit, constant effective characteristics are found that describe
the homogenized body.

This variational approach has been extended also to non-periodic com-
posites, with various degree of generality and detail. Moreover, some useful
tools such as appropriate variational convergences have been developed,
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which have greatly widened the range of application of the method. As
general references to the subject we mention, for example, [A, BLP, HM,
KONZ, RT].

The available general theory, however, seems to be inadequate to
describe highly non-homogeneous and non-isotropic structures, like the
thin-layer models described in Example 6.4.1 and Example 6.5.1 of
Section 6, which involve measure-valued singular conductivities or
measure-valued gradients. Falling outside the existing theory, confined to
local functionals, are also the non-local examples of Section 6, namely,
Example 6.1.1 to Example 6.3.1, in which asymptotic non-local potentials
arise from the limit of pointwise singular conductivities.

The aim of this paper is to show that the beautiful theory of the Dirichlet
forms, initiated by A. Beurling and J. Deny [BDI1, BD2], provides an
appropriate functional framework to the variational description of such
irregular media and to the asymptotic variational principles of the kind
mentioned before. The main new tools are suitable topologies on the space
of Markovian forms and related compactness and closure theorems.

Before proceeding to describe the content of the paper, let us remark
that the role of Dirichlet forms in dealing with selfadjoint operators not
explicitely realizable as classic boundary value problems is well known. As
a recent application of this kind we refer, for example, to the stochastic
models of the euclidean quantum field theories, in the approach of
R. Heegh-Krohn, S. Albeverio, M. Rockner, and others; see, for instance,
[AR] and references therein.

We should also mention that Dirichlet forms are strictly related to quite
general classes of Markov processes, as shown by M. L. Silverstein [S1,
S$2], M. Fukushima [F], and others. Despite this relation provides a rich
probabilistic background, very apt to the description of the “irregularities”
that are the object of our study, we shall confine ourselves in the
present paper to the “anaiytic” theory and methods, having in mind a
PDE approach. However, we shall occasionally adopt the suggestive
probabilistic terminology.

The basic definitions and properties of Markovian and Dirichlet forms
needed in the following are summarized in Section 1 and Section 3. The
topological notions on the space of forms are discussed in Section 2 and
Section 4. They may have an independent interest in the general theory of
Dirichlet forms. The application to composite media is given in Section 5
and Section 6.

More precisely, in Section 2 we consider the space of all Markovian,
symmetric forms defined on a Hilbert space H = L3(X, m), where X is a
separable measure space and m a given o-finite positive measure on X. On
this space of forms we then define two variational convergences.

The first convergence, which is of a metrizable topological nature, is a
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special case of a variational convergence for convex sets and functionals
introduced in [M1, M3], in connection with a perturbation theory for
variational inequalities and related boundary value problems. Its main
feature is that it can be caracterized in terms of convergence of the resolvent
operators, semigroups, and spectral families associated with the forms, as
described by Theorems 2.4.1 and Corollaries 2.6.1 and 2.7.1 of Section 2.
A further property of this convergence, not exploited however in the
present paper, is its stability under Legendre duality [M4, J].

A second, weaker convergence in the space of forms is the one related to
the so-called I-convergence of functionals. This convergence was intro-
duced by E. De Giorgi and T. Franzoni [DGF], in the general context of
relaxation and functional convergence in the calculus of variations; see [A]
for further references. In the present setting, the main interest of this con-
vergence relies on the compactness properties it gives to quite general
families of forms, as described by Theorem 2.8.1 of Section 2.

In Section 4, we further describe the general variational theory of
Section 2 in the more explicit framework of regular Dirichlet forms in
H=L*X, m), X being now a separable locally compact space and m a
positive Radon measure on X.

We first apply the compactness results of Section 2 under an asymptotic
regularity assumption on the sequences of forms. This allows us to make
use of the Beurling and Deny representation theory of regular Dirichlet
forms and leads to useful integral expression for the asymptotic energies,
Theorem 4.1.2. Furthermore, under an additional asymprotic compactness
assumption on the sequence of forms, additional compactness properties
for the sequence of the resolvent operators associated with the forms, as
well as for their semigroups and spectral families, are also established,
Theorem 4.2.1.

Forms of diffusion type may converge to forms with non-trivial killing or
jumping parts, as shown by Examples 6.1.1 to 6.3.1 of Section 6. Therefore,
a deeper analysis of the convergence properties is carried on, in order to
prove closure theorems for families of local forms, Theorem 4.3.2, and
strongly local forms, Theorem 4.4.1.

In Section 5, as already mentioned, we interpret the results of Section 2
and Section 4 from the point of view of composite media. In particular, we
introduce suitable irregular Dirichlet forms, with arbitrary Borel measures
in the role of killing and jumping measures, and show that they provide an
appropriate tool for the variational definition of the effective characteristics
of quite general classes of composite media, as outlined at the beginning of
this Introduction.

This approach goes very much along the lines of [DMMI1, DMM2,
BDMM, DMGM]. In [DMM1, DMM2, BDMM ], Borel killing measures
were introduced in connection with so-called relaxed Dirichlet problems, in
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order to give a unifying framework both to Dirichlet problems with
homogeneous boundary conditions on possibly very irregular sets and
to Schrddinger equations with possibly highly singular potentials. In
[DMGM ], Borel jumping measures were used to describe energy forms on
domains and manifolds with non-trivial and possibly wildly changing
topological type.

In the final Section 6 we describe some examples that illustrate in
particular the results of Section 5.

The main results of this paper were presented in [MS5].

1. PRELIMINARIES ON DIRICHLET FORMS

We summarize the main definitions and properties of Dirichlet forms in
a separable Hilbert space.

(a) The Setting

We consider the Hilbert space H=L%*(X,m), where X is a given
separable measurable space and m a ¢-finite positive measure on X.

By (u, v) = [, uvm(dx) we denote the inner product of H, and by || -} the
related norm.

(b) Forms

A form a in H will be any non-negative definite symmetric bilinear form
a(u, v) defined on a linear subspace D[a] of H, the domain of a. We point
out that every form is intended here to be non-negative definite and sym-
metric. Moreover, the forms are not assumed a priori to be densely defined
in H.

If a is a form in H, we extend the quadratic functional a(u, u), ue D[a],
on the whole space H, by defining a(u, u)= +oo for every ue H—D[a].
Rather improperly, we shall denote this functional by a(u, u) leaving to the
context to distinguish when the same notation is used to denote the value
of the functional at a given u of H. Also, we put D[a(u,u)]:=
{ue H : a(u, u)y < +o0}, therefore D[a] = D[alu, u)].

The form and its quadratic functional are related by the polarization
identity,

a(u, v) = 3{a(u+ v, u+v)—a(u, u)—a(v, v)}
forevery u,veD[a]=D[a(u,u)],

which uniquely defines one in term of the other.
We shall occasionally use the notation F:=D[a] and F,:=D[a],,
where D{a], :=D[aln L=®(X, m).

580/123/2-11
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(c) Closed Forms

A form a is closed in H if its domain D[a] is complete under the inner
product a(u, v)+ (4, v). This inner product will be referred to as the
intrinsic inner product (or, metric) of D[a].

The closedness of a given form in A can be read on its quadratic
functional only. In fact, the following useful characterization holds:

A form a is closed in H if and only if the quadratic functional
a(u, u) is lower semicontinuous on H.

Remark. This property plays a basic role in the following. Let us recall
that the implication “a closed=>a(u, u) ls.c.” is a consequence of the
reflexivity of D[a] under the intrinsic norm. In fact, if u, -« in H and
lim inf a(u,,, u,) < +o0, then u,e D[a] and a subsequence exists that
converges weakly in D[a], hence also in H, to a vector that necessarily
coincides with wu; therefore ue D{a] and a(w, u)<liminfa(u,, u,). We
note, incidentally, that the analogous implication is viclated if, for instance,
we replace D[a] with the Sobolev space W !, which is indeed complete for
the norm |lu}l + | Dull, ||| being here the L' norm, whereas the domain of
the relaxation in L' of the functional || Dul| is known to be the space BV
and W''g BVg L' For completeness, we sketch also the simple proof
of the opposite implication “a(u, u)ls.c=a closed” Let u,eD[E],
(U, — Up, U, —u,,)+alu,—u,,, u,—u,)—0 as n,m— . Then, there exists
ue H such that u,, —u in H as m — co. By denoting the quadratic func-
tional a(w, u) by F, we then have 0< F(u,,—u,)=a(u,,—u,, u,,—u,) <
(u,—u,,, u,—u,,)+a(u,—u,,, u,—u,)—0as m n— c. Since Fis Ls.c. on
H, for each fixed n we have F(u —u,) <lim inf F(u,, —u,) as m — oo, hence
0 <lmsup,_, , F(u—u,) < limsup, , , liminf,, ,  Flu,,—u,)=0. This
implies, in particular, F(u—u,)< +o0, hence also F(u)<2[Flu—u,)+
F(u,)] < +w0, for n large enough, hence u e D[a]; moreover, u —u, e D[]
and a(u—u,, u—u,)=Flu—u,)—0 as n—> co. Therefore, (u—u,, u—u,)+
a(u—u,, u—u,)—0.

A form a in H is closed if and only if there exists a non-negative self-
adjoint operator — A4 in the closure D[a] of D{a] in H, with domain
D[—A]<cD[/—A]=D[a], such that a(u,v)=(/—Au,./—Av) for
every u,veD[a]. Moreover, a(u,v)=(—Au,v) for every ueD[A],
ve D[a], see, e.g., [K]. The operator A, densely defined in D[a], is the
generator of a.

(d) Closure

We will often be interested in closed forms that are initially known, or
represented, only on some linear subspace of their final domain. In this
respect two standard procedures exist, both depending on the space H, by
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which a closed form in H can be uniquely associated with a given non-
closed form in H. The first procedure is the closure of a form in H and only
applies to forms which are closable in H. The second procedure, described
in () below, is the relaxation of a form in H and applies to arbitrary forms.
Both procedures lead however to the same (closed) form, in case the initial
form is closable.

A form a is closable in H if {u,}<D[a], a(u,—u,,, u,—u,)—0,
(u,, u,)—0 as n,m— oo imply a(«,, u,) >0 as n— o0,

A form a is closable in H if and only if there exists a closed extension d
of a in H, ie, a closed form 4 with domain D[d]> D[a], such that
a(u, v) =alu, v) for every u,ve D[a].

Moreover, a form a is closable in H if and only if the (abstract) comple-
tion of D[a] for the inner product a(u, v) + (u, v) is injected in the space H.

Any closable form a in H possesses a smallest closed extension in H, that
is an extension with smallest domain, which is necessarily unique and is
denoted by a and called the closure of a in H. The domain D[a] of a coin-
cides with the completion of D[ a] for the intrinsic inner product of a, iden-
tified with a subspace of H. Therefore, D[a)= {ue H:3u,e Dla], u,—>u
in H, a(u,—u,,, u,~u,,)—0 as n,m— o} and for every u, ve D[a], we
have then unambiguously a(u, v)=lim a(u,, v,) for arbitrary u, - u, v, > v
in H as n— oo, with a(u,—u,,,u,—u,,)—0, alv,—v,,v,—v,)—>0 as
n,m-— co.

In particular, with any closable form a in H we can associate a non-
negative self-adjoint operator — 4, with (dense) domain in the closure of
D[a] in H, by choosing A to be the generator of the closure a of a in H.
We recall that if a(u, v) :=(—Su, v), D[a]=D[S), where —S is a given
non-negative definite, symmetric densely defined operator in H, then — A4
is the Friedrichs extension of —§; see [K, VI, Sect. 3; F, Sect. 2.3].

(e) Relaxation

Given a form ¢ in H, not necessarily closable, there exists a greatest
lower semicontinuous functional on H which is a minorant of the quadratic
functional a(u, u) associated with a on H. This uniquely determined ls.c.
functional on H, with extended real values in [0, +o0], is also quadratic
and will be denoted by a(u, u). A closed form a(u, v) is then defined by
polarization on the domain D[a]= {ue H :a(u, u)< +oo}. This form,
uniquely determined by the initial a, is the relaxation of a in H. We have
a(u,u)<a(u,u) for every ue H, hence D[a]>D[a], and for every
ue D[a], a(u, u)=min{lim inf a(w,, u,): u, > u in H as n— +o0}.

If we apply the relaxation procedure to a closable form, then the relaxed
form will coincide with the closure of the given form in H. In fact, if a is
closable in H, then it is easy to see that a itself is an extension of a, indeed,



374 UMBERTO MOSCO

it is the smallest closed extension of a in H. In fact, since a(u, u) is a Ls.c.
extension of a(u, u), it is in particular a ls.c. minorant of a(x, ) on H,
hence we have a(u, u)<a(u, u)<a(u,u) for every ueH, therefore
a(u, u) = a(u, u) for every ue D[a]. Since a(u, u) < a(u, u) for every ue H,
a is an extension of a, and since D[g] < D[a], a is the smallest closed
extension of a in H. Therefore, if a is closable in H, then a=a.

