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Abstract 

This thesis addresses the challenge of improving the quality of heterogeneous sensor 

data by following a data-centric rather than a model-centric approach. Instead of 

assuming standardized inputs for downstream AI models, the work focuses on making 

data itself reliable and analysis-ready across diverse SmartCityCloud (SCC) sources. 

The proposed solution combines exploratory data analysis (EDA) with a suite of data-

quality measures to assess and enhance credibility across multiple variables and 

datasets. The methodology includes automated profiling, duplicate removal, validity 

checks, imputation, feature engineering, and anomaly detection, together with out-of-

distribution (OOD) generalization checks using configurable splits (e.g., 70/30 and 

60/40), augmentation (noise/missingness) for stress-testing, and labeling strategies 

(e.g., day/night separation). 

 

The implementation delivers a user-friendly, cloud-based platform within SCC. Users 

can upload datasets, run EDA, visualize time series, distributions, correlations, and 

boxplots, and export figures and tables (e.g., PNG/PDF for plots; CSV/JSON for data 

and reports). The system generates a machine-readable JSON report that is then 

evaluated by six practical metrics: Accuracy, Completeness, Consistency, Traceability, 

Timeliness, and Auditability. 

 

Results from multiple SCC datasets indicate that the pipeline improves data readiness 

(e.g., fewer duplicates and invalid readings, clearer trends, and more consistent labels) 

while providing transparent artifacts for review. The thesis contributes (i) a reusable 

data-centric workflow for variable sensor data, (ii) a reference implementation as an 

SCC compute-task template that users can adapt, and (iii) an evaluable reporting 

scheme that supports dependable AI development on city-scale data. 

 

Keywords: Data-Centric AI, Data Quality, Exploratory Data Analysis (EDA), 

SmartCityCloud, Data Augmentation. 
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1 Introduction 

Modern artificial intelligence (AI) systems depend not only on sophisticated models but 

also on the reliability of the data used to train, validate, and deploy them [1]. In smart 

city environments, where data originates from heterogeneous sensors, gateways, and 

services, datasets are often incomplete, noisy, poorly labeled, or statistically 

inconsistent over time [2]. Such variability affects the accuracy, reproducibility, and 

interpretability of predictive models. This thesis addresses these challenges through a 

data-centric approach that treats data quality as the primary focus of engineering. 

Instead of optimizing only model architectures, the work concentrates on preparing 

multi-source time series data to be reliable, representative, and analysis-ready through 

systematic exploration, assessment, and improvement of data quality. 

 

The research is conducted within the SmartCityCloud(SCC) environment, a cloud-

based infrastructure designed for processing and visualizing sensor data in smart city 

applications. Within this framework, the thesis develops and implements an integrated 

pipeline that ingests diverse sensor streams, performs exploratory data analysis (EDA) 

to characterize distributions, trends, correlations, seasonality, and outliers, and applies 

data-quality operations such as duplicate removal, validity screening, missing-value 

imputation, and feature engineering. Because labeling accuracy strongly influences 

downstream analytics [2], the system includes label-quality verification procedures, for 

example, day and night differentiation to capture diurnal variations and validate 

labeling consistency with temporal data characteristics. 

 

Beyond descriptive profiling, the proposed approach evaluates robustness through 

out-of-distribution (OOD) generalization tests using configurable train and test splits, 

such as 70/30 or 60/40, to identify distribution shifts across different time windows, 

sites, or operational contexts. To further assess the sensitivity of data-quality methods, 

controlled augmentation techniques introduce synthetic noise or missing values, 

allowing the system to examine how these perturbations affect quality metrics and data 

stability. The platform enables users to perform these analyses interactively, visualize 

intermediate results such as tables, bar charts, boxplots, and time overlays, and export 

outcomes in multiple formats, including PNG, PDF, and CSV. The complete data-

quality summary is stored in a structured JSON report that facilitates reproducibility 

and interoperability within the SmartCityCloud ecosystem. 

 

The concept of data quality is operationalized in this thesis as a measurable property 

rather than a qualitative assumption. To this end, six key evaluation dimensions—
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accuracy, completeness, consistency, traceability, timeliness, and auditability—are 

used to assess and compare results across datasets and configurations. Each 

dimension guides both the quantitative reporting and the qualitative interpretation of 

the improvements achieved by data-quality operations. Emphasis is placed on 

transparency and explainability; every transformation step is accompanied by a 

corresponding visualization, statistical summary, and metadata entry that support 

traceable and auditable processing. Such transparency is essential for dependable AI 

applications in safety-critical or regulated domains. 

 

The contributions of this thesis are threefold. First, it introduces a reusable data-centric 

workflow for heterogeneous smart city time-series data that integrates exploratory data 

analysis, label verification, out-of-distribution analysis, and augmentation-based 

validation. Second, it provides a user-friendly cloud-based implementation within 

SmartCityCloud that enables users to execute these processes interactively through a 

configurable compute-task interface. Third, it defines a data-quality evaluation 

framework aligned with the six aforementioned dimensions, demonstrating 

measurable improvements in data readiness for AI models without focusing on specific 

model architectures. Together, these contributions highlight how systematic data-

centric engineering enhances the robustness, interpretability, and dependability of AI-

driven systems. 

 

The remainder of this thesis is organized as follows. Chapter 2 introduces the 

theoretical and technical fundamentals. Chapter 3 presents related research and the 

conceptual background for data-centric artificial intelligence. Chapter 4 describes the 

methodology, including the exploratory data analysis process, data-quality evaluation 

methods, labeling procedures, and out-of-distribution generalization strategies. 

Chapter 5 details the system implementation within SmartCityCloud and its user 

interface. Chapter 6 presents the results and evaluation of data-quality improvements. 

