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Abstract. We prove the following estimate for the spectrum of the normal-

ized Laplace operator ∆ on a finite graph G,

1− (1− k[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t])

1
t , ∀ integers t ≥ 1.

Here k[t] is a lower bound for the Ollivier-Ricci curvature on the neighborhood

graph G[t], which was introduced by Bauer-Jost. In particular, when t = 1
this is Ollivier’s estimates k ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2 − k. For sufficiently

large t we show that, unless G is bipartite, our estimates for λ1 and λN−1 are

always nontrivial and improve Ollivier’s estimates for all graphs with k ≤ 0. By
definition neighborhood graphs are weighted graphs which may have loops. To

understand the Ollivier-Ricci curvature on neighborhood graphs, we generalize
a sharp estimate of the Ricci curvature given by Jost-Liu to weighted graphs

with loops and relate it to the relative local frequency of triangles and loops.

1. Introduction

In this paper, we utilize techniques inspired by Riemannian geometry and the
theory of stochastic processes in order to control eigenvalues of graphs. In par-
ticular, we shall quantify the deviation of a (connected, undirected, weighted, fi-
nite) graph G from being bipartite (a bipartite graph is one without cycles of odd
lengths; equivalently, its vertex set can be split into two classes such that edges
can be present only between vertices from different classes) in terms of a spectral
gap. The operator whose spectrum we shall consider here is the normalized graph
Laplacian ∆. This is the operator underlying random walks on graphs, and so, this
leads to a natural connection with the theory of stochastic processes. We observe
that on a bipartite graph, a random walker, starting at a vertex x at time 0 and at
each step hopping to one of the neighbors of the vertex where it currently sits, can
revisit x only at even times. This connection then will be explored via the eigen-
values of ∆. More precisely, the largest eigenvalue λN−1 of ∆ is 2 iff G is bipartite
and is < 2 else. Therefore, 2 − λN−1 quantifies the deviation of G from being
bipartite, and we want to understand this aspect in more detail. In more general
terms, we are asking for a quantitative connection between the geometry (of the
graph G) and the analysis (of the operator ∆, or the random walk encoded by it).
Now, such connections have been explored systematically in Riemannian geometry,
and many eigenvalue estimates are known there that connect the corresponding
Laplace operator with the geometry of the underlying space M , see e.g. Li-Yau
[17], Chavel [5]. The crucial role here is played by the Ricci curvature of M . In
recent years, a kind of axiomatic approach to curvature has been developed. This
approach encodes the abstract formal properties of curvature and thereby makes
the notion extendible to spaces more general than Riemannian manifolds. By now,
there exist many notions of generalized curvature, and several of them have found
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2 FRANK BAUER, 1,2,3, AND 1,4

important applications, see Sturm [24], Lott-Villani [19], Ollivier [21], Ohta [20],
Bonciocat-Sturm [3], Joulin-Ollivier [14] and the references therein. The curvature
notion that turns out to be most useful for our purposes is the one introduced
by Ollivier [21]. In his paper, Olliver actually showed that the eigenvalues of the
normalized Laplace operator satisfy

(1.1) k ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2− k.
In fact, one of the main points of the present paper is to relate lower bounds for λ1

and upper bounds for λN−1 via random walks. As in Bauer-Jost [2], we translate
this relationship into the geometric concept of a neighborhood graph. The idea here
is that in the t-th neighborhood graph G[t] of G, vertices x and y are connected
by an edge with a weight given by the probability that a random walker starting
at x reaches y after t steps times the degree of x. We note that even though
the original graph may have been unweighted, the neighborhood graphs G[t] are
necessarily weighted. In addition, they will in general possess self-loops, because
the random walker starting at x may return to x after t steps. Therefore, we need
to develop our theory on weighted graphs with self-loops even though the original
G might have been unweighted and without such loops. Since Ollivier’s curvature is
defined in terms of transportation distances (Wasserstein metrics), we can then use
our neighborhood graphs in order to geometrically control the transportation costs
and thereby to estimate the curvature of the neighborhood graphs in terms of the
curvature of the original graph. As it turns out that lower bounds for the smallest
eigenvalue of G[t], t even, are related to upper bounds for the largest eigenvalue of
G, we obtain the following more general estimate

(1.2) 1− (1− k[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t])

1
t , ∀ integers t ≥ 1.

Whereas (1.1) is only useful under the restrictive assumption that k be positive,
our estimate (1.2) is nontrivial for any graph that is not bipartite. In fact, for a
non-bipartite graph, we obtain an exponential decay of 1−k[t] with a rate that can
be controlled by the geometry of the graph.

For controlling the smallest eigenvalue, besides Ollivier [21], we also refer to
Lin-Yau [18] and Jost-Liu [13]. In particular, in the last paper, we could relate
λ1 to the local clustering coefficient introduced in Watts-Strogatz [27]. The local
clustering coefficients measures the relative local frequency of triangles, that is,
cycles of length 3. Since bipartite graphs cannot possess any triangles, this then
is obviously related to our question about quantifying the deviation of the given
graph G from being bipartite. In fact, in Jost-Liu [13], this local clustering has been
controlled in terms of Ollivier’s Ricci curvature. Thus, in the present paper we are
closing the loop between the geometric properties of a graph G, the spectrum of its
graph Laplacian, random walks on G, and the generalized curvature of G, drawing
upon deep ideas and concepts originally developed in Riemannian geometry and
the theory of stochastic processes.

2. The normalized Laplace operator, neighborhood graphs, and
Ollivier-Ricci curvature

In this paper, G = (V,E) will denote an undirected, weighted, connected, finite
graph of N vertices. We do not exclude loops, i.e., we permit the existence of an
edge between a vertex and itself. V denotes the set of vertices and E denotes the
set of edges. If two vertices x, y ∈ V are connected by an edge, we say x and y
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are neighbors, in symbols x ∼ y. The associated weight function w: V × V → R
satisfies wxy = wyx (because the graph is undirected) and we assume wxy > 0
whenever x ∼ y and wxy = 0 iff x 6∼ y. For a vertex x ∈ V , its degree dx is
defined as dx :=

∑
y∈V wxy. If wxy = 1 whenever x ∼ y, we shall call the graph an

unweighted one. We will also consider a locally finite graph G̃ = (Ṽ , Ẽ), which is an
undirected, weighted, connected graph with a possible infinite number of vertices
that satisfies the property that for every x ∈ Ṽ , the number of edges connected to
x is finite.

