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we then prove a Rademacher type theorem. For strongly
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intrinsic metrics by bounds on certain integrals. We then turn
to applications on spectral theory and provide for (measure
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transform, and a Shnol’ type theorem. Our setting includes
Laplacian on manifolds, on graphs and α-stable processes.
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1. Introduction

Intrinsic metrics play an important role in the study of various features of Laplacians
on manifolds and more generally of Laplacians arising from strongly local Dirichlet forms.
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In this context, they appear for example in the study of heat kernel estimates [36,37],
the investigation of stochastic completeness, recurrence and transience [35] and spectral
theory, see e.g. [6,5,26]. Thus, basic issues for intrinsic metrics can be considered to
be well understood in the case of strongly local Dirichlet forms. For non-local Dirichlet
forms the situation is completely different. In fact, already for the simplest examples, viz.
graphs, there is no common concept of an intrinsic metric (see, however, [8] for various
ideas in this direction). This is the starting point for this paper.

Our basic aim is to propose an extension of the concept of intrinsic metric from
strongly local Dirichlet forms to the general case and to study some of its basic features.
More precisely, we proceed as follows:

After presenting the basic ingredients of Dirichlet forms in Section 2, we carry out a
careful study of energy measure and of a suitable space of functions to be thought to
belong locally to the domain in Section 3. In particular, we prove a certain continuity of
the energy measures in Proposition 2.2 and discuss variants of the Leibniz rule.

In Section 4 we then present a general concept of intrinsic metric and study some of
its properties. In particular, in Theorem 4.9 we provide a Rademacher type theorem in
a rather general context. This theorem has already proven useful in Stollmann’s study
of length spaces [34]. In Section 5, we show that specifying an intrinsic metric more or
less amounts to specifying a set of Lipschitz continuous functions.

Combining these results we then have a look at the strongly local case in our con-
text in Section 6. In this case it is possible to show existence of a maximal intrinsic
metric (Theorem 6.1). Existence of a maximal intrinsic metric fails in general for the
non-local case, as we show by examples. In this sense, our results ‘prove’ that the non-
local case is strictly more complicated than the local case as far as intrinsic metrics are
concerned.

The situation of an absolutely continuous jump kernel is considered in Section 7.
There, we can then characterize our intrinsic metrics by some integral type condition
(Theorem 7.3). This is well in line with earlier results and ideas on e.g. graphs.

Dirichlet forms with finite jump size are considered in Section 8. In a precise sense,
these turn out to be not much different from strongly local forms.

After these more geometric considerations we turn to spectral theory and present two
applications of the developed theory. Both applications rely on the notion of generalized
eigenfunction which in turn is defined using the local domain of definition. In their
context, we actually allow furthermore for some perturbation of the original Dirichlet
form by a (suitable) measure.

The first application, given in Section 10 provides a ground state transform and then
an Allegretto–Piepenbrink type result. This basically unifies the corresponding results
of [14,26] for graphs and strongly local forms respectively.

The second application concerns a Shnol’ type result. Such a result was recently
shown in [6] for strongly local forms using cut-off functions induced by the intrinsic
metric. Having the intrinsic metrics at our disposal, we can adapt the strategy of [6] to
our general context.
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Examples such as graphs and α-stable processes to which our results can be applied
are discussed in the last section.

2. Preliminaries on Dirichlet forms

This paper is concerned with Dirichlet forms on locally compact separable spaces. In
this section we introduce the basic notation and concepts (see e.g. [4,9,13,28]).

Throughout let X be a locally compact, separable metric space, m a positive Radon
measure on X with suppm = X. The functions on X we consider will all be real valued.
Of course, complex valued functions could easily be considered as well after complexifying
the corresponding Hilbert spaces and forms. By Cc(X) we denote the set of continuous
functions on X with compact support. The space L2(X) := L2(X,m) is the space of
all measurable and square integrable with respect to m real valued functions. The space
L∞(X,m) is the space of all essentially bounded functions.

Notation. We will mostly replace the argument (u, u) by (u) in all sorts of bilinear
maps. Thus, in the context of forms we will use the notation E(u) instead of E(u, u) and
similarly μ∗(u) for μ∗(u, u) for measure valued maps etc. at the corresponding places
below.

2.1. Dirichlet forms

Recall that a closed non-negative form on L2(X,m) consists of a dense subspace
D ⊂ L2(X,m) and a sesquilinear and non-negative map E : D × D → R such that D is
complete with respect to the energy norm

√
E1 defined by

E1(u) = E(u) + ‖u‖2
L2(X,m).

In this case the space D together with the inner product E1(u, v) := E(u, v) + (u, v)
becomes a Hilbert space and

√
E1 is the induced norm.

A closed form is said to be a Dirichlet form if for any u ∈ D and any normal contraction
T : R → R we have also

T ◦ u ∈ D and E(T ◦ u) � E(u).

Here, T : R → R is called a normal contraction if T (0) = 0 and |T (ξ) − T (ζ)| � |ξ − ζ|
for any ξ, ζ ∈ R. Typical examples of normal contractions are modulus and positive and
negative part of a number. Thus, in particular, minima and maxima of functions in D
must again belong to D (as they can be expressed by linear combinations involving the
modulus). A Dirichlet form is called regular if D ∩ Cc(X) is dense both in (D, ‖ · ‖√E1

)
and (Cc(X), ‖ · ‖∞).

In the remainder of this paper, we shall assume that E is a regular Dirichlet form.



4768 R.L. Frank et al. / Journal of Functional Analysis 266 (2014) 4765–4808
2.2. Capacity

The capacity is a set function associated to a Dirichlet form. It measures the size of
sets adapted to the form. It is defined as follows: For U ⊂ X, U open, we define

cap(U) := inf
{
E1(v): v ∈ D, 1U � v

}
(inf ∅ = ∞).

For arbitrary A ⊂ X, we then set

cap(A) := inf
{
cap(U): U open with A ⊂ U

}
(see [13, Section 2.1]). A property is said to hold quasi-everywhere, short q.e., if it holds
outside a set of capacity 0. A function f : X → R is called quasi-continuous, q.c. for
short, if, for any ε > 0 there is an open set U ⊂ X with cap(U) � ε so that the restriction
of f to X \ U is continuous. Every u ∈ D admits a q.c. representative ũ ∈ u (recall that
u ∈ L2(X,m) is an equivalence class of functions) and two such q.c. representatives agree
q.e. For u ∈ D, we will always choose such a quasi-continuous representative ũ.

2.3. Algebraic structure

Here we highlight the following theorem.

Theorem 2.1. (See [13, Theorem 1.4.2(ii)].) Let u, v ∈ D ∩ L∞(X). Then uv ∈ D and
the estimate

E(uv) � ‖u‖2
∞E(v) + ‖v‖2

∞E(u)

holds.

Note that the theorem implies that the vector spaces L∞(X) ∩ D, Cc(X) ∩ D and
L∞
c (X) ∩ D are actually algebras (i.e., closed under multiplication).

2.4. Beurling–Deny formula

There is a fundamental representation theorem for regular Dirichlet forms, known as
Beurling–Deny formula. It says that to any such form E there exists

• k, a (non-negative) Radon measure on X,
• J , a (non-negative) Radon measure on X×X \d, i.e., on X×X without the diagonal

d := {(x, x): x ∈ X},
• and μ(c), a positive semidefinite bilinear form on D with values in the signed Radon

measures on X, which is strongly local, i.e., satisfies μ(c)(u, v) = 0 if u is constant
on supp v,
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such that for any u ∈ D with q.c. representative ũ

E(u) =
ˆ

X×X\d

(
ũ(x) − ũ(y)

)2
J(dx,dy) +

ˆ

X

dμ(c)(u) +
ˆ

X

ũ(x)2 k(dx).

If J ≡ 0, then E is called local. Note that without loss of generality the measure J can be
assumed to be symmetric (as it can be symmetrized if it is not). Thus, we will assume J

to be symmetric in the sequel.
The measure J gives rise to the Radon measure μ(b) characterized by

ˆ

K

dμ(b)(u) =
ˆ

K×X\d

(
ũ(x) − ũ(y)

)2
J(dx,dy)

for K ⊂ X compact and u ∈ D. The measure μ(d) is defined as

μ(d) = μ(c) + μ(b).

We then define the measure μ(a)

ˆ

K

dμ(a)(u) =
ˆ

K

ũ2 dk.

Finally, we define the bilinear forms E(∗) for ∗ = a, b, c, d by

E(∗)(u, v) =
ˆ

X

dμ(∗)(u, v)

and call μ(c) the strongly local part of the energy measure, μ(b) the jump part or the
pseudo-differential part or the non-local part of the energy measure and μ(d) the differ-
ential part of the energy measure. With this notation, the Beurling–Deny formula reads

E(u) = E(c)(u) + E(b)(u) + E(a)(u) = E(d)(u) + E(a)(u).

From the definitions, it is not hard to see that the measures μ(∗)(u, v), ∗ = a, b, c, d

satisfy the Cauchy–Schwarz inequality

(ˆ
|fg| dμ(∗)(u, v)

)2

�
ˆ

|f |2 dμ(∗)(u)
ˆ

|g|2 dμ(∗)(v)

for all Borel measurable f , g on X and all u, v ∈ D(E).
Let us also note that the strongly local part μ(c) satisfies the truncation property [29]

dμ(c)(u ∨ v, u ∨ v) = 1{u>v} dμ(c)(u) + 1{u�v} dμ(c)(v).
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Here, we write for real valued functions f , g on the same space

f ∧ g := min{f, g}, f ∨ g := max{f, g}.

The measures μ(∗)(u, v), ∗ = a, b, c, d depend continuously on u ∈ (D, E1), when the
space of measures is equipped with the vague topology (see e.g. [35]). We will need a
somewhat different continuity, which may be of independent interest. It is stated in the
following proposition. A proof can be found in Appendix A.

Proposition 2.2. Let un, u ∈ D ∩ L∞(X) and v ∈ D be given with ‖un‖∞ bounded and
un → u weakly with respect to

√
E1. Then, the measures μ(∗)(un, v) converge vaguely to

the measure μ(∗)(u, v), i.e.,
ˆ

f dμ(∗)(un, v) →
ˆ

f dμ(∗)(u, v)

holds for all f ∈ Cc(X) for ∗ = a, b, c, d.

3. Energy measure and the space D∗
loc

3.1. The local form domain D∗
loc

Functions which locally belong to the domain of the form play a crucial role in the
theory of Dirichlet forms. This holds in particular for the use of strongly local forms in
the theory of partial differential equations. In that case there is a well known space Dloc
(defined below) with the following three properties:

• Functions in Dloc locally agree with functions in D.
• The measure valued functions μ(a) and μ(c) can be extended to Dloc.
• The form E can be extended so that E(u, v) makes sense for all u, v ∈ Dloc such that

v has compact support.

Here, we introduce a space which has these three properties and agrees with the usually
defined Dloc in the strongly local case. The basic idea is to find the ‘biggest’ set of
functions to which the measures μ(a) to μ(c) can be extended.

In [13] one can find the set of functions, which are locally in the domain of definition
of E , defined as

{
u ∈ L2

loc: ∀G ⊂ X open, relatively compact ∃v ∈ D with u = v on G
}
.

We will denote this set as Dloc.
Some of its properties are gathered in the following proposition. These properties are

of course well known. For the convenience of the readers we provide the short proofs.
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Proposition 3.1. Let E be a regular Dirichlet form on L2(X,m). Then, the following
hold:

(a) D ⊂ Dloc.
(b) For all u ∈ Dloc there exists a quasi-continuous version ũ.
(c) 1 ∈ Dloc.