Chapter 7 discusses the implications, limitations, and potential extensions of the work. 

Finally, Chapter 8 concludes the thesis and outlines future research directions. 

1.1 Background and context 

In today's artificial intelligence pipelines, data has emerged as the most important 

asset. In operational contexts like smart cities, data comes from a variety of sources, 

including ambient sensors, edge devices, cloud services, and human-operated 

systems. These sources generate multivariate time series with varying sampling rates, 

missing segments, duplicated entries, and value range shifts caused by seasonality, 

maintenance, and deployment changes. Such fluctuation calls into question the 
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assumptions made while developing and evaluating downstream models. If not 

addressed, it diminishes model dependability, complicates replication, and obscures 

root-cause investigation when systems fail in production. As a result, the practical 

bottleneck is less about choosing a sophisticated model and more about collecting 

reliable, auditable data that accurately reflect the phenomena of interest for learning 

and inference. 

 

Within this context, SmartCityCloud (SCC) acts as the operational framework for the 

current effort. SCC provides a cloud-based environment where users may upload 

datasets, set up processing stages, and view results using a reusable compute-task 

template. The template is designed to be adaptable to various sensor modalities and 

projects while maintaining a consistent workflow for ingestion, investigation, 

transformation, and reporting. Because smart-city installations change over time and 

between locations, the platform prioritizes repeatable workflows and exportable 

artifacts, allowing analyses to be re-run, compared, and approved by various 

stakeholders without ambiguity. 

 

The data landscape discussed here has three repeating characteristics. First, 

heterogeneity exists: streams differ in units, valid ranges, and semantics, even for 

seemingly equivalent variables (for example, pressure or temperature from various 

manufacturers). Second, non-stationarity: distributions change due to weather, urban 

activity cycles, firmware updates, and sensor aging, invalidating static training-testing 

divides and making model-centric comparisons incorrect. Third, label fragility: labels 

based on heuristics or external schedules (e.g., day-night, event windows) may be 

misaligned with real sensor behavior, resulting in inconsistent supervision and 

misleading correlations. These characteristics encourage a data-centric approach in 

which data quality is actively profiled, improved, and recorded before to and throughout 

modeling. 

 

As a result, the thesis employs exploratory data analysis (EDA) as a primary 

component for characterizing empirical distributions, trends, correlations, and outliers 

across variables and time periods [3]. Visual diagnostics like time overlays, histograms, 

and boxplots are supplemented by basic statistical summaries and rolling descriptions 

that highlight gaps, spikes, and regime shifts. On top of this descriptive layer, focused 

quality operations are used to detect duplicates, screen ranges and validity, identify 

gaps with imputation choices, and create features for downstream processes. Label 

quality is given special attention: criteria such as day/night partitioning are aligned with 
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time bases and tested for internal consistency to limit the spread of mislabelled 

segments. 

 

Because smart-city data must function in the face of change, background analysis 

takes into account distribution shift robustness. The study used out-of-distribution 

(OOD) checks using adjustable temporal or contextual divides (for example, 70/30 or 

60/40 partitions across times or places) to identify when statistics and label behaviour 

diverge in held-out slices. Furthermore, augmentation serves as a stress test: 

controlled missingness and noise enable sensitivity analysis of processes such as 

imputation or outlier treatment [4]. These methods do not replace modelling; rather, 

they provide solid, well-defined inputs and recorded assumptions, ensuring that any 

subsequent model evaluation reflects the realities of the data rather than artifacts. 

 

Operational restrictions in municipal and industrial environments exacerbate the 

demand for traceability. Stakeholders often expect not only findings but also a chain of 

proof that connects each transformation to its purpose and impact. To match this 

expectation, the platform generates exportable figures (PNG/PDF), tabular outputs 

(CSV), and a structured JSON record that includes configuration, intermediate results, 

and final quality indicators. This approach promotes auditability across teams and 

throughout time, while lowering onboarding costs when datasets, persons, or 

objectives change. 

 

Finally, the background for this thesis is consistent with the formal requirements for a 

Master's Thesis at the Professorship of Computer Engineering, TU Chemnitz. The 

introduction must locate the topic in its application area, describe motivation, and 

define the problem at a high level, all while preparing the reader for subsequent 

chapters that cover fundamentals, related work, methodology, implementation, 

findings, discussion, and conclusion. The emphasis on clear context, neutral academic 

tone, and structured reporting adheres to the department's chapter organization and 

scientific writing guidelines, ensuring that succeeding sections can be built on a 

coherent and suitably thorough foundation. 

 

1.2 Motivation 

Smart-city analytics are based on multivariate sensor streams that are noisy, partial, 

heterogeneous, and subject to drift.  In such cases, model-centric development implies 

standardized inputs that are rarely available in practice, resulting in brittle systems and 

findings that are difficult to replicate or trust [5]. The basic goal for this thesis is to 



13 
 

transfer the focus of development from models to data: to make data more 

trustworthy[6], interpretable, and auditable before—and alongside—modelling. 

Framing motivation early and clearly is consistent with the department's 

recommendations for the introduction chapter, as well as the expectation that goals be 

articulated concretely and verifiably. 

 

Operational requirements further support a data-centric strategy. Municipal and 

industrial stakeholders must track how each preprocessing step impacts downstream 

use, compare outcomes over time and between locations, and justify actions during 

audits or handovers [7]. A cloud environment, such as SmartCityCloud, provides a 

consistent location to upload datasets, examine them using EDA, apply quality metrics, 

and collect artifacts—plots, tables, and machine-readable summaries—to make the 

process transparent. By incorporating repeatability and proof (exports and JSON 

records), the platform facilitates cooperation and long-term maintenance, addressing 

common issues in evolving installations where sensors, firmware, and usage patterns 

vary. 