2.1. The normalized graph Laplace operator and its eigenvalues. In this
subsection, we recall the definition of the normalized graph Laplace operator and
state some of its basic properties. In particular, we will emphasize the relations
between eigenvalues of the Laplace operator and random walks on graphs.

Let C(V ) denote the space of all real-valued functions on the set V and let mx(·)
be a probability measure attached to a vertex x ∈ V .

Definition 1. The Laplace operator ∆ : C(V )→ C(V ) is pointwise defined by

(2.1) ∆f(x) =
∑
y∈V

f(y)mx(y)− f(x), ∀x ∈ V.

The measure mx(·) can also be considered as the distribution of a 1-step random
walk starting from x. We will choose

(2.2) mx(y) =

{ wxy

dx
, if y ∼ x,

0, otherwise,

in the following. Note that x ∼ x is possible when x has a loop. On a graph G
without loops, we can also consider a lazy random walk. A lazy random walk is
a random walk that does not move with a certain probability, i.e. for some x we
might have mx(x) 6= 0. In this case, the lazy random walk on G is equivalent to
the usual random walk on the graph Glazy that is obtained from G by adding for
every vertex x a loop with the weight (dx + mx(x))mx(x), where dx is the degree
of x in G.

With the family (2.2) of probability measures {mx(·)}, ∆ is just the normalized
graph Laplace operator studied for instance in [11, 2] and is unitarily equivalent to
the Laplace operator studied in [9].

We also have a natural measure µ on the whole set V , µ(x) := dx, which gives
an inner product structure on C(V ).

Definition 2. The inner product of two functions f, g ∈ C(V ) is defined as

(2.3) (f, g)µ =
∑
x∈V

f(x)g(x)µ(x).

With this inner product C(V ) becomes a Hilbert space, and we can write C(V ) =
l2(V, µ). By the definition of the degree and the symmetry of the weight function,
we can check that

• µ is invariant w.r.t. {mx(·)}, i.e.
∑
x∈V mx(y)µ(x) = µ(y), ∀y ∈ V ;

• µ is reversible w.r.t. {mx(·)}, i.e. mx(y)µ(x) = my(x)µ(y), ∀x, y ∈ V .

These two facts imply immediately that the operator ∆ is nonpositive and self-
adjoint on the space l2(V, µ). We call λ an eigenvalue of ∆ if there exists some f 6≡ 0
such that ∆f = −λf . Using this convention it follows from the observation that
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∆ is self-adjoint and nonpositive that all its eigenvalues are real and nonnegative.
In fact, it’s well known that (see e.g. Chung [9]) 0 = λ0 ≤ λ1 ≤ · · · ≤ λN−1 ≤ 2.
Since our graph is connected we actually have 0 < λ1. In Chung [9] it is shown, by
proving a discrete version of the Cheeger inequality, that λ1 is a measure for how
easy/difficult it is to cut the graph into two large pieces. Furthermore, it is well
known that λN−1 = 2 if and only if G is bipartite. In Bauer-Jost [2] a Cheeger
type estimate for the largest eigenvalue λN−1 was obtained. The results in Bauer-
Jost [2] show that λN−1 is a measure for how close (the meaning of close is made
precise in [2]) a graph is to a bipartite one. In the following, we will call λ1 the
first eigenvalue and λN−1 the largest eigenvalue of the operator ∆.

2.2. Neighborhood graphs. In this section, we discuss the deep relationship be-
tween eigenvalues estimates for the Laplace operator ∆ and random walks on the
graph G. In particular, we recall the neighborhood graph method developed by
Bauer-Jost [2].

We first introduce the following notation. For a probability measure µ, we denote

µP (·) :=
∑
x

µ(x)mx(·).

Let δx be the Dirac measure at x, then we can write δxP
1(·) := δxP (·) = mx(·).

Therefore the distribution of a t-step random walk starting from x with a transition
probability mx is

(2.4) δxP
t(·) =

∑
x1,...,xt−1

mx(x1)mx1
(x2) · · ·mxt−1

(·)

for t > 1. The idea is now to define a family of graphs G[t], t ≥ 1 that encodes the
transition probabilities of the t-step random walks on the graph G.

Definition 3. The neighborhood graph G[t] = (V,E[t]) of the graph G = (V,E) of
order t ≥ 1 has the same vertex set as G and the weights of the edges of G[t] are
defined in terms of the transitions probabilities of the t-step random walk,

(2.5) wxy[t] := δxP
t(y)dx.

In particular, G = G[1] and x ∼ y in G[t] if and only if there exists a path
of length t between x and y in G. It is easy to see that the neighborhood graph
G[t] is in general a weighted graph with loops, even if the original graph G is an
unweighted, simple graph. Moreover, we note here that the neighborhood graph
method is related to the discrete heat kernel pt(x, y) (see e.g. [1] and the references
therein) on graphs by

pt(x, y) =
wxy[t]

dxdy
.

Lemma 1 (Bauer-Jost [2]). The neighborhood graph G[t] has the following proper-
ties:

(i) If t is even, then G[t] is connected if and only if G is not bipartite. Fur-
thermore, if t is even, G[t] is not bipartite.

(ii) If t is odd, then G[t] is always connected and G[t] is bipartite iff G is
bipartite.

(iii) dx[t] = dx for all x ∈ V .
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We mention the following crucial observation which can for instance be found in
[2]:

Observation 1. The Laplace operator ∆ on G and the Laplace operator ∆[t] on
G[t] are related to each other by the following identity:

∆[t] = −id + (id + ∆)t.

An easy consequence of this observation is that the eigenvalues of ∆[t] satisfy

(2.6) 0 = λ0[t] ≤ λ1[t] ≤ . . . ≤ λN−1[t] ≤ 1

if t is even. The reason why all eigenvalues of G[t] (for t even) are less or equal
to one is that every vertex in the neighborhood graph G[t] has a loop. Because of
equation (2.6) we can assume in the following that bounds for the eigenvalues of
∆[t], t even, are less or equal to one.

The importance of Observation 1 comes from the following corollary that estab-
lishes a connection between estimates for the smallest and the largest eigenvalue
on G and G[t], respectively.

Corollary 1 (Bauer-Jost [2]). (i) Let A[t] be a lower bound for the eigenvalue
λ1[t] of ∆[t], i.e., λ1[t] ≥ A[t]. Then

(2.7) 1− (1−A[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1−A[t])

1
t

if t is even and

(2.8) 1− (1−A[t])
1
t ≤ λ1

if t is odd.
(ii) Let B[t] be an upper bound for the largest eigenvalue λN−1[t] of ∆[t], i.e.

