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The operator square root of the Laplacian �−��1/2 can be obtained from the
harmonic extension problem to the upper half space as the operator that maps
the Dirichlet boundary condition to the Neumann condition. In this article, we
obtain similar characterizations for general fractional powers of the Laplacian and
other integro-differential operators. From those characterizations we derive some
properties of these integro-differential equations from purely local arguments in the
extension problems.

Keywords Degenerate elliptic equations; Fractional Laplacian.

Mathematics Subject Classification 26A33; 35J70.

1. Introduction

Let us suppose we have a smooth bounded function f � �n → � and we solve the
extension problem

u�x� 0� = f�x� for x ∈ �n (1.1)

�u�x� y� = 0 for x ∈ �n and y > 0 (1.2)

to obtain a smooth bounded function u. It is well known that −uy�x� 0� =
�−��1/2f�x�, and therefore we can realize �−��1/2 as the operator T � f �→ −uy�x� 0�
in the above extension problem.

This is easy to show by applying T twice. When we place −uy�x� 0� instead of
f as the Dirichlet condition in (1.1), we obtain −uy�x� y� instead of u as the solution
of (1.1)–(1.2). Then T�T�f���x� = T�−uy�x� 0���x� = uyy�x� 0� = −�xf�x�. To show
T = �−��1/2 it is only left to check that T is indeed a positive operator, which
follows by a simple integration by parts argument.
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1246 Caffarelli and Silvestre

In this article, we will generalize this situation to a similar extension problem
for each fractional power of the Laplacian. We will construct any fractional
Laplacian from an extension problem to the upper half space for a specific elliptic
partial differential equation. This allows us (in forthcoming work) to treat non
linear variational problems, involving fractional Laplacians, with standard local
perturbation methods from the calculus of variations. Examples of such methods are
the Almgren Frequency formula, and the Boundary Harnack inequality presented
below. The partial differential equation that we obtain will turn out to be degenerate
for any power of the Laplacian other than �−��1/2, however they belong to a more
general class of equations that shares many of the essential properties of uniformly
elliptic equations (as in Fabes et al., 1982a,b, 1983, for the divergence case, or
Caffarelli and Gutierrez, 1997 for the non-divergence case).

The fractional Laplacian of a function f � �n → � is expressed by the formula

�−��sf�x� = Cn�s

∫
�n

f�x�− f���

�x − ��n+2s d� (1.3)

where the parameter s is a real number between 0 and 1, and Cn�s is some
normalization constant.

It can also be defined as a pseudo-differential operator

̂�−��sf ��� = ���2sf̂ ���

The fractional Laplacian can be defined in a distributional sense for functions
that are not differentiable as long as f̂ is not too singular at the origin or, in terms
of the x variable, as long as ∫

�n

�f�x��
�1+ �x��n+2s

dx < +�

We will relate the fractional Laplacian with solutions of the following extension
problem. For a function f ��n →�, we consider the extension u ��n × �0���→�
that satisfies the equation

u�x� 0� = f�x� (1.4)

�xu+ a

y
uy + uyy = 0 (1.5)

The equation (1.5) can also be written as

div
(
ya�u

) = 0 (1.6)

Which is clearly the Euler–Lagrange equation for the functional

J�u� =
∫
y>0

��u�2ya dX (1.7)

We will show that

C�−��sf = lim
y→0+

−yauy =
1

1− a
lim
y→0

u�x� y�− u�x� 0�
y1−a
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An Extension Problem Related to the Fractional Laplacian 1247

for s = 1−a
2 and some constant C depending on n and s. Which reduces to the

regular normal derivative in the case a = 0 (as in (1.1)–(1.2)).
If we make the change of variables z = (

y

1−a

)1−a
in (1.5), we obtain a

nondivergence form equation

�xu+ z�uzz = 0 (1.8)

for � = −2a
1−a

. Moreover, yauy = uz. Thus, we claim that the following equality holds
up to a multiplicative constant

�−��sf�x� = − lim
y→0+

yauy�x� y� = −uz�x� 0�

It seems convenient to keep this notation. The variable x is always in �n. The
variables y and z are nonnegative real numbers that satisfy the relation z = (

y

1−a

)1−a
.

The function u is the extension of f to the upper half space and takes values in �n ×
�0���. We will use u and its version after the change of variables y �→ z indistinctly,
and we will call the variable either y or z to point out the difference. Whenever we
refer to a point in �n+1 we will use capital letters (like X).