 

Finally, measurable outcomes are required to steer improvements and convey value. 

This study uses six practical dimensions—accuracy, completeness, consistency, 

traceability, timeliness, and auditability—to assess how specific operations (duplicate 

handling, validity checks, imputation, labeling rules, out-of-distribution splits, and 

augmentation-based stress tests) enhance data readiness [8]. Articulating such 

objectives as explicit, measurable aims is consistent with the preferred motivation style 

(clear purpose, evaluability, and time-bound execution within the thesis timeframe) and 

creates a cohesive bridge from introduction to technique, implementation, and results. 

 

 
Figure 1. Model-Centric Approach [9] 
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Fig 1. Model-centric approach [9]. 

 
Figure 2. Data-Centric Approach [9] 

 

In Fig 1 (model-centric AI), most iterative effort concentrates on the modelling loop: 

training, evaluation, and hyperparameter tuning cycle repeatedly, while data 

preprocessing is treated as a largely one-off step before the loop begins. This workflow 

assumes the dataset is already standardized and sufficiently representative; quality 

issues are addressed ad hoc, if at all, and evaluation focuses on comparing models 

rather than interrogating the data that drive them. As a result, gains typically come from 

architectural choices or tuning, and failure modes often trace back to silent data 

problems—label noise, drift, duplicates, or gaps—that the loop is not designed to 

surface. 

 

However, in Fig 2 (data-centric AI), evaluation expands to include the data itself. The 

modelling loop remains, but a parallel feedback loop targets dataset curation: 

systematic EDA, labelling checks, augmentation for stress testing, and iterative 

remediation of errors become first-class activities. This shifts improvement leverage 

toward making signals clearer and assumptions explicit, yielding models that are 

simpler to train, easier to reproduce, and more stable under deployment shifts. In 

practice, the data-centric loop produces auditables—figures, tables, and machine-

readable summaries—that document how changes in data quality translate into 

performance changes, enabling controlled, evidence-based progress. 
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1.3 Problem Statement 

SmartCityCloud aggregates heterogeneous, multi-source time series with missing 

segments, duplicates, outliers, non-stationary distributions, and fragile or heuristic 

labels.  Conventional model-centric pipelines presume standardized inputs and regard 

preprocessing as a one-time operation, which obscures the underlying causes of 

downstream brittleness and makes outcomes difficult to replicate or audit.  The central 

problem addressed in this thesis is to make data quality the primary engineering 

objective: to systematically surface, measure, and improve the credibility of diverse 

sensor datasets before—and concurrently with—modelling, while maintaining a 

transparent record of how each transformation affects the data. 

 

Existing literature and tools provide useful components—profilers, cleaning utilities, 

experiment trackers [10]—but they rarely provide an integrated, cloud-based workflow 

that unifies exploratory data analysis, targeted quality operations (e.g., duplicate 

handling, validity screening, gap detection and imputation, feature engineering), label-

quality verification, out-of-distribution checks, and augmentation-based stress testing, 

all linked to machine-readable provenance. In practice, teams rely on ad hoc 

scripts[11] and informal notebooks, limiting comparability across time, places, and 

users and making audits time-consuming. This thesis addresses that gap by creating 

a reusable data-centric pipeline within SmartCityCloud that combines interactive 

visualization and exporting (PNG/PDF/CSV) with a structured JSON report containing 

configurations, interim findings, and outcomes mapped to pragmatic quality metrics. 

 

The thesis is guided by the research questions listed below.  

 RQ1: How to design SmartCityCloud compute task wrapper and implement a 

reusable data-centric workflow to improve the readiness of heterogeneous 

smart-city time-series data through systematic EDA, quality operations, label 

verification, out-of-distribution analysis, and augmentation-based stress tests, 

all while producing auditable provenance?  

 RQ2: How much do these interventions improve data quality—as assessed by 

accuracy, completeness, consistency, traceability, timeliness, and auditability—

and boost stability under distribution shift when compared to baseline 

preprocessing typical of model-centric practice?  

  

1.4 Objectives and Research Goals 

This thesis explores a data-centric alternative to model-first development for smart-city 

analytics. The overarching goal is to make heterogeneous sensor datasets analysis 
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ready, auditable, and resilient to distribution shifts by prioritizing data quality [2]. The 

goals are articulated in accordance with the standards for a clear, measurable 

motivation and objectives, allowing them to be evaluated within the thesis scope and 

schedule. 

 

Primary objectives of this thesis include: 

 First, create and implement an end-to-end workflow in SmartCityCloud that 

allows users to upload datasets, conduct exploratory data analysis, perform 

targeted data-quality operations (duplicate handling, validity checks, gap 

detection and imputation, feature engineering, and label verification), and 

visualize the results.  

 Second, implement robustness checks using out-of-distribution protocols (e.g., 

temporal/site-based 70/30 splits) and augmentation-based stress tests 

(controlled missingness and noise). Third, establish complete traceability by 

exporting artifacts (PNG/PDF plots and CSV tables) and creating a machine-

readable JSON report that includes configurations, intermediate results, and 

final quality indicators for each run. 

 

Evaluation Goals of this thesis include: 

 Quantify the workflow's impact on data readiness across numerous 

SmartCityCloud datasets using six practical dimensions: correctness, 

completeness, consistency, traceability, timeliness, and auditability.  

 Compare the results to a baseline representing model-centric preprocessing 

(minimum cleaning plus direct modelling assumptions). Success will be 

demonstrated by systematic gains across all dimensions, clearer and more 

reliable descriptive statistics, and verifiable provenance that connects each 

alteration to its measured impact. 

