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Abstract. A CNF formula is called k-satisfiable, if every subformula containing
at most k clauses is satisfiable. What is the largest ratio r such that for any k-
satisfiable formula F , there is an assignment satisfying at least a fraction r of
F ? This question can be asked for formulas with weighted and formulas with
unweighted clauses. For weighted k-satisfiable formulas, denote that ratio by rk.
For unweighted formulas, denote it by sk. The numbers rk have already been
studied, but little has been known for sk. We show that sk and rk differ for k = 2, 3.
For k = 2, we show that s2 = 2

3
, which is larger than r2 = (

√
5−1)/2 ≈ 0.619, the

inverse of the golden ratio. Further, we show that r3 = 2

3
< 21/31 ≤ s3 ≤ 7/10.

1 Introduction

A CNF formula F over a finite variable set V is a set of clauses; a clause C is a set of
literals; a literal is either a variable x ∈ V or its negation x̄. We require that no clause
contains a variable and its negation simultaneously. If l is a literal, then vbl(l) is its
variable, i.e., vbl(x) = vbl(x̄) = x for x ∈ V . Let F be a CNF formula over variables
set V and µ : F → R+ a clause weight function. The function µ extends to subsets
G ⊆ F by µ(G) :=

∑

C∈G µ(C). For a truth assignment α : V → {0, 1}, let µα(F )
denote µ ({C ∈ F |α satisfies C}). Finally, let µ∗(F ) = maxα µα(F ) .

Definition 1.1. A CNF formula F is called k-satisfiable if any subformula G ⊆ F with

|G| ≤ k is satisfiable.

Definition 1.2. Define rk as follows:

rk := inf

{

µ∗(F )

µ(F )

∣

∣ F is k-satisfiable, µ : F → R+

}

, (1)

and for formulas with unit clause weights, we define

sk := inf

{

µ∗(F )

µ(F )

∣

∣ F is k-satisfiable, µ : F → R+, µ(C) = 1 ∀ C ∈ F

}

. (2)

2 Previous Results

k-satisfiable formulas and the numbers rk were first introduced and studied by Lieberherr
and Specker [1]. The asymptotic behavior of the rk was determined by Trevisan [2] and
later Král [3].

Theorem 2.1 (Lieberherr and Specker [1, 4]). r1 = 1
2 , r2 =

√
5−1
2 and r3 ≥ 2

3 .



II

Proof. We give a proof by Yannakakis [5], which is simpler than the original proof
of Lieberherr and Specker. It is not difficult to see that r1 = 1/2. For r2 and r3, fix some
p, 0 ≤ p ≤ 1, and choose a random truth assignment α with

Pr (α(x) = 1) =







p, if {x} ∈ F,
1− p, if {x̄} ∈ F,
1
2 otherwise.

independently for each variable. Note that since {{x}, {x̄}} 6⊆ F for any variable x, the

probability distribution is well-defined. If F is 2-satisfiable, choose p =
√

5−1
2 and observe

that each clause is satisfied with probability at least p. If F is 3-satisfiable, choose p = 2
3 ,

and again, each clause is satisfied with probability at least 2
3 . The claim that r2 ≥

√
5−1
2

and r3 ≥ 2
3 follows from linearity of expectation. We omit details. �

Lieberherr and Specker [1] also defined a family (Fi)i∈N of 2-satisfiable formulas for

which
√

5−1
2 is asymptotically tight. They conjectured that limk→∞ rk = 1, which was

disproven by Huang and Lieberherr [6], who showed that limk→∞ rk ≤ 3/4. Trevisan [2],
showed that limk→∞ rk = 3/4. Trevisan [2] later prvoed that limk→∞ rk = 3/4 and
gives lower bounds on the rk. These were later improved by Král [3], who in addition
determined the exact value of r4.

3 Our Results

We show that r3 ≤ 2
3 . It is a curious fact that most authors cite Lieberherr and Specker [4]

to have proven that r3 = 2
3 , but actually they only proved r3 ≥ 2

3 , and state that “Un-
fortunately we have not been able to determine τ3 exactly”. We remedy this by giving
a family (Fi)i∈N of 3-satisfiable formulas for which 2

3 is tight in the limit. Further, we
show that this limit cannot be achieved by a single 3-satisfiable formula, i.e. we show
that µ∗(F )/µ(F ) > 2

3 for all 3-satisfiable formulas F .