λN−1[t] ≤ B[t]. Then all eigenvalues of ∆ are contained in the union of the
intervals [

0, 1− (1− B[t])
1
t

]⋃[
1 + (1− B[t])

1
t , 2
]

if t is even and

λN−1 ≤ 1− (1− B[t])
1
t

if t is odd.

These results indicate the deep connection between random walks on graphs and
eigenvalue estimate of the Laplace operator. In the rest of this paper we will use
these insights to derive lower bounds for λ1 and upper bounds for λN−1 in terms
of the Ollivier-Ricci curvature of a graph.

2.3. Ollivier-Ricci curvature from a probabilistic view. We consider the
usual graph metric d : V × V → R+ on the set of vertices V , i.e. for two dis-
tinct points x, y ∈ V , d(x, y) is the number of edges in the shortest path connecting
x and y. Then, including the family of probability measures m := {mx(·)}, we
have a structure (V, d,m), on which the definition of Ricci curvature proposed by
Ollivier [21] can be stated.

Definition 4 (Ollivier [21]). For any two distinct points x, y ∈ V , the (Ollivier-)
Ricci curvature of (V, d,m) along (xy) is defined as

(2.9) κ(x, y) := 1− W1(mx,my)

d(x, y)
.
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Here, W1(mx,my) is the transportation distance between the two probability
measures mx and my, in a formula,

(2.10) W1(mx,my) = inf
ξx,y∈

∏
(mx,my)

∑
(x′,y′)∈V×V

d(x′, y′)ξx,y(x′, y′),

where
∏

(mx,my) is the set of probability measures ξx,y that satisfy

(2.11)
∑
y′∈V

ξx,y(x′, y′) = mx(x′),
∑
x′∈V

ξx,y(x′, y′) = my(y′).

The conditions (2.11) simply ensure that we start with the measure mx and end
up with my. Intuitively, W1(mx,my) is the minimal cost to transport the mass of
mx to that of my with the distance as the cost function. We also call such a ξx,y

a transfer plan between mx and my, or a coupling of two random walks governed
by mx and my, respectively. Those ξx,y (ξx,y might not be unique) which attain
the infimum value in (2.10), are called optimal couplings. The optimal coupling
exists in a very general setting. For locally finite graphs the existence follows from
a simple and interesting argument in Remark 14.2 in [15].

By the Kantorovich duality formula for transportation distances W1(mx,my) is
also given in the form,

(2.12) W1(mx,my) = sup
f :Lip(f)≤1

∑
x′∈V

f(x′)mx(x′)−
∑
y′∈V

f(y′)my(y′)

 ,
where Lip(f) := supx 6=y

|f(x)−f(y)|
d(x,y) . For more details about this concept, we refer

to Villani [25, 26], and Evans [10].
For the rest of this paper, let k be a lower bound for the Ollivier-Ricci curvature,

i.e.

(2.13) κ(x, y) ≥ k, ∀x ∼ y.
The Ricci curvature satisfies the following properties (see [21]):

Lemma 2. (i) If κ(x, y) ≥ k for all neighbors x ∼ y, then this is true for all
pairs of vertices x, y ∈ V .

(ii) We have −2 ≤ κ(x, y) ≤ 1.

We will derive more precise lower and upper bounds for κ on a locally finite
graph with loops in Theorem 2 and Theorem 3, respectively (see also Lin-Yau [18]
and Jost-Liu [13] for related results).

Combining (2.9) and (2.13) we obtain

(2.14) W1(mx,my) ≤ (1− k)d(x, y) = 1− k, ∀x ∼ y,
which is essentially equivalent to the well known path coupling criterion on the state
space of Markov chains used to study the mixing time of them (see [4, 15, 23]). We
will utilize this idea to interpret the lower bound of the Ollivier-Ricci curvature
as a control on the expectation value of the distance between two coupled random
walks.

We reformulate Bubley-Dyer’s theorem (see [4] or [15], [23]) in our language.

Theorem 1 (Bubley-Dyer). On (V, d,m), if for each pair of neighbors x, y ∈ V ,
we have the contraction

W1(mx,my) ≤ (1− k)d(x, y) = 1− k,
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then for any two probability measures µ and ν on V , we have

W1(µP, νP ) ≤ (1− k)W1(µ, ν).

With this at hand, it is easy to see that if for any pair of neighbors x, y, κ(x, y) ≥
k, then for any time t and any two x̄, ȳ, which are not necessarily neighbors, the
following is true,

(2.15) W1(δx̄P
t, δȳP

t) ≤ (1− k)td(x̄, ȳ).

We consider two coupled discrete time random walks (X̄t, Ȳt), whose distributions
are δx̄P

t, δȳP
t respectively. They are coupled in a way that the probability

p(X̄t = x̄′, Ȳt = ȳ′) = ξx̄,ȳt (x̄′, ȳ′),

where ξx̄,ȳt (·, ·) is the optimal coupling of δx̄P
t and δȳP

t. In this language, we
can interpret the term W1(δx̄P

t, δȳP
t) as the expectation value of the distance

Ex̄,ȳd(X̄t, Ȳt) between the coupled random walks X̄t and Ȳt.

Corollary 2. On (V, d,m), if κ(x, y) ≥ k, ∀x ∼ y, then we have for any two
x̄, ȳ ∈ V ,

(2.16) Ex̄,ȳd(X̄t, Ȳt) = W1(δx̄P
t, δȳP

t) ≤ (1− k)td(x̄, ȳ).

3. Estimates for Ollivier-Ricci curvature on locally finite graphs
with loops

In [13] Jost-Liu obtained a sharp estimate for Ollivier-Ricci curvature on lo-
cally finite graphs without loops. As mentioned above, neighborhood graphs are
in general weighted graphs with loops. Therefore, for our purposes, we need to
understand the curvature of graphs with loops. In this section, we generalize the
estimates in Jost-Liu [13] for locally finite graphs G̃ = (Ṽ , Ẽ) that may have loops.
This is done by considering a novel optimal transportation plan.

We first fix some notations. For any two real numbers a, b,

a+ := max{a, 0}, a ∧ b := min{a, b}, and a ∨ b := max{a, b}.