 

Secondary Objectives of this thesis include:  

 Improving the platform's usability and maintainability by including an extensible 

compute-task template, clear user advice inside the interface, and defaults that 

encourage recurring analysis.   

 Where possible, define the runtime and scalability of essential procedures 

(such as profiling and imputation) to ensure their suitability for city-scale 

operations.  

 Expected contributions include:  

(i) A reusable data-centric workflow for heterogeneous smart-city 

time series 
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(ii) A cloud-based implementation in SmartCityCloud that generates 

verifiable artifacts and provenance 

(iii) An evaluation scheme that links concrete quality interventions to 

measurable gains, thereby promoting dependable and transparent 

AI development. 

 

1.5 Scope and Limitations 

This thesis focuses on improving data quality for heterogeneous smart-city time-series 

within the SmartCityCloud environment. The scope covers dataset ingestion, 

exploratory data analysis, and key quality operations such as duplicate handling, 

validity screening, gap detection with imputation, and feature engineering. It also 

includes label verification (e.g., day–night alignment), robustness checks using out-of-

distribution splits, and augmentation-based stress tests. All outcomes are documented 

through exportable artifacts (PNG, PDF, CSV) and a machine-readable JSON 

provenance record. Evaluation is based on six process-oriented dimensions—

accuracy, completeness, consistency, traceability, timeliness, and auditability—

making data readiness measurable and verifiable within the thesis scope. The 

structure and writing style follow the department’s scientific thesis guidelines, ensuring 

clarity, consistency, and alignment with the overall research framework. 

 

The work does not aim to advance model architectures, large-scale hyperparameter 

optimization [12], or state-of-the-art benchmark contests; any modeling references 

serve only to contextualize data-quality effects. Topics outside the scope include 

production MLOps hardening (e.g., autoscaling, CI/CD), privacy/legal compliance, 

ethics reviews, and real-time latency guarantee. Limitations arise from dataset 

availability and representativeness, potential imperfections in heuristic labels, the 

bounded set of quality metrics (which may not capture every domain-specific notion of 

“quality”), and the specific OOD and augmentation scenarios considered (primarily 

temporal or site-based shifts with simple missingness/noise models) [13]. Results 

should therefore be interpreted as evidence of process improvements and reproducible 

provenance within SmartCityCloud, rather than as universal guarantees across all 

sensor modalities or deployment contexts. These delimitations align with the thesis 

requirement to define a clear, feasible scope and to maintain a neutral, structured 

academic presentation. 
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1.6 Thesis Structure 

The rest of this thesis is organized as follows. Chapter 2 covers the theoretical and 

technical foundations needed for data-centric quality engineering and SCC.  Chapter 

3 examines related work on exploratory data analysis, data-quality metrics, labelling 

techniques, out-of-distribution analysis, and augmentation, situating the contribution 

within the status of the field.  Chapter 4 describes the methodology, which includes 

procedures for EDA, targeted quality activities, label verification, robustness tests, and 

reporting. The fifth chapter details the SmartCityCloud implementation, which includes 

system components, a user interface, and data flows. Chapter 6 presents the results 

and evaluations for the six quality dimensions.  Chapter 7 explores the consequences, 

limitations, and parallels to typical model-centric practice. Chapter 8 summarizes the 

findings and outlines future research and platform extensions Fig 3. 

 

 
Figure 3. Thesis Structure Overview 
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2 Fundamentals 

This chapter covers the theoretical principles that underpin the research and 

implementation in this thesis.  It covers the fundamental concepts and principles 

needed to comprehend how cloud-based infrastructures, data-centric artificial 

intelligence, and data quality engineering interact in smart-city settings.  The emphasis 

is on explaining the fundamental background required to understand the 

methodological and technical decisions detailed in subsequent chapters.  The section 

discusses the fundamentals of cloud computing and data management, the theoretical 

foundations of data-centric AI, the key dimensions used to assess data quality, and the 

data governance and reproducibility in AI-powered systems. 

 

2.1 SmartCityCloud and the Compute Task wrapper 

SmartCityCloud (SCC) is a modular platform designed for managing heterogeneous 

smart-city sensor streams—traffic, forestry, air quality, parking, drones, and related 

domains—supporting both real-time and batch analytics across an ingestion–storage–

compute pipeline. Its reference architecture separates concerns into four cooperating 

layers: a User Interface layer for interaction and visualization; a Compute Task layer 

encapsulating the core data-processing logic; a Data Streams layer that normalizes 

time-series, images, and tabular values into typed streams; and a Data Storage layer 

that handles input acquisition and output persistence. In a typical workflow, the 

backend ingests or reads data, a compute engine on a GPU server executes the user-

defined task, and results are returned for visualization and export (schedule → 

download → compute → upload). Within this ecosystem, SCC offers a template and 

lab workflow to set up environments (local or Docker), bind inputs, configure options, 

and surface results through an auto-generated browser UI—providing a consistent 

integration point for domain-specific analytics like the data-quality engineering carried 

out in this thesis. 

 

The SmartCity Compute Task Wrapper is the central execution framework within 

SmartCityCloud that standardizes how analytical processes are defined, executed, and 

visualized in a cloud environment. It manages the complete workflow—from loading 

and harmonizing input data streams to configuring analytical parameters, executing 

data-processing operations, and generating interpretable outputs—ensuring 

modularity, scalability, and reproducibility across diverse smart-city datasets. 