Remark. As already noted in (c), in non-reflexive spaces closure and
relaxation are distinct procedures even for closable functionals.

(f) Markovian Forms

A form a in H is Markovian if the following condition is satisfied: for
every £ > 0 there exists 7,: R— [—¢, 1 +&], with 5,(¢) =1 for te [0, 1] and
0<n,(t')—n, (1)<t —1t for every t' <, such that n,oue D[a] and a(n,c«,
n.ou) < a(u, u) whenever ue D[a].

From the characterization of closed forms in terms of the lower semicon-
tinuity of their quadratic functionals, it follows easily that a closed form a
in H is Markovian if and only if the following condition is satisfied:

ue D[a], v:=(0vu)al=veD[ad] and a(v, v) < a(u, u),
where (0 v u) A 1 =inf{sup{w, 0}, 1}.

(g) Dirichlet Forms

A Dirichlet form in H is a closed Markovian form in H, or, equivalently,
a closed form that satisfies last condition in (f).

If a is a Dirichlet form in H, with domain F=D[aq], then F,=
D[a]ln L*(X, m) is an algebra and

a(uv, w) < |u|?, a(v, v)+ |vl% a(u,u)  forevery u,veF,,

where |lul|,, denotes the essential supnorm of L*(X,m) [F, Thm.
1.4.2(ii)].

(h) Resolvents

Given a closed form a in H, the resolvent {G4: >0} is uniquely defined
for each f> 0 by the identity

ag(Ggu, )= (1, v) forevery veD[a],

where ag(u, v) ;= a(u, v) + f(u, v) for every u, ve D[a]. The existence, given
ue H, of a unique Gyu satisfying the identity above follows from the Riesz
representation theorem.

This resolvent is not necessarily strongly continuous in H as f— oo,
being such, that is, (Gyu —u, fGyu—u)— 0 as f — co, if and only if D[a]
is dense in H.
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(1) Deny—-Yosida Approximations
The forms a‘?), defined for every >0 on the whole of H by

a®(u, v) := B(u— BGgu, v), u,ve H,

are called the Deny—Yosida approximations of the form a. These forms have
the property

Dla]l={ue H:lima®(u,u)< +o0 as f— 0},

a(u, v)=1lim a*?(u, v) as f — oo,
with a'#(u, ) non-decreasing as  — oo for every u€ H; see [F, Thm. 1.3.2].

Moreover, it is easy to check that for every >0 and every ue H we
have

a®(u, u) =miIr} {a(v, v)+ B llu—v||*} =a(BGsu, BGu) + B |u— PG yull*.

2. ToPOLOGIES ON FORMS

In this section we keep the general setting of Section 1(a) for the space
H. We introduce two notions of convergence in the space of forms and
describe related compactness and comparison properties.

2.1. Convergence of Forms

We first introduce a convergence in the space of forms, according to
[M3], as follows:

DerFINITION 2.1.1. A sequence of forms {a,} converges to a form a in H
if:
(a) For every v, converging weakly to u in H, lim inf a,(v,, v,) =
a(u, u) as h— oo,

(b) For every ue H, there exists u, converging strongly to u in H,
such that lim sup a,(u,, u,) < a(u, u) as h — oo.

According to our general notation of Section 1(b), the quadratic func-
tionals occurring in the previous definition are defined on the whole of H
and take the value + oo outside the domain of the form.

Remark. Xf {a,} converges to a in H, then the quadratic functional
a(u, u) is easily seen to be ls.c. on H, therefore, as observed in Section 1(c),
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the form a is closed in H. Moreover, {a,} converges to a in H if and only
if the sequence of the relaxed forms in H, {a,}, converges to a in H.

It can be shown that a ropology can be introduced in the space of ail
closed forms on H, that makes it a Polish space (that is, a metrizable
separable topological space, complete for a metric inducing the topology)
and reduces on sequences to the convergence just defined. We shall not use
general topological notions in the present paper and for more details on
this point we refer to [J; A, Thm. 3.36] and to [BI, B2].

2.2. I'-Convergence of Forms

We now introduce a weaker convergence in the space of forms, following
[DGF]:

DerFINITION 2.2.1. A sequence of forms {a,} I-converges to a form a in
H if:
(a) For every v, —»u in H, lim inf a,(v,, v,) = a(u, u) as h — oo,
(b) For every ueH, there exists uw,—u in H, such that
lim sup a,(u,, u,) <a(u, u) as h— co.

Again, the quadratic forms involved in this definition are extended to be
+ oo on H outside their domain.

Remark. As before, if {a,} I'-converges to a in H, then a is closed in
H. Moreover, {a,} I'-converges to a in H if and only if {a,} I'-converges
to ain H.

Remark. A topology can also be defined on the space of all (closed)
forms on H, which reduces to /-convergence on sequences, however, such
a topology will not be in general a Hausdorff topology; see [DM, Thm.
9.16, 9.17; A, Sect. 2.8].

2.3. Asymptotic Compactness of Forms

On special subsets of forms the two convergences just defined coincide.

DerINITION 2.3.1. We say that a sequence of forms {a,} is asymptoti-
cally compact in H if every sequence {,} in H with lim inf{a,(u,, u,) +
(1, )} < +00 has a subsequence that converges strongly in H.

If {a,} is asymptotically compact, then any subsequence {a,,}
of {a,} is also asymptotically compact. In fact, if {v,} is such that
lim infl a,, (v, v.) + (U, )] < +00 as k— oo, by defining u;=-.- =
Up, =V, Up 1= -+ =U,=0,,.., Wwe obtain a sequence {u,} such that
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lim inf{a,(u,, u,) + (u,, u,)} < +00, therefore a subsequence of {u,} exists
that converges strongly in H, hence also a subsequence of {v,} exists,
converging strongly in H.

LEMMA 23.2. Let the sequence of forms {a,} be asymptotically compact
in H. Then, {a,} converges to a form a in H if and only if {a,} I'-converges
to ain H.

Proof. It suffices only to prove that (a) of Definition 2.2.1 implies (a)
of Definition 2.1.1. Suppose that, for some sequence {v,} converging
weakly to u in H, we have lim inf a,(v,, v,) < a(u, u) as h — oo. Then, by
possibly extracting a subsequence, we have lim a,(v,, v,) < a(u, u), as well
as lim inf[a,(v,, v,) + (v,, v,)] < +0, as h—oo. Since, as remarked
above, the asymptotic compactness of the initial sequence {a,} is inherited
by its subsequences, a subsequence {v,} of {v,} exists, that converges
strongly to some vector & in A as A — oo, and necessarily #=u On
the other hand, the subsequence {a,} of {a,} I'-converges to a. By
condition (a) of Definition 2.2.1, this implies that lim infa,(v,, v, )=
a(u, u) as h' — co. Since {v, } is a subsequence of {v,}, for which we have
lim a,(v,, v,) < a(u, u) as h — oo, we have reached a contradiction. ||

Remark. A special case of a sequence asysmptotically compact in H is
that of a sequence {a,} which is inf-compact in H, in the following sense:

There exists a compact subset K of H, independent of A, such
that {ue H : (u, u) + a,(u, u) <1} =K for every A

2.4, Convergence of Resolvents

The convergence of forms according to Definition 2.1.1 can be charac-
terized in terms of convergence of the resolvent operators of the relaxed
forms. Namely,

THEOREM 2.4.1. A sequence of forms {a,} converges to a form a in H,
according to Definition 2.1.1, if and only if, for every B>0, the sequence
{G. g} of the resolvent operators associated with the relaxed forms a, in H
converges to the resolvent operator G4 of the form a in the strong operator
topology of H.

Proof. As remarked in Section 2.1, it is not restrictive to assume that
the forms a, are themselves closed. We first prove:

(i) If a, converges to a, then for each $>0 and for every ze H,

u, =G, gz converges to u :=Gzz in H, as A — .
The vector u is characterized as the unique minimizer of a(v, v)+
B(v, v) —2(z, v) over H, and a similar characterization holds for each u,.
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Since the norm of G, 4 as an operator of H into itself is bounded by ',
there exists a subsequence of {u,}, still denoted {u,} in the following,
that converges weakly to a vector @ of H. For an arbitrary given ve H, by
condition (b) of Definition 2.1.1 we can find a sequence v, — v in H, such
that lim sup a,(v,, v,) < a(v, v) as h — co. Since for every #,

apltey, uy) + Bluy, uy) — 2(z, uy) < ay(vy, v,) + Bvs, v4) — 2(z, vy),

by taking condition (a) of Definition 2.1.1 into account, we find in the limit
as h— o

a(i, @)+ B(a, i) — 2(z, i) < a(v, v) + B(v, v) — 2(z, v)

therefore #i=G,z. By the uniqueness of such a #, this proves that u,
converges to u weakly in H as A — c0. We now prove that (u,, u,) - (4, u).
In fact, by condition (b), we can choose v,—u in H, such that
lim a,(v,, v,) = a(u, u) as h — oo, therefore, by rewriting the first inequality
above as

ay(uy, uy) + B lluy —2/BI? < an(vn, v4) + B llos—2/BI1%
we get in the limit, again by condition (a),
Blim sup llu, —2/B)> < —a(u, u) +a(u, u) +  |u—z/BI?,
hence |lu, —z/B|12 — |lu—z/B|% and this concludes the proof of (i).

The proof of the opposite implication will be split in two steps. We first
prove:

(j) If, for each >0, G, 4 converges strongly to G4 as 2 — oo, then
condition (a) of Definition 2.1.1 is satisfied, namely, for every v, converging
weakly to v in H, lim inf a,(v,, v,) 2 a(u, u) as h— co.

By the definition of the approximate forms a{#' in Section 1(i), for every
B >0 and every ue H, we have a{®(u, u) - a'®(u, u) as h — oo. Moreover,
for every 4 and every >0,

ay(vy, v,) = a}f”(vha vy) = a;xﬂ)(u’ u)+2p(u— BGh,ﬁu’ vy — ).

Therefore, liminf a,(v,, v,)=a®(u, u) as h— oo for every f>0, hence
lim inf a,(v,, v,) = a(u, u) as h— oo and this proves (j).

We conclude the proof of the theorem by proving

(jj) Under the assumption in (j), condition (b) of Definition 2.1.1 is
satisfied, namely, for every ue H, there exists u, converging strongly to u
in H, such that lim sup a,(u,, u,) < a(u, u) as h - .



COMPOSITE MEDIA AND DIRICHLET FORMS 379

By a diagonal argument, we can choose an increasing sequence f, — o
as h— oo, such that

a(u,u)> lim lim a®(u, u)> lim al"(u, u).
B~ h—>x h—w

By choosing u, := B,G, g,u for every h, we have, as seen in Section 1(i),
a P u, u) = ay(uy, up) + By lu—uy)>.
It clearly suffices to prove (b) for a given ue D[a]. Then, u, = u in H and
a(u, u) = lim sup a,(u,, u,) as h— oo.

This concludes the proof of the theorem. |

Remark. Variational convergences of convex sets and convex func-
tionals leading to the convergence of minimizers and of solutions of more
general variational inequalities were first considered in [M1, M3, J]. The
characterization of the convergence of forms provided by Theorem 2.4.1 is
a special case of a general result for convex functionals and their resolvents,
due to H. Attouch [A, Thm. 3.26]. In the quadratic Hilbert case con-
sidered above the proof simplifies considerably and has been given for the
reader’s convenience. A related result from [M2] will be described in
Proposition 2.7.3 below.

2.5. Convergence of Yosida—Deny Approximations

As a by-product of the previous proof, we get the following further
characterization of the convergence according to Definition 2.1.1:

PROPOSITION 2.5.1. A sequence of forms {a,} converges to a form ain H
if and only if, for every >0, the sequence of approximate forms {a{/’}
converges pointwise to the approximate form a'® as h — co.

2.6. Convergence of Semigroups

As a consequence of a well known Trotter—Kato characterization of
convergence of resolvents in terms of convergence of the related semi-
groups, see, e.g., [K, Thm. IX 2.16; P, Chap. III, Thm. 4.2], we get from
Theorem 2.4.1 the following:

CoROLLARY 2.6.1. A sequence of densely defined forms {a,} converges
to a densely defined form a in H, according to Definition 2.1.1, if and only
if for every t >0 the sequence of the semigroup operators {T,(t)} associated
with the relaxed forms a, in H converges to the semigroup operator T(t)
associated with a in the strong operator topology of H, uniformly on every
interval 0 <t<t,.
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2.7. Spectral Convergence

A further consequence of Theorem 2.4.1 is the following result about the
convergence of spectral families and spectral subspaces:

COROLLARY 2.7.1. If the sequence of densely defined forms {a,} converges
to a densely defined form a in H, then, for every points of continuity A>
of the spectral family P(4) of the generator of a, the sequence of spectral
operators {P,(A)— P,(u)} of the generators of the relaxed forms {a,}
converges strongly to the spectral operator P(1)— P(u) of a in H. Further-
more, the sequence of spectral subspaces {P,(A) H— P,(u)H} converges in
H to the spectral subspace P(A) H— P(u)H.