We study the numbers sk, the “unweighted” counterpart of rk. Surely, sk ≥ rk, for any
k, and Trevisan’s proof [2] extends to sk, showing that limk→∞ sk = 3/4. For particular
values of k however, rk and sk can differ. We show that s2 = 2

3 and 2
3 = r3 < s3 ≤ 7/10.

Theorem 3.1. r3 ≤ 2
3 .

Proof Idea. Choose variables X = {x1, . . . , xn} for n even. Add the unit clauses
{xi}, i = 1, . . . , n to F . For any balanced partition X = U ] V , i.e., |U | = |V | = n/2,
introduce a variable yUV and set GUV := {{ū, yUV } | u ∈ U}∪ {{v̄, ȳUV } | v ∈ V }. Add
all these GUV to F . Fix an assignment α to the variables xi, which sets k of the xi to 1.
Choose a balanced partition at random, and with high probability, roughly k/2 variables
in U and roughly k/2 in V are set to 1. Hence setting yUV to 0 or 1 satisfies roughly
the same number of clauses in GUV , namely all but k/2. Choose the clause weights such
that the total weight of all GUV is twice the total weight of X . Then no matter how
you choose k, you will satisfy roughly 2

3 of the weight. To fill out the details, one uses
standard tail inequalities of probability theory. �

Theorem 3.2. For any 3-satisfiable formula F and any weight function µ,
µ∗(F )
µ(F ) > 2

3 .

This means that the lower bound r3 ≥ 2
3 is only tight in the limit.



III

Proof. Consider the probability distribution from the proof of Theorem 2.1 with
p = 2

3 . Every clause is satisfied with probability ≥ 2
3 , and some with strictly larger

probability. If such a clause is in F , the expectation of the number of satisfied clauses is
> 2

3 |F |, and we are done. Otherwise, one can show that the number of satisfied clauses
is a random variable with positive variance. Hence with positive probability, it takes on
values above its expectation, which is 2

3 . Therefore, there is an assginment satisfying
strictly more than 2

3 . �

We do not know whether there are k ≥ 2 which have a tight formula F with
µ∗(F )/µ(F ) = rk. However, we know that this can only be the case if rk is rational.
Therefore, Theorem 3.2 is interesting because it shows that rk being rational is not
sufficient for a tight formula to exist.

Theorem 3.3. For any k ≥ 1, if rk 6∈ Q, then

µ∗(F )

µ(F )
> rk

for any k-satisfiable formula F .

Proof. For a formula F , let the optimal weight function µ̃ be the weight function
minimizing µ∗(F )/µ(F ). It is not difficult to see that this optimization problem can
be modelled as a linear program with integer coefficients. Observe that µ∗(F )/µ(F ) ≥
µ̃∗(F )/µ̃(F ). Hence if there is a single tight formula F and a weight function µ with
µ∗(F )/µ(F ) = rk , then rk is the solution of the described linear program, and hence it
is rational. �

Unweighted Formulas

As for formulas with unit clause weights, it is easy to see that sk ≥ s2, and s1 = r1 = 1
2 .

However, it turns out that s2 = 2
3 , which is larger than r2 =

√
5−1
2 ≈ 0.619.

Theorem 3.4. s2 = 2
3 .

Proof. Let F be a 2-satisfiable formula. For a variable x, define

d+(x) := |{C ∈ F | x ∈ C and C \ {x} contains only negative literals}|

d−(x) := |{C ∈ F | x̄ ∈ C and C contains only negative literals}|

Switching a variable x means replacing each occurrence of x in F by x̄ and vice versa.
This, of course, does not change µ∗(F ). As long as possible, apply the following rules:

1. If d−(x) > d+(x), switch x

2. If d−(x) = d+(x) and {x̄} ∈ F , switch x.

It is easy to see that this process terminates after a finite number of steps. In the
end, d+(x) ≥ d−(x) for any variable x, and d+(x) ≥ d−(x)+1 if {x̄} ∈ F . Let F− := {C ∈
F | C contains only negative literals}, and F + := {C ∈ F | C contains exactly one positive literal}.



IV

We calculate:

|F+| =
∑

x∈V,{x̄}∈V

d+(x) +
∑

x∈V,{x̄}6∈V

d+(x)

≥
∑

x∈V,{x̄}∈V

(1 + d−(x)) +
∑

x∈V,{x̄}6∈V

d−(x)

= |F−| +
∑

x∈V

d−(x)

=
∑

C∈F−

(1 + |C|) ≥ 2|F−| .