2. Properties of the PDEs

In this section we will study the basic properties of the equations (1.5) and (1.8). We
will develop explicit Poisson formulas among other properties.

2.1. Harmonic Functions in n+ 1+ a Dimensions

The equation (1.5) has a curious intuition behind it that will help us obtain several
properties of its solutions.

For a nonnegative integer a, suppose u�x� y� � �n ×�1+a → � is radially
symmetric in the y variable, meaning that if �y� = �y′� = r, then u�x� y� = u�x� y′�.
We can think of u as a function of x and r, and in these variables write an expresion
for its Laplacian:

�u = �xu+ a

r
ur + urr

We thus obtain an identical expression of equation (1.5) (with r instead of y, but
that’s just naming). As far as the expresion is concerned, there is no need to consider
only integer values of a. We can then think of the equation (1.5) as the harmonic
extension problem of f in 1+ a dimensions more. Although it is impossible to think
of a meaning for �n+1+a when a is not an integer, the solutions of (1.5) will satisfy
many properties common to harmonic functions.

2.2. Fundamental Solution at the Origin

To obtain the fundamental solution for (1.5) at the origin, we just have to consider
the fundamental solution of the Laplacian in n+ 1+ a dimensions. If n− 1+ a > 1,
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1248 Caffarelli and Silvestre

it reads

	�X� = Cn+1+a

1

�X�n−1+a
(2.1)

where the constant Cn+1+a is given by the formula Ck = 
k/2	�k/2− 1�/4.
It can be verified as a direct computation that 	 is a solution of (1.5) when

y �= 0 and indeed limy→0+ y
auy = −C�0 for some constant C as we will see later.

Notice that 	�x� 0� = C

�x�n−1+a is the fundamental solution of the fractional Laplacian

�−��
1−a
2 for some appropriate constant C depending on n and a (Recall X = �x� y�).

Since the equation (1.8) can be derived from (1.5) by just a change of variables,
we can also change variables to obtain a corresponding fundamental solution

	̃�x� z� = Cn+1+a

1(�x�2 + �1− a�2�z�2/�1−a�) n−1+a
2

(2.2)

that solves (1.8) when z �= 0 and uz�x� z� → −�0 as z → 0.

2.3. Conjugate Equation

We have seen that if u is a solution of (1.5), then the function w�x� y� �= yauy�x� y�
seems to carry interesting information. Indeed, this function satisfies the conjugate
equation

�xw − a

y
wy + wyy = 0

that is nothing but (1.5) with −a instead of a. This property of w can be checked
by a direct computation:

�xw − a

y
wy + wyy = ya

(
�y�xu− a2

y2
uy −

a

y
uyy +

a�a− 1�
y2

uy + 2
a

y
uyy + uyyy

)
= ya

(
�y�xu− a

y2
uy +

a

y
uyy + uyyy

)
= ya�y

(
�xu+ a

y
uy + uyy

)
= 0

The intuition behind the above fact is simple to explain when n = 1 (x ∈ �
and y ∈ �0�+��). The function w turns out to be the stream function related to ux

in the following sense: if we set v = ux, then clearly v is a solution of (1.5), since
the equation is invariant under translations in x. Thus we have div�ya�v� = 0. The
vector field �yavy�−yavx� is then irrotational and there is a function w such that
�w = �−yavy� y

avx�. This function w is the stream function of v, and it satisfies the
equation div�y−a�w� = 0. Now we check that w = yauy�x� y�, since

��yauy� =
(
yauxy� y

a

(
a

y
uy + uyy

))
= �yavy�−yavx�
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An Extension Problem Related to the Fractional Laplacian 1249

2.4. Poisson Formula

We want to develop a Poisson formula P to explicitly solve (1.4)–(1.5).

u�X� =
∫
�n

P�x − �� y�f���d�

The Poisson kernel P must be a solution to (1.5) where y > 0 and
limy→0 P�x� y� = �0. From the previous sections, we see that the correct choice would
be to take P�x� y� = −y−a�y	−a�x� y�. Therefore

P�x� y� = Cn�a

y1−a(�x�2 + �y�2) n+1−a
2

(2.3)

The fact that P is a solution to (1.5) where y > 0 is a consequence of the fact
that 	−a is to the conjugate equation. Of course it can also be checked by a direct
computation. Moreover, P�x� y� = y−nP�x/y� 1�, so P must converge to a multiple
of the Dirac delta as y → 0, so P is indeed the Poisson kernel.