The convergence of the spectral operators is a well known consequence
of the strong convergence of the resolvents; see, e.g., [K, VIII, Thm. 1.15;
SK, XI, Thm. 11.4]. As to the convergence of the spectral subspaces, as
stated in the second part of the corollary, we first recall the following
definition from [M1]:

DEFINITION 2.7.2. A sequence of subsets {K,} of H converges to a
subset K of H if:

(a) Forevery subsequence { K, } of {K,} and every v, € K, converging
weakly to u in H as h' - c0, we have ue K.

(b} For every ue K, there exists u, € K, converging strongly to u in
Has h— o

To compilete the proof of the corollary it suffices then to apply the following
result from [M2]:

PROPOSITION 2.7.3. A sequence of closed linear subspaces {M,} of H
converges to a closed linear subspace M of H, according to Definition 2.7.2,
if and only if the sequence of orthogonal projections {P,,} converges
strongly in H to the orthogonal projection P,,.

Remark. The preceding proposition is of the same nature than the
characterization of the convergence of resolvents in Theorem 2.4.1. In fact,
if M is a closed subspace of a Hilbert space H, then the orthogonal projec-
tion P, of H on M coincides with the resolvent operator of the convex
functional &,,, @,,(u):=0 if ueM, &, (u):= +v if ueH—-M, as
defined, for instance, in [B, A].

Remark. 1If the resolvents converge in the uniform operator topology, as
for example in the case that D[ a] is compactly injected in H, then the spectra
converge in the Hausdorff metric of closed subsets of R, [N1, N2], [M].
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2.8. I'-Compactness of families of Markovian forms

The main interest of Definition 2.2.1 relies on the following general
compactness theorem:

THEOREM 2.8.1. Let {a,} be a sequence of Markovian forms in H. Then,
there exists a Dirichlet form a in H and a subsequence {a, } of {a,}, such
that a, I-converges to a in H as h' — .

Proof. By a classical theorem by Kuratowski [KU], there exists a ls.c.
functional F: H — [ — o0, +0o0] such that the sequence of quadratic func-
tionals {a,(u, «)}, up to a subsequence, I'-converges to F in H, that is, (a)
and (b) of Definition 2.2.1 are satisfied, with F(u) in place of a(u, u).

By standard I'-convergence arguments it is shown that the following
properties of the quadratic functionals a,(u, u) are inherited by the limit F:

(i) F(u)=0, F(0)=0, and F(tu)=t>F(u) for every uec H and every
teR,

(ii) F(u+v)+ F(u—v)=2[ F(u)+ F(v)] for every u, ve H, such that
F(u)< + o0, F(v) < +c0.

By polarization, we then define a form a in H with domain D[a] :=
{ue H: Flu)< +o0}, a(u,v) :=1/2{ Flu+v)— F(u)— F(v)}. Then, D[a]
is a linear subspace of H and a is a non-negative definite, symmetric
bilinear form on D[a].

Since a(u, u)= F(u) for every ue H and F is ls.c. on H, it follows, as
remarked in Section 1(c), that the form a is closed in H.

We now prove that a is Markovian. Since a is closed, this amounts to
prove that if ueD[a] and v:=inf{sup{u,0},1}, then ve D[a] and
a(v, vy < a(u, u). It suffices to prove that F(v)< F(u), since this implies
F(v)< +c0, hence a(v,v)=F(v)<F(u)=a(u,u). We have F(u)=
lim a,(u,, u,) for a suitable sequence u,— u in H, hence, in particular,
u,€ D[a,] for all h large enough. Let n,, ., =n, .(r), >0, re R, be the func-
tion occurring in the Markovianity condition satisfied by a,. Therefore, for
every 4 and every e, 1., (u4) € D[,] and a1 o (4s), M. (24)) < @5(ty, uy).
We choose ¢=1/h and define v,:=n, (u,). Then, v, converges in
L (X, m) to v=inf{sup{u, 0}, 1} € L*(X, m), hence v, converges to v in
H = L*X, m), therefore F(v) <lim inf a,(v,, v,) <lim a,(u,, u,) = F(u). |

If a is an arbitrary given Markovian form in H, the necessarily unique
Dirichlet form in H, whose existence is trivially assured by the preceding
theorem when a, = a for every h, clearly coincides with the relaxation of a
in H, already introduced in Section 1(f) and denoted by a. Therefore, we
have the
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COROLLARY 2.8.2. The relaxation a of a Markovian form a in H is a
Dirichlet form in H.

In view of Section l(e), we find, in particular, that the closure @ of a
closable Markovian form a is a Dirichlet form, in agreement with
Theorem 2.1.1 of [F].

2.9. Spectral Compactness

By taking Lemma 2.3.2 and Theorem 2.4.1 and its Corollaries 2.6.1 and
2.7.1 into account, we derive from Theorem 2.8.1 the following stronger
compactness result:

THEOREM 29.1. Let {a,} be a sequence of Markovian forms, which is
asymptotically compact in H. Then, there exist a Dirichlet form a in H and
a subsequence {a, } of {a,}, such that a, converges to a in H as h' - oo,
according to Definition2.1.1. Moreover, for every B>0, the resolvent
operator G g of the relaxed form a,. converges strongly in H to the resolvent
operator G of a, as h' — oo. Furthermore, if D[a,] and D[a] are dense in
H, then the sequences of the semigroup operators {T,(t)}, associated with
the relaxed forms a,., as well as the spectral operators { P, (1) — P,(u)} and
spectral subspaces {P,(AYH — P, (u)H}, all converge to the corresponding
operators and subspaces associated with the limit form a, as described in
Corollaries 2.6.1 and 2.7.1.

2.10. Comparison Criteria

We conclude this section with some comparison criteria for I'-converging
forms. These criteria can be applied, for example, in order to get additional
information on the forms whose existence is assured by the compactness
theorems of Sections 2.8 and 2.9. They show indeed how to get lower and
upper bounds for a limit form, hence also lower and upper inclusion
bounds for its domain. These criteria are more conveniently stated by
introducing the following notion of /iminf and lim sup of sequences of
forms:

DerFINITION 2.10.1.  Given an arbitrary sequence of forms {a,} in H, we
define the functionals lim inf{a,} and lim sup{a,} on H, with extended real
values, by setting for every ue H,

lim inf{a, }(«) := min{lim inf @,(u,, ¥,) : u,€ D[a,], u,—uin Hash— o},

lim sup{a, }(u)
:=min{lim sup a,(u,, u,) :u,e D[a,], u,—uin H as h— w},

with the convention min & = +co.
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Both the above functionals are ls.c. on H. Moreover, a sequence {a,}
I'-converges to a form a in H according to Definition 2.2.1 if and only if
limsup{a,} <liminf{a,} on H, and then liminf{a,}=Iimsup{a,}=
a(u, u), where a(u, u) denotes the quadratic functional of a; see [DGF,
Prop. 1.8].

In the special case that a is a given form in H and a, = a for every A, then
lim inf{a,} =lim sup{a,} = a(u, u) on H, where a(u, u) is the quadratic
functional of the relaxation of a in H. In particular, if a is closable in H,
then liminf{a,}=lmsup{a,}=a(u, ), where a(u, u) is the quadratic
functional of the closure of a in H.

PROPOSITION 2.10.2. Let {a,}, {a,}, {Bn} be sequences of forms in H
and 0 < A< A two constants, such that

Acty(u, uy < a,(u, u) < AR, (u, u) Jor every h and for every ue H.
Let {a,} I'-converge to a form a in H, as h— . Then,
Alim sup{a, }(u) <a(u, u) < Aliminf{B,}(u)  for every uecH,
in particular,
D[iiminf 8,] = D[a] < D[lim sup «,].

The proposition shows that inclusion Jower bounds for D[a] can be
obtained from suitable equi-continuity properties of the forms a,, while
inclusion upper bounds for D[a] require suitable equi-coerciveness proper-
ties of the forms a,. Useful special cases are in fact the following ones:

COROLLARY 2.10.3. Ler {a,} be a sequence of forms in H and let a, § be
two forms in H, such that the condition

Aa(u, u) < ay(u, u) < AP(u, u)  for every ueH,

is satisfied for every h, with constants 0 <A< A independent of h. Let a,
I-converge to a form a in H as h— oo. Then, D[ ]l D[a]< D[a], and

Ao(u, u) < a(u, u)< AP(u,u)  for every ueH.

If, in addition, a is inf-compact in H then a, converges to a in H according
to Definition 2.1.1 as h— oo, and if a is also closable in H, then D[ f]
D[a]l< D[a] and

Ad(u, u) < a(u, u) < AP(u,u)  for every ue H,

where & is the closure of « in H.

We recall from Section 2.3 that « is inf-compact in H provided the set
{ue H: (u, u) +a(u, u) <1} is relatively compact in H.
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3. PRELIMINARIES ON REGULAR DIRICHLET FORMS

In this section we summarize the main properties of regular Dirichlet
forms on a locally compact space, needed in the following sections. For
these forms a rich representation theory is available, based on the
fundamental formulae of A. Beurling and J. Deny [BD1, BD2]. We refer
also to [F, LJ, S1, S2] for the general theory and for the proofs of the
results summarized below.

(a) The Topological Setting

We now take X to be an arbitrary locally compact separable Hausdorff
space and m a given positive Radon measure supported on the whole of X.
By H we denote again the Hilbert space H= L?*(X, m), with inner product
(4, v)= [, uom(dx) and norm |-|| = (u, u)"/>. The support of an arbitrary
ue L*(X, m), supp u, is defined to be the (compact) support of the measure
u-min X.

(b) Normal Contractions

We say that the normal contractions operate on a form a in H if
ToueD[a] and a(Tou, Tou)<a(u, v), whenever ue D[a] and T: R— R,
T(0)=0, |T(x)—T(y)| <|x— y| for every x, yeR. The normal contrac-
tions operate on every densely defined closed Markovian form, that is, on
every densely defined Dirichlet form [F, Thm. 1.4.17.

(c) Regularity

A form a in H is regular if it possesses a core, a core being any subset
C of D[a] n Cy(X), which is dense both in Cy4(X'} with the uniform norm
and in D[a] with the intrinsic norm (a(u, u)+ (4, u))"% In particular, a
regular Dirichlet form is densely defined.

If a is a closable Markovian form defined on a dense subset C of Cy(X),
then its closure @ in H is a regular Dirichlet form which admits C as a core.

(d) Capacity

Associated with any Dirichlet form a in H there is a Choquet capacity
defined on the subsets of X, with related notions of null sets, ie., sets of
capacity zero, quasi-continuity, q.e. properties, and g.e. equivalence; see
[F, Thm. 3.1.1].

If a is regular in H, then every ue D[a] admits a quasi-continuous
modification i, that is, there exists a quasi-continuous function #, unique up
to g.e. equivalence, such that #=u m-ae. on X [F, Thm. 3.1.3].

We recall that two quasi-continuous functions which are equal (or, <)
m-a.e. on an open subset of X are also equal (or, <) q.e. on that set
[F, Lemma 3.1.4].
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(e) Beurling—Deny Formulae

According to the fundamental theory of Beurling-Deny, [BD1, BD2],
and its extensions due to M. L. Silverstein [S1, S2], M. Fukushima [F],
Y. Le Jean [LJ], any regular Dirichlet form a on the space H= L*(X, m)
can be expressed on its domain D[a] as follows; see [F, Thm. 2.2.1 and
Theorem 4.5.2]:

alw, v)=a o)+ [ ()~ F)NE0x)—(y)) (. dp)

+ j avk(dx). (3.1)

The form &', the measures j(dx, dy) and k(dx) occurring in this represen-
tation formula are uniquely determined by a and are called the diffusion
part, the jumping measure, and the killing measure of a.

More precisely:

(f) The Jumping Measure

The jumping measure of a is the unique positive Radon measure
J{dx, dy) on X x X off the diagonal d, that satisfies the identity

1
[ wxyo(y) sds dy)= = a(uv) (3:2)

for every u, ve D[a] n Co(X) with disjoint supports.
The measure j(dx, dy) does not charge any subset of X x X —d whose
projection on the factor X has capacity zero.

(g) The Killing Measure
The killing measure of a is the unique positive Radon measure k(dx) on

X satisfying the identity
[ ux) o) kaxy =atw )= [ (@lx)—u(x)oix) = o(»)) jidx, dy)
X XxX—d
(3.3)

for every u, ve D{a] n Cy(X), v constant on a neighborhood of supp u. For
every ue D[a), i belongs to L%(X, k(dx)) and the following identity holds:

j ﬁzk(dx)=1imJ B(1—BG,1) ii*m(dx) as B - w.

X X

Here G is the resolvent of a, extended to non-negative bounded function
by monotonicity [LJ, Prop. 1.3.3].
The measure k(dx) does not charge any subset of X of capacity zero.
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(h) The Diffusion Part

The diffusion part o' is the form, with domain D[a]=D[a],
uniquely defined by the identity (3.1). It has the property that every normal
contraction operates on it, in particular, a*> is a Markovian form. In
addition, @'’ has the property

a'Nu,v)=0  for every u, ve D[a'],

v constant on a neighborhood of supp u

[F, Thm. 2.2.1].