We denote Ñx := {z ∈ Ṽ |z ∼ x} as the neighborhood of x and Nx := Ñx ∪ {x}.
Then Nx = Ñx if x has a loop. For every pair of neighbors x, y, we divide Nx, Ny
into disjoint parts as follows.

(3.1) Nx = {x} ∪ {y} ∪N1
x ∪Nxy, Ny = {y} ∪ {x} ∪N1

y ∪Nxy,

where

Nxy = Nx≥y ∪Nx<y
and

N1
x := {z|z ∼ x, z 6∼ y, z 6= y},

Nx≥y := {z|z ∼ x, z ∼ y, z 6= x, z 6= y,
wxz
dx
≥ wzy

dy
},

Nx<y := {z|z ∼ x, z ∼ y, z 6= x, z 6= y,
wxz
dx

<
wzy
dy
}.

In the next figure we illustrate this partition of the vertex set.
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x y

Nx<y

N

Ny
1

Nx
1

x≥y

Theorem 2. On G̃ = (Ṽ , Ẽ), we have for any pair of neighbors x, y ∈ Ṽ ,

κ(x, y) ≥ k(x, y) :=−

1− wxy
dx
− wxy

dy
−

∑
x1∈Nxy

wx1x

dx
∨ wx1y

dy


+

−

1− wxy
dx
− wxy

dy
−

∑
x1∈Nxy

wx1x

dx
∧ wx1y

dy


+

+
∑

x1∈Nxy

wx1x

dx
∧ wx1y

dy
+
wxx
dx

+
wyy
dy

.

Moreover, this inequality is sharp.

Remark 1. On an unweighted graph, the lower bound for the Ricci curvature
k(x, y) for x ∼ y becomes

k(x, y) =−
(

1− 1

dx
− 1

dy
− ](x, y)

dx ∧ dy

)
+

−
(

1− 1

dx
− 1

dy
− ](x, y)

dx ∨ dy

)
+

+
](x, y)

dx ∨ dy
+
c(x)

dx
+
c(y)

dy
,

where ](x, y) :=
∑
x1∈Nxy

1 is the number of triangles containing x, y, c(x) = 0 or

1 is the number of loops at x.

Proof. Since the total mass of mx is equal to one, we obtain from (3.1) the following
identity for neighboring vertices x and y:

(3.2) 1− wxy
dx
−

∑
x1∈Nxy

wx1x

dx
=
wxx
dx

+
∑
x1∈N1

x

wx1x

dx

A similar identity holds for y.
We denote

Ax,y := 1− wxy
dx
− wxy

dy
−

∑
x1∈Nxy

wx1x

dx
∨ wx1y

dy
,

Bx,y := 1− wxy
dx
− wxy

dy
−

∑
x1∈Nxy

wx1x

dx
∧ wx1y

dy
.

Obviously, Ax,y ≤ Bx,y. We firstly try to understand these two quantities.
If Ax,y ≥ 0, we have

(3.3) 1− wxy
dy
−

∑
x1∈Nxy

wx1y

dy
≥ wxy

dx
+

∑
x1∈Nx≥y

(
wxx1

dx
− wx1y

dy

)
,
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i.e., using (3.2) we observe that the mass of my at y and N1
y is no smaller than that

of mx at y and the excess mass at Nx≥y. Rewriting (3.3) in the form

wxy
dy

+
∑

x1∈Nxy

wx1y

dy
≤ 1− wxy

dx
−

∑
x1∈Nx≥y

(
wxx1

dx
− wx1y

dy

)
,

and subtracting the term
∑
x1∈Nxy

wxx1

dx
∧ wx1y

dy
on both sides we obtain

(3.4)
wxy
dy

+
∑

x1∈Nx<y

(
wx1y

dy
− wxx1

dx

)
≤ 1− wxy

dx
−

∑
x1∈Nxy

wxx1

dx
,

i.e., the mass of mx at x and N1
x is larger than that of my at x and the excess mass

at Nx<y.
If Bx,y ≥ 0, we have

(3.5) 1− wxy
dx
−

∑
x1∈Nxy

wxx1

dx
+

∑
x1∈Nx≥y

(
wxx1

dx
− wx1y

dy

)
≥ wxy

dy
,

i.e., the mass of mx at x and N1
x and the excess mass at Nx≥y is no smaller than

that of my at x.
In Jost-Liu [13] it is explicitly described how much mass has to be moved from

a vertex in Nx to which point in Ny, i.e. the exact value of ξx,y(x′, y′), for any
x′ ∈ Nx, y′ ∈ Ny. But in the case with loops it would be too complicated if we
try to do the same thing. Instead, we adopt here a dynamic strategy. That is, we
think of a discrete time flow of mass. After one unit time, the mass flows forward
for distance 1 or stays there. We only need to determine the direction of the flow
according to different cases.

As in Jost-Liu [13], we divide the discussion into 3 cases.

• 0 ≤ Ax,y ≤ Bx,y. In this case we use the following transport plan: Suppose
the initial time is t = 0.
t = 1: Move all the mass at N1

x to x and the excess mass at Nx≥y to y.
We denote the distribution of the mass after the first time step by m1.
We have

W1(mx,m
1) ≤

1− wxx
dx
− wxy

dx
−

∑
x1∈Nxy

wxx1

dx

×1+
∑

x1∈Nx≥y

(
wxx1

dx
− wx1y

dy

)
×1

t = 2: Move one part of the excess mass at x now to fill the gap at Nx<y
and the other part to y. By (3.4) the mass at x after t = 1 is enough
to do so. The distribution of the mass is now denoted by m2. We have

W1(m1,m2) ≤
∑

x1∈Nx<y

(
wx1y

dy
− wxx1

dx

)
× 1+

1− wxy
dx
−

∑
x1∈Nxy

wxx1

dx

− ∑
x1∈Nx<y

(
wx1y

dy
− wxx1

dx

)
− wxy

dy

× 1
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t = 3: Move the excess mass at y now to N1
y . We denote the mass after

the third time step by m3 = my. We have

W1(m2,my) ≤

[1− wxy
dx
−

∑
x1∈Nxy

wxx1

dx

− ∑
x1∈Nx<y

(
wx1y

dy
− wxx1

dx

)
− wxy

dy

+
wxy
dx

+
∑

x1∈Nx≥y

(
wxx1

dx
− wx1y

dy

)
− wyy

dy

]
× 1

By triangle inequality and (2.10), we get

W1(mx,my) ≤W1(mx,m
1) +W1(m1,m2) +W1(m2,my)

=3− 2
wxy
dx
− 2

wxy
dy
− 2

∑
x1∈Nxy

wxx1

dx
∧ wx1y

dy
−

∑
x1∈Nxy

wxx1

dx
∨ wx1y

dy

− wxx
dx
− wyy

dy
.