Proof. (a) is clear.
(b) Let u ∈ Dloc. We choose Gn open, relatively compact with

⋃
n Gn = X and

Gn ⊂ Gn+1. Then there exists un ∈ D quasi-continuous with un = u m-a.e. on Gn.
According to [13, Theorem 2.1.2] there exists an m-regular nest Fk (i.e., cap(X \Fk) → 0
and m(Fk ∩ U(x)) > 0 ∀x ∈ Fk and U(x) a neighborhood of x) with un|Fk

continuous
for all n and k. Let now be x ∈ Fk ∩Gn for some n.

Because m(U(x)∩ Fk) > 0, there is a point xU ⊂ U(x)∩ Fk with um(xU ) = u(xU ) =
un(xU ) for all m � n. As xU → x for appropriately chosen U(x) and on account of the
continuity it follows that um(x) = un(x) for all m � n. Hence um(x) = un(x) for all
m � n and x ∈ Fk ∩Gn.

We now define ũ(x) := un(x) for x ∈ Fk ∩ Gn. ũ is well defined on every Fk and
continuous. Therefore ũ is quasi-continuous, and as m(X \ Fk) � cap(X \ Fk) → 0 we
know that ũ is a quasi-continuous version of u.

(c) This is a direct consequence of [13, Lemma 1.4.2(ii)] (giving that for all G open,
relatively compact there exists a u ∈ D ∩ Cc(X) with u ≡ 1 on G). �

For u ∈ Dloc we will always choose a quasi-continuous representative ũ as in part (b)
of the proposition, and we shall often simply write u for this representative.

Note that μ(c) can be extended to Dloc because of its local property. To be precise:
μ(c)(u) = μ(c)(v) on G ⊂ X open, relatively compact, whenever u = v on G, see [13,
Remarks to Theorem 3.2.2]. This μ(c) is again called the strongly local part of the energy
measure. In order to be able to extend μ(b) as well, we will have to restrict our attention
to a certain subset of Dloc which we define next.

Definition 3.2. The space D∗
loc of functions locally in the domain is defined to be the set

of all functions u ∈ Dloc with the property that
ˆ

K×X\d

(
ũ(x) − ũ(y)

)2
J(dx,dy) < ∞

for all compact K ⊂ X.

Let us highlight in passing two subsets of D∗
loc: We obviously have the inclusion

D ⊂ D∗
loc.
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Moreover, we also have the inclusion

L∞(X,m) ∩ Dloc ⊂ D∗
loc.

(To see this consider an arbitrary compact K in X. By regularity of the Dirichlet form
we can chose w ∈ D with compact support and w = 1 on K. Let K1 be the support
of w. Then, by regularity of the Dirichlet form and a little argument we obtain

J
(
K ×Kc

1
)
�

ˆ

X×X\d

∣∣w(x) − w(y)
∣∣2 J(dx,dy) < ∞,

compare also the reasoning leading to (∗) in the proof of Theorem 4.9. Thus, for any
u ∈ L∞ ∩ Dloc we obtain

ˆ

K×X\d

∣∣u(x) − u(y)
∣∣2 J(dx,dy) �

ˆ

K×K1\d

∣∣u(x) − u(y)
∣∣2 J(dx,dy) + 4‖u‖∞J

(
K ×Kc

1
)

< ∞.

This shows the desired inclusion.)

Remark 3.3. Independent of our work the space D∗
loc is also considered in [23,24]. There

it is denoted as F†
loc. In fact, the inclusion L∞(X,m) ∩ Dloc ⊂ D∗

loc could be derived
from these works by combining the formula Floc ∩ L∞(E;m) ⊂ F‡

loc on p. 1549 of [23]
with the (trivial) observation F‡

loc ⊂ F†
loc. We thank the referee for pointing this out.

We can extend μ(b) to the space D∗
loc. To do so, we define for E ⊂ X measurable and

u ∈ D∗
loc

μ(b)(u)(E) :=
ˆ

E×X\d

(
ũ(x) − ũ(y)

)2
J(dx,dy).

Proposition 3.4. For u ∈ D∗
loc, the map μ(b)(u)(·) is a Radon measure.

Proof. This follows by standard result from measure theory. We include the short proof
for completeness reasons. We only have to show, that μ(b) is inner regular, the rest is
obvious. For this let E ⊂ X be measurable. As J is a Radon measure, μ(b)(u)(E) can
be approximated by

´
K

(ũ(x) − ũ(y))2 J(dx,dy) with K ⊂ E × X \ d compact. But
then μ(b)(u)(K ′) =

´
K′×X\d(ũ(x) − ũ(y))2 J(dx,dy) with K ′ := {x ∈ X: ∃y ∈ X with

(x, y) ∈ K} the projection from K on the first component also approximates μ(b)(u)(E).
As K ′ is compact the desired regularity follows. �

Having extended μ(b) and μ(c) we can also extend their sum and obtain a Radon mea-
sure again denoted by μ(d). Again, we call μ(b) the jump part or the pseudo-differential
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part or the non-local part of the energy measure and μ(d) the differential part of the
energy measure.

Now, we can also extend the form E in the desired way.

Theorem 3.5. Any ϕ ∈ D∗
loc with compact support belongs to D and for any such ϕ

E(u, ϕ) :=
ˆ

X

dμ(d)(u, ϕ) +
ˆ

X

ũϕ̃ dk

is well-defined (i.e., the integrals on the right hand side exist) for all u ∈ D∗
loc.

Proof. We first show that any such ϕ belongs to D. Note that
´
X×X\d |φ(x) −

φ(y)|2 J(dx,dy) < ∞. Thus, we can invoke a suitable cut-off procedure, after which
we can assume without loss of generality that ϕ is bounded. By regularity, we can chose
ψ1 ∈ D ∩ Cc(X) with ψ1 ≡ 1 on the support of ϕ. By the definition of D∗

loc we can
furthermore find ψ2 ∈ D with ψ2 = ϕ on the support of ψ1. Without loss of generality
this ψ2 can be assumed to be bounded (as ϕ is bounded). By the algebraic structure
of D, the product ψ1ψ2 belongs to D. By construction this product is just ϕ.

We now show the statement on the well-definedness of the integrals: We only have to
look at the non-local part, that is

ˆ

X×X\d

(
ũ(x) − ũ(y)

)(
ϕ̃(x) − ϕ̃(y)

)
J(dx,dy).

We now set K := supp ϕ̃. Because the integral over K ×X \ d is well-defined, and over
Kc×Kc\d is zero, we only have to look at Kc×K\d or, using the symmetry, at K×Kc\d.
But on this set the integral is well-defined as part of a well-defined integral. �
Remark 3.6. As pointed out by the referee a very similar statement to the previous
theorem can be found in Lemma 2.6 of [7].

The space D∗
loc and the measures μ(∗) are well compatible with approximation via

cut-off procedures. This will be relevant later on. We discuss the corresponding details
in the next lemma.

Lemma 3.7. Let u ∈ L∞
loc ∪Dloc and assume that there is a Radon measure m1 such that

for every T > 0 one has uT := u ∧ T ∨ (−T ) ∈ D∗
loc and μ(b)(uT ) � m1. Then u ∈ D∗

loc
and μ(∗)(u) = limT→∞ μ(∗)(uT ) for ∗ = a, b, c, d. In particular, μ(b)(u) � m1.

Proof. We first prove that u belongs to D∗
loc. Note that u ∈ L∞

loc agrees locally with uT

for T big enough. Thus, obviously u belongs to Dloc. Therefore we only have to show
that
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ˆ

K×X\d

(
ũ(x) − ũ(y)

)2
J(dx,dy) < ∞.

This follows as (uT (x) − uT (y))2 converges monotonically to (u(x) − u(y))2 and
ˆ

K×X\d

(
uT (x) − uT (y)

)2
J(dx,dy) � m1(K) < ∞

uniformly in T .
We now turn to the proof of the convergence statement. For ∗ = a, b the convergence

of μ(∗)(uT ) is clear by monotone convergence. To deal with ∗ = c, i.e., the strongly local
part, we note that vT → v with respect to E1 for all v ∈ D; see [13, Theorem 1.4.2(iii)]. �
3.2. The Leibniz rule

We now turn to stability under taking products and the Leibniz rule. In order to
do this we introduce the measure Γ . Let Cc(X ×X) denote the continuous real valued
functions on X×X with compact support. For u, v ∈ D∗

loc we define the measure Γ (u, v)
on X ×X by

ˆ

X×X

f(x, y) dΓ (u, v) :=
ˆ

X

f(x, x) dμ(c)(u, v)

+
ˆ

X×X\d

f(x, y)
(
ũ(x) − ũ(y)

)(
ṽ(x) − ṽ(y)

)
J(dx,dy)

for f ∈ Cc(X ×X). This is well defined by the definition of D∗
loc and Cauchy–Schwarz

inequality. In fact, let us note that
∣∣∣∣
ˆ

X×X

f(x, y)g(x, y) dΓ (u, v)
∣∣∣∣
2

�
ˆ

X×X

f2(x, y) dΓ (u, u)
ˆ

X×X

g2(x, y) dΓ (v, v)

as follows easily from the Cauchy–Schwarz inequality for the μ∗ discussed above.
We are going to extend this equality to a larger class of functions. These are the

functions defined quasi-everywhere. They are given as follows: A measurable f : X ×
X → R is said to be defined q.e., if there exists a set E ∈ X with cap(E) = 0 and f is
defined on ((X \ E) ×X) ∩ (X × (X \ E)) = (E × E)c. The following lemma will allow
us to extend the definition of Γ to functions which are defined q.e.

Lemma 3.8. Let u ∈ D∗
loc and A ⊂ X be measurable with cap(A) = 0. Then

ˆ (
ũ(x) − ũ(y)

)2
J(dx,dy) = 0.
A×X\d
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Proof. This can be inferred from standard properties of Dirichlet forms [13]. We include
a proof for completeness. As J is a Radon measure and thus inner regular it suffices to
show the claim for A compact. As A is compact with cap(A) = 0, there is a sequence
fn ∈ D ∩ Cc(X) with fn = 1 on A, fn � 0 and E1(fn, fn) → 0. For any v ∈ L∞ ∩ D
we then have by the results on algebraic structure above that E1(vfn) is bounded. In
particular, vfn contains E1 weakly converging subsequences. As fn converges to 0 in L2

and v is bounded, the sequence (vfn) converges to 0 in L2 and we infer that vfn itself
converges E1 weakly to 0. After these preparations we can now proceed as follows: By a
standard approximation result we can replace

ˆ

A×X\d

(
ũ(x) − ũ(y)

)2
J(dx,dy) < ∞

by the integral
ˆ

A×K\d

(
ũT (x) − ũT (y)

)2
J(dx,dy)

with K compact and uT := u ∧ T ∨ (−T ). We now choose v ∈ D ∩ L∞ with v = uT on
K ∪A. Then

ˆ

A×K\d

(
ũT (x) − ũT (y)

)2
J(dx,dy) =

ˆ

A×K\d

(
ṽ(x) − ṽ(y)

)2
J(dx,dy)

�
ˆ

X×X\d

fn(x)
(
ṽ(x) − ṽ(y)

)2
J(dx,dy)

= E(b)(vfn, v) −
1
2E

(b)(fn, v2).
As discussed above, (fn) tends to 0 with respect to E1 and (vfn) converges E1 weakly
to 0 and we see that the right hand side of the last inequality tends to zero. This finishes
the proof. �

For u, v ∈ D∗
loc and f measurable and defined q.e. we then obtain

ˆ

X×X

f(x, y) dΓ (u, v) =
ˆ

X

f(x, x) dμ(c)(u, v)

+
ˆ

X×X\d

f(x, y)
(
ũ(x) − ũ(y)

)(
ṽ(x) − ṽ(y)

)
J(dx,dy).