The corresponding Poisson kernel for the equation (1.8) can be obtained either
by a change of variables from (2.3) or by computing −P̃z:

P̃�x� z� = Cn�a

z(�x�2 + �1− a�2�z�2/�1−a�) n+1−a
2

(2.4)

3. Relation with Fractional Laplacian

In this section we will see how the equations (1.5) or (1.8) relate to the operator
�−��s. Namely, we will show that up to a constant factor

lim
y→0

yauy�x� y� = uz�x� 0� = −�−��sf�x� =
∫
�n

f���− f�x�

��− x�n+2s d� (3.1)

3.1. Proof Using the Poisson Formula

We can compute uz�x� 0� using the Poisson formula.

uz�x� 0� = lim
z→0

u�x� z�− u�x� 0�
z

(3.2)

= lim
z→0

1
z

∫
�n

P̃�x − �� z��f���− f�x��d� (3.3)

= lim
z→0

∫
�n

C(�x − ��2 + �1− a�2�z�2/�1−a�) n+1−a
2

�f���− f�x��d� (3.4)

= CPV
∫
�n

f���− f�x�

�x − ��n+1−a
d� (3.5)

= −C�−��
1−a
2 f�x� (3.6)

where the limit in (3.4) exists and equals (3.5) as long as f is regular enough.
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1250 Caffarelli and Silvestre

Changing variables, this implies that limy→0 −yauy�x� y� also converges to a
multiple of the fractional Laplacian. The fact that yauy�x� y� has a limit as y → 0,
immediately implies that limy→0

u�x�y�−u�x�0�
y1−a has the same limit.

Remark 3.1. The proof was done by computing uz. If instead we had chosen
to compute yauy or u�x�y�−u�x�0�

y1−a the complexity of the computation would be
comparable.

3.2. Proof Using Fourier Transform

Alternatively, we can also prove (3.1) taking Fourier transform in x.
One way to do this is proving that the corresponding energy functionals

coincide. Namely ∫
y>0

��u�2yadX =
∫
�n

���2s∣∣f̂ ���∣∣2d� (3.7)

The equation (1.5) becomes

−���2û��� y�+ a

y
ûy��� y�+ ûyy��� y� = 0

We thus obtain an ordinary differential equation for each value of �.
Suppose that 
 � �0��� → � is the minimizer of the functional

J�
� �=
∫
y>0

(�
′�2 + �
�2)yady
for 
�0� = 1, then 
 solves the following equation:

−
̂�y�+ a

y

̂y�y�+ 
yy�y� = 0


�0� = 1

lim
y→�
�y� = 0

By a simple scaling we can see that

û��� y� = f̂ ���
����y�

and thus, the energy of u becomes∫
y>0

��u�2yadX =
∫
�n

∫ �

0
����2�û�2 + �ûy�2�yady d�

=
∫
�n

∫ �

0
�f����2���2(�
����y��2 + �
′����y�2)yady d�

=
∫
�n

�f����2���1−a
∫ �

0

(�
�ȳ��2 + �
′�ȳ��2)ȳadȳ d�
=
∫
�n

�f����2���1−aJ�
�d�
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An Extension Problem Related to the Fractional Laplacian 1251

Thus we conclude (3.7). The corresponding Euler Lagrange equations for each
energy must then coincide up to a constant factor. Therefore we obtain

− lim
y→0

yauy�x� y� = C�−��
1−a
2 f�x�

where the constant C is given by J�
�.
We could also make another proof from (1.8). After taking Fourier transform,

the equation (1.8) becomes

−���2û��� z�+ z�ûzz��� z� = 0

We thus obtain an ordinary differential equation for each value of �.
Suppose that 
 � �0��� → � solves the following equation

−z�
′′�z�+ 
�z� = 0


�0� = 1 (3.8)

lim
z→�
�z� = 0

Then by a simple scaling we can see that

û��� z� = û��� 0�

(��� 2

2−� z
)

And then,

ûz��� 0� = û��� 0���� 2
2−� 
′�0�

= Ca���1−aû��� 0� = Ca���1−af̂ ���

To prove (3.1) we now only need to show that such function 
 exists and it is
differentiable at zero. We notice that for � small enough then