Abstracting low-level data handling and interface logic, it enables a seamless 

integration of domain-specific analytics such as exploratory data analysis, data 
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validation, feature extraction, label quality verification, and out-of-distribution stability 

checks. The wrapper automatically converts analytical outputs into structured tables, 

plots, and JSON reports, which can be visualized or exported directly through the 

SmartCityCloud interface. This design transforms the platform into a Data Quality as a 

Service (DQaaS) system, providing transparent, version-controlled, and auditable data 

processing that aligns with data-centric AI principles and supports high-quality, 

trustworthy predictive modeling for smart-city applications. 

 

The SmartCityCloud Compute Task Wrapper, as shown below in Fig 4, is the key 

architectural workflow that allows for modular, task-based data processing within the 

SmartCityCloud ecosystem. It allows for smooth interaction between the data 

ingestion, computing, and visualization levels via a standardized pipeline. Raw sensor 

data—whether tabular, image-based, or time-series—is first collected in the storage 

layer and then accessible via an input reader, which turns the sources into 

standardized data streams. These streams are then routed to the job implementation 

module, where specialized analytical reasoning is used. The task implementation 

component of this thesis includes all of the code created for data quality engineering, 

exploratory data analysis, validity screening, feature extraction, label quality 

evaluation, and out-of-distribution generalization. After processing, the findings are 

transmitted to the output reader, which returns cleaned and processed data in the form 

of Python-native structures or reusable data streams. The wrapper combines 

visualization components for both input and output, as well as adjustable compute 

options available via a web interface, allowing users to enter parameters and evaluate 

results interactively. This design makes the framework completely extensible—any 

researcher or developer can incorporate their own analytical logic into the task 

implementation block to perform domain-specific operations, transforming the 

SmartCityCloud Compute Task Wrapper into a versatile and reusable foundation for 

scalable cloud-based data analytics. 
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Figure 4. SmartcityCloud Compute Task Wrapper 
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2.2 Data Centric Artificial Intelligence 

Data-centric Artificial Intelligence (AI) differs from the traditional model-centric 

approach by emphasizing the systematic improvement of data quality rather than 

solely focusing on algorithmic sophistication [2]. While model-centric AI optimizes 

model architectures and parameters based on fixed datasets, data-centric AI 

recognizes that data accuracy, completeness, and consistency are equally crucial for 

overall system performance. It treats data as a first-class element, requiring iterative 

refinement, curation, and validation to ensure models learn from high-quality, 

representative, and well-labeled samples. This involves creating standardized and 

balanced datasets, removing noise, and improving label consistency to enhance model 

generalization.  

 

Within the SmartCityCloud environment, this paradigm is implemented to increase the 

reliability of heterogeneous sensor data used for urban intelligence and predictive 

analytics. Instead of relying solely on model accuracy, the system prioritizes data 

reliability, completeness, and consistency as prerequisites for effective AI-driven 

decision-making. The approach is realized through several sub-processes: data 

labeling and annotation, ensuring semantic accuracy and temporal alignment (e.g., 

day/night label quality checks); data augmentation, which enhances robustness via 

interpolation and noise-based synthetic generation; feature engineering, enriching 

time-series data with lag, rolling, and trend-based features; and out-of-distribution 

(OOD) generalization, managing domain shifts to maintain stability under varying data 

conditions. Together, these components embody the theoretical and practical 

foundation of this thesis, demonstrating how SmartCityCloud operationalizes data-

centric AI to produce high-quality, context-aware datasets that enable reliable and 

reproducible predictive modeling. 

 

 
Figure 5. The steps for Model Centric Approach [14] 



23 
 

 
Figure 6. The Steps for a Data-Centric Approach [14] 

 

Fig 5 outlines the traditional model-centric loop: construct or select a network 

architecture, tune hyperparameters, and repeat on algorithms while assuming the 

dataset is essentially fixed [14]. This underlines how this approach has traditionally 

outperformed architectures such as AlexNet, VGG, GoogLeNet, and ResNet—but also 

points out its susceptibility in real-world circumstances when data contains 

inconsistencies, bias, noise, and missing values [15]. In other words, when urban 

sensor feeds are defective (as smart-city streams frequently are), simply refining 

models cannot compensate for label noise, duplication, or gaps; data quality issues 

become a performance barrier. This explains the shift that inspired your thesis: to move 

away from a model-only approach and face data reliability head-on with 

SmartCityCloud. 

 

Fig 6 depicts the core processes of a data-centric pipeline—data parsing, 

augmentation, representation, quality assessment, and cleaning—arranged as 

systematic phases to improve data before model training.  The paper [14] outlines 

concrete tactics, including multi-stage hashing for duplicate removal, "confident 

learning" for noisy-label detection and correction, and controlled augmentations. These 

measures consistently outperform model-centric baselines (≥3% relative gains in their 

experiments). SmartCityCloud implements the same concepts: parsing/representation 

via stream readers for CSV/Excel/image inputs; quality assessment & cleaning via 

missing/validity checks, duplicate handling, interpolation, and flatline detection; label 

quality via day-night alignment; augmentation & feature engineering to enrich time-

series (lags, rolling statistics, diffs); and stability/OOD checks for drift-aware 
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robustness, with all steps captured as exportable artifacts (HQ Thus, the figure's data-

centric workflow corresponds precisely to your SCC compute-task implementation and 

supports your emphasis on engineering data quality as the fundamental lever for 

reliable smart-city prediction. 

 

2.3 Data Quality Dimensions and Evaluation Metrics 

Data quality is the degree to which data is suitable for its intended analytical purpose, 

as measured by criteria such as correctness, completeness, consistency, timeliness, 

traceability, and auditability (as defined in standards such as ISO/IEC 25012) [16]. 