Given this, we can note the following version of the Leibniz rule.



4776 R.L. Frank et al. / Journal of Functional Analysis 266 (2014) 4765–4808
Theorem 3.9 (Leibniz rule). Let u, v, w ∈ D∗
loc with u · v ∈ D∗

loc be given. Then the
following hold:

(a) The equality

ˆ

X×X

f(x, y) dΓ (u · v, w) =
ˆ

X×X

f(x, y)ũ(x) dΓ (v, w) +
ˆ

X×X

f(x, y)ṽ(y) dΓ (u,w)

holds for all f measurable and defined q.e., whenever (at least) two of the integrals
exist.

(b) The equation

ˆ

X

dμ(d)(u · v, w) =
ˆ

X

ũdμ(d)(v, w) +
ˆ

X

ṽ dμ(d)(u,w)

holds, whenever (at least) two of the integrals exist.

Proof. (a) We consider the strongly local and the jump part separately.
For the strongly local part and bounded u and v this is well known (see e.g. the

discussion in [35]). With the truncation property we can then conclude for u, v with
u · v ∈ D∗

loc that

μ(c)(uv,w) = ũμ(c)(v, w) + ṽμ(c)(u,w) (1)

on Fn := {|ũ| � n and |ṽ| � n} for all n ∈ N and hence on F :=
⋃∞

n=1 Fn. By [13,
Lemma 2.1.6] cap({|ω| > n}) � E1(ω)

n2 for every ω ∈ D. As both u and v agree on compact
sets with elements from D we can then infer that cap(F c ∩ K) = 0 for every compact
K ⊂ X. As cap is a Choquet capacity cap(F c) = 0 follows. Now, the equality (1) follows
on the full set X, as μ(c) does not charge sets of capacity zero, see [13, Lemma 3.2.4].

The non-local part can be treated by simple algebraic manipulations involving

(u · v)(x) − (u · v)(y) = u(x) ·
(
v(x) − v(y)

)
+ v(y) ·

(
u(x) − u(y)

)
.

(b) This is a direct consequence of (a). �
To apply the Leibniz rule we need that the product of the two functions u, v ∈ D∗

loc
belongs again to this space. Here, we discuss sufficient conditions for this (compare
Theorem 2.1 as well).

Proposition 3.10.

(a) Let u ∈ D∗
loc ∩ L∞

loc(X) and v ∈ D∗
loc ∩ L∞(X). Then uv ∈ D∗

loc ∩ L∞
loc(X).
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(b) Let u ∈ D and v ∈ D∗
loc ∩L∞(X) be given such that μ(d)(v) is absolutely continuous

with respect to m with bounded density. Then uv ∈ D.
(c) Let u ∈ D∗

loc and v ∈ D∗
loc∩L∞(X) be given such that μ(d)(v) is absolutely continuous

with respect to m with bounded density. Then uv ∈ D∗
loc.

Proof. (a) From the algebraic properties, we see, that u·v ∈ Dloc. Moreover, this product
obviously is locally bounded. As for the remaining statements we notice that

(
uv(x) − uv(y)

)2 =
(
u(x)

(
v(x) − v(y)

)
+ v(y)

(
u(x) − u(y)

))2

� 2u(x)2
(
v(x) − v(y)

)2 + 2v(y)2
(
u(x) − u(y)

)2
.

This gives
ˆ

K×X\d

(
(u · v)(x) − (u · v)(y)

)2
J(dx,dy)

� 2‖u‖2
∞,K

ˆ

K×X\d

(
v(x) − v(y)

)2
J(dx,dy) + 2‖v‖2

∞

ˆ

K×X\d

(
u(x) − u(y)

)2
J(dx,dy)

< ∞.

This finishes the proof of (a).
(b) Let un := u∧n∨ (−n). Let C be a bound for v2 and for the density dμ(d)(v)/dm.

We then have

E(unv) = Ea(unv) +
ˆ

X×X

dΓ (unv)

and by Leibniz rule and Cauchy–Schwarz-inequality

� CEa(un, un) + 2
ˆ

X×X

un(x)2 dΓ (v) + 2
ˆ

X×X

v(y)2 dΓ (un)

� 2CE1(un)

� 2CE1(u)

uniformly in n. As obviously (unv) converges to uv in L2 we conclude uv ∈ D by
closedness of the form (see e.g. [19, Theorem VI.1.16]).

(c) From (b) we know, that uv ∈ Dloc. Now calculate (for details compare (a) and (b))
ˆ

K×X\d

(
(u · v)(x) − (u · v)(y)

)2
J(dx,dy) � 2

ˆ

K

u2 dμ(b)(v) + 2‖v‖2
∞

ˆ

K

dμ(b)(u) < ∞.

This finishes the proof. �
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Remark 3.11. The boundedness assumption on μ(d)(v) in (b) of the previous proposition
can be replaced by a weaker assumption of form boundedness, see Proposition 3.4.4
of [40].

The previous discussion naturally raises the question whether the product of uϕ be-
longs to D whenever u ∈ D and ϕ ∈ D ∩ C0(X). This does not need to be the case as
we illustrate with both a non-local and a local example:

Example 3.12. Let X := [−1, 1] and

E(u, v) :=
1ˆ

0

(
u(x) − u(−x)

)(
v(x) − v(−x)

)
|x|−5/2 dx,

D̃ :=
{
u ∈ C(X): E(u) < ∞

}
.

By Fatou’s lemma the form (E , D̃) is closable on L2(X, dx). Let (E ,D) be its closure. By
definition (E ,D) is then a regular Dirichlet form. Note that E(w) vanishes whenever w

is even. Simple cut-off procedures then show that v with v(x) := |x|−1/4 belongs to D.
Moreover, u with u(x) := x belongs to D̃ ⊂ D. Hence u, v ∈ D, but by a direct calculation
one sees that the product uv does not belong to D.

Example 3.13. Define

u(x) :=
{
|x|5/8 · sin( 1

|x| ) |x| ∈ (0, π−1)
0 otherwise,

v(x) :=
(
|x|−1/4 − 1

)+
.

Then direct calculations show that u ∈ W 1,2(R3) ∩ Cc(R3) and v ∈ W 1,2(R3), but
u · v /∈ W 1,2(R3) as the derivative of uv does not belong to L2.

4. Intrinsic metrics

For strongly local Dirichlet forms the intrinsic metric is a powerful tool. It has been
used in studying decay of heat kernels, the investigation of Harnack inequalities and to
get ‘good’ cut-off functions in the study of spectral properties e.g. in [3,5,35,38]. Our aim
is to generalize this concept to non-local Dirichlet forms. This is done in this section.

We begin with a short discussion of pseudo-metrics. A map � : X × X → [0,∞] is
called a pseudo-metric if �(x, x) = 0, �(x, y) = �(y, x) and �(x, y) � �(x, z) + �(z, y) for
all x, y, z ∈ X. The triangle inequality implies the estimates

�(x, y) � �
(
x′, y′

)
+ �

(
x, x′) + �

(
y, y′

)
and
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�
(
x′, y′

)
� �(x, y) + �

(
x, x′) + �

(
y, y′

)
valid for all x, y, x′, y′. This gives in particular,

∣∣�(x, y) − �
(
x′, y′

)∣∣ � �
(
x, x′) + �

(
y, y′

)
,

where finiteness of the right hand side implies finiteness of the left hand side and the left
hand side is taken as ∞ if both terms are ∞.

Let us emphasize that the pseudo-metric � may not be continuous with respect to the
original topology.

Whenever � is a pseudo-metric on X and A ⊂ X we can define

�A(x) := inf
y∈A

�(x, y).

If � is a pseudo-metric, then so is � ∧ T for any T � 0. One has

(� ∧ T )A = �A ∧ T

and the estimate
∣∣�A(x) ∧ T − �A(y) ∧ T

∣∣ � �(x, y)

holds for any x, y ∈ X. This estimate shows that, if � is continuous, then so is �A ∧ T

and �A.
Recall that in our setting the locally compact metric space X is equipped with a

Radon measure m of full support.

Definition 4.1. A pseudo-metric � : X × X → [0,∞] is called an intrinsic metric with
respect to the Dirichlet form E , if there are two Radon measures mb and mc with
mb + mc � m such that for all A ⊂ X and all T > 0 the function �A defined above
satisfies

• �A ∧ T ∈ D∗
loc ∩ C(X),

• μ(b)(�A ∧ T ) � mb,
• μ(c)(�A ∧ T ) � mc.

Remark 4.2. To a certain extension the assumptions μb+mc � m and �A∧T ∈ C(X) are
not necessary. More precisely, a good deal of the subsequent discussion would hold also
without these assumptions (after suitable modifications of the corresponding statements).
In particular, the Rademacher theorem given below would still be valid in the form stated
without these two assumptions.

To illustrate this notion we consider the Dirichlet forms of the continuous and discrete
Laplacians.
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Example 4.3. Consider X = R
d, d � 1, with Lebesgue measure and

E(u) :=
ˆ

Rd

|∇u|2 dx, D = W 1,2(
R

d
)
.

Then the standard Euclidean distance, �(x, y) := |x − y|, is an intrinsic metric for E .
Indeed, for A ⊂ R

d and T > 0 the function �A ∧ T is Lipschitz continuous and its
gradient exists a.e. and satisfies |∇(�A ∧ T )| = 1 on {�A < T} and |∇(�A ∧ T )| = 0
on {�A � T}. Therefore the conditions in the definition are satisfies with mb = 0 and
mc = Lebesgue measure.

Example 4.4. Consider X = Zd, d � 1, with counting measure and

E(u) :=
∑

|x−y|=1

∣∣u(x) − u(y)
∣∣2, D = 2

(
Z
d
)
.

Here |x − y| denotes the distance induced from that in R
d. We claim that �(x, y) :=

(1/
√

2d )|x−y| defines an intrinsic metric for E with mb = counting measure and mc = 0.
To prove this, we note that if |x−z| = 1 then |�A(x)∧T −�A(z)∧T | � |�A(x)−�A(z)| �
1/

√
2d. Since any z has 2d neighbors x, we conclude that for any z, μ(b)(�A ∧T )({z}) =∑

|x−z|=1 |�A(x) ∧ T − �A(z) ∧ T |2 � 1, which proves the claim.

We emphasize that we require �A ∧ T for an intrinsic metric � to be continuous with
respect to the topology generated by the underlying metric d, but we do not require
dA ∧ T to be continuous with respect to the topology generated by �. In general these
two topologies do not coincide; see Example 14.1 below. Note also that �A is continuous
in each x with �A(x) < ∞ (as it agrees locally around such an x with �A ∧ T for
suitable T ).

Let us collect some simple properties of intrinsic metrics.

Proposition 4.5. Let � be an intrinsic metric and let A ⊂ X be such that �A(x) < ∞ for
all x ∈ X. Then �A ∈ D∗

loc ∩ C(X) and μ(d)(�A) � m.

Proof. The continuity of �A follows from the continuity of �A ∧ T for any T . By the
definition of an intrinsic metric, we have �A∧T ∈ D∗

loc and μ(d)(�A∧T ) � mb +mc = m

for any T > 0. Hence the assertion follows using Lemma 3.7. �
The next definition is standard.