̄�z� �= min�1� z−��

is a supersolution, whereas for A and B large


�z� �= e−Az1/2+Bz2

is a supersolution. Thus, by Perron’s method, we can find a 
 in between that solves
(3.8). Moreover this 
 is Lipschitz at z = 0 and 0 ≤ 
 ≤ 1 since it is trapped between

 and 
̄. From the equation (3.8) we also see that then 0 ≤ 
zz ≤ z−�, thus 
 ∈
C2−�. Not only does this complete the proof of (3.1) but it also gives an interesting
regularity estimate for the solution u with respect to z. In the next section we will
explore this issue further.

4. Reflection Extensions

In order to apply interior Harnack estimates to our PDE (1.5) (or (1.8)), we must show
that if the operator �−��sf = 0 in an open ball, then we can reflect the solution u
and make it a solution of (1.5) (or (1.8)) across y = 0 (z = 0) in a suitable sense.
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1252 Caffarelli and Silvestre

We first address the divergence case.

Lemma 4.1. Suppose that u � �n × �0��� → � is a solution to (1.5) such that for
�x� ≤ r

lim
y→0

yauy�x� y� = 0 (4.1)

then the extension to the whole space

ũ�x� y� =
{
u�x� y� y ≥ 0

u�x�−y� y < 0

is a solution to

div��y�a�u� = 0

in the week sense in the �n+ 1� dimensional ball of radius R
({
�x� y� � �x�2 + �y�2 ≤

R2
})
.

Proof. Let h ∈ C�
0 �BR� be a test function. We want to show that∫

BR

�ũ · �h �y�adX = 0 (4.2)

Let � > 0, we separate a strip of width � around y = 0 in the domain of the integral
above ∫

BR

�ũ · �h�y�adX =
∫
BR\��y�<��

�ũ · �h�y�adX +
∫
BR∩��y�<��

�ũ · �h�y�adX

=
∫
BR\��y�<��

div��y�ah�ũ�dX +
∫
BR∩��y�<��

�ũ · �h�y�adX

=
∫
BR∩��y�=��

hũy�x� ���
adx +

∫
BR∩��y�<��

�ũ · �h�y�adX

When we let � → 0, the second term of the right hand side above clearly goes
to zero because �y�a��u�2 is locally integrable, and the first term converges to zero if
�aũy�x� �� → 0 as � → 0.

Therefore, if �aũy�x� �� → 0 as � → 0, then div��y�a�u� = 0 in the whole ball BR

(accross y = 0). �

We must clarify in what sense we take the limit in (4.1). In this particular case,
since the limit vanishes, we could prove that actually u is C� in x and the limit holds
in the uniform sense. In general it would be convenient to have a weak definition
of (4.1). The equation (4.2) becomes the definition of (4.1) in the weak sense. In
any case the limit (4.1) holds in the sense that, if we take any smooth test function
� ∈ C�

0 �B
∗
1�,

lim
y→0

∫
B∗
1

yauy�x� y���x�dx = 0
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An Extension Problem Related to the Fractional Laplacian 1253

For a general class of functions g, the problem

div��y�a�u� = 0 in the weak sense in BR

u = g on �BR

has a unique solution in the weighted Sobolev space H1�2�BR� �y�a�. This kind of
problems and general properties of elliptic equations with A2 weights are studied in
Fabes et al. (1982b).

We now address the nondivergence case.

Lemma 4.2. Given a continuous function g on �BR, such that g�x� z� = g�x�−z�, there
exists a unique function u ∈ C�BR� such that:

(i) u solves uxx + �z��uzz = 0 in BR ∪ �z �= 0� in the classical sense.
(ii) u ∈ C1�BR�
(iii) uz�x� 0� = 0

Moreover, for this solution the Harnack inequality result of Caffarelli and Gutierrez
(1997) applies.

Proof. We point out that any viscosity solution of (1.8) is C2 away from z = 0, so
it would be a solution in the classical sense in BR ∪ �z �= 0�.