Operationally, accuracy reflects closeness of values to true or physically plausible 

ranges; completeness measures the proportion of required values present; 

consistency captures the absence of contradictions, duplicates, or implausible flatlines 

across time; timeliness concerns whether timestamps are valid and appropriately 

aligned with the phenomena observed; traceability denotes the ability to follow data 

and transformations through the pipeline; and auditability requires These parameters 

offer a rigorous, implementation-independent perspective for determining whether 

sensor streams are reliable inputs to prediction models. 

 

In this thesis implementation, each dimension is instantiated by concrete, reportable 

metrics within the SmartCityCloud compute task. From Table 1, Completeness is 

quantified via missing-value counts and percentages; accuracy is enforced through 

range/validity screening against realistic domain thresholds; consistency is supported 

by duplicate timestamp removal and flatline-run detection; timeliness is addressed 

through robust timestamp parsing, ordering, and resampling checks; and 

traceability/auditability are achieved by exporting machine-readable JSON provenance 

alongside high-quality (HQ) datasets, capturing configuration choices, transformation 

counts (e.g., invalid→NaN, imputed values), and evaluation summaries. The NiceGUI-

based UI surfaces these metrics as tables, plots, and scalar cards, while the saved 

artifacts ensure reproducibility. Together, these measures define a practical data 

readiness framework: only when the dataset meets acceptable thresholds across all 

dimensions can downstream predictive modeling be trusted, a principle later applied 

in the Results chapter to interpret performance in terms of measurable data quality, 

not model tuning alone. 
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Criteria Description / Purpose Implementation in 
SmartCityCloud 

Completeness Measures how much of 
the required data is 

available and not missing. 

Detect and calculate using 
missing-value 

percentages across 
records and time intervals. 

Accuracy Ensures that recorded 
values are valid and within 

realistic domain 
thresholds. 

Check using range/validity 
screening for each 
numeric attribute. 

Consistency Verifies that data remains 
uniform and logically 
coherent over time. 

Handle through duplicate 
timestamp removal and 

flatline run detection. 

Timeliness Checks whether 
timestamps are valid, 

sequential, and correctly 
aligned. 

Validate using timestamp 
parsing, ordering, and 

resampling steps. 

Traceability Maintains the ability to 
trace data sources and 

transformations. 

Achieved through JSON 
provenance files capturing 

dataset lineage and 
applied operations. 

Auditability Ensures all operations are 
documented and 

reproducible. 

Export as versioned HQ 
datasets and JSON 

reports for reproducibility 
and review. 

 

Table 1. Data Quality Evaluation Criteria 

 

2.4 Data Governance and Versioning 

During the implementation, data governance and version control are critical for 

assuring openness, reproducibility, and accountability across the SmartCityCloud-

based data quality workflow.  To ensure controlled code evolution and reproducible 

experimental states, a separate working branch was built in the SmartCityCloud 

Compute Task Wrapper GitLab repository.  PyCharm's local Python development 

environment was linked directly to this branch, allowing for smooth synchronization of 

implementation updates with the version-controlled repository.  Each alteration to the 

thesis-related modules, such as data ingestion, exploratory analysis, or quality 

processes, was routinely committed and pushed to the GitLab branch, resulting in a 

traceable history of all code revisions. This integration not only enforces version control 

but also enables collaborative reproducibility, with each modification or enhancement 
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noted, vetted, and retrievable. Furthermore, the developed interface allows users to 

download the created high-quality datasets corresponding to specific features in both 

CSV and Excel formats, promoting open data practices and allowing downstream 

verification of processed outputs. 

 

Beyond software versioning, the system reflects the larger principles of data 

governance and provenance tracking that are essential to modern AI-powered 

infrastructures. Data governance in this context ensures that every dataset 

transformation, from ingestion to export, is documented with complete metadata, 

configuration parameters, and quality indicators. This architecture is informed by tools 

and principles similar to Apache Atlas [17] or Git-based metadata tracking, which 

ensure that datasets are auditable and traceable across processing cycles. The 

SmartCityCloud system puts these standards into action by automatically providing 

JSON provenance files and quality reports that detail dataset lineage, transformation 

stages, imputation counts, and validation results. The generated High-Quality (HQ) 

datasets are versioned and accompanied by metadata artifacts, providing an 

immutable audit trail for each analytical run. Collectively, these mechanisms reinforce 

reproducibility and reliability—core tenets of data-centric AI—and lay the groundwork 

for the implementation workflow that will be described in Chapter 4, which transforms 

theoretical principles into an operational, cloud-based data quality management 

system. 

 

2.5 Summary 

Chapter 2 established the theoretical and architectural foundations for this work by 

introducing SmartCityCloud (SCC) as a modular platform that standardizes sensor-

data ingestion, processing, visualization, and output generation through its Compute 

Task Wrapper. It highlighted the shift from model-centric to data-centric AI, 

emphasizing that high-quality, well-structured data is essential for building reliable 

predictive systems in dynamic smart-city environments. The chapter also defined key 

data-quality dimensions—completeness, validity, consistency, timeliness, traceability, 

and auditability—and linked them to measurable indicators such as missing-value 

ratios, range checks, timestamp correctness, duplicate detection, and metadata 

provenance. Finally, it underscored the role of data governance practices, including 

versioning and reproducible pipelines, which ensure transparency and long-term 

reliability. Together, these fundamentals form the conceptual basis for the 

methodology and implementation developed in the subsequent chapters. 
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3 State of the Art 

This chapter surveys the state of the art to ground the thesis in current research and 

to justify the design choices made later in the implementation. The subsections are 

organized by current research trends; in each, the review (i) synthesizes representative 

existing solutions and their technical approaches, (ii) identifies the gaps and limitations 

that arise in heterogeneous smart-city time-series (e.g., missing/invalid data, label 

inconsistencies, weak provenance, or distributional drift), and (iii) explains how the 

thesis responds within SmartCityCloud—through a modular compute-task that 

operationalizes data labeling quality, augmentation, feature engineering, data 

governance/versioning, and OOD stability. For every trend, the implications for 

implementation are made explicit: what must be supported in the options/UI, what 

checks and metrics are computed, what artifacts are exported (HQ datasets and JSON 

provenance), and how these choices improve downstream reliability and 

reproducibility. The chapter closes with a concise comparison table mapping each 

trend to its leading solutions, the uncovered gaps, and the thesis’s concrete remedies, 

providing a direct bridge to the methodology and implementation that follow. 