Moreover, if the following function can be extended as a function on the
graph such that Lip(f) ≤ 1, (i.e., if there are no paths of length 1 between
N1
x and Nx<y, nor paths of length 1 between N1

y and Nx≥y, nor paths of

length 1 or 2 between N1
x and N1

y ,)

f(z) =


0, if z ∈ N1

y ;
1, if z ∈ {y} ∪Nx<y;
2, if z ∈ {x} ∪Nx≥y;
3, if z ∈ N1

x ,

then by Kantorovich duality (2.12), we can show that the inequality above
is actually an equality. Recalling the definition of κ(x, y), we have proved
the theorem in this case.
• Ax,y < 0 ≤ Bx,y. We use the following transfer plan:

t = 1: We divide the excess mass of mx at Nx≥y into two parts. One
part together with the mass of mx at y is enough to fill gaps at y and
N1
y . Since (3.3) doesn’t hold in this case, this is possible. We move

this part of mass to y and the other part to x. We also move all the
mass of mx at N1

x to x.
t = 2: We move the excess mass at x now to Nx<y and the excess mass

at y to N1
y .

Applying this transfer plan, we can prove (we omit the calculation here)

W1(mx,my) ≤ 2− wxy
dx
− wxy

dy
− 2

∑
x1∈Nxy

(
wxx1

dx
∧ wx1y

dy

)
− wxx

dx
− wyy

dy
.

Moreover, if the following function can be extended as a function on the
graph such that Lip(f) ≤ 1, (i.e., if there are no paths of length 1 between
N1
x ∪Nx≥y and N1

y ∪Nx<y,)

f(z) =


0, if z ∈ N1

y ∪Nx<y;
1, if z = x or z = y;
2, if z ∈ N1

x ∪Nx≥y,
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then by Kantorovich duality (2.12), we can check that the inequality above
is actually an equality.
• Ax,y ≤ Bx,y < 0. We use the following transport plan:

t = 1: Move the mass of mx at N1
x and Nx≥y to x. Since now (3.5)

doesn’t hold, we need to move one part of the mass my(y) to x and
the other part to N1

y and Nx<y.
Applying this transfer plan, we can calculate

W1(mx,my) ≤ 1−
∑

x1∈Nxy

(
wxx1

dx
∧ wx1y

dy

)
− wxx

dx
− wyy

dy
.

Since the following function can be extended as a function on the graph
such that Lip(f) ≤ 1,

f(z) =

{
0, if z ∈ {x} ∪Nx<y ∪N1

y ;
1, if z ∈ {y} ∪Nx≥y ∪N1

x ,

we can check the inequality above is in fact an equality by Kantorovich
duality. That is, in this case for any x ∼ y,

κ(x, y) =
∑

x1∈Nxy

(
wxx1

dx
∧ wx1y

dy

)
+
wxx
dx

+
wyy
dy

.

�

We also have a generalization of the upper bound in Jost-Liu [13] on G̃.

Theorem 3. On G̃ = (Ṽ , Ẽ), we have for every pair of neighbors x, y,

κ(x, y) ≤
∑

x1∈{x}∪{y}∪Nxy

wx1x

dx
∧ wx1y

dy
.

Proof. I :=
∑
x1∈{x}∪{y}∪Nxy

wx1x

dx
∧ wx1y

dy
is exactly the mass of mx which we need

not move. The other mass need to be moved for at least distance 1. So we have
W1(mx,my) ≥ 1− I, which implies κ(x, y) ≤ I, for x ∼ y. �

Example 1. We consider a lazy random walk on an unweighted complete graph
KN with N vertices governed by mx(y) = 1/N,∀x, y. Or equivalently , we consider

the graph Klazy
N . Using Theorem 2 and Theorem 3, we get for any x, y

1 =
N − 2

N
+

1

N
+

1

N
≤ κ(x, y) ≤ 1

N
·N = 1.

That is, in this case, both the lower and the upper bound are sharp.

An immediate consequence of Theorem 3 is the following important observation.

Corollary 3. If there exists two vertices x ∼ y in G such that ](x, y) = c(x) =
c(y) = 0 then κ(x, y) ≤ 0 and hence k ≤ 0.

This corollary shows that positive Ricci curvature is a quite strong requirement.
For instance, in a loopless graph, already the existence of a single edge that is not
contained in a triangle prevents the graph from having a positive Ricci curvature
lower bound. We will show in the following that the neighborhood graph technique
can be used to reduce the influence of such edges. This observation is particularly
important in the next section when we study eigenvalue estimates in terms of the
Ricci curvature.
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Neighborhood graphs are nothing but coarse representations of the original
graph. More precisely, the neighborhood graphs G[t] encode the larger scale struc-
ture of the original graph G, where larger values of t stand for larger scales, in
the sense that an edge between two nodes in G[t] is equivalent to the existence
of a path of length t in the original graph G between these two nodes. In order
to see how neighborhood graphs can reduce the influence of single edges, we state
the following simple observations that follow immediately from the definition of the
neighborhood graphs.

Observation 2. • Triangles and loops are preserved when we go to higher
order neighborhood graphs, i.e. if (xyz) form a triangle in G[s] (x has a
loop in G[s]) then they from a triangle in G[t] (x has a loop in G[t]) for all
t > s.
• If t is even, every vertex has a loop in G[t].
• If t is odd, the edge set of G is a subset of the edge set of G[t], i.e. E ⊆ E[t].
• If in G a vertex x is not contained in a triangle but contained in a cycle of

length 3t then x is contained in a triangle in G[t].
• If in G a vertex x is contained in a cycle of odd length 2l + 1, l ≥ 1, then
x is contained in a triangle (in fact in a complete graph K2l+1) in G[t] if
t ≥ 2l − 1.
• If in G a vertex x is not contained in a triangle but x ∼ y where y is

contained in a triangle, then x is also contained in a triangle in G[t] for all
t ≥ 2.