Let us prove uniqueness first. Let us suppose there were two solutions u and v
satisfying (i), (ii), and (iii). For an arbitrary � > 0, consider w = u− v+ ��z�. Then
w ≤ �R on �BR. Let us suppose that w has an interior maximum at a point x ∈ BR.
This point cannot be in BR ∩ �z �= 0�, since there w solves the non-degenerate elliptic
equation (1.8) and thus it does not have an interior maximum. Therefore, if there
is any interior maximum, it has to be on �z = 0� ∩ BR. But clearly there cannot be
a maximum since �+z w > �−z w. Therefore w < �R in the whole ball BR. Since � is
arbitrary, we conclude that u ≤ v in BR. Similarly we can obtain that v ≤ u in BR,
so they must coincide. Notice that we only used (i) and (ii) for uniqueness.

Now, let us prove existence. The subtle point here is to show that there is a C1

solution. What we do is to prove a uniform C1�� estimate for solutions to the problem

u� = g on �BR (4.3)

�xu
� + ��z� + ���u�

zz = 0 in �BR (4.4)

For any � > 0, by the Schauder theory, this problem has classical solutions. If we
have a C1�� estimate uniform in �, we take limit as � → 0 and obtain the desired
solution.

The solutions u� are uniformly bounded in L� due to the maximum principle
for uniformilly elliptic equations. The equation (4.4) has constant coefficients
with respect to x. The Hölder estimate of Caffarelli and Gutierrez (1997) holds
independently of � and we can apply it to u� and to any differential quotient in
the direction of x to obtain uniform estimates for derivatives of any order with
respect to x (In terms of fractional Laplacian, this corresponds to the fact that
functions such that �−��su = 0 are C�). Therefore we have that �xu

� is bounded
independently of � in any smaller ball B�1−�/2�R.

Since u� ∈ C2�BR� and u is symmetric respect to the hyperplane z = 0, then
u�
z�x� 0� = 0.
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1254 Caffarelli and Silvestre

From the equation (4.4):

�u�
zz� =

��xu
��

��z� + ���
≤ C

�z��

Recall that � = −2a
1−a

and since a ∈ �−1� 1�, then � < 1. We can then integrate u�
zz

for any x� z such that �x� < 1− 2� and 0 < z < 1− �.

�u�
z�x� z�� =

∣∣∣∣ ∫ z

0
u�
zz�x� s�ds

∣∣∣∣ ≤ ∫ z

0

C

�z�� ds = Cz1−�

This shows u�
y is C� in B�1−��R for � = min�1� 1− ��, independently of � for

any �.
So, we can take � → 0 and extract a subsequence that converges to the desired

solution u.
Moreover, for any �, u� is smooth and satisfies the equation (4.4) that has

smooth coefficients and for which the Harnack inequality from Caffarelli and
Gutierrez (1997) applies. Therefore, the same estimate passes to the limit as � → 0
and the solution u of the original problem satisfies Harnack inequality. �

Remark 4.3. We have to be careful if we want to study the viscosity solutions to
(1.8). The naive definition using C2 test functions would not suffice for uniqueness.
If, for example, � > 0 and we consider the function u�x� z� = �z�, then for any C2

function 
 touching u from below at a point �x� 0�, �x
�x� 0�+ 0�
zz�x� 0� = �x
 ≤
0 and thus u�x� z� = �z� would be a (non-differentiable) viscosity solution. However
if we test against less regular functions, like 
�x� z� = z2−�, then u would fail to be
a supersolution. In the notation of Caffarelli et al. (1996), this corresponds to the
distinction between C-viscosity solutions and Lp-viscosity solutions.

5. Harnack and Boundary Harnack Type Estimates

As an application on how to apply the equations (1.5) or (1.8) to the study of
fractional harmonic functions, we prove a Harnack inequality and a boundary
Harnack inequality using (local) pde methods.

Harnack inequality is not a new result for the fractional Laplacian. It can
actually be proved using direct classical potential methods like in Landkof (1972).
A boundary Harnack estimate for the fractional Laplacian was first proved in
Bogdan (1997) using potential methods.

In this article, we derive the Harnack and boundary Harnack inequality for
the fractional Laplacian from the Harnack inequality for singular elliptic equations,
either with A2 weights (see Fabes et al., 1982b, 1983; Smith, 1982/83) or for certain
classes of nondivergence problems (see Caffarelli and Gutierrez, 1997).