Definition 4.6. Let � be an intrinsic metric. Let E ⊂ X and a > 0 be given.

(a) The cut-off function associated to E with range a is given by

ηE,a(x) :=
(
1 − �E(x)/a

)+
.
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(b) The intrinsic ball around E with radius a is given by

Br(E) :=
{
x ∈ X: �E(x) � r

}
.

(c) The intrinsic boundary of a set E is given by

Ar(E) := Br(E) ∩Br

(
Ec

)
.

Proposition 4.7. Let � be an intrinsic metric, E ⊂ X and a > 0. Then ηE,a ∈ D∗
loc∩C(X)

and μ(d)(ηE,a) � (1/a2)m. Moreover, if Ba(E) is relatively compact, then ηE,a ∈ D ∩
Cc(X).

Proof. Since ρE is continuous, ηE,a is so as well. Moreover, ρE belongs to D∗
loc by

Proposition 4.5, and as Dirichlet form, E is compatible with cut-off procedures. Hence
ηE,a ∈ D∗

loc. In order to show the claimed upper bound on μ(d)(ηE,a) we recall that
μ(c)(ηE,a) � (1/a2)μ(c)(ρE) [13, Theorem 3.2.2]. Moreover, since |ηE,a(x) − ηE,a(y)| �
(1/a)|ρE(x) − ρE(y)| we have μ(b)(ηE,a) � (1/a2)μ(b)(ρE). Therefore, the bound
μ(d)(�E) � m from Proposition 4.5 implies the bound μ(d)(ηE,a) � (1/a2)m. The last
statement is obvious. �

Before presenting different methods for finding an intrinsic metric in the next section,
we exhibit two useful results about intrinsic metrics. They will play an important role
later when we deal with spectral theory.

Lemma 4.8. Let � be an intrinsic metric. Then
ˆ

E×X\d

�2(x, y) J(dx,dy) � mb(E)

for any measurable set E ⊂ X.

Proof. Let ε > 0 and s > 2ε be arbitrary. We first consider sets E with E ⊂ Bε(x̃) for
some x̃. Using the fact that for x ∈ E

�(x, y) � �(y, x̃) − �(x, x̃) + 2�(x, x̃) �
∣∣�(y, x̃) − �(x, x̃)

∣∣ + 2ε,

we can estimate for every δ > 0
ˆ

E×X
�(x,y)>s

�2(x, y) J(dx,dy) � (1 + δ)
ˆ

E×X\d

(
�(x, x̃) − �(y, x̃)

)2
J(dx,dy)

+
(

1 + 1
δ

)
4ε2

ˆ

E×X

dJ.
�(x,y)>s
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The first term on the right side is controlled since by the definition of an intrinsic metric
and by Lemma 3.7 we have

ˆ

E×X\d

(
�(x, x̃) − �(y, x̃)

)2
J(dx,dy) � mb(E).

In order to control the second term on the right side we estimate for x ∈ E and y ∈ X

with �(x, y) > s

�(y, x̃) − �(x, x̃) � �(y, x) − 2�(x, x̃) � s− 2ε,

which yields
ˆ

E×X
�(x,y)>s

dJ � 1
(s− 2ε)2

ˆ

E×X\d

(
�(x, x̃) − �(y, x̃)

)2
J(dx,dy).

Putting these estimates together we infer that
ˆ

E×X
�(x,y)>s

�2(x, y) J(dx,dy) �
(

1 + δ +
(

2ε
s− 2ε

)2(
1 + 1

δ

))
mb(E).

With this estimate at hand, we can now pass to arbitrary compact sets E. An arbitrary
compact E can be covered by finitely many disjoint sets En, each one being contained in
an intrinsic ball of radius ε. Indeed, by compactness E can be covered by finitely many
of the balls Bε({x}), x ∈ E; now make these disjoint by removing from the n-th set
the union of the first n− 1 as well as Ec. In this way, the previous estimate extends to
arbitrary compact E. Letting first ε → 0, then δ → 0 and finally s → 0 we obtain the
desired estimate for all compact sets E. The general case follows from regularity. �

The next theorem, sometimes referred to as Rademacher theorem, is well known for
the usual Sobolev spaces on Euclidean space. Even for general strongly local Dirichlet
forms it seems to be new. It has already proven useful in Stollmann’s work on path spaces
associated to Dirichlet forms [34]. For related material in the context of some infinite
dimensional spaces we refer to [31,32].

Theorem 4.9. Let � be an intrinsic metric. Then every u : X → R with |u(x) − u(y)| �
�(x, y) satisfies u ∈ D∗

loc, μ(b)(u) � mb and μ(c)(u) � mc.

Proof. As a preliminary observation we note that for any relatively compact G ⊂ X,
there exists a compact K ⊃ G with

ˆ
c

J(dx,dy) < ∞. (∗)

G×K
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(Just use finiteness of E(φ) for φ ∈ Cc(X) ∩ D with φ ≡ 1 on G and set K to be the
support of φ.)

Let us now turn to the actual proof. By Lemma 3.7 we can assume 0 � u � M .
Define

u∗
n := max

1�m�nM

(
m

n
− �{u(x)�m

n }

)+

.

Then u∗
n belongs to D∗

loc ∩ C(X) as it is a maximum of finitely many functions in
D∗

loc ∩C(X). It converges to u with respect to the supremum norm as by assumption on
the continuity property of u we have (m− 1)/n � u∗

n(p) � m/n whenever (m− 1)/n �
u(p) � m/n. Moreover, we have μ(c)(u∗

n) � mc by the truncation property and we
have μ(b)(u∗

n) � mb by Lemma 4.8 (as |u∗
n(x) − u∗

n(y)| � �(x, y) by the very definition
of u∗

n).
We will show that u belongs to Dloc and that μ(d)(u) � m on G. (This will then

implicitly give that u ∈ D∗
loc as well.) Let G ⊂ X be open and relatively compact. For

φ ∈ Cc(X) ∩ D with φ ≡ 1 on G define un := u∗
n ∧ Mφ. Here, existence of such a φ

follows from regularity of the form.

Claim. The functions un belong to D and E1(un) is uniformly bounded in n.

Proof. It suffices to show uniform (in n) boundedness of μ(∗)(un)(X) for ∗ = a, b, c, d:
Note that the un are uniformly bounded by M and have all support contained in the
compact support of φ. This easily gives the desired boundedness for ∗ = a and by the
truncation property it also gives the desired boundedness for ∗ = c. It remains to consider
the case ∗ = b. Choose a compact K ⊂ X with suppφ ⊂ K according to (∗) with

ˆ

Kc×supp φ

J(dx,dy) = C < ∞.

Then, we can estimate
ˆ

X×X

(
un(x) − un(y)

)2
J(dx,dy) =

ˆ

K×X

(
un(x) − un(y)

)2
J(dx,dy)

+
ˆ

Kc×X

(
un(x) − un(y)

)2
J(dx,dy).

We estimate the two terms on the right hand side. As un is the minimum of u∗
n and Mφ,

we have
(
un(x) − un(y)

)2 � 2
(
u∗
n(x) − u∗

n(y)
)2 + 2

(
Mφ(x) −Mφ(y)

)2
and can hence bound the first term above by
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2
ˆ

K×X

(
u∗
n(x) − u∗

n(y)
)2

J(dx,dy) + 2M2
ˆ

K×X

(
φ(x) − φ(y)

)2
J(dx,dy)

� 2m(K) + 2M2E(φ)

independently of n. Moreover, suppun ⊂ suppφ ⊂ K and hence the second term can be
bounded above by

ˆ

Kc×X

(
un(x) − un(y)

)2
J(dx,dy) =

ˆ

Kc×X

un(y)2 J(dx,dy)

=
ˆ

Kc×supp φ

un(y)2 J(dx,dy)

� M2
ˆ

Kc×supp φ

J(dx,dy) = MC

independently of n. This finishes the proof of the claim. �
As (un) is bounded with respect to E1, it has a weakly E1-converging subsequence.

As (un) obviously converges to v := u ∧ Mφ in L2 we infer v ∈ D as well as weak
E1-convergence of (un) to v. Since the relatively compact G and φ with φ ≡ 1 on G are
arbitrary, this shows, in particular, that u belongs to Dloc.

It remains to show that μ(d)(u) � m on G. First we have μ(b)(u) � mb by Lemma 4.8,
since |u(x) − u(y)| � �(x, y).

Choose φ ∈ Cc(X) ∩ D with φ ≡ 1 on G. Define un, v as before. Choose some test
function f ∈ Cc(G)∩D, f � 0. Since un agrees locally with cut-off functions, we obtain
by the truncation property

ˆ
f dμ(c)(un) �

ˆ
f dmc.

Finally, we obviously have 0 �
´
f dμ(c)(un − v) and hence

2
ˆ

f dμ(c)(un, v) −
ˆ

f dμ(c)(v, v) �
ˆ

f dμ(c)(un, un).

As the un weakly E1-converges to v we can now use Proposition 2.2 to obtain by putting
these estimates together

ˆ
f dμ(c)(u) =

ˆ
f dμ(c)(v) = lim

n→∞

(
2
ˆ

f dμ(c)(un, v) −
ˆ

f dμ(c)(v)
)

� lim inf
n→∞

ˆ
f dμ(c)(un) �

ˆ
f dmc.

This gives μ(c)(u) � mc and the desired result follows. �
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The theorem gives a stability property of intrinsic metrics.

Corollary 4.10. Let �1 be a pseudo-metric, �2 be an intrinsic metric, and �1 � �2. Then
�1 is an intrinsic metric.

Proof. The triangle inequality and the assumption imply that �1 satisfies
∣∣�1,A(x) ∧ T − �1,A(y) ∧ T

∣∣ � �1(x, y) � �2(x, y)

for any T > 0. Now the desired statement follows from the previous theorem. �
5. Intrinsic metrics and sets of intrinsic-metric functions

In this section we show that specifying an intrinsic metric is essentially equivalent to
specifying a suitable set of (Lipschitz) continuous functions.

We start by introducing the relevant sets of functions.

Definition 5.1. A set M ⊂ D∗
loc ∩C(X) is called set of intrinsic-metric functions if there

are two Radon measures mb and mc with mb+mc � m such that the following conditions
are satisfied.

• 0 ∈ M.
• μ(b)(f) � mb and μ(c)(f) � mc for all f ∈ M.
• f + c ∈ M and −f ∈ M for all c ∈ R and f ∈ M.
• sup{fi} ∈ M, whenever fi ∈ M, i ∈ N with sup{fi} finite.

For such a set M we define

�(M)(x, y) := sup
f∈M and f(y)=0

f(x).

Remark 5.2. The conditions on M imply that with fi ∈ M also inf{fi} = −sup{−fi}
belongs to M (whenever inf{fi} is finite). In particular, for any fi ∈ M and any T, S ∈ R

one has
(
T − sup{fi}

)
∨ S = inf

{
(T − fi) ∨ S

}
∈ M.

Remark 5.3. �(M) is a pseudo-metric and, in fact, �(M) is the smallest pseudo-metric
such that any f ∈ M satisfies |f(x) − f(y)| � �(M)(x, y) for any x, y ∈ X.

The main result of this section is

Theorem 5.4. If � is an intrinsic metric, then

M :=
{
f : X → R:

∣∣f(x) − f(y)
∣∣ � �(x, y)

}
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is a set of intrinsic-metric functions with �(M) = �. Conversely, if M is an arbitrary
set of intrinsic-metric functions, then �(M) is an intrinsic metric.