These observations show, unless G is bipartite, that the number of triangles
and loops will monotonically increase when we go from G to G[t]. Hence even
though the Ricci curvature of the original graph is negative, Corollary 3 does not
exclude that the Ricci curvature of the neighborhood graph G[t] is positive. Indeed
we will show in Theorem 5 that for all graphs that are not bipartite there exists
a t′ ∈ N such that the Ricci curvature of the neighborhood graph G[t] satisfies
k[t] := minx,y κ[t](x, y) > 0 for all t > t′.

4. Estimates of the spectrum in terms of Ollivier-Ricci curvature

In this section, we obtain nontrivial estimates for the extremal eigenvalues of
the normalized Laplace operator in terms of the Olliver-Ricci curvature of the
neighborhood graphs. In particular, our new estimates improve the eigenvalue
estimates obtained by Olliver in [21].

In Proposition 30 of [21], Ollivier proved a spectral radius estimate which works
on a general metric space with random walks. In particular, on finite graphs, it can
be stated as follows.

Theorem 4 (Ollivier). On (V, d,m), if κ(x, y) ≥ k, ∀x ∼ y, then the eigenvalues
of the normalized graph Laplace operator ∆ satisfy

k ≤ λ1 ≤ . . . ≤ λN−1 ≤ 2− k.

The lower bound for λ1 is a discrete analogue of the estimate for the smallest
nonzero eigenvalue of the Laplace-Beltrami operator on a Riemannian manifold by
Lichnerowicz [16]. As pointed out by Ollivier [21], this result is also related to the
coupling method for estimates of the first eigenvalue in the Riemannian setting de-
veloped by Chen-Wang [8] (which leads to a refinement of the eigenvalue estimate



CURVATURE AND THE SPECTRUM OF THE GRAPH LAPLACE OPERATOR 13

of Li-Yau [17]), see also the surveys Chen [6, 7]. The corresponding result of Corol-
lary 2 in the smooth case, i.e., controlling the expectation distance of two coupled
Markov chains in terms of the lower bound of Ricci curvature on a Riemannian
manifold, is a key step in Chen-Wang’s method.

A direct proof of Theorem 4 can be found in [21]. Here for readers’ conve-
nience, we present an analogue of Chen-Wang’s method in the discrete setting,
which motivated us to combine the Ollivier-Ricci curvature and the neighborhood
graph method via random walks. It reflects the deep connection between eigenvalue
estimates and random walks or heat equations.

Proof. We consider the transition probability operator P : l2(V, µ) → l2(V, µ) de-
fined by Pf(x) :=

∑
y f(y)mx(y) =

∑
y f(y)δxP (y). Then we have P tf(x) =∑

y f(y)δxP
t(y). We construct a discrete time heat equation,

(4.1)


f(x, 0) = f1(x),
f(x, 1)− f(x, 0) = ∆f(x, 0),
f(x, 2)− f(x, 1) = ∆f(x, 1),
· · ·
f(x, t+ 1)− f(x, t) = ∆f(x, t),

where f1(x) satisfies ∆f1(x) = −λf1(x) = Pf1(x) − f1(x) for λ 6= 0. Iteratively,
one can find the solution of the above system of equations as

(4.2) f(x, t) = P tf1(x) = (1− λ)tf1(x).

We remark here that the solution of the heat equation on a Riemannian manifold
with the eigenfunction as the initial value is f(x, t) = f1(x)e−λt, which also involves
information about both the eigenvalue λ and the eigenfunction f1(x).

Then we have for any x̄, ȳ ∈ V

|1− λ|t|f1(x̄)− f1(ȳ)| = |f(x̄, t)− f(ȳ, t)| = |P tf1(x̄)− P tf1(ȳ)|

≤
∑
x̄′,ȳ′

|f(x̄′)− f(ȳ′)|ξx̄,ȳt (x̄′, ȳ′)

≤ Lip(f1)Ex̄,ȳd(X̄t, Ȳt) ≤ Lip(f1)(1− k)td(x̄, ȳ).

Here, Lip(f) is always finite since the underlying space V is a finite set. In the
last inequality we used Corollary 2. From an analytic point of view, the above
calculation can be seen as a gradient estimate for the solution of the heat equation.

Since the eigenfunction f1 for the eigenvalue λ is orthogonal to the constant
function, i.e. (f1,1)µ = 0, we can always find x0, y0 ∈ V such that |f1(x0) −
f1(y0)| > 0. It follows that

0 < |f1(x0)− f1(y0)| ≤
(

1− k
|1− λ|

)t
Lip(f1)d(x0, y0) for all t.

To prevent a contradiction when t→∞, we need |1− λ| ≤ 1− k which completes
the proof. �

As an immediate consequence of Theorem 4 and Theorem 2 we obtain an esti-
mate for the largest eigenvalue in terms of the number of triangles and loops in the
graph.
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Corollary 4. On G = (V,E), the largest eigenvalue satisfies

λN−1 ≤ 2−min
x∼y

k(x, y),

where k(x, y) is defined in Theorem 2.

By considering the graph Klazy
N in Example 1 it is easy to see that Ollivier’s

estimates in Theorem 4 can be sharp for certain graphs. However, from Corollary
3 we know that a positive lower curvature bound is a strong restriction on a graph.
In the open Problem G in [22] Olliver asks for the possibility to relax this strong
assumption. We will show in the following how to obtain nontrivial estimates for
all graphs that are not bipartite by using the neighborhood graph technique. This
gives an answer to Ollivier’s problem in the finite graph setting.

Before we show how one can improve Olliver’s result by using the neighborhood
graph technique, we show how this technique can be used to obtain upper bounds
for λN−1 from lower bounds for λ1. We do this by carefully comparing the Olliver-
Ricci curvature on a graph G and its neighborhood graphs G[t].

If we interpret the graph G = (V,E) as a structure (V, d,m = {δxP}), then
by (2.5) its neighborhood graph G[t] = (V,E[t]) can be considered as a structure
(V, d[t], {δxP t}). So the first step should be to estimate the graph metric on G and
the graph metric on G[t] by each other.

Lemma 3. For any x, y ∈ V , we have

(4.3)
1

t
d(x, y) ≤ d[t](x, y),

where we use the convention that d[t](x, y) =∞ if G[t] is not connected. By Lemma
1 this happens iff G is bipartite and t is even.

Proof. If G[t] is not connected, then (4.3) is trivially satisfied. Otherwise, we can
find a shortest path x0 = x, x1, . . . , xl = y, between x and y in G[t], i.e. l =
d[t](x, y). For xi, xi+1, i = 0, . . . , l − 1, by definition of neighborhood graph, we
have d(xi, xi+1) ≤ t in G. Equivalently,

1

t
d(xi, xi+1) ≤ 1 = d[t](xi, xi+1).