Theorem 5.1 (Harnack Inequality). Let f � �n → � be nonnegative such that
�−��sf = 0 in Br . Then there is a constant C (depending only on s and dimension)
such that

sup
Br/2

f ≤ C inf
Br/2

f
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An Extension Problem Related to the Fractional Laplacian 1255

Proof using (1.5). We consider the extension u of f that solves (1.5). This function
u is going to be nonnegative since f is. We reflect it through the �y = 0� hyperplane.
Since �−��sf = 0 in Br , by Lemma 4.1, u is a solution to

div��y�a�u� = 0

in the n+ 1 dimensional ball of radius r centered at the origin.
We can then apply the result of Fabes et al. (1982b) to obtain Harnack

inequality for u and thus also for f in half of the ball. �

Proof using (1.8). We consider the extension u of f that solves (1.8). This function
u is going to be nonnegative since f is. We reflect it through the �z = 0� hyperplane.
Since �−��sf = 0 in Br , then u satisfies the conditions of Lemma 4.2. We can then
apply the result of Caffarelli and Gutierrez (1997) to obtain Harnack inequality for
u and thus also for f in half of the ball. �

Remark 5.2. In the two proofs above we can observe that what is needed for
Harnack inequality is that the function u is nonnegative in an n+ 1 dimensional
ball. The condition f ≥ 0 is indeed sufficient for that, but it is not strictly
necessary.

Theorem 5.3 (Boundary Harnack). Let f� g � �n → � be two nonnegative functions
such that �−��sf = �−��sg = 0 in a domain �. Suppose that x0 ∈ ��, f�x�= g�x�= 0
for any x ∈ B1\�, and �� ∩ B1 is a Lipschitz graph in the direction of x1 with
Lipschitz constant less than 1. Then there is a constant C depending only on dimension
such that

sup
x∈�∩B 1

2

f�x�

g�x�
≤ C inf

x∈�∩B 1
2

f�x�

g�x�
(5.1)

for any x� y ∈ � ∩ B1/2�x0�.

Proof. We consider the extension u�1� of f and u�2� of g that solve (1.5). As
before, we reflect u�k� through �y = 0� for k = 1� 2 and obtain a solution across this
hyperplane through �. What we want to do is to find a map that straightens up the
domain in order to apply the result of Fabes et al. (1983).

First, since � is a Lipschitz domain, we can find a bilipschitz map �1 � �
n → �n

such that �1�x0� = 0 and �1��� ∩ B1/2 = B1/2 ∩ �x1 > 0�. We can extend this map to
�n+1 as constant in the variable y. Now, the functions u�k�

2 = u�k� � �−1
1 are solutions

of the equation

div
(
yabij�ju

�k�
2

) = 0 in �y �= 0� and across �y = 0� on �1���

where the matrix bij is given by D�2
1

detD�1
. Since �1 is bilipschitz, then the eigen values

of D�1 are bounded below and above and bij is uniformally elliptic.
Now we take the map �2 that maps �n+1\�x1 ≤ 0 ∧ y = 0� into the half space

�n+1 ∩ �x1 > 0�. This map is constant in the variables x1� � � � � xn, and if we write
the pair �x1� y� in polar coordinates �r� ��, it maps it to �r� �/2�. The eigen values of
D�2 are all equal to 1 but the one in the direction of �

��
(i.e., the one in the direction
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1256 Caffarelli and Silvestre

�−y� 0� � � � � 0� x1�), that is 1/2. The functions u�k�
3 = u

�k�
2 � �−1

2 satisfy the equation

div
(
yacij�ju

�k�
3

) = 0 in B1/2 ∩ �x1 > 0�

where cij is given by the matrix 2D�2�bij�D�2, and then it is uniformailly elliptic.
We can apply the boundary Harnack inequality of Fabes et al. (1983) to the

functions u�1�
3 and u

�2�
3 to obtain

sup
B 1

4
∩�x1>0�

u
�1�
3 �x�

u
�2�
3 �x�

≤ C inf
B 1

4
∩�x1>0�

u
�1�
3 �x�

u
�2�
3 �x�

Recalling that f�x� = u
�1�
3 � �2 � �1�x1� � � � � xn� 0� and g�x� = u

�2�
3 � �2 �

�1�x1� � � � � xn� 0�, we obtain that

sup
x∈�∩Br

f�x�

g�x�
≤ C inf

x∈�∩Br

f�x�

g�x�
(5.2)

for some universal r < 1. By a standard covering argument, (5.2) together with
Theorem 5.1 imply (5.1). �

As before, the condition in Theorem 5.3 that requires f and g to be nonnegative
in the whole �n is not sharp. In the proof we can see that what we need to apply
the result of Fabes et al. (1983) is that the corresponding extensions u�1� and u�2�

are nonnegative in the unit ball of n+ 1 dimensions. The advantage is that this
is a local condition, therefore we can obtain the standard corollary of boundary
Harnack saying that u�1�

u�2�
is C� in a neighborhood of the origin. In particular f

g
is C�,

which is not strictly a corollary of Theorem 5.3 but of its proof.