The first part of this theorem is a consequence of Theorem 4.9. The second part follows
from the next two lemmas. We abbreviate �

(M)
A := (�(M))A for A ⊂ X as defined in the

previous section.

Lemma 5.5. Let M be a set of intrinsic-metric functions. Then

�
(M)
A (x) = sup

f∈M with f(A)={0}
f(x).

Proof. We denote the right side by �(M)(x,A) and show two inequalities:
“�”: The definitions immediately give �(M)(x,A) � �(M)(x, y) for all y ∈ A.
“�”: Fix x ∈ X and let T := �

(M)
A (x) = infy∈A �(M)(x, y). Consider now g :=

(T − �(M)(·, x)) ∨ 0. Then, obviously g satisfies g(A) = {0}. Moreover, as �(M)(·, x) is a
supremum over elements of M by its very definition, we infer g ∈ M from Remark 5.2.
Hence using g in the supremum that defines �(M)(x,A), we find �(M)(x,A) � g(x) =
T = �

(M)
A (x). �

Lemma 5.6. Let M be a set of intrinsic-metric functions and A ⊂ X. Then �(M) is
continuous and �

(M)
A ∧ T ∈ M for all T > 0. Moreover, if �(M)

A takes only finite values,
then �

(M)
A belongs to M.

Proof. We begin by proving that for any x, the function y �→ �(M)(y, x) is continuous
at x. Assume not, then there is an ε > 0 and a sequence yi → x with �(M)(yi, x) > 2ε.
Then there are fi ∈ M with fi(x) = 0 and fi(yi) > ε. Since M is compatible with
truncations we may assume that fi � 2ε. From this f := sup fi ∈ M follows, and
therefore f(x) = 0 and f(yi) > ε. This contradicts the continuity of f . Therefore y �→
�(M)(y, x) is continuous at x.

From the inequality |�(M)(x, y) − �(M)(x′, y′)| � �(M)(x, x′) + �(M)(y, y′) we infer
that the ρ(M) is jointly continuous.

Let u := �
(M)
A respectively u := �

(M)
A ∧ T . For every n ∈ N there is a countable set of

points yi = yni ∈ X, i ∈ N, such that {B1/n(yi)} covers X. By the previous lemma, for
every i ∈ N there is a function vi = vni ∈ M with vi(A) = 0 and vi(yi) � u(yi) − 1/n.
Moreover, we know that vi(y) � u(y) for all y ∈ X. From the definition of Br(x) and
the remark above we can infer, that vi(y) � vi(yi) − 1/n for all y ∈ B1/n(yi) and
u(y) � u(yi) + 1/n for all y ∈ B1/n(yi). In this way we get

u(y) � u(yi) + 1/n � vi(yi) + 2/n � vi(y) + 3/n for all y ∈ B1/n(yi).

Therefore un := sup vni ∈ M and u − 3/n � un � u. (W.l.o.g. un � T if needed.) This
gives u = supun ∈ M. �
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Remark 5.7. We could set M0 := {f ∈ D∗
loc ∩ C(X): μ(d)(f) � m} and would get

�0(x, y) := sup{f(x) − f(y): f ∈ D∗
loc ∩ C(X), μ(d)(f) � m}, but, in general, this M0

does not satisfy the fourth point in the definition, sup{fi} ∈ M0, and, in general, �0 is
not an intrinsic metric in our sense, as we shall discuss in Section 6. Therefore the direct
construction of cut-off functions done below seems not possible with this metric. This
“maximal” intrinsic metric may be useful in some tasks, however, and we know that

�0(x, y) = sup
{
�(M)(x, y): M is a set of intrinsic metric functions

}
.

6. The local case

In the previous sections we have introduced a concept of intrinsic metric for gen-
eral Dirichlet forms. Of course, intrinsic metrics have been well studied in the case of
(strongly) local forms. In this section we discuss a crucial difference between the local
and the non-local case: For local Dirichlet forms (under an additional continuity assump-
tion) there is a maximal intrinsic metric. For non-local Dirichlet forms there is in general
not a maximal intrinsic metric.

The main result of this section shows that in the local case there is a maximal intrinsic
metric (whenever a continuity condition is satisfied).

Theorem 6.1. Let E be local and assume that

�(x, y) := sup
{
u(x) − u(y): u ∈ Dloc ∩ C(X), μ(c)(u) � m

}
is continuous. Then � is an intrinsic metric and any other intrinsic metric is (pointwise)
smaller or equal to �.

Proof. We first show that � is an intrinsic metric. Under the (stronger) assumption that
� generates the original topology this is proven in [35], see the appendix of [5] for a
somewhat alternative approach as well. An explicit proof, which is based on [35] and
assumes only continuity of �, can be found in [39]. For the convenience of the reader and
as we have already gathered the necessary ingredients we include a sketch here.

Choose M := {u ∈ Dloc ∩ C(X): μ(c)(u) � m}. We prove for fi ∈ M, i ∈ N with
fi � g for some function g < ∞ that we have f := sup fi ∈ M. First observe that f is
continuous, because � is, and thus f ∈ L∞

loc. By Lemma 3.7 we can assume 0 � f � M.
Define un := sup1�i�n fi. Then f = u := supun, un is increasing and μ(c)(un) � m.

Following the proof of Theorem 4.9 we can now show that u ∈ Dloc and

μ(c)(u) � m.

The proof in fact simplifies because J = 0. We can then use the second part of Theo-
rem 5.4 to conclude that � is an intrinsic metric.

The statement about maximality is clear (as for any intrinsic metric �′ and each
x ∈ X, the function u(y) := �′(x, y) can be plugged into the definition of �). �
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Corollary 6.2. Let E be local and assume that

�(x, y) := sup
{
u(x) − u(y): u ∈ Dloc ∩ C(X), μ(c)(u) � m

}
is continuous. Let �1 and �2 be two intrinsic metrics. Then �1∨�2 is an intrinsic metric.

Proof. By the previous theorem, � is the maximal intrinsic metric and hence �1∨�2 � �

holds. Now, the desired statement follows from Corollary 4.10. �
The following example shows, that the statement of the corollary in general is not

true for non-local Dirichlet forms.

Example 6.3. Let X = {1, 2, 3}, m be the counting measure on X and E(u, v) = 2(u(1)−
u(2))2 + 2(u(2) − u(3))2.

�1(x, y) :=
{

1 if x �= y and 3 ∈ {x, y}
0 otherwise

�2(x, y) :=
{

1 if x �= y and 1 ∈ {x, y}
0 otherwise

�1 and �2 are both intrinsic metrics. However, one can see directly that �1 ∨ �2 is not an
intrinsic metric. Thus, there cannot be any intrinsic metric bigger than both �1 and �2
as otherwise �1 ∨ �2 had to be an intrinsic metric by Corollary 4.10.

7. Forms without strongly local part and with absolutely continuous jump measure

In this section we take a look at the special situation that the Dirichlet form does not
have strongly local part. There we first deal with the case where the Dirichlet form is
purely non-local with a density. In this case, we can give a simple sufficient condition for
a pseudo-metric to be intrinsic. We then turn to the general case.

We first consider the following situation (S) described next:

(S) The function j : X ×X → [0,∞] is measurable, symmetric (i.e., j(x, y) = j(y, x) for
all x, y ∈ X) and finite outside the diagonal, and the set D̃ of u ∈ Cc(X) with

ˆ

X×X\d

(
u(x) − u(y)

)2
j(x, y)m(dx)m(dy) < ∞

is dense in Cc(X) with respect to the supremum norm.

By standard Fatou-type arguments, the form

E(u) :=
ˆ (

u(x) − u(y)
)2
j(x, y)m(dx)m(dy)
X×X\d
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defined for u ∈ D̃ is closable in L2(X,m). Let D be the closure of D̃ with respect
to E1. Then, (E ,D) is a regular Dirichlet form on L2(X,m) (compare Theorem 3.1.1
in [13]).

Example 7.1. The discrete Laplacian on Z
d, discussed already in Example 4.4, falls into

the situation (S) considered in this section. In that case, j(x, y) = 1 if |x − y| = 1
and j(x, y) = 0 otherwise. In Section 14.2 we will extend this example to general
graphs.

Example 7.2. For 0 < s < 1 we consider E(u) = ‖(−Δ)s/2u‖2
L2(Rd) for u ∈ W s,2(Rd),

where (−Δ)s is defined via the Fourier transform. By Plancharel’s theorem we find
that

E(u) = as,d

ˆ

Rd

ˆ

Rd

(u(x) − u(y))2

|x− y|d+2s dx dy

with a−1
s,d = 4

´
Rd |z|−d−2s sin2(zd/2) dz. (The precise value of this constant is not impor-

tant for us.) Hence we are again in situation (S) with j(x, y) = as,d|x− y|−d−2s.

The next result is the converse to Lemma 4.8.

Theorem 7.3. Assume the situation (S). Let � be a continuous pseudo-metric on X such
that

ˆ

X\{x}

�(x, y)2j(x, y)m(dy) � 1

for m-almost all x ∈ X. Then � is an intrinsic metric.

Proof. By
∣∣�A(x) ∧ T − �A(y) ∧ T

∣∣ � �(x, y),

we obtain for any measurable E ⊂ X

ˆ

E×X\d

(
�A ∧ T (x) − �A ∧ T (y)

)2
j(x, y)m(dx)m(dy)

�
ˆ

E×X\d

�(x, y)2j(x, y)m(dx)m(dy) �
ˆ

E

m(dx)

and hence μ(d)(�A ∧ T ) � m. Thus, it remains to show that �A ∧ T ∈ Dloc. For this
we note that �A ∧ T ∧ ϕ ∈ D̃ ⊂ D for any ϕ ∈ D ∩ Cc(X). This gives the desired
statement. �
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The above considerations can be adapted to deal with the following situation:

(S̃) The measure J on X × X → [0,∞] is symmetric and the set D̃ of u ∈ Cc(X)
with

ˆ

X×X\d

(
u(x) − u(y)

)2
J(dx,dy) < ∞

is dense in Cc(X) with respect to the supremum norm.

In this situation, again, we obtain a unique regular Dirichlet form E with E(u) =´
X×X\d(u(x) − u(y))2 J(dx,dy) for u ∈ D̃. Replacing j(x, y)m(dx)m(dy) by J(dx,dy)

in the proof of Theorem 7.3, we immediately obtain the following result.

Theorem 7.4. Assume the situation (S̃). Let � be a continuous pseudo-metric on X such
that

ˆ

E×X\d

�2(x, y) J(dx,dy) � mb(E)

for any measurable E ⊂ X. Then � is an intrinsic metric.

Remark 7.5. The above considerations could easily be extended to allow for a killing
term

´
X
u2 dk in the form E as well.

8. Dirichlet forms with finite jump size

In this section we introduce the jump size of a Dirichlet form with respect to a given
intrinsic metric. As can be expected, there is no big difference between Dirichlet forms
with finite jump size and local Dirichlet forms. Dirichlet forms with infinite jump size,
however, will be much more difficult to handle (see the later sections).

Definition 8.1. Let � be an intrinsic metric. We define the jump size of E with respect
to � by

inf
{
t � 0: J

({
(x, y) ∈ X ×X \ d: �(x, y) > t

})
= 0

}
.