3.1 Data-Centric AI and Quality Engineering 

 Research Trend: Data-centric artificial intelligence shifts the supervised 

learning optimization focus from model architecture to data engineering [18]. 

Rather than assuming a fixed dataset and focusing primarily on networks and 

hyperparameters, data-centric practice prioritizes label fidelity, coverage and 

balance, validity and range conformance, temporal integrity, and lineage 

documentation—on the assumption that model performance gains quickly 

saturate if underlying data issues persist. Canonical position pieces and 

surveys[19] describe this as a disciplined toolkit for designing datasets—not 

merely enlarging them, but making them more appropriate for the task via 

schema standards, labeling protocols, cleaning, augmentation, and governance 

mechanisms that render pipelines reproducible and auditable.  

 

Fig 7 illustrates the increasing global research interest in data-centric AI by 

showing the sharp growth of publications containing the keyword “data-centric 

AI” on Google Scholar over recent years. The trend indicates that, although still 

an emerging discipline, the focus on improving data quality, labeling, and 

curation is rapidly gaining momentum across AI communities [20]. The figure 

highlights that most progress so far has concentrated on training-data 

development—cleaning, annotation, and augmentation—while comparatively 
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little attention has been given to data maintenance and inference-data design, 

especially within scientific and engineering domains. The author notes that this 

surge in research activity has not yet been mirrored strongly in domain-specific 

fields such as Earth and space sciences, implying a major opportunity for 

applied research to adopt and operationalize data-centric practices. In the 

context of this thesis, Figure 2 reinforces the motivation for implementing a 

unified SmartCityCloud framework that embodies these evolving global efforts: 

transforming theoretical advances in data-centric AI into a practical, 

reproducible system for data-quality engineering and management in 

heterogeneous smart-city datasets. 

 

 
Figure 7. Recent articles published with the keyword "data-centric AI" [20] 

 

Current research highlights several complementary strategies contributing to 

Quality Engineering. Label quality assurance has become a focal point, with 

methods like Confident Learning (CL) designed to identify mislabeled data and 

quantify label noise, significantly enhancing model accuracy [21]. Data 

augmentation techniques—such as interpolation, warping, and noise injection—

have proven effective in increasing dataset diversity and robustness against 

overfitting[22]. Furthermore, feature engineering and data validation 

frameworks like Deequ by Amazon enable scalable quality checks and rule-

based data profiling [23]. Collectively, these methods represent a growing global 

effort to embed data quality improvement directly into the AI development 

lifecycle rather than treating it as a preprocessing step [24]. 
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 Existing Solutions:  The implementation of data-centric AI principles has 

gained momentum across multiple domains, leading to the development of 

frameworks, tools, and algorithms specifically aimed at improving data quality 

and reliability. One of the most widely recognized approaches is Confident 

Learning (CL), which identifies and corrects mislabeled samples by estimating 

label confidence and uncertainty [21]. This method enhances dataset integrity 

and ensures that training samples accurately represent their classes, a critical 

factor for improving the robustness and interpretability of AI models. Similarly, 

the Data-Centric AI Initiative emphasizes systematic data curation, validation, 

and documentation over endless model fine-tuning [25]. This initiative inspired 

global competitions, encouraging practitioners to clean and balance datasets 

for better generalization rather than modifying neural architectures. 

 

In parallel, significant progress has been made in automated data validation and 

profiling frameworks. Recently introduced Deequ, a library developed by 

Amazon that performs declarative data validation using constraint-based quality 

checks on large-scale datasets [23]. This tool enables data engineers to 

automatically detect anomalies, validate numerical ranges, and measure data 

completeness and uniqueness—principles that are now fundamental to modern 

DCAI workflows. Additionally, data augmentation techniques such as 

interpolation, extrapolation, and synthetic sampling can be used to enrich 

datasets, thereby increasing model generalization while reducing overfitting 

[22]. These augmentation approaches are particularly relevant for dynamic, 

time-dependent data, like that in smart-city environments, where data collection 

is continuous and heterogeneous. 

 

Collectively, these existing solutions represent a significant step forward toward 

operationalizing data-centric principles. They establish a foundation for 

systematic data quality engineering, integrating labeling verification, automated 

validation, augmentation, and provenance management. However, most of 

these tools address isolated data-quality aspects and are not yet unified into a 

cohesive, reproducible cloud-based framework. This fragmentation 

underscores the need for integrated solutions—such as the SmartCityCloud 

Compute Task Wrapper developed in this thesis—that combine these diverse 

DCAI techniques into a single, automated, and scalable environment for 

ensuring high-quality data in smart-city AI applications. 
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 Gaps Identified from Current Research: Despite rapid progress, three 

integration gaps remain critical for heterogeneous smart-city time-series. 

 

- Many pipelines apply single data-centric techniques in isolation—e.g., 

label cleaning with Confident Learning or Cleanlab—without coupling 

them to temporal validity checks (range/physical plausibility), 

duplicate/flatline screening, or feature enrichment, making it hard to 

attribute gains and to certify cross-dimensional “data readiness.” 