(i) Local and Strongly Local Forms, Diffusions
We say that a form a on H is local, if the following condition holds:

a(u, v)=0 for every u, ve D[a] with disjoint (compact) supports.
If a has the stronger property
a(u,v)=0 for every u, ve D[a], v constant on a neighborhood of supp u,

then we say that a is strongly local.

The diffusion part a' of a regular Dirichlet form is strongly local.

A regular Dirichlet form is local if and only if its jumping measure
vanishes.

DerFmiTION. We say that a subset C of Cyo(X) is separating if the
following separation property holds: For every compact set K in X and
every relatively compact open set 4o K, there exists a non-negative
function a € C, such that a(x)=1 for xe K and a(x)=0 for xe X — 4.

If a closable Markovian form a defined on a dense separating subalgebra
of Co(X) is local, then its closure a in H is also local [F, Thm. 2.1.2].
Hence a is a local regular Dirichlet form, whose jumping measure vanishes.

A regular Dirichlet form is strongly local if and only if it is local and its
killing measure vanishes [F, Thm. 4.5.3].

A strongly local regular Dirichlet form in H will be also called a Dirichlet
Jorm of diffusion type, or simply a diffusion (we note that we are using here
the term “diffusion” to denote what is also named a “diffusion without
killing inside X”). Thus, a regular Dirichlet form is a diffusion if and only
if both its killing and jumping measures vanish.

If a closable Markovian form a defined on a dense separating subalgebra
C of Cy(X) is strongly local, then its closure @ in H is also strongly local,
hence it is a diffusion. In fact, as we have seen before, the jumping measure
of & vanishes, therefore, the conclusion follows from (3.3), by taking v=1«,
« as in the definition above with K=supp wu.
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(j) The Energy Measure
The form a'® occurring in (3.1) admits an integral expression, namely

a9, v)= |, v)(dx), (3.4)

which involves the energy measure p of a, whose definition will be given
below.

For every ue F,, a positive Radon measure fi(u, u) is uniquely defined
on X by the identity

1 1
[ 400 At u)ax) = atup, w) 5 a0, 6) =3 [ da%k(dx),  (3.5)
X X

for every ¢eD[a]nCy(X) [LI, Prop. 1.4.1]. The measure f(u, u) is
defined for every ue F as the increasing limit of the measures ji(u,, u,) as
n— oo, where u, :=max{—n, min{u, n}}.

The measure u(w, u) is then defined for every ue F by

i, ) i= o, w) — |

X #

(@(x)—a(-))* jldx, -), (3.6)

[LJ, Prop. 1.5.1(b)]. The (signed) Radon measure u(u,v), u, veF, is
defined by polarization:

ul, 0) = 3 {4 0, w4 0) — pr(at, 1) — (v, v)}.

These are Radon measures on X, uniquely associated with every u,
ve D[a], and they do not charge sets of capacity zero. We shall occa-
sionally use the notation u(u, v)(dx).

The so defined Radon-measure-valued non-negative definite symmetric
bilinear form p on Dfa] will be called the local energy measure of a, or
simply the energy measure of a.

The measures u has indeed a local character in X, that is, the restriction
of the measure u(u, v) to any open subset 4 of X depends only on the
restrictions to A of the functions in its argument. More precisely, if u,,
u, € D[a] are such that &, =i, m-a.e. on 4 (hence g.e. on A4), then

1, (x) puy, ugMdx)=1,(x) p(uy, uy)(dx)  on X. (3.7)
Moreover,
1,(x) u(u, v)(dx)=0 on X, (3.8)

if ueD[a] is constant on 4 and veD[a] is arbitrary; see [LJ,
Prop. 1.5.2(d); F, Lemma 5.4.6].

580/123/2-12
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Let us point out some useful identities that immediately follow from the
preceding definitions. From (3.5), we find that for every u, v, ¢ € F,,

. 1
L $(x) fi(u, v)(dx) =3 {a™(ug, v) + a™(vg, u) — a™(uv, g)}, (3.9)

where
a™*(u, v) == a(u, v) —j vk (dx), (3.10)

D[a™] .= D[a], is the resurrected form of a.

Clearly, in identity (3.9), a™ =a whenever the killing measure of a
vanishes. Moreover, if a is a local form, (3.9) holds for the energy measure
u of a, since then p =i by (3.6).

In particular, if @ is a diffusion, as defined in the preceding Section (i),
then its energy measure y satisfies the identity

J. 800 utas 0)x) =3 {alug, ) + atod, )~ atuw, )}, (311)

for every u, v, p€ F,.

The energy measure u of a regular Dirichlet form of diffusion type enjoys
some additional important functional properties that will be described
below.

(k) The Leibniz Rule
One of these properties is the Leibniz rule

u(uv, w)(dx) = u(x) p(v, wi(dx) + v(x) u(u, w)(dx) on X, (3.12)

which holds for every for u, ve F,, and every we F [LJ, Prop. 1.5.2(e);
F, Lemma 5.4.2.]

(1) The Chain Rule

A second important property is the following chain rule, due to Le Jean
[LJ, Prop. 2.1(a)]; see also [F, Th. 5.4.2]:

For every v, u,, u,, ..., u,, € F, and for every ne C'(R™) with n(0) =0, we
have n(u,, u, ..., u,,) € F, and

N("(ul’ Upy e um), v)(dx): Z nxi(ula Uy oery um) .u'(ui’ v)(dx), (313)
i=1

and the formula extends to arbitrary u,, u,,.., u,e D[a], and then
n(uy, uy, .., u,,) € F, provided the derivatives 7, are in addition uniformly
bounded on R™. Note that, since the measure u does not charge sets of
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capacity zero, the pointwise versions of the functions in the argument of 7,
can be equivalently taken in open sets in the m-a.e. or the g.e. sense.

{(m) The Domination Principle

The energy measure also obeys a domination principle, due to Le Jean
[LJ, Prop. 1.5.5(b)]. Due to its importance in our present context we
provide an independent proof, based on a classic Fourier transform
argument, as given in [S] in connection with a variational compactness
result for uniformly elliptic operators in euclidean spaces.

PROPOSITION. Let a,, a, be closable Markovian forms in H, with a
common domain C, C being a dense subalgebra of Cy(X). If a,(u, u)<
a,(u, u) for every ue C, then

o, u) < po(u, u) Jor every ueC,

Wy, U, being the energy measures of the closure a,, a, of a,, a, in H,
respectively.

Proof. Let ¢ be an arbitrary function of C. By the Leibniz rule (k) and
the chain rule (1), for any positive 4 >0 we easily compute

(@ cos(Au), ¢ cos(Au))(dx) + u(¢ sin(Au), ¢ sin(iu))(dx)
= A% u(u, u)(dx) + (4, ¢)(dx),
both for u=pu, and p = u,. Therefore, for both forms a =a,, a =a, we find

a(¢ cos(Au), ¢ cos(Au)) + a(¢ sin(Au), ¢ sin(Au))

=5 [ Futo a0+ | g $)+ [ §00) k)

+[[ 1820+ 8%(y) - 26(x) 8(y)(cos Au(x) cos u( )
XxX—-d

+ sin Au(x) sin Au( y))] j(dx, dy),

with uy=yu,, k=k,, j=j, and u=pu,, k=k,, j=j,, respectively. Thus, by
dividing the inequality

a,(¢ cos(Au), ¢ cos(Au)) + a (¢ sin(iu), ¢(sin Au))
< a,(¢ cos(Au), ¢ cos(Au)) + a,(¢ sin{Au), ¢ sin{lu))

by A? and letting 4 — oo, we find

| #mlnw)d0 <[ $us uid).
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(n) The Schwarz Rule

Let u, veF,. If feL?*(X, u(u,u)) and ge L%(X, u(v,v)), then fg is
integrable with respect to the total variation of u(u, v) and

J el utu o) @ <([ 1 Putei@n) (] 1t onan)

moreover,

2| fal lp(u, o)l < | f Pulu, w) + | gl%u(v, v)
as measures in X; see [F, Lemma 54.3].

(0) The Truncation Lemma

We need an explicit expression of the energy measure of truncated func-
tions, given in the following lemma. We observe that for arbitrary functions
u in the domain of the form, the set {#>0} is only a quasi-open subset of
X and (3.14) below does not follow directely from (3.7).

LEMMA. Let u be the energy measure of a regular Dirichlet form of
diffusion type a in H. Then for every u, ve F, we have

u(u®, o)(dx) =1, oy(x) p(u, v)(dx)  on X. (3.14)

Proof. Let ¢e D[a] n Cy(X) be arbitrary.

Let {n,}.-0 be such that: n,e C'(R), n,(0)=0, n, converges uniformly,
as ¢ | 0, to the function ¢: a(r)=0 for r<0, =r for r>0; moreover,
0<n. <1, n.(r)—> &(r) for everyr, as ¢ | 0, where &(r)=0for r<0, =1 for
r>0.

Since n,(x) is a normal contraction of wu, n,(u)e F, and a,(n.(u),
n.(u)) < a,(u, u) for every ¢, where a,(u, u)=a(u, u) + (u, u).

By (3.11), for every ¢ we have

1
f (x) (. (u), v)(dx) =5 {a(n. ()¢, v) + alvg, n. () —a(n.(u)v, §)},

hence, by the chain rule,
- 1
JX #(x) n;(@(x)) plu, v)(dx) =3 a(n.(u)g, v) + a(vé, n.(u)) — a(n.(u)v, ¢ }.
As ¢ | 0 in this identity, #,(u) converges strongly to ™ in the intrinsic

norm (see the proof of (iii) of Theorem 1.4.2 in [F]) and in L*(X, m),
hence n,(u)@, n.(u)v converge to u*¢, u*v, respectively. Therefore,

1
[ 113z 0) s v)(dx) =5 {al* §,v) + alod, u™) —a(u™v, §)},
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which is to say, by (3.11),

[ Lm0 un 0)(ex) = [ gua(u*, v)(d).

Since D[a] N Cy(X) is uniform dense in Cy(X), this proves (3.14). [

It follows from the truncation lemma and the property of the killing
measure not to charge sets of capacity zero, that for any local regular
Dirichlet form, we have

a(u*,v)= u(u, v)(dx)-l—f avk(dx), (3.15)

X {a>0} X {a>0}
for every u, ve F,.

(p) Functions Locally in the Domain

Let a be a local closable Markovian form with domain a dense separating
subalgebra C of Cy(X).

A (m-measurable) function u defined on X is said to be locally in D[a],
and we write u e D[a],,., if for any relatively compact open subset U there
exists a function we D[a] such that u=w m-a.e. in U. The space D[a], 1oc
is defined analogously. Given ue D[a];,., by (3.7) the measure u(u, u) is
well defined on X by putting 1, u(x, u) :=1,u(w, w) for arbitary U and w
as above.

The Leibniz and Schwarz rules clearly extend to arbitrary u, ve D[a],
and we D[a], ... Moreover, the chain rule also extends to every v, u,,
Uy ey U € D[a]), 10 fOr every ne C'(R™), the function n(uy, uy, ..., 4,,)
being again in D[a], ..., as well as to everyv, u,, us, .., U, €D[a],.
provided that 5, are in addition uniformly bounded on R™ on compact
subsets of X, and then again n(u,, u,, .., u,,) € D{al,.. [F, Thm. 54.37.

A function u defined on an open subset A4 of X is said to be locally in
D[a] on A, if there exists a function we D[a],,, such that ¢u = gw for any
¢ € C with support in 4, where the function ¢u is extended to 0 on X' — 4.
The functions locally in D[a], on A are defined analogously. Given such
a function ¥ on A, the measure u(u, u) is well defined on 4 by putting
u(u, u) == u(w, w) on A.

(q) Energy Measures and Diffusion Forms in a Differentiable Setting

Let us now suppose that X has, in addition, the structure of an orien-
table differentiable manifold and that there exist coordinate functions
X1, X3, - X, locally in D[a] on their domain A of definition. The measures
u(x;, x;) are then defined on A. By the chain rule in (1), any other coor-
dinate functions y,, y,,.., ¥, on a same open subset U of X are again
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locally in D[a] on U, where the measure u(y,, y.) are also defined, and
the following change of variables formula holds on U:

#(yas yil(dy)

= Z (ayh/axi)(xla X25 e xm)(ayk/axj)(xli X25 oo xm) /'l(xi’ xj)(dx)'

=1
Therefore,
V= p(x,, x;), hj=1,..,m, (3.16)

is an invariantly defined Radon-measure-valued tensor v=(v¥) on X, that
is,

VE(dy) =Y (8yn/0x)(x1, X2y oy X OVe/OX;)(X 15 X3, ooy Xy) VI(dX).
j=1
Moreover, again from the chain rule for functions locally in D[a], by using
a locally finite partition of unit in C, we find that every ue C'(X) is locally
in D[a], on X, ie., ue D[al, ... Therefore, the measures u(u, u), hence
also the measure u(u, v), are well defined on X for every u, ve C'(X) and
they admit the coordinate invariant expression:

#(u, v)(dx)

=) (Ou/ox;) (X1, X3y ey X WOV/OX )Xy, ooy X,) VW(dX).  (3.17)
=1
If now in the transformation rule, for fixed £ e R™, we choose n(z)=¢ -z,
zeR™, and u; =x,, Uy =x,, ..., 4,, = X,,, we find that ¢ - x is also locally in
D[a], and

BE %, X)) = X & nlx, x)(dx), (3.18)

ij =

and this implies that the condition

Y &&vi(dx)=0  for every feR™, (3.19)
ij=1
is satisfied on X, ie., the (symmetric) tensor (3.16) is non-negative definite.