To illustrate this notion, let us consider the following

Example 8.2. For the discrete Laplacian on Z
d from Examples 4.4 and 7.1 we know

that j(x, y) = 1 if |x − y| = 1 and j(x, y) = 0 otherwise, and we can take �(x, y) =
(1/

√
2d )|x− y| as the intrinsic metric with respect to the counting measure. Therefore,

the jump size with respect to this intrinsic metric is s = 1/
√

2d.
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Example 8.3. Assume that ρ is a translation-invariant (i.e., ρ(x, y) = σ(x− y)) intrinsic
metric with respect to the Lebesgue measure m(dx) = dx for the fractional Laplacian
(−Δ)s, 0 < s < 1, from Example 7.2. If σ is unbounded, then the jump size is infi-
nite. Indeed, if σ is unbounded, then

´
σ(z)>t

|z|−d−2s dz > 0 for any t > 0, and hence˜
σ(x−y)>t

|x−y|−d−2s dx dy = ∞ for any t > 0. We refer to Section 14.4 for a discussion
of intrinsic metrics for (−Δ)s.

Remark 8.4. Note that the jump size is 0 if J ≡ 0, i.e., if E is local. The converse holds
as well provided �(x, y) = 0 implies x = y.

For later use we note the following statement. Recall that the cut-off function ηE,a

was introduced in Definition 4.6.

Proposition 8.5. Let � be an intrinsic metric, let E ⊂ X and a > 0 be given and set
η := ηE,a. Then a2μ(c)(η) � 1Aa(E)m. Moreover, if the jump size s of E is finite, then
we have a2μ(d)(η) � 1As+a(E)m.

Proof. Note that ηE,a vanishes on the complement of Aa(E) and equals (1 − �E/a) on
Aa(E). Thus, by locality we obtain

μ(c)(η) = 1Aa(E)μ
(c)(η) = 1Aa(E)μ

(c)(�E/a)

and the first statement follows.
As for the second statement, let ϕ ∈ Cc(X) and ϕ � 0. Note that aη = (a − ρE)+.

Hence, a direct calculation gives

a2
ˆ

X

ϕ dμ(d)(η) = a2
ˆ

X×X\d

ϕ(x)
(
η(x) − η(y)

)2
J(dx,dy) + a2

ˆ

X

ϕ dμ(c)(η)

=
ˆ

Aa+s(E)×X\d

ϕ(x)
((
a− �E(x)

)+ −
(
a− �E(y)

)+)2
J(dx,dy)

+
ˆ

Aa(E)

ϕ dμ(c)(�E)

�
ˆ

Aa+s(E)×X\d

ϕ(x)
(
�E(x) − �E(y)

)2
J(dx,dy) +

ˆ

Aa+s(E)

ϕ dμ(c)(�E)

=
ˆ

Aa+s(E)

ϕ dμ(d)(�E)

�
ˆ

Aa+s(E)

ϕ dm.

In the last step, we used that � is an intrinsic metric. �
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9. Measure perturbations and generalized eigenfunctions

We will be concerned with perturbations of Dirichlet forms by measures. Let

M0 :=
{
ν : B → [0,∞]: ν is σ-additive, ν � cap

}
be the set of positive measures which charge no set of capacity zero. Here B denotes the
Borel σ-field on X. For measures ν ∈ M0 we define

D(ν) :=
{
u ∈ D: ũ ∈ L2(X, ν)

}
and

ν(u, v) :=
ˆ

X

ũṽ dν.

This makes sense as ũ is defined quasi-everywhere. We emphasize that we shall use the
notation ν(u) = ν(u, u) in accordance with our convention about quadratic forms.

Let

M1 :=
{
ν ∈ M0: ∃q < 1, Cq � 0: ν(u) � qE(u) + Cq‖u‖2 ∀u ∈ D

}
.

Then E + ν+ − ν− is a closed form for ν+ ∈ M0 and ν− ∈ M1 and there is an associated
self-adjoint operator H; see, e.g., [30, Theorem VIII.16].

Starting from this section we shall take a look at the perturbed form

h := E + ν := E + ν+ − ν−

with ν+ ∈ M0 and ν− ∈ M1. The form domain of the perturbed form will be denoted
by D(h) = D ∩D(ν+). For α > 0 we set

hα(v) := h(v) + α‖v‖2

for all v ∈ D(h).
Note that the form domain gives rise to a local space D∗

loc(h) in the way discussed
above.

Recall that in Section 3.1 we have given sense to E(u, φ) for u ∈ D∗
loc and ϕ ∈ D with

compact support. In a similar way, the expression h(u, ϕ) is meaningful for u ∈ D∗
loc(h)

and ϕ ∈ D(h) with compact support.

Definition 9.1. A function u ∈ D∗
loc(h) \ {0} is called a generalized eigenfunction corre-

sponding to the generalized eigenvalue λ ∈ R if h(u, ϕ) = λ(u, ϕ) for all ϕ ∈ D(h) with
compact support.
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10. The ground state representation

This section deals with the ground state representation. This is an old topic, going
back (at least) to Jacobi, and we refer to the papers cited in this paragraph for historical
remarks. Recently, this representation has been investigated for strongly local Dirichlet
forms in [26]. In a purely non-local situation very similar to the one considered in this
paper (and, in fact, even allowing for a non-linearity) it has been derived in [11], extending
previous special cases in [10,12]. Here, we generalize this formula to our context with
both a local and a non-local part and we provide a simple proof along the lines of [26]. In
fact, we give two versions of the result with slightly different assumptions. One version
can be thought of to work for the infimum of the spectrum and the other version works
for any point in the spectrum.

The next theorem gives an effective bound on the infimum of the spectrum by repre-
senting the form. It requires that the generalized eigenfunction has a fixed sign.

We will use the following notation: If F is a space of functions on X, then Fc denotes
the subset of elements in F with compact support.

Theorem 10.1. Let h = E + ν with ν+ ∈ M0, ν− ∈ M1 and E a regular Dirichlet form.
Let u be a generalized eigenfunction to the eigenvalue λ with u �= 0 q.e. and u−1 ∈ D∗

loc.
Then the formula

h(φ, ψ) − λ(φ, ψ) =
ˆ

X×X

u(x)u(y) dΓ
(
φu−1, ψu−1)

holds true for all φ, ψ ∈ D(h) with φu−1, ψu−1 ∈ D∗
loc(h) and φψu−1 ∈ Dc(h). If further

u−1 ∈ D∗
loc(h) ∩ L∞

loc the formula holds true for all φ, ψ ∈ D(h) ∩ L∞
c .

Proof. We follow the argument given in [26]. Without loss of generality we assume λ = 0
and k = 0. The Leibniz rule gives

0 = Γ (f, 1) = Γ
(
f, uu−1) = u(x)−1Γ (f, u) + u(y)Γ

(
f, u−1)

for any f ∈ D∗
loc. Using that u is a generalized eigenfunction, the Leibniz rule and the

preceding formula we can calculate

h(φ, ψ) = E(φ, ψ) + ν(φ, ψ)

= E(φ, ψ) + ν
(
φψu−1, u

)
= E(φ, ψ) − E

(
φψu−1, u

)
= E(φ, ψ) −

ˆ

X×X

u(x)u(x)−1 dΓ
(
φψu−1, u

)

= E(φ, ψ) +
ˆ

u(x)u(y) dΓ
(
φψu−1, u−1)
X×X
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= E(φ, ψ) +
ˆ

X×X

u(x)u(y)φ(x) dΓ
(
ψu−1, u−1) +

ˆ

X×X

u(x)ψ(y) dΓ
(
φ, u−1)

=
ˆ

X×X

u(x)u(y)φ(x) dΓ
(
u−1, ψu−1) +

ˆ

X×X

u(x) dΓ
(
φ, ψu−1)

=
ˆ

X×X

u(x)u(y) dΓ
(
φu−1, ψu−1).

This gives the first statement. The last statement then follows by Proposition 3.10. �
The argument given above can be modified to give the following results. There, we do

not need the assumptions u > 0 and u−1 ∈ D∗
loc but then have stronger restrictions on

φ and ψ.

Theorem 10.2. Let h = E + ν with ν+ ∈ M0 and ν− ∈ M1. Let u be a generalized
eigenfunction to the eigenvalue λ. Then,

h(uφ, uψ) − λ(uφ, uψ) =
ˆ

X×X

u(x)u(y) dΓ (φ, ψ)

for all φ, ψ ∈ D(h)∩L∞
c whenever uφ, uψ, uφψ ∈ D(h). In particular, the formula holds

for all φ, ψ ∈ D(h) ∩ L∞
c if u ∈ L∞

loc.

Proof. Without loss of generality we can assume k = 0 and λ = 0. Using the Leibniz
rule repeatedly we calculate

E(uφ, uψ) + ν(uφ, uψ) =
ˆ

X

dμ(d)(uφ, uψ) + ν(u, uφψ)

=
ˆ

X

u dμ(d)(φ, uψ) +
ˆ

X

φ dμ(d)(u, uψ) + ν(u, uφψ)

=
ˆ

X×X

u(x)u(y) dΓ (φ, ψ) +
ˆ

X×X

u(x)ψ(x) dΓ (φ, u)

+
ˆ

X

dμ(d)(u, uφψ) −
ˆ

X

uψ dμ(d)(u, φ) + ν(u, uφψ)

=
ˆ

X×X

u(x)u(y) dΓ (φ, ψ) + E(u, uφψ) + ν(u, uφψ)

=
ˆ

X×X

u(x)u(y) dΓ (φ, ψ).

In the last step we used that u is a generalized eigenfunction. This finishes the proof. �
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Remark 10.3. Let us note that the right hand side in the formula has the sub-Markovian
property if u � 0. This observation plays a crucial role in the proof of spectral estimates
for the perturbed form h in [10].

An immediate consequence of the first theorem of this section is the following
Allegretto–Piepenbrink-type result.

Corollary 10.4. Let h = E + ν with ν+ ∈ M0 and ν− ∈ M1 and E be a regular Dirichlet
form. Let u � 0 be a generalized eigenfunction to the eigenvalue λ with u−1 ∈ D∗

loc∩L∞
loc.

Then h � λ.

Proof. By the first theorem of this section we have h(φ) � λ‖φ‖2 for all φ ∈ D ∩ L∞
c .

As such φ are dense in the domain by regularity, the statement follows. �
11. A Caccioppoli-type inequality

In this section we will estimate the energy measure of generalized eigenfunctions. For
strongly local Dirichlet forms a version can be found in [5]. Our discussion is similar to
the discussion therein.

Theorem 11.1. Let E be a regular Dirichlet form, ν+ ∈ M0 and ν− ∈ M1 and q ∈ (0, 1)
with ν−(u) � qE(u) + Cq‖u‖2 be given and set h = E + ν+ − ν−. Then, for any λ ∈ R,
there exists a constant C = C(λ, ν−) with

ˆ

X

η2 dμ(d)(u) � C
(
λ, ν−

)(
‖uη‖2 +

ˆ

X

ũ2 dμ(d)(η)
)

for any u ∈ D∗
loc, η ∈ D ∩ Cc(X) with ηu, η2u ∈ D and h(u, uη2) � λ(u, uη2).

Proof. W.l.o.g. k = 0. The Leibniz rule from Section 3.2 yields

λ‖uη‖2 − ν(uη) � E
(
u, uη2) =

ˆ

X×X

η2(x) dΓ (u) +
ˆ

X×X

u(x)
(
η(x) + η(y)

)
dΓ (u, η),

and, by assumption, we have

−ν(uη) � qE(ηu) + Cq‖uη‖2.

Finally, Leibniz rule again shows

E(ηu) =
ˆ

η2(x) dΓ (u) + 2
ˆ

ũ(x)η(y) dΓ (u, η) +
ˆ

ũ(x)2 dΓ (η).