Corollary 5.4. Let f and g be as in Theorem 5.3, then f�x�

g�x�
is a C� function in B1/2 ∩�

for some universal �.

Remark 5.5. In Fabes et al. (1983), the boundary Harnack principle is proven for
A2 weights and Lipschitz domains. An extension of that result to nontangentiably
accesible (NTA) domains (as in the last section of Athanasopoulos et al., to appear)
would lead to a boudary Harnack principle for the fractional Laplacian to domains
only requiring a uniform capacity condition.

6. Monotonicity Formulas

Monotonicity formulas are a very powerfull tool in the study of the regularity
properties of elliptic PDEs. They have been used in a number of problems to
exploit the local properties of the equations by giving information about the blowup
configurations. Since the equation (1.5) represents a harmonic function in n+ 1+ a
dimensions, it is to be expected that any monotonicity formula known for harmonic
functions will have its counterpart for solutions to (1.5). For example, the simplest
one would be that if

�xu+ a

y
uy + uyy = 0 for �x� y� ∈ B+

1

lim
y→0

yauy�x� y� = 0 for �x� ≤ 1
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An Extension Problem Related to the Fractional Laplacian 1257

then

��R� = 1
Rn+1+a

∫
B+
R

��u�2yadX is monotone nondecreasing in R

where B+
R stands for the n+ 1 dimensional half ball ��x� y� � �x�2 + y2 < 1 ∧ y > 0�.

The weight ya is the correct one if we think that the function u is radially
symmetric in a+ 1 variables and the y is the modulus of those variables as it is
explained in Section 2.1.

More interestingly, we have Almgren’s frequency formula

Theorem 6.1. If u is a solution to (1.5) in B+
R0

such that for any x in B+
R0
, either

u�x� 0� = 0 or limy→0 y
auy�x� y� = 0, then

��R� = R

∫
B+
R
��u�2yadX∫

�B+
R
�u�2yad� is monotone nondecreasing in R for R < R0

Moreover, � is constant if and only if u is homogeneous.

The proof is essentially the same as for harmonic functions and it is mainly
computational. The original proof can be found in Almgren (2000). Here we only
need a few minor modifications for our case. First we need the following lemma.

Lemma 6.2. Let u be s solution of (1.5) in BR0
∩ �y �= 0�, such that yauy�x� y� is

bounded and for every x with �x� < R0 either u�x� 0� = 0 or limy→0 y
auy�x� y� = 0. Then

the following identity holds for any R ≤ R0.

R
∫
�BR∩�y>0�

(�u��2 − �u��2
)
yad� =

∫
B+
R

�n+ a− 1���u�2yadx (6.1)

where u� stands for the gradient of u tangential to �Br .

Proof. The only thing we have to notice is that since u solves (1.5), then

div
(
ya

��u�2
2

X − ya�X��u��u
)
= ya

n+ a− 1
2

��u�2

So we apply divergence theorem in the set BR ∩ �y > �� to obtain

R
∫
�BR∩�y>��

ya
( ��u�2

2
− �u��2

)
d� +

∫
�x�<R

−�a ��u�x� ���2
2

�

+ �a��x� ��� �u�x� ���uy�x� ��dx

=
∫
B+
R

n+ a− 1
2

ya��u�2dx

The second term comes from the integration of the vector field at the bottom of the
half sphere. We observe it goes to zero as � → 0 since there we have that for each
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1258 Caffarelli and Silvestre

x either u�x� 0� = 0 or limy→0 y
auy�x� y� = 0 and a < 1. So we can remove that term

and extend the expresion to the whole ball BR.