It follows that the diffusion part a'“)(u, v) admits the following invariant
integral expression for every u, ve Cy(X),

m

aNu, v) = j Y (BufBx,) (X1, X3 o XM B0)0X,)(X1, X3, s X,n) V(dx),

Xij=l

(3.20)
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where the integral at the right hand side, invariantly defined, has to be
intended reduced to the coordinate domains by means of a partition of unit
in C.

Remark. In the present differentiable setting, the domination principle
of Section 3(m) has the further consequence

i éicjv’ii(dx)g
=1

ij=

Y &L vidx) inX
=1
for every £e R™, where v,, v, are the tensors (3.16) associated with the
energy measures y,, U,, respectively. This follows from the Proposition of
Section 3(m), by taking (3.17) and (3.18) into account.

4. ASYMPTOTICALLY REGULAR DIRICHLET FORMS

We now come back to the asymptotic theory of Section 2, which we shall
develop in this section in the framework of regular Dirichlet forms on a
locally compact space described in Section 3. In particular, X, m, and H are
as in Section 3(a).

4.1. Asymptotic Regularity

We first state a compactness result for sequences of arbitrary Markovian
forms a, on H that satisfy an asymptotic regularity condition, in the sense
of the following

DEerFINITION 4.1.1. We say that a sequence {a,} of Markovian forms in
H is asymptotically regular in H, if the following property holds: There
exists a dense subset C < Cy(X), such that for every ue C we have

lim inf a,(#y, u,) < 00 as h— oo, for some wu,—uin H as h— oo.

We observe that no condition whatsoever is imposed on the forms a,
outside the set C.

THEOREM 4.1.2. Let {a,} be a sequence of Markovian forms in H,
asymptotically regular on a dense subset C of Co(X). Then:

(i) There exist a densely defined Dirichlet form a in H and a sub-
sequence {a,} of {a,}, such that a, I'-converges to a in H as h' - o,
moreover, C = D[a].

(i) There exist, and are unique, an energy measure u in X, a killing
Radon-measure k and a jumping Radon-measure j, such that a is given by
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a(u, v) = j w(u, v)(dx) + f ivk(dx)
X X

+Hx L, ) —#(y))F(x)—5(y)) j(dx, dy),

for every u, ve D[a.], where d. is the closure of the restriction of a to C
in H. Moreover, a. is a regular Dirichlet form with core C in H and a is an
extension of a..

(iii) If X has in addition a differentiable structure and C = C)(X), then
a takes on CY(X)n D[a.] the invariant expression

a(u, v)=a"(u, v)+'[ uvk(dx)

+[ w0 —w ) - o(y)) jids, dy),
XxX—d

with a*(u, v) given by (3.20), where v=(v?) is the tensor measure (3.16)
in X, satisfying condition (3.19).

Proof. The existence of a subsequence converging to a Dirichlet form in
H follows from Theorem 2.8.1. By property (a) of I-convergence,
C < D[a], in particular, D[a] is dense in H. Since the restriction a. of a
to C is closable in H, a. admits a smallest closed extension, a., and this
is also a restriction of a, because a is closed. The domain of a.. is the com-
pletion of C with the intrinsic norm and is injected in H, see Section 1(d),
thus a. is a regular Dirichlet form in H. The rest of the theorem follows
from Beurling-Deny’s representation theory of regular Dirichlet forms, see
Section 3(e) and 3(q). 1

Remark. The measures occurring in the representation formula of a
given regular Dirichlet form depend intrinsically only on the form itself and
not on the underlying measure m of the space X. However, the form a
obtained in the preceding theorem as a [-limit in H does indeed depend on
the measure m, hence so do the measures uniquely associated with a by (ii)
of Theorem 4.1.1. A simple example is described in Section 6.1, where the
relaxation of a given form is seen to depend drastically on the choice of m.
More generally, this shows that the choice of m should be expected to have
an important role in the asymptotic definition of the “effective charac-
teristics” of a composite medium, as described in Section 5 and exemplified
in Section 6.

Remark. The limit form a may not be regular on its full domain, hence
a#d., as we shall see more explicitely in Section 5.5 and Example 6.5.1.
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For such non-regular closed extensions no general integral representation
theorem of Beurling-Deny’s type is available. The structure of the form a
on its full domain, as well as the structure of the energy measure of its
regular restriction d., must be investigated further in the specific case at
hand. This in general will require a deeper analysis of the properties of
traces and generalized derivatives of the functions belonging to the domain
of the form. The intrinsic capacity, in particular, should be expected to
have a basic role in this regard. Some examples will be given in Section 6.

4.2. Spectral Compactness of Dirichlet Forms

If the sequence of forms of Theorem 4.1.2, in addition to be asymptoti-
cally regular, is also asymptotically compact in H according to Defini-
tion 2.3.1, then Theorem 2.9.1 applies and we obtain the following stronger
compactness result in the topology of Definition 2.1.1.

THEOREM 4.2.1. Let the sequence {a,} of Theorem 4.1.2 be, in addition,
asymptotically compact in H. Then the conclusions (i), (i), and (iii) of
Theorem 4.1.2 hold. Furthermore, a, converges to a in H as h'— oo,
according to Definition 2.1.1, and the resolvent operators G, 4 of the relaxed
form a,. in H converge for each B>0 to the resolvent operator Gg of the
form a, in the strong operator topology of H, as h' — oo. If, in addition, the
Jorms a, are densely defined, then the related semigroups, spectral operators
and spectral subspaces also converge, as described in Sections 2.6, 2.1, and
Theorem 2.9.1.

Remark. We point out that this remarkable spectral compactness
property of Dirichlet forms refers to possibly non-local forms: Limit forms
of local forms may indeed occur which are non-local, as seen for instance
in Section 5.4 and Example 6.3.1. Compact families of local and strongly
local forms will be described in Section 5.5 and Section 5.6.

4.3. Closed Families of Local Forms

As remarked at the end of the previous section, sequences of local, or
even strongly local, closed forms may have a limit that is not local. It may
also occur that just relaxing a strongly local form we get a form which is
non-local; see Example 6.1.1 and Example 6.2.1. In this and in the following
section, we give some conditions under which the local property, or the
strong local property, are preserved by I-convergence, hence a fortiori by
the stronger convergence of Definition 2.1.1.

We say that a sequence {o,} of Radon measures on X is bounded if the
sequence {{, #do,} is bounded for every ¢ e Co(X). We say that {o,} is
absolutely continuous in X (with respect to m), if we have ¢,(B,)—0 as
h — oo, for arbitrary Borel sets B, in X, such that m(B,)— 0 as h — co.
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DEerFINITION 4.3.1. We say that a sequence of energy measures {u,},
defined on a common set Cc Cy(X), is bounded if, for every ue C, the
sequence of Radon measures {u,(u, )} is bounded. We say that {u,} is
absolutely continuous in X (with respect to m), if for every ue C the
sequence {u,(u, u)} is absolutely continuous in X.

THEOREM 4.3.2. Let {a,} be a sequence of local closable Markovian
Sforms defined on a common domain D[a,] = C, C being a dense separating
subalgebra of Co(X). Let {a,} I'-converge to a Dirichlet form a in H. If the
sequence of energy measures {u,} is bounded and absolutely continuous on
C in X, then the form a restricted to D[a] n C is local. If, in addition, the
sequence of killing measures {k,} is bounded, then C = D[a] and the closure
dc of the restriction ac- of a to C is local. The measures u,, k, are those
associated with the closure of a, in H.

Proof. The smallest closed extensions d, of the forms a, are regular
Dirichlet forms, admitting C as a common core, and 4, =a,. As observed
in Section 2.1, they [-converge to a in H as h— +. Moreover, they
inherit the local property from a,, as mentioned in Section 3(i). Therefore,
it is not restrictive to prove the theorem by assuming that the a, are local
regular Dirichlet forms, admitting C as a common core, and that they have
the expression

ay(u, v)= | pylas o)) + [y (x)

for every u, ve D[a,].

We first prove that if the sequence of energy measures {u,} is bounded
and absolutely continuous on C in X, then the form a restricted to
D[a]n Cislocal. Let u, ve D[a] n C be fixed, with disjoint compact sup-
ports. By I'-convergence, there exist u, — « in H, such that a,(u,, u,) —
a(u,u) as h—oo and similarly, there exist v,—v in H, such that
a,(v,, v,) — a(v, v) as h — o0. We can obviously assume that «,, v, € D[a,]
for every h. To simplify notation, we denote the quasi-continuous modifica-
tion of u,, v, (with respect to the g, capacity) again by u,, v,.

For every fixed h, we define u, as

u,=sup{inf{u,, u+ 1/h},u—1/h}=u, —(u,—u—1/h)* +(u—1/h—u,)"*,
and similarly,
0y =0,— (v, —v—1/h)* + (v~ 1/h—v,)".

By our assumption on C, there exist ¢, € C with compact support such
that: ¢(x) =1, Y(x) =0 on a neighborhood of supp u; ¢(x)=0, Y(x)=1 on
a neighborhood of supp v; ¢(x)+y¥(x)=1 on X.
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Since u, 4, v,y € D[a,], with disjoint supports, then

an(und + 0¥, s+ VW) = a,(u,d, Uy ) + a, (v, ¥, va¥), (4.2)

for every h.
We write the first term at the right hand side, according to (4.1), as

alund uhh)= | wlad d)d0)+ | @hki(ax),  @3)

and we estimate the diffusion term by the Leibniz rule,
[ alund, un®) @)= [ uin(d, $)dx)+ [ $7malus, w)(dx)
X X X

+2[ wduilen, H)a) (44)

By the Schwarz rule of Section 3(n), the last term above can be
estimated in terms of the first two terms at the right hand side,

21
Si{j u? w4, ¢)(dx)+J‘ é2u,(uy, y,.)(dx)},
X X
(4.5)

[ wbun, 40

We estimate the first term at the right hand side of (4.4),
[ v, )(ex)
=[ wlm@.0@)+ [ ulus $)dx)
{u=0} {u>0}

+ Ui iu($, $)(dx)

{u<0}

<l i @ e([  mo o] s o)

<3z ] i $)a)

for some constant ¢ > 0, independent of A.

Here we have first taken into account that the functions u, are uniformly
bounded in 4 and then that the second and third term vanish, by (3.8),
because ¢ =1 on the (open) integration set.



398 UMBERTO MOSCO

We now choose o € C, independent of A, with compact support and such
that 0<a <1, a=1 on supp ¢. Then, by (3.7), (3.8),

[ m(@. #)a0)= |

supp

148, D) < | a(x) ol B)( k).
é X

Since the sequence {u,(é, )} is weakly bounded, this implies that
| x #al@, #)(dx) remains bounded as h — co. Therefore,

jxyzuh(qs,m(dx)w as h— oo, (4.6)

We now estimate the second term at the right hand side of (4.4):
[ 876) matann, wa)@) <[ ptatan, ()
X X
=f prlty, uy)(dx)
{Hup— ul < 1/h)
+| (s, U5 )X)
{lan — el = 1k}

SL, wpltey, uh)(dx)+f wpluy, u,)(dx)

{up—uz1/h}

+ Un(ty, upy)(dx).

{up—u< — Uk}

We shall now prove that the last two terms above tend to zero as # — co.
We recall that u, =u,— (4, ~u—1/h)* + (w—1/h—u,)*, and decompose
Unuy, u,) accordingly. By the truncation lemma of Section 3(o) and by
(3.8),

Malety, (uy—u— l/h)+):l(u;,~u71/h>0}/lh(uhs u,—u—1/h)
= l{uh~uA l/h>0}1uh(uh’ u, —u)

and similarly for the other terms arising from the decomposition of u,(u,, u,).
By putting all these terms together again, since 1, .- n1(u_w»1m =0,
we find

l{u,,—.h 1/h>0}uh(l_‘ha Uy)= l{u;,fu—— L/h >0} {#h(uh, up) = 2un(up, Uy —u)

g~ up— 1) p =1,y s 0y sl u).
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Therefore,

Ml w)(dx) = | i, w)(dx).

J‘{u;,—uzl/h} {up—u=1/h}

As h— o, u, converges to u in L?(X, m), therefore m({u, —u>1/h} -0,
hence the last integral vanishes, by our assumption on the measures yu,.