X×X X×X X×X
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Let us now assume the last integral to be finite (otherwise the claim is still true). We
now set

T := (1 − q)
ˆ

X×X

η2(x) dΓ (u).

Putting everything together we can estimate

T � (λ + Cq)‖uη‖2 + q

ˆ

X×X

ũ(x)2 dΓ (η) +
ˆ

X×X

ũ(x)
(
−η(x) + (2q − 1)η(y)

)
dΓ (u, η)

� (λ + Cq)‖uη‖2 +
(
q + 1

4S

) ˆ

X×X

ũ(x)2 dΓ (η)

+ S

ˆ

X×X

(
−η(x) + (2q − 1)η(y)

)2 dΓ (u)

� (λ + Cq)‖uη‖2 +
(
q + 1

4S

) ˆ

X×X

ũ(x)2 dΓ (η) + 4S max(q, 1 − q)2
ˆ

X×X

η(x)2 dΓ (u)

for all S > 0. �
The bound takes a simpler form if E has finite jump size.

Corollary 11.2. Assume the situation of the previous theorem and let � be an intrinsic
metric. Let u be a generalized eigenfunction for h to the generalized eigenvalue λ. Assume
further the jump size s of E w.r.t. � to be finite and let a > 0 be such that Ba(E) is
relatively compact. Then

ˆ

E

dμ(d)(u) � C
(
λ, ν−

)(
1 + 1

a2

)
‖u1Bs+a(E)‖2.

Proof. Apply the previous theorem with η = ηE,a from Definition 4.6 and use Proposi-
tion 8.5. �
12. A Shnol’-type inequality

We first state a Shnol’-type inequality for non-local Dirichlet forms with not neces-
sarily finite jump size. This inequality, together with a Weyl-type characterization of the
spectrum will be our main tool in the next section for characterizing of the spectrum in
terms of generalized eigenfunctions. The proof we present here mimics the proof in [5]
for local Dirichlet forms.

Recall that ηE,a has been introduced in Definition 4.6 above. Moreover, recall that
E1(u) = E(u) + ‖u‖2.
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Theorem 12.1. Let h = E + ν with ν+ ∈ M0 and ν− ∈ M1, and let u be a generalized
eigenfunction of h corresponding to a generalized eigenvalue λ ∈ R. Let � be an intrinsic
metric and let E ⊂ X, a, s > 0 such that B2a+s(E) is relatively compact. Put η1 := ηE,a

and η2 := ηAa+s(E),a. Then there is a constant C = C(λ, a, s, ν−) such that for any
w ∈ D(h)

∣∣(h− λ)
(
uη2

1 , w
)∣∣2 � CE1(v)

( ˆ

X

ũ2 dμ(b)(η1) +
ˆ

X

ũ2 dμ(b)(η2) + ‖u1A2a+s(E)‖2
)
.

Proof. For convenience we omit the tilde on u and w. Using the fact that u is a generalized
eigenfunction and Leibniz rule, we compute

(h− λ)
(
uη2

1 , w
)

= (h− λ)
(
uη2

1 , w
)
− (h− λ)

(
u, η2

1w
)

=
ˆ

X

dμ(d)(η2
1u,w

)
−
ˆ

X

dμ(d)(u, η2
1w

)

=
ˆ

X

u dμ(d)(η2
1 , w

)
−
ˆ

X

w dμ(d)(u, η2
1
)

=
ˆ

X×X

η1(x)
(
u(x) + u(y)

)
dΓ (w, η1)

−
ˆ

X×X

η1(x)
(
w(x) + w(y)

)
dΓ (u, η1).

The first term can be estimated via Cauchy–Schwarz-inequality as

2E(w)1/2
(ˆ

X

u2 dμ(d)(η1)
)1/2

.

We split the integration in the second term into the two regions �(x, y) � s and
�(x, y) > s. In order to bound the first part we use CSI and Proposition 4.7 and ob-
tain
∣∣∣∣

ˆ

ρ(x,y)�s

η1(x)
(
w(x) + w(y)

)
dΓ (u, η1)

∣∣∣∣ � 2
( ˆ

Aa+s(E)

dμ(d)(u)
)1/2( ˆ

X

w2 dμ(d)(η1)
)1/2

� 2
a

( ˆ

Aa+s(E)

dμ(d)(u)
)1/2( ˆ

X

w2 dm
)1/2

.

This is controlled by the Caccioppoli inequality, Theorem 11.1. The remaining term is
given by
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R :=
ˆ

�(x,y)>s

η1(x)
(
w(x) + w(y)

)
dΓ (u, η1).

Using Cauchy–Schwarz inequality and sorting the terms we can then estimate

R2 � 4
ˆ

�(x,y)>s

w(x)2 J(dx,dy) ·
ˆ

�(x,y)>s

η1(x)2
(
u(x) − u(y)

)2 dΓ (η1, η1)

� 16
s2

ˆ

�(x,y)>s

w(x)2�(x, y)2 J(dx,dy) ·
ˆ

�(x,y)>s

u(x)2 dΓ (η1, η1)

and with Lemma 4.8

� 16
s2 ‖w‖

2
ˆ

X

u2 dμ(d)(η1).

As μ(c) is local, its contribution to μ(d) can be estimated by the L2-norm. This gives the
desired statement. �

The bound takes a simpler form if E has finite jump size.

Corollary 12.2. Let � be an intrinsic metric for E and assume the jump size s to be finite.
Let further be E ⊂ X and a > 0 such that B2a+s(E) is relatively compact. Put η := ηE,a.
Let u be a generalized eigenfunction for h to the generalized eigenvalue λ. Then there is
a constant C(a, q) > 0 such that for any w ∈ D(h)

∣∣h− λ
(
uη2, w

)∣∣ � C(a, q)E1(w)1/2‖1A2s+2a(E)u‖.

Proof. This follows from the previous theorem and Proposition 8.5. �
13. The spectrum and generalized eigenfunctions

Using the Shnol’-type inequality we shall prove that under certain conditions a gen-
eralized eigenvalue will be in the spectrum. First, we recall a Weyl-type criterion for the
spectrum of a selfadjoint, semi-bounded operator.

Lemma 13.1. (See [33].) Let h be a closed form, bounded from below by a constant C, and
let H be the associated self-adjoint operator. Then the following assertions are equivalent:

(i) λ ∈ σ(H).
(ii) There are un ∈ D(h) with ‖un‖ = 1 and

sup
v∈D(h)

h1−C(v)�1

∣∣(h− λ)(un, v)
∣∣ → 0 (n → ∞).
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Combined with the Shnol’ type results of the previous section (Theorem 12.1 and
Corollary 12.2), this lemma gives the following two results.

Corollary 13.2. Let the situation of Theorem 12.1 be given. If u is a generalized eigen-
function for h corresponding to λ, and if there exists an increasing sequence En ⊂ X

such that B2a+s(En) is relatively compact and
´
X
ũ2 dμ(b)(η1) +

´
X
ũ2 dμ(b)(η2) + ‖u1A2a+s(En)‖2

‖1En
u‖2 → 0

for some a, s > 0 and η1, η2 chosen as in Theorem 12.1, then λ ∈ σ(H).

Corollary 13.3. Let the situation of Theorem 12.1 be given. Let the jump size of E be
s < ∞. If u is a generalized eigenfunction of h corresponding to λ, and if there ex-
ists an increasing sequence En ⊂ X such that B2a+s(En) is relatively compact and
‖1A2s+2a(En)u‖

‖1Enu‖ → 0 for some a > 0, then λ ∈ σ(H).

The case of infinite jump size is somehow more difficult to handle than the case of
finite jump size, because we do not know anything about μ(b) for a general Dirichlet
form. In the next section we will give examples for a ‘good’ and a ‘bad’ μ(b). For the case
of finite jump size we will precise the result here.

We will assume the following conditions (C):

(C) There is an intrinsic metric with finite jump size s. Let a > 0, E1 ⊂ X, k := 2s+2a,
En+1 := Bk(En), F1 := E1, Fn+1 := En+1 \En and Ak(En) ⊂ Fn+1 ∪Fn such that
En is compact and

m(Fn)e−γn → 0

for all γ > 0. We set

w(x) := wn :=
{
m(Fn)−1/2 m(Fn) �= 0
0 m(Fn) = 0

for x ∈ Fn and w(x) := 0 for x /∈ E∞ :=
⋃

n En. Clearly w ∈ L2(X,m).

Theorem 13.4. Assume (C). If u is a generalized eigenfunction corresponding to λ and
wu ∈ L2(X,m), then λ ∈ σ(H).

Proof. Assume λ /∈ σ(H). Then by Corollary 13.3 there is an N and an ε > 0 such
that

‖1A2s+2a(En)u‖
> ε
‖1En

u‖
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for all n � N . Define u(n) := ‖1Fn
u‖2. Then we know that u(n+1)+u(n) > ε2 ∑n

k=1 u(k)
for all n � N . Define Sn :=

∑2n
k=1 u(k). Then Sn+1 > (ε2 + 1)Sn follows for n � N and

thus

u(2n + 2N + 1) + u(2n + 2N) > ε2Sn+N > ε2(ε2 + 1
)n

SN ∀n � 0.

Contrary to this the sum
∑∞

n=1 w
2
nu(n) is bounded which implies that u(n)e−γn → 0 for

all γ > 0 and in particular u(n)(ε2 + 1)−n/2 → 0. �
For reverse results – finding generalized eigenfunctions for values in the spectrum –

we note Theorem 1.1 of [6] (compare Theorem 4.6 in [5] for a related result as well).

Theorem 13.5. Let H be a self-adjoint operator associated to a strongly local Dirichlet
form with ultra-contractive semigroup in an L2-Hilbert space and let w ∈ L2, w > 0.
Then for spectrally almost all λ ∈ σ(H) there exists a function u with wu ∈ L2 and

(Hf, u) = λ(f, u)

for all f ∈ D(H) with w−1f ∈ L2 and w−1Hf ∈ L2.

Problem. It is not clear whether, in general, a function u as in the previous theorem is
a generalized eigenfunction in our sense.

14. Applications and examples

In this section we discuss various situations in which our results can be applied.

14.1. Strongly local forms

This situation includes the Laplace operator on subsets of Euclidean space as well
as Laplace–Beltrami operators on Riemannian manifolds or quantum graphs. As it has
been investigated, for instance, in [6,5,26] we refrain from further discussion.

14.2. Dirichlet forms on graphs

We consider an undirected graph (X,E) with a countable set of vertices X and a
set of edges E. We assume that there are no multiple edges, i.e., any edge is uniquely
characterized by two vertices. Then, vertices x, y ∈ X are neighbors, written as x ∼ y,
whenever there is an edge connecting them. The degree of a vertex is deg(x) := |{y ∈ X:
x ∼ y}|. We do not assume that this quantity is finite. A path of length n between
x, y ∈ X consists of vertices x0, x1, . . . , xn with x0 = x, xn = y such that xi and xi+1 are
neighbors for all i = 0, . . . , n− 1. We assume that for any two vertices there is a path of
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finite length between them. The graph distance dg between two vertices is then defined
to be the length of the smallest path between these vertices. The graph distance induces
the discrete topology.

Let now m be a measure on X of full support, i.e., m can be regarded as a map
from X to (0,∞) by defining m(x) := m({x}). Let j : E → (0,∞) given with

m′(x) :=
∑
x∼y

j(x, y) < ∞

for every x ∈ X. Extend j by zero to X ×X and define

Ecomp(u,w) :=
∑
X×X

j(x, y)
(
u(x) − u(y)

)(
w(x) − w(y)

)

for u,w ∈ Cc(X) and define E to be its closure. Then E is a regular Dirichlet form. We
note that this construction includes the discrete Laplacian on Zd that we discussed in
Example 4.4. For a further detailed study of various (spectral) aspects of this Dirichlet
form we refer to [14,21,20].