R
∫
�BR∩�y>0�

( ��u�2
2

− �u��2
)
yad� =

∫
B+
R

n+ a− 1
2

��u�2yadx

Expanding ��u�2 = �u��2 + �u��2 we obtain (6.1). �

Proof of Theorem 6.1. We will show that log��R� is nondecreasing. By the usual
scaling argument, it is enough to check it at r = 1. We compute log�:

log��R� = logR+ log
∫
B+
R

��u�2yadX − log
∫
�B+

R

�u�2yad�

and now we compute its derivative at R = 1. Let S1 = �B1 ∩ �y > 0�, then

�log��′�1� = 1+
∫
S1
��u�2yad�∫

B+
1
��u�2yadX −

∫
S1

(
2uu� + �n+ a��u�2)yad�∫

S1
�u�2yad� (6.2)

Now we observe that since div �ya�u� = 0, we have divyau�u = ya��u�2, and
then ∫

B+
1

��u�2yadX = lim
�→0+

∫
S1

uu�y
ad� +

∫
�x�<1

uyuy
adx =

∫
S1

uu�y
ad� (6.3)

From Lemma 6.2 we have that∫
S1

��u�2yad� =
∫
S1

(�u��2 − �u��2
)
yad� + 2

∫
S1

�u��2yad�

=
∫
B+
1

�n+ a− 1���u�2yadX + 2
∫
S1

�u��2yad� (6.4)

Putting (6.3) and (6.4) together with (6.2) we obtain

�log��′�1� = 1+
∫
B+
1
�n+ a− 1���u�2yadX + 2

∫
S1
�u��2yad�∫

S1
uu�y

ad�

−
∫
S1
�2uu� + �n+ a��u�2�yad�∫

S1
�u�2yad�

= 1+ �n+ a− 1�− �n+ a�+ 2
∫
S1
�u��2yad�∫

S1
uu�y

ad�
−
∫
S1
2uu�y

ad�∫
S1
�u�2yad�

= 2

(∫
S1
�u��2yad�∫

S1
uu�y

ad�
−
∫
S1
uu�y

ad�∫
S1
�u�2yad�

)

Therefore �log��′�1� ≥ 0 follows from Cauchy–Schwartz inequality since( ∫
S1

uu�y
ad�

)2

≤
( ∫

S1

�u�2yad�
)
·
( ∫

S1

�u��2yad�
)
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An Extension Problem Related to the Fractional Laplacian 1259

and the equality is achieved if and only if u� = �u for some constant �. Therefore,
only when u is homogeneous of degree �. �

7. Other Operators

The results in this article suggest that many integro-differential operators can be
thought in the same way. Let us suppose we have smooth uniformilly elliptic
coefficients aij in �n × �0���. Consider the following extension problem:

u�x� 0� = f�x� for x ∈ �n (7.1)∑
aijuij�x� y� = 0 for x ∈ �n and y > 0 (7.2)

If we now consider the operator f �→ uy�x� 0�, this is going to be some integro-
differential operator of degree one that we can also obtain from a local type pde.
We can push the situation even further by considering coefficients aij that are only
measurable, and maybe singular near y = 0. It is not reasonable to expect that
every integro-differential operator can be realized in this way. It looks difficult to
characterize the ones that can. But certainly for many it is possible.

Let us consider the case when the operators are invariant under translation in x.
We want to study the operator that maps the Dirichlet to the Neumann condition
for the equation

�xu+ a�z�uzz = 0

we take the Fourier transform in x and proceed as in Section 3.2 to obtain the
differential equation

−a�z�
′′�z�+ ���2
�z� = 0


�0� = 1 (7.3)

lim
z→�
�z� = 0

The operator T � u�x� 0� �→ −uz�x� 0� is then the pseudodifferential operator whose
symbol s��� is given by solving (7.3) and computing 
z�0� for each value of �.

The question is what symbols s��� can we obtain by the above procedure. We
can see that s��� is radially symmetric and monotone increasing in ���. Indeed, if 
1

is a solution of (7.3) for ��� = r0 and �1 for ��1� = r1 ≥ r0 then

−a�z�
′′
1�z�+ ��0�2
1�z� =

(��0�2 − ��1�2
)

1�z� < 0

Thus 
1 < 
0 by comparison principle.
As � → 0, the solution 
 of (7.3) converges to 
 ≡ 1, so s�0� = 0. We leave the

question if every radially symmetric symbol s such that s�0� = 0 and it is monotone
increasing with respect to ��� can be obtained by a suitable choice of a�z�.
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