The other term is shown to vanish in a similar way, therefore the second
term at the right hand side of (4.4) is estimated in the limit as A — oo by

. 9700 malas, un )< [ paliy, wi)dx) +ol1fh). (A7)

Going back to (4.4) and taking (4.5), (4.6), and (4.7} into account, we
find

[ atnd, sV ) < [ puatn, () + o(1 ) (48)

As to the second integral at the right hand side of (4.3), since |u, | < |u,|,
we have

[ workan<| uikiax) (49)

By taking (4.8) and (4.9) into account, we finally get from (4.3) the
following estimate of the first term at the right hand side of (4.2):

anlitnd, i) < [ sy, ) () + [ wiky(dx) +o(1/h)

that is,
ay(und, und) < aluy, uy) + o(1/h).
By similar arguments,
a,(va¥, va¥) alvy,, vy,) + o(1/h).
Therefore, we get from (4.2)
a(upd + v, upd + vu¥) <aluy, uy) +alv,, v,) + o(1/h),
hence, by our choice of u, and v,

lim sup ay(up@ +v,¥, uyd +v,¥) < aly, u) +afv, v) as h-— o0,
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On the other hand, since u,¢ + v,y converges to u+ v in L*(X, m), by the
first condition of /-convergence we get

a(u+v,u+v)<liminf a,(u, ¢ + v, u, ¢ + v,¥) as h— oo,
Therefore,
a(u+v, u+v)<a(u, u)+ a(v, v),
which, by the polarization identity, gives
a(u, v) <0. (4.10)

By exchanging v with —v from the beginning of the previous argument,
we obtain the opposite inequality in (4.10), hence a(u, v) =0.

This concludes the proof that the form a possesses the local property on
D[a] n C. In order to complete the proof of the theorem, we first observe
that for every ue C we have:

a(u, u) < lim inf @, (4, u) < lim sup {f Mnlu, u)(dx) +f uzk,,(dx)}

< lim sup j a(x) ps(u, u)(dx) + lim sup _[ u?k,(dx),
X X

as h— oo, where aeC, 0<a<1, a=1 on a compact neighborhood of
supp u. Since a, u€ C, both these two terms are bounded, by our assump-
tion on the energy and killing measures. Therefore, D[a] contains C.
Moreover, as noted in Section 3(i), the closure . is also local. J

4.4. Closed Families of Diffusions

We now prove that under the same assumptions of Theorem 4.3.2 the
strong local property also is preserved by I-convergence.

THEOREM 4.4.1. Let {a,} be a sequence of strongly local, closable
Markovian forms defined on a common domain C = D[a,], C being a dense
separating subalgebra of Cy(X). Let a, I'-converge to a Dirichlet form a in
H, as h— +o0. If the sequence of energy measures {u,} is bounded and
absolutely continuous with respect to m in X, then C < D[ a] and the closure
dc of the restriction a- of a to C is also strongly local.

Proof. Theorem 4.3.2 applies, with k,=0 for every A Therefore,
Cc D[a] and a. is local. In order to prove that a. is strongly local it
suffices to prove, as remarked at the end of Section 3(i), that a is strongly
local, that is, a(u,v)=0 if u, ve C and v is constant, say v=1, on a
neighborhood of the support of w.
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We first construct sequences {u,}, {u,} and {v,}, {v,} as in the proof
of Theorem 4.3.2.

For every h, we now choose a, e C'(R), such that a,(r)=0 if |r| < 1/h,
ayry=r if |r|>1//h, 0<a,<1/(1—1//h). We also define B,(r)=
a(r—1)+1 for every r. We have a,-u,eD[a,]nCo(X), B,ov,e
Dla,] n Cy(X) for every h. Moreover, it is easy to check that §,-v,=1 on
a neighborhood of the support of a,ou,, hence a,(a,ou,, Brov,)=0,
therefore by the polarization identity,

ap(apotin+ Brotn, Apottn+ Brovi)=an(ayou,, anouy)+an(Byovy, Brovy).
Since «,(r) converges to r uniformly and u, converges to u in L2(X, m),
then o, o u,, also converges to u in L2(X, m), and similarly 8, v, converges

to v in L2(X, m). Therefore, from the first condition of I-convergence, we
find that

alu+v, 4+ v)<limsup a,(a, o uy,, %,0u,)

+1im sup a,(Bno s, Brovs) as h—» 0.

By the chain rule, we have
ap(opouy, pouty) = jx B0ty ty, oy o u,)(dx)
= | a2w(0) s, (@)

NUCERINDV WORPATES)

We now observe that the last integral is the same integral that, in the proof
of Theorem 4.3.2, was already estimated according to

[ utn, wx) <@t )+ [ )
= a,(uy, u,) +o(1/h).
Therefore,
lim sup a, (o, c uy, 2you,) < alu, u) as h-— oo,

and, similarly,

lim sup a,(B4°v4, Brovy) < alv, v).
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Thus,
a(ut+v,u+v)<a(u, u)+a(v, v),
hence
a(u, v) <0.

In order to prove the opposite inequality, we apply our previous argument
to the function —u, after traslating «, and f, by replacing r with r+2. |

4.5. Compact Families of Local Forms and Diffusions

By taking the closure theorems of Sections 4.3 and 4.4 into account, we
get from Theorem 4.1.2 and Theorem 4.2.1 the following compactness
result for families of local forms:

THEOREM 4.5.1. Let {a,} be a sequence of local closable Markovian
Jorms defined on a common domain C = D[a,], C being a dense separating
subalgebra of Co(X). In addition, let the sequence of energy measures {y;}
of the closures a, of a, in H be bounded and absolutely continuous with
respect to m in X, and let the sequence of killing measures {k,} of a, be also
bounded, Then:

(1) The conclusion (1), (ii), (iii) of Theorem 4.1.2 hold with j=0 and
ac is local. Furthermore, if k,=0 for every h then both j and k vanish and
ac is strongly local.

(il) If, in addition, the sequence {a,} is asymptotically compact in H,
then {a, } converges to a in the stronger sense of Definition 2.1.1. Further-
more, related resolvents, semi-groups, spectral operators and subspaces also
converge, as described in Sections 2.4, 2.6, and 2.7.

Proof. We recall from Section 3(i) that a regular form is local if and
only if its jumping measure vanishes. Therefore, for every / and every ue C,
we have

a,(u, u)=jx 1, u)(dx) +L wk,(dx).

Since the sequences {u,}, {k,} are bounded (Section 4.3), lim sup a,(u, u) <
+00 as h— . Therefore, the sequence {a,} is asymptotically regular on
C in H and Theorem 4.1.2 applies. Again by our assumption on {u,},
{k,}, Theorem 4.3.2 also applies, hence a. is local and the jumping
measure j in (ii) of Theorem 4.1.2 vanishes. If, in particular, the forms a,
are strongly local then, by Theorem 4.4.1, the form a. is also strongly local
and both measures j and & vanish in (i1) of Theorem 4.1.2. This proves (i)
above. Finally, if the sequence {a,} is asymptotically compact in H, then
Theorem 4.2.1 also applies and this gives (ii). ||
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5. ENERGY FORMS ON COMPOSITE MEDIA

In this section we shall apply the results of Section 4 to the variational
theory of composite media.

In this theory, as already mentioned in the Introduction, the effective
characteristics of a composite body are obtained from an asymptotic varia-
tional principle, that involves suitable converging sequences of approximate
energies.

The diffusion part of these approximate energy forms can be constructed
from given families of admissible energy measures, as described in
Section 5.1. Moreover, various types of boundary conditions and potentials
can be incorporated in the energy, once we allow general Borel measures to
be in the role of the killing and jumping measures of the approximate
Dirichlet forms, as it is explained in Section 5.2.

The convergence of the approximate energy forms, up to subsequences,
can then be deduced from the general compactness results of Section 4, and
this provides a measure-valued definition of the effective characteristics of
the body, as explained in Section 5.3,

In the subsequent Section 5.4 to 5.7, we describe more explicitely, in a
differentiable setting, some general examples of approximate diffusions.

In Sections 5.4 and 5.6, the approximate conductivities are allowed to
develop singularities with respect to the underlying measure m, and
possibly generate non-local potentials. In Sections 5.5 and 5.7, the local
character of the energy is preserved in the limit.

On the other hand, while the diffusion forms considered in Sections 5.4
and 5.5 may be highly degenerate and only converge in the sense of
I'-convergence, those of Sections 5.6 and 5.7 are submitted to additional
coerciveness assumptions that lead to the stronger convergence of Defini-
tion 2.1.1, hence also to convergence of the resolvent operators, semigroups
and spectral families associated with the forms. In particular, in Section 5.7
a spectral compactness result for coercive families of diffusions is estab-
lished, namely, Theorem 5.7.1.

5.1. Admissible Energy Measures

We say that p is an admissible energy measure in X, if u is a non-negative
definite, symmetric bilinear Radon-measure-valued form in X, defined on a
dense separating subalgebra C of C,(X), such that the form

A (u, u)=jxu(u, o)dx), D[A]=C, (5.1)

is a strongly local, closable Markovian form in H. Then, the closure of
in H is a regular Dirichlet form of diffusion type in H, that we shall

580/123/2-13
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denoted by &X. The energy measure of &, still denoted by y, is now defined
on the whole of D[] and coincides with the initial u on C. We thus have

A(u, v) = Lu(u,v)(dx), for every u, ve D[A]. (5.2)

The form & is uniquely associated with the given y and admits C as a core.
It defines a capacity for subsets of X and every function ue D[]
admits a quasi-continuous version, denoted by & below, as mentioned in
Section 3(d).

In a differentiable setting for X, as in Section 3(q), we will also say that
an invariantly defined, non-negative definite symmetric Radon-measure-
valued tensor v= (v¥) in X is an admissible energy measure, if the form

A (u, v) :=j Y (0u/0x,)(xy, X5, e X WO0/0x;) (X1, X3, oy X, ) VI(dX), (5.3)
X j=1
with domain D[] = C(X), is closable in H.
A given tensor v is an admissible energy measure in X if and only if the
measure

m

w(u, v){dx) = z (Ou/0x;)(xy, X3, ey Xy MOU/OX )Xy, X2, ey X,) VI(dX),

y=1

(5.4)

invariantly defined on C= C}(X), is an admissible energy measure in X
according to our preceding definition. The closure & in H of the form (5.3),
uniquely determined by the given v, is then a regular diffusion and can be
written as the form (5.2). Its energy measure y, defined on D{ ¥ ], coincides
on Cy(X) with the initial u, given by (5.4).

5.2. Admissible Killing Measures and Jumping Measures

Given an arbitrary admissible energy measure u in X, as defined in the
previous section, we denote by K[u] the family of all positive Borel
measures on X, with extended real values, that do not charge subsets of X
of capacity zero. By J[u] we denote the family of all symmetric positive
Borel measures on X x X-diag, that do not charge subsets of X x X whose
projection on X has capacity zero. The capacity involved is the capacity of
the form (5.2) associated with p.

Given an admissible u, and given measures ke K[u], je J[u], we define
the form

alu, v) = f s, u)(dx)+j ivk(dx)

H[ @@ -ap)Ee) - i) e ). (55)
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with domain
D[a]) = {ue D[] :iie L*(X, k(dx)),
(#(x)—i(y)) e LA X x X, j(dx, dy))}.

Here (¥ is the regular Dirichlet form of diffusion type (5.2), associated with
the given L.

LEMMA 5.2.1. The form (5.5) is a Dirichlet form in H.

Proof. We prove that a is closed in H. In fact, if {u,} is a Cauchy
sequence for the intrinsic metric of a, then {u,} is a Cauchy sequence for
the intrinsic metric of &, therefore there exists e D[ (X ] such that u, con-
verges to u in the metric of &, as n — co. Then, by Theorem 3.1.4 of [F],
a subsequence of {u,} exists, that we still denote by {u,}, such that 4, con-
verges q.€. to # in X. On the other hand, the initial sequence {u,} is also
a Cauchy sequence in the space L*(X, k(dx)), therefore it converges in this
space to some function v. Since the measure & does not charge subsets of
(X-capacity zero, v =i k-a.e. in X, hence #, converges to i in L*(X, k(dx)).
A similar argument shows that (ii,(x)—i,(y))e L*(X x X, j(dx, dy)) con-
verges to (i(x)—i(y))e LY X x X, j(dx, dy)) in L*(X x X, j(dx, dy)). Thus,
ue D[a]. The Markovianity property, in the form of the last condition of
section 1(f), is also easily checked. ||

Special forms of type (5.5) are those involving killing measures k ;= oo,
where E is an arbitrary Borel subset of X of positive capacity and
0 g(B):= +o0 if B E has positive capacity, oo z(B) :=0if Bn E is a null
set. These measures are related to homogeneous Dirichlet conditions on
possibly irregular subsets of X. They were first introduced in [DMM],
DMM2], in connection with so-called relaxed Dirichlet problems, and their
probabilistic interpretation was given in [BDMM].