Summing over all i, we get

1

t

l−1∑
i=0

d(xi, xi+1) ≤ d[t](x, y).

Then the triangle inequality of d on G gives (4.3). �

Remark 2. In fact, when t is larger than the diameter D of the graph G, we have
a better estimate

(4.4)
1

t
d(x, y) <

1

D
d(x, y) ≤ 1 ≤ d[t](x, y).

Lemma 4. If E ⊆ E[t], then d[t](x, y) ≤ d(x, y).

Proof. The proof is obvious. �

The importance of Lemma 4 comes from the observation that when the Ollivier-
Ricci curvature of the graph G is positive, E ⊆ E[t] is satisfied for all t and hence
Lemma 4 is applicable. This can be seen as follows. Corollary 3 implies that if
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k > 0, then for all (x, y) ∈ E we have ](x, y) 6= 0 or c(x) 6= 0 or c(y) 6= 0 which in
turn implies (see Observation 2) that (x, y) ∈ E[t] for all t.

Lemma 5. Let k be a lower bound for κ on G. If E ⊆ E[t], then the curvature
κ[t] of the neighborhood graph G[t] satisfies

(4.5) κ[t](x, y) ≥ 1− t(1− k)t, ∀x, y ∈ V.

Proof. Let W
d[t]
1 , W d

1 indicate the different cost functions used in these two quan-
tities. By Lemma 4, Corollary 2 and Lemma 3, we get

W
d[t]
1 (δxP

t, δyP
t) ≤W d

1 (δxP
t, δyP

t) ≤ (1− k)td(x, y) ≤ t(1− k)td[t](x, y),

where we used in the first inequality that the transportation distance (2.10) is
linear in the graph distance d(·, ·). Recalling the definition of the curvature, we
have proved (4.5). �

Remark 3. Now we have reached the point where we can give a short geometric
proof of the upper bound of the largest eigenvalue in Theorem 4. First assume that
k > 0. In this case E ⊂ E[t] and thus we can use Lemma 5. From Lemma 5 and
λ1 ≥ k, we know on G[t],

λ1[t] ≥ 1− t(1− k)t.

Then by using Corollary 1 (i), we get for any even number t,

λN−1 ≤ 1 + t
1
t (1− k).

Letting t→ +∞, we get λN−1 ≤ 2−k. If we assume that k ≤ 0, then λN−1 ≤ 2−k
is trivially satisfied.

Using the neighborhood graph technique, we further obtain the following gener-
alization of Theorem 4:

Theorem 5. Let k[t] be a lower bound of the Ollivier-Ricci curvature of the neigh-
borhood graph G[t]. Then for all t ≥ 1 the eigenvalues of ∆ on G satisfy

(4.6) 1− (1− k[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t])

1
t .

Moreover, if G is not bipartite, then there exists a t′ ≥ 1 such that for all t ≥ t′ the
eigenvalues of ∆ on G satisfy

0 < 1− (1− k[t])
1
t ≤ λ1 ≤ · · · ≤ λN−1 ≤ 1 + (1− k[t])

1
t < 2.

Remark 4. Olliver-Ricci curvature is not well defined for two vertices which belong
to two different connected components. However, by Lemma 1, G[t] is disconnected
iff G is bipartite and t is even. In this case we use the convention in (4.6) that
k[t] = −∞.

Proof. Combining Theorem 4, and Corollary 1 immediately yields (4.6).
The second part of this Theorem is proved in two steps. In the first step, we

will show that if G is not bipartite then there exists a t′ such that for all t ≥ t′

the neighborhood graph G[t] of G satisfies wxy[t] 6= 0 for all x, y ∈ V , i.e. G[t] is a
complete graph and each vertex has a loop. In the second step, we show that any
graph that satisfies wxy 6= 0 for all x, y ∈ V has a positive lower curvature bound,
i.e. k > 0. This then completes the proof.

Step 1: By the definition of the neighborhood graph it is sufficient to show that
for all t ≥ t′ there exists a path of length t between any pair of vertices. Since
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G is not bipartite it follows from the definition of bipartiteness that there exists a
path of even and a path of odd length between any pair of vertices in the graph.
Given a path of length L between x and y then we can find a path of length L+ 2
between x and y as follows: We go in L steps from x to y and then from y to one of
its neighbors and then back to y. This is a path of length L+ 2 between x and y.
Since G is finite, it follows that there exists a t′ such that for every pair of vertices
there exists paths of length t for all t ≥ t′.

Step 2: Given a graph that satisfies wxy 6= 0 for all x, y ∈ V .
Since each vertex in the graph is a neighbor of all other vertices, it is clear that

we can move the excess mass of mx for distance 1 to anywhere. Therefore

W1(mx,my) ≤ 1−
∑
x1∈V

wxx1

dx
∧ wx1y

dy
,

which implies

κ(x, y) ≥
∑
x1∈V

wxx1

dx
∧ wx1y

dy
.

By Theorem 3, it follows that the above inequality is in fact an equality. Hence for
all x, y ∈ V , we have

κ(x, y) =
∑
x1∈V

wxx1

dx
∧ wx1y

dy
≥ Nminx,y wxy

maxx dx
≥ minx,y wxy

maxx,y wxy
> 0,

since the weights wxy are positive for every pair (x, y) of vertices.
This completes the proof. �

Example 2. We consider the unweighted cycle C5 consisting of 5 vertices. The
first and largest eigenvalue of ∆ on C5 are λ1 = 1 − cos 2π

5

.
= 0.6910 and λ4 =

1 − cos 4π
5

.
= 1.8090. It is easy to check that the optimal lower bound k for the

curvature is 0. So in this case Ollivier’s estimates in Theorem 4 only yield trivial
estimates.

For the neighborhood graphs C5[2], C5[3], and C5[4] we find that the optimal lower
bound for the Olliver-Ricci curvature is k[2] = 1/4, k[3] = 3/8, and k[4] = 1/2,
respectively. Hence Theorem 5 yields nontrivial estimates, even if the lower bound
for the Ricci curvature of the original graph is zero.

From the proof of Theorem 5 we see that for all graphs G, k[t] eventually becomes
positive for sufficiently large t. The next two theorems are concerned with the
behavior of k[t] as t→∞.