Clearly, we see that

μ(b)(u)(x) := μ(b)(u)
(
{x}

)
=

∑
y∈X

j(x, y)
(
u(x) − u(y)

)2
.

We set

M1 :=
{
u : X → R:

(
u(x) − u(y)

)2 � min
(

1, m(x)
m′(x)

)
for all x ∼ y

}
,

M2 :=
{
u : X → R:

(
u(x) − u(y)

)2 � min
(

1, m(x)
j(x, y) · deg(x)

)
for all x ∼ y

}
.

Note that for x ∼ y and u ∈ M1 or u ∈ M2 the estimate |u(x) − u(y)| � 1 holds. It is
not hard to see that μ(b)(u)(x) � m(x) for any x ∈ X and u ∈ M1 or u ∈ M2. Thus,
M1 and M2 are sets of intrinsic metric functions and �1 := �(M1) and �2 := �(M2) are
intrinsic metrics. We have

min
(

1, inf
x∈X

√
m(x)
m′(x)

)
dg � �1 � dg

and

min
(

1, inf
x∼y

√
m(x)

j(x, y) · deg(x)

)
dg � �2 � dg.

The jump size of �1,2 is at most 1, respectively.
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Note that in general the �j , j = 0, 1, will not be equivalent to dg due to vanishing
of the corresponding infimum. However, in certain situations they are equivalent. For
example �1 and dg are equivalent and even equal whenever m′ = m. Then, dg is an
intrinsic metric. The relevance of this is noted in [15].

We note that the topology generated by these intrinsic metrics is not necessarily the
discrete topology:

Example 14.1 (A graph with �1 and �2 not generating the discrete topology). Let m be
the counting measure and

X := {a1, a2} ∪
⋃
n∈N

{bn, cn} E :=
⋃
n∈N

i∈{1,2}

{
{ai, bn}, {bn, cn}

}

j(ai, bn) = 1
n2 j(bn, cn) = n2.

Thus, a1 and a2 are connected to each bn, while cn is connected to bn only and m′(bn) =
n2 +2/n2. In particular, a function in M1 can between ai and bn change its value by not
more than 1/n. As this holds for all n we infer that �1(a1, a2) = 0. As deg(ai) = ∞ we
also have �2(a1, b1) = 0.

Even if the topology generated by �j is not the original topology, our main theorem
about the spectrum applies now (see also [22, 7.1] for a special case).

Theorem 14.2. Let H be the operator associated to E+ν defined as in Section 11. Assume
that the corresponding semigroup is ultra-contractive. Let w be defined as in Theorem 13.4
and the assumptions of that theorem be fulfilled. Then:

(i) For every generalized eigenvalue λ with generalized eigenfunction u with wu ∈ L2

we have λ ∈ σ(H).
(ii) For spectrally almost every λ ∈ σ(H) there is a generalized eigenfunction u to λ

with wu ∈ L2.

Proof. Because of the easy situation, we only have to show, that
∑
y∈X

j(x, y)u(y)2 < ∞ ∀x ∈ X,

i.e., that u ∈ D∗
loc. This follows easily in view of

∑
y∈X

w(y)2u(y)2 < ∞

and the boundedness of j(x, y)/w(y)2. �



R.L. Frank et al. / Journal of Functional Analysis 266 (2014) 4765–4808 4803
14.3. Exponentially decaying jumping kernel

Let X = R
d and

E ′(u, v) :=
ˆ

X×X\d

(
u(x) − u(y)

)(
v(x) − v(y)

)
j(x, y) dx dy

D
(
E ′) :=

{
u ∈ L2(X): E(u) < ∞

}
with some measurable, symmetric jump kernel j � 0. Then E is a Dirichlet form.

Now assume that j satisfies

j(x, y) �
{
C|x− y|−d−α |x− y| � 1
Ce−β|x−y| |x− y| > 1

with C,α, β > 0 and α < 2. Then C∞
c (X) ⊂ D(E ′), and the closure of the restriction

of E ′ to C∞
c (X) is a regular Dirichlet form. We denote this form by E .

A particular case of such a Dirichlet form is the regular Dirichlet form associated with
the pseudo-relativistic Hamiltonian√

−Δ + m2 −m.

Indeed, in this case

j(x, y) = C|x− y|−d−1Ψ
(
m1/2|x− y|

)
where Ψ = Ψ(r) is an explicit Bessel function given by Ψ(r) =

´∞
0 s(d−1)/2e−s/4−r2/s ds.

The claimed bound j now follows from standard facts about Bessel functions (see e.g. [27,
Theorem 7.12]).

Returning to the general case, we see from the upper bound on j that
ˆ

Rd\{x}

|x− y|2j(x, y) dy � c−2

for some c > 0 small enough independent of x. Therefore by Theorem 7.3, �(x, y) :=
c · |x− y| is an intrinsic metric.

Let E ⊂ R
d and let δ(x) be the Euclidean distance of x to the boundary of E. Then

for x ∈ R
d with δ(x) > a

c + 1 and a > 0 we calculate

ˆ

Rd

(
ηE,a(x) − ηE,a(y)

)2
j(x, y) dy �

ˆ

|x−y|�δ(x)− a
c

j(x, y) dy � c1

∞̂

δ(x)− a
c

rd−1e−βr dr

� c2

(
1 +

(
δ(x) − a

c

)d−1)
e−β(δ(x)− a

c )

� c3
(
1 + δ(x)d−1)e−βδ(x)
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with appropriately chosen constants c1, c2, c3. This, together with the simple global
bound dμ(d)(ηE,a) � 1

a2 dx, shows that

dμ(d)(ηE,a) � c4
(
1 + δ(x)d−1)e−βδ(x) dx.

Let h = E + ν as before and let u be a generalized eigenfunction for h corre-
sponding to λ. Moreover, consider the surface integral u(r) :=

´
K(r) u(x)2 dσ with

K(r) := {x: |x| = r} and assume that

lim inf
N→∞

∞̂

0

u(r)
(
1 + |N − r|

)d−1e−β|N−r| dr
( N̂

0

u(r) dr
)−1

= 0.

Then Corollary 13.2, together with the estimate for dμ(d)(ηE,a), implies λ ∈ σ(H).

14.4. α-Stable processes

Let X = R
d. The fractional Laplacian −(−Δ)α/2 is the infinitesimal generator of an

α-stable process for 0 < α < 2. As discussed in Example 7.2, the corresponding Dirichlet
form is (up to a constant) defined by

E(u, v) :=
ˆ

X×X\d

(
u(x) − u(y)

)(
v(x) − v(y)

)
|x− y|−d−α dx dy

D :=
{
u ∈ L2(X): E(u) < ∞

}
.

Here c · |x − y| is only an intrinsic metric for c = 0. But c · f(|x − y|) is an intrinsic
metric for f(x) = xβ ∧ x, 0 < β < α/2 and an appropriate c = cβ > 0, as can be seen
from Theorem 7.3 and the bound

∞̂

0

f(r)2r−1−α dr < ∞.

We fix an intrinsic metric of this form.
If x ∈ E ⊂ X, then

ˆ

Rd

(
ηE,c(x) − ηE,c(y)

)2|x− y|−d−α dy � Cd

∞̂

δ(x)

rd−1r−d−α dr

� Cd

∞̂

δ(x)

r−α−1 dr

= Cd
1
δ(x)−α,
α
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where Cd is the surface area of the d dimensional unit sphere and c = cβ the
above chosen value, and thus 1E(x) dμ(d)(ηE,c) � 1E(x)Cdα

−1δ(x)−α dx. Similarly,
1Ec∩δ(·)>1(x) dμ(d)(ηE,c) � 1Ec∩δ(·)>1(x)α−1(δ(x) − 1)−α dx for δ(x) > 1 by the same
calculation. Thus, if u is a generalized eigenfunction for h = E + ν corresponding to λ

with
´ N−1
0 u(r)(N − r)−α dr +

´∞
N+2 u(r)(r −N − 1)−α dr +

´ N+2
N−1 u(r) dr´ N

0 u(r) dr
N→∞−−−−−→ 0,

where u(r) :=
´
K(r) u(x)2 dσ, then λ ∈ σ(H) by Corollary 13.2.

15. Note added in proof

This paper was finished and submitted to the arXiv at the end of 2010. A draft
version was even circulating earlier on. Since then, the material presented in this paper
has proven useful in a number of works. Among these we mention [1,2,15–18,25,34].
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Appendix A. Proof of Proposition 2.2

We start with a lemma which is certainly well-known and is, in fact, a slight variant
of [19, Theorem IV.1.16].

Lemma A.1. Let h : D(h)×D(h) → C be a symmetric, sesquilinear, non-negative, closed
form in some Hilbert space H. Let un ∈ D(h) be a sequence, which is h1 bounded and
weakly convergent to u. Then u ∈ D(h) and un → u h1-weakly.

Proof. Because un is h1-bounded there is an h1-weak convergent subsequence vn. Let
now v be the h1-weak limit of an h1-weak converging subsequence vn. Then for all
w ∈ D(H) we have

(
vn, (H + 1)w

)
= h1(vn, w) → h1(v, w) =

(
v, (H + 1)w

)
.

With (vn, (H + 1)w) → (u, (H + 1)w) we conclude that u = v. As this holds for any
h1-weak converging subsequence, we infer the statement. �
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Moreover, we recall the following lemma (see [13, Lemma 3.2.2.]).

Lemma A.2. Let H be a Hilbert space with inner product 〈·,·〉. Let (·,·) be a sesquilinear
form on H with 0 � (·,·) � 〈·,·〉. Then, (un, v) → (u, v) for all v ∈ H whenever un → u

weakly in the sense of 〈·,·〉.

We now come to the proof of Proposition 2.2.

Proof of Proposition 2.2. As the (un) converge weakly with respect to E1, the sequence
(un) is bounded with respect to the energy norm. In particular, there exists a C > 0
with E(un) � C for all n ∈ N and Cauchy–Schwarz inequality yields

∣∣∣∣
ˆ

f dμ(∗)(un, v)
∣∣∣∣
2

�
ˆ

|f |2 dμ(∗)(un)
ˆ

1 dμ(∗)(v) � ‖f‖∞CE(v).

It therefore suffices to show the desired convergence for f from a dense set in Cc(X). By
regularity, such a set is given by the Cc(X)∩D. By the same argument it suffices to show
the convergence for v from D ∩ L∞ which is a dense set in D. Let now f ∈ Cc(X) ∩ D
and v ∈ D ∩ L∞ be given.

By the assumptions and Theorem 2.1 E1(unv, unv) and E1(unf, unf) are bounded. We
have also L2-weak convergence of un → u by Lemma A.2. From this L2-weak convergence
of unv → uv and unf → uf follows. This and Lemma A.1 give E1-weak convergence,
too. We thus have

un → u, unv → uv, and unf → uf E1-weakly. (A.1)

As it is well known and can also be seen by the Leibniz rule given above we can now
express the measure μ(∗) via the forms E(∗) as

ˆ
f dμ(a)(un, v) = E(a)(un, fv)

for ∗ = a and by

2
ˆ

f dμ(∗)(un, v) = E(∗)(unf, v) + E(∗)(vf, un) − E(∗)(unv, f)

for ∗ = b, c, d. The stated convergence now follows from Lemma A.2 and (A.1). �
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