In this regard, we point out that if in (5.5) we choose k := o0 g, with E
a given closed subset of X, then u e D[a] clearly implies ##(x) =0 g.c. on E,
therefore, by Theorem 4.4.2(i) of [F], D[a] is contained in the closure of
Co(X — E)n D[a] for the intrinsic norm of a. Now, the restriction of a to
such a closure is the regular Dirichlet form associated with the variational
Dirichlet problem for the given form a in the open subset £ =X— F of X,
with homogeneous Dirichlet condition on the boundary of Q. From the
point of view of composite media, infinite Borel killing measures of this
kind can thus be seen as describing the presence in the body of perfectly
conductive inclusions, on which the potential is kept equal to zero.

Another important example is that of infinite Borel jumping measures of
the type j= o0k, where E and F are Borel subsets of X with disjoint
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closures and we define ooz, (B, x B,)):= +o if B;nE and B, F have
positive capacity, o g, (B, x B,)) :=0 otherwise. These measures, related
to “matching conditions” between separate regions of the body, were first
introduced in [DMGM], in connection with the spectral analysis of
certain Riemannian manifolds of complicated topological type.

If in (5.5) the measure j(dx, dy) is of this type, then ue D[a] implies
d(x)=1a(y) for q.e. x€ E and q.e. y€ F, what clearly amounts to a change
in the topological type of the domain X, as in the elementary case of
periodic boundary conditions. Again from the point of view of composites,
infinite Borel jumping measures of this kind can be seen as coupled inclu-
sions in the body, connected by perfect conductors that keep the potential
at the same value on the coupled regions (short-circuits).

Always from the point of view of composite media, we should also note
that perfect insulating inclusions E in X, on the boundary of which a
generalized condition of Neumann type for the potential is expected to hold,
can also be taken into account in (5.5), by choosing admissible energy
measures that vanish on E.

Remark. The form (5.5), in general, will not be regular, nor densely
defined in A. In fact, if the measures & and j are too singular, for example
they are infinite on some large subset of X, then D[a] may be small and
the space Cy(X)n D[a] may not be dense in Cy(X).

5.3. Effective Characteristics of Composite Media

We are now in a position to define the effective characteristics of a com-
posite material in a measure-valued sense, following the lines of the
asymptotic variational approach outlined in the Introduction.

We suppose that, for every h, we give an admissible energy measure u,
in X, defined on a dense separating subalgebra of C,(X). Uniquely
associated with u, there is a regular Dirichlet form of diffusion type in H,

Ay )= [ mwv)dx),  wveD[d,] (5:6)

as described in Section 5.1. Furthermore, we give arbitrary measures

kye K[p,] and j,e J[p,l.
We then consider the sequence of forms

a,(u, v) = jX (s 0)(dx) + jX i1(x) 5(x) k,(dx)

+H[ @ - a(n))@x) — 5(5)) jaldx, dy)
XxY—d
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with domains
Dla,]={ued@,: e L¥(X, k,(dx)), (ii(x) — i(y)) € LA(X x X, j,(dx, dy))}.

As seen in Section 5.2, these forms are Dirichlet forms in H, therefore
Theorem 4.1.2 and Theorem 4.2.1 apply and we can state the following

THEOREM S5.3.1. For every h, let u,, k,€ K[u,], ja€J[u,] be arbitrary
admissible measures in X and let a,, be the form (5.7). Let the sequence {a,}
be asymptotically regular on a dense set C of Co(X) in H. Then, a densely
defined Dirichlet form a and measures u, k, j exist, for which the conclusions
(i), (ii), and (iii) of Theorem 4.1.2 hold. If, in addition, the sequence {a,} is
asymptotically compact in H, then the further conclusions of Theorem 4.2.1
also hold.

The measures u, k and j are effective characteristics for the body X. In
the differentiable setting of Section 3(q), in particular, the energy measure
4 is uniquely determined by the effective conductivity tensor v, given by
(3.16).

We also point out that these effective measures result from the combined
asymptotic effects of all the terms occurring in the approximate forms (5.7).
The separate contributions arising from the diffusion parts of (5.7) will be
further analysed in the following sections. Special compactness results for
families of killing and jumping measures associated with uniformly elliptic
operators in euclidean spaces have been given in [DMMI1, DMGM].
More general cases will be dealt with in [M6].

5.4. Singular Conductivities

In this and in the subsequent sections we shall apply Theorem 5.3.1 and
Theorem 4.5.1 to the asymptotic study of special forms of diffusion type, in
the differentiable setting of Section 3(q).

In these examples, the asymptotic regularity is a consequence of suitable
equi-continuity properties of the forms, as assured by estimates of the forms
Jfrom above. By the comparison criteria of Section 2.10, this gives control of
the domains from below.

We consider a sequence {v,} of admissible energy measures v, in X, in
the sense of Section 5.1, and we suppose, in addition, that for every h the
following degenerate ellipticity condition is satisfied,

0< Y &.&vi(dx) <A (&) Buldx) in X for every (e R™, (5.8)
§=1
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for some 4 >0 independent of A, with 8, a positive Radon measure in X,
such that

B, converges weakly to a Radon measure f in X as h— . (5.9)
The forms
a -I. Z (6u/ax X1y X2y sxm)(av/ax )(xlax29- 9xm)vu(dx)’
y 1
(5.10)

with domains D[a,] = Ca(X), as a consequence of (5.9), are asymptotically
regular on C = Cj(X) in H, hence so are their closures a, in H, which are
regular diffusions in H.

Therefore, from Theorem 5.3.1 and the comparison criteria of Section
2.10, we obtain:

THEOREM 5.4.1. Under the assumptions (5.8), (5.9), let {a,} be the
sequence of forms (5.10). Then:

(1) There exist a densely defined Dirichlet form a in H and a sub-
sequence {a,} of {a,}, such that a, I[-converges to a in H as h' — o;
moreover CA{(X) < D[a].

(ii) There exist, and are unique, an energy measure v=(vY) in X,
satisfying the ellipticity condition

i vi(dx) < A |E]* B(dx) on X for every & e R™, (5.11)

a Radon measure k and a Radon measure j, such that the form a is repre-
sented for every u, ve C)(X) as in (iii) of Theorem 4.2.1. Moreover, for
arbitrary u, ve D[a.], the form a is represented according to (ii) of
Theorem 4.1.2, where u is the energy measure of the form a..

Proof. By taking Theorem 5.3.1 into account, we only must prove the
ellipticity condition (5.11), that does not follow from the domination prin-
ciple of Section 3(m), via the comparison critertion of Corollary 2.10.3,
because the form associated with f(dx) on Cg(X) may not be closable.
However, as we show below, a similar proof as the one given in
Section 3(m) can be carried on also in the present asymptotic case. We
know in fact that local coordinates x=(x,, x5, ..., X,,) belong locally to
D[a.],, therefore u=¢& - x is also locally in D[a.], and by the chain rule,

u(&-x, &-x)(dx) = Z &i&;v7(dx).

ij=
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For every ¢ € C=Cj(X), by the Leibniz rule and the chain rule:

0S4 | 4%l u)de)+ | w(#, $)dx)+ [ ¢(x) k(dx)

+| Lxx_d [42(x) + (») — 26(x) $(»)(cos Au(x) cos Au( y)

+ sin Au(x) sin Au( y))] j(dx, dy)
= a(¢ cos(Au), ¢ cos(Au)) + a(¢ sin(Au), ¢ sin(Au))
<lim inf{a, (¢ cos(iu), ¢ cos(iu)) + a, (¢ sin(4u), ¢ sin(iu))}

< A lim inf {12 L 67 |Du|? B,(dx) + fx |D|? ﬂh,(dx)}

= {22 ] o7 \Dul? pia)+ [ 1041 pia)}.
X X
By dividing the previous inequality by 4> and letting 1 — o0, we find

J, #?u(w widx) <A [ $21Dul’ plax),
therefore,

0<[ 47 % E&vitdn <] 47180 piax)
x i x

ij=

This implies

m
0< Y &E&v¥(dx)<A|E? B(dx)  in X for every EeR™. |}
=1
Remark. Assumption (5.9) above is weak enough to allow the energy
measures v, to develop strong singularities in X as h — co. An asymptotic
singular energy measure is the one occurring in the conductive thin-layer
model of Example 6.5.1. More surprisingly, as already mentioned in
Section 4.2, the energy measures v, may even generate in the limit non-
trivial jumping measures and bring to a loss of locality in the asymptotic
form. This interesting phenomenon is illustrated by Examples 6.1.1 to 6.3.1
of the following Section 6.

5.5. Compactness for Degenerate Diffusions

The diffusion character of the forms (5.10) will be preserved in the limit
provided assumption (5.9) of Theorem 5.4.1 is verified in the strenghtened
form of condition (5.12) below.
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We assume that condition (5.8) is now satisfied with f,(dx)=
Bu(x) m(dx), B, L. (X, m), B,(x) >0 m-ae. in X, such that

B, converges weakly in LL (X, m) to fe Ll (X, m), as h— oo, (5.12)

loc loc

Clearly, the assumptions of Theorem 4.5.1 are now satisfied and we get the
following:

THEOREM 5.5.1.  Under the assumptions (5.8) and (5.12), let {a,} be the
sequence of forms (5.10). Then the conclusions (i), (ii) of Theorem 5.4.1 hold,
with j=0 and k =0. Furthermore:

(iii) There exist, and is unique, an invariantly defined tensor a = (a”)
on X, with a’=a"eL} (X,m), i, j=1,.., m, satisfying the degenerate
ellipticity condition

0< Y &&a%(x)<A1E? B(x) m-a.e. on X for every & e R™, (5.13)
=1
such that the form a is represented by

alu, v)= L i (Ouf0x,)(xy, X5, .y X, )(00/0x;) (X}, X3, ...y X,,) @*(x) m{dx)

y=1

(5.14)

for every u, ve CHX) and by
a(u, v)=L 1(u, 0)(dx) (5.15)

for arbitrary u, ve D[a.], the energy measure u being uniquely determined
by the tensor a=(a").

We recall that a. denotes the closure in H of the restriction of a to
C = C4(X), which is a regular Dirichlet form of diffusion type in H, and u
is its energy measure in X. Moreover, a is an extension of d..

Proof of Theorem 5.5.1. As a consequence of the assumptions (5.8) and
(5.12), the sequence {u,} of the (admissible) energy measures

m

(s V)= (0uf0x;)(X 1, X3y ey X WOV/OX,)(X 15 X2, oy Xp) VI(AX),
=1
defined for , ve C = Cy(X), is bounded and absolutely continuous in X,
according to Definition 4.3.1. Therefore, Theorem 4.5 applies, with
C=C}X) and k,=0 for every A. In particular, (i), (ii), and (iii) of
Theorem 4.1.2 hold, with j=0 and k£ =0. Moreover, by Theorem 5.4.1(ii),
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the energy tensor v of a satisfies the ellipticity condition (5.11). By (5.12),
B(dx)=B(x) m(dx) with Be Ll (X, m), therefore, by Radon-Nikodym
theorem, (5.11) implies that (5.13) holds, with a¥=dv7/dm. Moreover,
(5.14) and (5.15) follow from (iii) and (ii) of Theorem 4.1.2. |

Remark. Also in Theorem 5.5.1 we may have a#dad. as already
remarked in Section 4.1, see Example 6.5.1.

Remark. The equi-integrability condition (5.12) and simplified versions
of Theorem 5.5.1 for elliptic operators in euclidean spaces were first given
in [BDM, CS, MS].

5.6. Coercive Forms

In both Theorems 5.4.1 and 5.5.1, no condition is imposed to the forms
Jrom below, except of course that of being non-negative. Therefore, they
may become highly degenerate in X and develop quite big domains in H,
loosing their regularity and their diffusion character on “large” subsets of
X. A nontrivial example is the already mentioned insulating thin-layer
model, described in the following Section 6.5.

We now describe some examples of asymptotically regular forms that are
also asymptotically compact in H, according to Definition 2.3.1. These are
forms that, in addition to be estimated from above as in the previous
section, can also be estimated from below, due to suitable equi-coerciveness
properties, what provides additional control of the domains from above.
The domain D[a] of the limit form is injected in some special subspace of
H and the functions ue D[a] inherit additional properties, for example,
“weak” differentiability properties, as in Example 6.4.1.