Hence |F−| ≤ |F |/3, and the assignment α = (1, . . . , 1), which sets each variable to 1,
satisfies at least 2

3 of all clauses of F . For an upper bound, the formula {{x}, {y}, {x̄, ȳ}}
demonstrates that s2 ≤ 2

3 . �

Theorem 3.5. For 3-satisfiable formulas, we obtain the following bounds:

21

31
≤ s3 ≤

7

10
,

where 21/31 ≈ 0.677 > 2
3 = r3.

Proof. To show that s3 ≤ 7/10, consider the following formula:
{

{a}, {b}, {c}, {d}, {ā, w}, {b̄, w}, {c̄, w̄}, {d̄, w̄}, {ā, b̄, w̄}, {c̄, d̄, w}
}

.

This formula is 3-satisfiable and has 10 clauses, but no assignment satisfies more than 7
clauses.

To prove the lower bound, let F be any 3-satisfiable formula. We can assume F
contains only positive unit clauses (if {x̄} ∈ F , switch x). Let X := {x ∈ V | {x} ∈ F}.
Write F = F1 ] F2 with

F1 := {{x} ∈ F} ∪ {{x̄, l} ∈ F | x ∈ X, vbl(l) ∈ V \ X}

and F2 := F \ F1. We will define two random assignments α and β. Define α such that
Pr(α(x) = 1) = 2

3 for x ∈ X , and Pr(α(u) = 1) = 1/2 for u ∈ V \ X . It is not difficult
to see that Pr(α satisfies C) = 2

3 for C ∈ F1 and Pr(α satisfies D) ≥ 19/27 ≈ 0.703 for
D ∈ F2.

Next, we define the second random assignment β. If x ∈ X and x̄ does not occur in
F1, set Pr(β(x) = 1) = 3/4. Otherwise, there is a clause Cx = {x̄, l} ∈ F1. Arbitrarily
choose such a clause and call vbl(l) the master variable of x and Cx the master clause.
Choose β(u) to be 1 with probability 1/2, independently for each variable u ∈ V \ X .
Depending on β(u), set each variable x with master u such that its master clause is
satisfied. Note that unit clauses having a master clause are satisfied with probability 1/2,
and master clauses are satisfied with probability 1. Each remaining 2-clauses is satisfied
with probability 3/4 (here we use that if {x̄, l} is the master clause of x, {x̄, l̄} 6∈ F ,
because of 3-satisfiability). A clause in F2 is satisfied with probability ≥ 1/2. Hence, the
expected number of satisfied clauses is 3/4|F1| + 1/2|F2|. We summarize:

E[µα(F )] ≥
2

3
|F1| +

19

27
|F2|

E[µβ(F )] ≥
3

4
|F1| +

1

2
|F2|
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With probability p = 27/31, choose α, and with probability 4/31, choose β. The expected
number of satisfied clauses is 21/31|F |. We obtain

s3 ≥
21

31
>

2

3

Note that 21/31 ≈ 0.677, which is larger than 2
3 . �

Using a more sophisticated approach, we were actually able to derive a better lower
bound of s3 ≥ 57

82 ≈ 0.695. However, the proof is quite technical and requires some case
analysis. We therefore do not include it in this work.

4 Conclusion

We have demonstrated that in partial satisfaction of k-satisfiable formulas, the results
are different for weighted and unweighted formulas. Further, not only are the results
different, also the methods employed to obtain these results differ greatly. In the weighted
case, results are usually obtained by probabilistic arguments, whereas for s2 we followed
a completely different approach. Moreover, for s3, we did use probabilistic methods,
but had to introduce dependencies between variables. We would like to find a uniform
approach for deriving lower bounds on sk, for every k. We think the methods one has
to develop to study the sk will prove useful for different problems involving boolean
satisfiability. Therefore, we think this topic is worth further effort. Let us conclude this
paper by stating three open problems.

Problem 4.1. Devise a uniform method to prove lower bounds on sk. Give families of
k-satisfiable formulas providing upper bounds.

Conjecture 4.2. For every k ≥ 2, sk > rk.

Problem 4.3. Is sk ∈ Q, for every k? For which k can the upper bound sk be achieved
by a single k-satisfiable formula, rather than an infinite family?
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