Theorem 6. If G is not bipartite, the limit

lim
t→∞

log(1− k[t])

t
:= −a

exists with a ∈ (0,+∞]. That means, k[t] behaves like 1−P (t)e−at as t→∞ where
P (t) is a polynomial in t.

Proof. Let t′ be as in the the proof of Theorem 5 and let s, t ≥ t′. This immediately
implies that

(4.7) d[t+ s](x, y) = d[s](x, y) = d[t](x, y) = 1, ∀x 6= y.
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Let x, y be the pair of vertices in G[t + s] which attains minx,y κ[t + s](x, y), we
have

1− k[t+ s] = W
d[t+s]
1 (δxP

t+s, δyP
t+s) = W

d[s]
1 (δxP

t+s, δyP
t+s)

≤ (1− k[s])W
d[s]
1 (δxP

t, δyP
t) = (1− k[s])W

d[t]
1 (δxP

t, δyP
t)

≤ (1− k[s])(1− k[t]),

where we used several times (4.7), in the first inequality Theorem 1 and in the last
inequality (2.14) and (4.7). It follows that log(1− k[t]) is subadditive, i.e.

log(1− k[t+ s]) ≤ log(1− k[t]) + log(1− k[s]) ∀s, t ≥ t′.

We can suppose that log(1 − k[t]) is finite for every t. Otherwise there exists t0
such that k[t0] = 1, which implies k[t] = 1, ∀t ≥ t0 and then the limit exists and is
equal to −∞. Therefore we can use an extension of Fekete’s subadditivity Lemma
by Hammersley [12] to conclude that the limit −a exists and −∞ ≤ −a ≤ 0.
Furthermore, let t̃ := t′t, t = 1, 2, . . ., be a subsequence. Since E[t̃] = E[t′], we can
use Lemma 5 and obtain

(1− k[t̃])
1
t̃ ≤ t

1
t̃ (1− k[t′])

t
t̃ =

(
t̃

t′

) 1
t̃

(1− k[t′])
1
t′ .

Therefore limt̃→∞ log(1− k[t̃])
1
t̃ ≤ log(1− k[t′])

1
t′ < 0, which implies a > 0. �

Remark 5. If G is unweighted, non-bipartite and has no self-loop, we have N
N−1 ≤

λN−1 ≤ 1 + (1− k[t])
1
t . Therefore in this case a ≤ log(N − 1).

Theorem 7. If G is not bipartite, we have for t ≥ t′

k[t] ≥ 1− 2Ne−t(1−λ) maxx dx
minx dx

,

where λ = maxi 6=0 |1− λi| > 0 and again t′ is as in the proof of Theorem 5.

Proof. Let π (π(x) = dx
vol(G) ) be the stationary distribution of the random walk.

Let t ≥ t′ and x, y be the pair of vertices in G[t] which attains minx,y κ[t](x, y),
noting (4.7) we have

k[t](x, y) = 1−W d[t]
1 (mx[t],my[t]) ≥ 1−N max

x,y,z
|mx[t](z)−my[t](z)|

≥ 1− 2N max
x,z
|δxP t(z)− π(z)|

where we used in the first inequality that one has to move at most N times the
maximal difference between any two mx and my. Chung [9] showed that

maxx,z |δxP t(z)− π(z)|
maxx π(x)

≤ max
x,z

|δxP t(z)− π(z)|
π(z)

≤ e−t(1−λ) vol(G)

minx dx
.

Thus we have

max
x,z
|δxP t(z)− π(z)| ≤ e−t(1−λ) maxx dx

minx dx

which completes the proof. �
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5. Estimates for the largest eigenvalue in terms of the number of
joint neighbors

In Bauer-Jost [2] it is shown that the next lemma is a simple consequence of
Observation 1.

Lemma 6. Let u be an eigenfunction of ∆ for the eigenvalue λ. Then,

(5.1) 2− λ =
(u,∆[2]u)µ
(u,∆u)µ

=

∑
x,y wxy[2](u(x)− u(y))2∑
x,y wxy(u(x)− u(y))2

.

Lemma 6 can be used to derive further estimates for the largest eigenvalue λN−1

from above and below. We introduce the following notations:

Definition 5. Let Ñx be the neighborhood of vertex x as in Section 3. The minimal
and the maximal number of joint neighbors of any two neighboring vertices is defined
as ]̃1 := minx∼y(](x, y) + c(x) + c(y)) and ]̃2 := maxx∼y(](x, y) + c(x) + c(y)),
respectively. Furthermore, we define W := maxx,y wxy and w := minx,y;x∼y wxy.

Theorem 8. We have the following estimates for λN−1:

(i) If E(G) ⊆ E(G[2]) then

λN−1 ≤ 2− w2

W

]̃1
maxx dx

.

(ii) If E(G[2]) ⊆ E(G) then

2− W 2

w

]̃2
minx dx

≤ λN−1

Proof. On the one hand, we observe that if E(G) ⊆ E(G[2]), then for every pair of
neighboring vertices x ∼ y in G

wxy[2]

wxy
=

∑
z

1
dz
wxzwzy

wxy
≥ w2

W

]̃1
maxx dx

.(5.2)

On the other hand if E(G[2]) ⊆ E(G) then for every pair of neighboring vertices
x ∼ y in G(2) we have

(5.3)
wxy[2]

wxy
=

∑
z

1
dz
wxzwzy

wxy
≤ W 2

w

]̃2
minx dx

.

Substituting the inequalities (5.2) and (5.3) in equation (5.1) completes the proof.
�

For unweighted regular graphs, Theorem 8 (i) improves the estimate λN−1 ≤
2− k. Since λN−1 ≤ 2− k trivially holds if k ≤ 0 we only consider the case when
k > 0 is a lower curvature bound. The discussion after Lemma 4 shows that k > 0
implies that E(G) ⊆ E(G[2]) and hence we can apply Theorem 8 (i) in this case.
From Theorem 3 it follows that for an unweighted graph

κ(x, y) ≤ ](x, y)

dx ∨ dy
+
c(x)

dx
+
c(y)

dy

for all pairs of neighboring vertices x, y. In the case of a d-regular graph G this
implies that a lower bound k for the Ollivier-Ricci curvature must satisfy

k ≤ ]̃1
d
.
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Hence for an unweighted d-regular graph Theorem 8 implies

λN−1 ≤ 2− ]̃1
d
≤ 2− k.
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