We suppose that, for every A, v, = (v¥) is an admissible energy measure
in X, that satisfies the condition

AY Erafdx)< Y, ELvidx)<AE? Bu(dx)  in X for every e R,
i=1 g=1

(5.16)
where 0 < 1 < 4 are given constants,
a = (a“(dx)dY) is an admissible energy measure in X, (5.17)

independent of A, and {f,} is a sequence of positive Radon measures in X
satisfying condition (5.9).
The form

a(u, v) = | § (B, s Xs s XN 30/35,)(X1, X2y o X) 2¥(d),

X =1

(5.18)
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D[a] = C}(X), is then closable in H, and its closure & is a regular Dirichlet
form of diffusion type in H.
We then have the following:

THEOREM 5.6.1. Under the assumptions (5.9), (5.16), and (5.17), let a, be
the forms (5.10). Then, the conclusions (i) and (ii) of Theorem 5.4.1 hold;
moreover,

Cl(X)< D[a] < D[4&],

and the energy measure v = (v¥) satisfies the condition

A i EZa(dx) < i EEVIdX)<SAE]? B(dx)  on X for every EeR™,
i=1 y=1

(5.19)

in X. Furthermore, (iil) below holds:

(iii) If, in addition, D[ &] is compactly injected in H, then a,. converges
to ain H as k' — oo according to Definition 2.1.1, and the resolvent operator
G 5 of the form a,. converges for each >0 to the resolvent operator G4 of
the form a in the strong operator topology of H, as h' — c©. Moreover, semi-
groups and spectral resolutions also converge, as described in Sections 2.6,
2.7.

Proof. Clearly, Theorem 5.4.1 applies. By (i) of Theorem 5.4.1 and by
Corollary 2.10.3, we have, in particular, C}(X)< D[a]< D[d] and

Ad(u, u) < a(u, u) for every ueH.

By the domination principle of Section 3(m) and the Remark at the end of
Section 3(q), this gives the first inequality of (5.19). Moreover, (ii} of
Theorem 5.4.1 holds, in particular, the second inequality of (5.19) also
holds. Finally, if D[&] is compactly injected in H, then by (5.16) the
sequence {a,} is asymptotically compact in H, therefore Theorem 4.2.1
applies and this proves (iil) above (recall, in particular, that the forms a,
are densely defined in /). |

Remark. For a stochastic description of the energy measures of the
functions that belong to D[&] we refer to [F, (5.4.36)].

5.7. Spectral Compactness for Coercive Diffusions

We now consider a special case of Theorem 5.5.1 and 5.6.1, in which,
according to Theorem 4.5.1, the asymptotic form inherits the diffusion
property on Cg(X).
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We assume that a =afe L\ (X, m), i, j=1, .., m, satisfy the condition:

AlEIP ()<L i Edal(x)< 4 1E)? B(x) m-ae. in X for every éeR™,
=1

=

(5.20)

for some constants 0 <A< A and every h, with fe L. (X, m), f(x)>0,
such that B(dx) := (B(x) m(dx)8?) is an admissible energy measure in X,
that is, such that the form

B, v) = j Du Dv B(x) m(dx), (5.21)

with domain D[f]= Cl(X), is closable in H. The closure of B in H will be
denoted by B.

THEOREM 5.7.1. Under the assumptions (5.20), (5.21), let {a,} be the
sequence of the diffusion forms (5.10) in H, where vi(dx)= ai(x) m(dx).
Then:

(1) There exist a regular Dirichlet form of diffusion type a in H, with
D[a) = D[ B] and core Cy(X), and a subsequence {a,.} of {a,}, such that
a, I'-converges to a in H as h' — oo.

t
loc

(ii) There exist and are unique a’ =a’ € L
condition

(X, m) in X, verifying the

AEP Blx) < i &€ a'(x)< A [€12 B(x) m-a.e. on X for every (e R™,

g=1

(5.22)

such that

a(u, v) =j i (Ouf0x)(Xy, X3, oy Xy )(OV/0X,)(X ), X3, oy X,) @¥(x) m(dX)

y=1

for every u, ve Cy(X). Moreover,
atu, v) = [ plw, v)(dx)
X

Jor every u, ve D[a], where u is the energy measure of a.

(i) In addition, if D[ B] is compactly injected in L*(X, m), then a,
converges to a as h' — oo according to Definition 2.1.1 and, furthermore,
resolvents, semigroups, spectral operators and spectral subspaces also
converge, as described in Sections 2.4, 2.6, 2.7 and Theorem 4.2.1.
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Proof. Both Theorems 5.5.1 and 5.6.1 clearly apply. In particular, (i),
(i1) of Theorem 5.4.1 hold, with j=0 and k=0, and, moreover, (5.19) of
Theorem 5.6.1 holds with

a(dx) = B(dx) = B(x) m(dx), Be L} (X, m), for every i=1,..,m

Therefore, the form a, provided by (i) of Theorem 5.4.1, is a regular
Dirichlet form of diffusion type in H, with domain D[a]= D[ f] and core
ClX).

Moreover, by Radon-Nikodym theorem, (5.22) follows from (5.19). This
proves (i) and (ii) above. Finally, (iii) above follows from (iii) of
Theorem 5.6.1. |}

Remark. For conditions ensuring the admissibility of 8, that is, the
closability of the form (5.21), we refer to [AR].

Remark. Special results of the type of Theorem 5.7.1 for uniformly
elliptic operators in euclidean spaces were first obtained by S. Spagnolo
[S] and E.Y. Hruslov [H].

6. EXAMPLES
6.1. Nonlocal Relaxations

ExaMpLE 6.1.1. This example describes the possible effect of point
singularities of the measure m on a relaxed form. We take X'=R"” and fix
n+1 points {z,, .., z,} € X, connected by curves z,, of lenght |z,,| meeting
only at their end points, and a non-negative symmetric n X 71 matrix (c,,).
We then consider the form

du|?

=\ ds,
ds g

a(u, u)—— Z Chk‘[

hk 0 Zhk

with domain Dla]l= {ueC (X):u(z,)=0}. We define m(dx)=dx+
Th_ o0, (dx), where dx is the Lebesgue measure in R" and 0¢.1(dx) the
Dirac mass at z, and take the relaxation a of a in the space L2(X m). Then,

alu, ) % z": |u(z,) — u(z)]?

hk=o



COMPOSITE MEDIA AND DIRICHLET FORMS 415

with
D[a]l={ueL*X, m):u(z,)=0},
where
Ry = |2l for every A, k.
Chi

We note that the initial form a is not closable in L? (X, m), in agreement
with Theorem 2.1.2 of [F], already mentioned in Section 3(i). Moreover,
we observe that the relaxation of a in L(X, dx) is identically zero.

The (non-local) forms g were introduced by Beurling and Deny [BD1],
as the basic example of their theory. We refer to that fundamental paper
also for physical interpretations of the energy form a.

6.2. Singular Weights and Nonlocal Potentials

ExaMpPLE 6.2.1. This example shows that the intrinsic capacity has an
important role in connection with traces and nonlocalities. We take X = Q,
a bounded open subset of R". We fix {z,,..,z,}, Zm and (cy) as in
Example 6.1.1, with z,€0Q. We take a weight w in the Muckenhoupt
A,-class, that is, a function w, w™'e L} (R") satisfying the condition

loc

f w de( w-ldx<c|B?  uniformly on the euclidean balls B of R",
B B

where |B| is the N-dimensional volume of B. We further assume that w is
such that

w-cap{z,} >0 for every h, 6.1)
w-cap{z{2} =0 for every A, k and every ¢>0, '

where {z\?)} denotes the open portion of the curve z, off an
e-neighborhood of its end points and w-cap denotes the capacity of the
form (5.21), where f(x)= w(x). We consider the form

2

g, (6.2)

ds

1 n
a(u, u) = L | Dul? w(x) dx+5 /,Z'o Con J.

Zhk

with domain D[a]=C}(X), and we take the relaxation g of a in
L*(X, dx). We find

2": Iﬁ(zh)—ﬂ(zk)|2+ Z |@(z,)|*

1
=| |Dul? =
a(u, u) L' ul? w(x) dx + ™ P

(6.3)

h#k=1
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with domain D[a] = {ue L*(X, dx): Due L*(X, wdx), ii(z,}=0} and R,,
as in Example 6.1.1.
An example of a weight w with the required property is given by

w(x)= Y |x—z,| %, with —N<f,< —(N-2), (6.4)
h=o
with N =3, as it follows from the following formula due to [FIK ],

R 2 ds|™!
w-cap(B,(z), BR(Z))=U Wl;(z_))—;] ,

where w(B,) = | wdx.

6.3. Singular Conductivities and Nonlocal Potentials

EXAMPLE 6.3.1. We take X, {z,, .., Z,}, Zm> (Cn) and w as in Example
6.2.1. For every ¢>0 and every A, k, we take T,.(z,) to be the open
e-tubular neighborhood of the curve z,, at distance greater than ¢ from the
end points of z,,. We consider the sequence of forms

n

a,(u, u)='|'x |Du|2w(x)dx+§;;c,—_—-; Y c,,kJ. | Du|? dx, £>0,

hk =0 Te(znk)

(6:5)

with domain D[a,] = C}(X). Then, a, is a closable form in L?(X, dx) and,
for a suitable value of the constant ¢, a, converges to the form (6.3)
according to Definition 2.1.1, as ¢ —0. Moreover, resolvents, semigroups
and spectral families also converge, in the sense of Sections 2.5, 2.6, and 2.8.

For N>4 and w of the form (6.4) this example was first given in
[BDM], as a development of previous examples of the same type due to
[CS, MS], intended to show that an equivalent property of locality,
namely the additive character of the forms with respect to the integration
domain, may be lost by I-convergence. To our knowledge, however, non-
local examples of this type were not explained by a general theory.

We observe that the “conductivity coefficients”

a%(x) :=[w(x)+——-—c--— Y c,,kITE(ZM)(x)]éij, x€eX,

71
2 Bk =0

remain bounded in L!(X, dx) as ¢ — 0, however they converge weakly only
in the sense of measures in X.
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6.4. Conductive Thin-Layers

ExaMpLE 6.4.1. The conductive thin-layer. We take X to be a bounded
open subset of RY and write x=(x’, xy), x'=(x,,.., Xy_,). For every
¢>0 we consider the layer ', = {xe X :|x,| <&} of thickness ¢ around
Z={x€eX:xy=0} and define the form

a,(u, u)= L |Dul? dx +§ L |Dul? dx,

with D[a,] = Cy(X). Then, a, is a closable form in L*(X, dx) and a,
converges to the form

alu, u)=jx |Du|? dx + ¢ L |Dsu(x, 0)| dx’, (6.6)

as ¢— 0, in the sense of Definition 2.1.1, together with resolvents, semi-
groups and spectral families, as in Example 6.3.1. The domain of the form
(6.6) is D[a] = {ue H)(X) :u| € H}(X)}, where u| > denotes the trace of u
on X2, and Dy=(0/0x,, ..., 0/0xy_ ).

We notice that (6.6) has measure-valued conductivities

vi(dx)= - = vV DV (dx) = dx + cdx'd ) (dx y), v¥¥(dx) = dx.

Because of the surface energy on X, the self-adjoint operator associated
with the form (6.6) is the Laplace operator in X — X, with homogeneous
Dirichlet condition on the boundary of X and with the second order
transmission condition

on the layer Z, where

M1 9fu(x', 0)
A= ek S I
§ hgl ox;
is the tangential Laplacian on X and [Ju/dny] denotes the jump of the
normal derivative of u accross 2.
We observe that, as in Example 6.3.1, the conductivity coefficients remain
bounded in L'(X, dx) as ¢ -0 and, for a suitable value of ¢, converge
weakly in the sense of measures to f=dx+ |2 X]| "' 15 x(x’, 0) dx".

This example is due to H. Pham Huy [PHSP] and E. Sanchez-Palencia
[SP]. The diffusion process associated with the form (6.6) has been inde-
pendently studied by N. Ikeda-S. Watanabe [IW] and, more recently, by
M. Tomisaki [T].
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6.5. Insulating Thin-Layers

ExaMpLE 6.5.1. The insulating thin-layer. We take X, 2, and 2 as in
Example 6.4.1, and we define now the form a, by

ag(u,u):f

X—-Z

| Du|? dx + ce f | Du|? dx,
Z,

with D[a,]= Cj(X). Then, a, is a closable form in L*(X, dx) and a,
I-converges as ¢ — 0 to the form

a(u, u)=L |Dul? dx + ¢ L [u]2 dx’, (6.7)

with domain D[a]={ueL*(X,dx): ue H'({xy>0})n H'({xy<0})},
where [u]; denotes the jump of u accross 2.

The form (6.7) is a non-regular, densely defined Dirichlet form in
L*(X, dx). The closure of its restriction to C= C}(X) is the form

awu)=| |Du*dx,  Dla]=HY(X),

with energy measure p(u, u)(dx) = |Du|* dx for ue Cy(X). We observe that
the form (6.7) can still be written as

jX (e, u)(dx)

on its full domain, provided we introduce the singular energy measure:
w(u, u)(dx)=|Du|? dx + c[u]5 15(x', 0) dx’. (6.8)

This provides an explicit example of an energy measure u defined on a
space of discontinuous functions and shows, in particular, that the domain
D[a] of the form (6.7) is contained in the space B} and the gradient of
arbitrary u in D[a] can only be defined as a measure.

Moreover, this example also shows that in Theorem 5.5.1 we may have
indeed a # ac.

Finally, by comparing this example with Example 6.4.1, of which it
represents somehow the dual case, we find that now the reciprocals of the
conductivity coefficients remain bounded in L'(X, dx) as ¢ —» 0 and they
converge weakly to the same measure § of Example 6.4.1.
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