Evidence from label-error studies [21] shows meaningful accuracy gains 

from data cleaning, but most implementations stop short of tying label 

quality to broader validation and augmentation regimes. 

- Even when validation frameworks are used, many deployments lack 

embedded, machine-readable provenance that captures options, 

thresholds, and transformations, limiting auditability and reproducibility 

across teams and runs; this emphasizes declarative data-quality 

“guardrails” (e.g., Deequ, TFDV) and automated constraint generation, 

underscoring how often such guardrails are ad-hoc in practice[23]. 

- Cleaning and augmentation are common, but stability is rarely quantified 

under diurnal/seasonal patterns, sensor drift, or site changes in 

streaming contexts; recent surveys highlight that OOD generalization for 

time series remains under-systematized and needs explicit evaluation 

protocols in operational pipelines. Out-of-Distribution Generalization in 

Time Series [26]. Together, these gaps mean that—even where 

individual procedures exist—end-to-end, verified fitness-for-use is not 

consistently achieved in real deployments. 

 

 How does This Thesis address the Gaps? : This thesis consolidates data-

centric practices into a single, auditable SmartCityCloud compute task that 

operationalizes quality engineering for urban sensor streams. Integrated, not 

isolated. The pipeline combines label verification (day–night alignment, inspired 

by label-error detection’s focus on fidelity), data validation (range/validity 

thresholds; duplicate-timestamp removal; flatline-run detection; missing-value 

accounting), and time-series enrichment (interpolation regimes; noise-based 

perturbations; lag/rolling/differencing features), aligning with evidence that 

curated labels and augmented, validated data yield larger gains than further 

model tinkering. Embedded provenance for auditability. Each run emits 

structured artifacts—tables, plots, and a JSON provenance record of 

configuration, thresholds, and transformation counts (e.g., invalid→NaN, 
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imputations)—operationalizing the “guardrails” advocated by modern DQ 

tooling and enabling reproducibility and change tracking practices. Explicit 

robustness checks include stability/OOD diagnostics (e.g., monthly drift 

summaries over selected attributes), so data readiness is measured not only at 

a snapshot but also under realistic distributional variation, reflecting current calls 

to make OOD evaluation a first-class component in time-series pipelines. By 

turning label quality, validation, augmentation, provenance, and OOD stability 

into first-class, configurable steps within one cloud task, the thesis translates 

data-centric AI from principle to a cohesive service for dependable smart-city 

prediction.  

  

3.2   Cloud-Native, Governed Data-Quality Pipelines with OOD Monitoring    

 

 Research Trend: Data Analysis and Validation converging on end-to-end, 

cloud-native data-quality pipelines that automate validation and profiling as first-

class stages in ML/AI workflows, rather than ad-hoc preprocessing. Production 

frameworks such as TensorFlow Data Validation (TFDV) and TFX demonstrate 

scalable, declarative checks for schema drift, anomalies, and distribution 

changes embedded directly in continuous pipelines, signaling a move toward 

“data unit tests” at scale [27]. In parallel, Deequ and Great Expectations 

operationalize constraint-based quality verification and human-readable quality 

reports, enabling teams to specify expectations (completeness, uniqueness, 

ranges) and to materialize versioned validation artifacts that can live alongside 

code in CI/CD [23]. On the governance side, organizations increasingly adopt 

metadata lineage and cataloging (e.g., Apache Atlas) so that datasets, 

transformations, and quality checks are discoverable and auditable across 

platforms—an essential prerequisite for regulated or safety-critical AI. 

Complementing these quality and governance layers, MLOps tooling (e.g., 

MLflow) standardizes experiment tracking and model/data versioning to support 

reproducibility across teams and time[28].  

 

A second, tightly related strand addresses robustness under distribution shift for 

streaming and time-series data. Foundational surveys on concept drift 

emphasize that in live environments, the relationship between features and 

targets changes, requiring continuous monitoring, adaptive evaluation windows, 

and drift-aware retraining triggers [29]. Also, out-of-distribution (OOD) 

generalizes for time series, highlighting protocols and metrics for assessing 
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stability when operational data departs from training regimes (seasonality 

changes, sensor aging, deployment to new sites) [26]. Finally, to make these 

pipelines accountable, research communities reference ISO/IEC 25012 and 

contemporary DQ surveys to formalize evaluation dimensions (accuracy, 

completeness, consistency, timeliness, traceability, auditability) and to tie 

automated checks to measurable “data readiness” scores that can be reported 

and reviewed [30]. 

 

 
                      Figure 8. Covariate Shift and Drift with In-Distribution vs. OOD Periods [26] 

The Fig 8 illustrates the central challenge of Out-of-Distribution (OOD) 

generalization in time-series data by showing how real-world sensor and social 

data evolve through covariate shift—changes in the input distribution 𝑃(𝑋)—and 

concept drift—changes in the relationship between inputs and outputs 𝑃(𝑌 ∣ 𝑋). 

It depicts these shifts across domains such as social media, energy, and traffic, 

where variations arise from natural evolution, seasonal patterns, or abrupt 

external events like server upgrades or policy changes. The blue regions 

represent periods used for training (in-distribution), while the green regions mark 

future periods where data distributions differ, causing model degradation if 

unaccounted for. This visualization underscores that non-stationarity is an 

inherent property of real-world time-series and that AI pipelines must 

incorporate continuous drift detection, adaptation, and monitoring to sustain 
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predictive reliability—a principle directly relevant to SmartCityCloud’s goal of 

ensuring robust and auditable data quality across evolving urban data streams. 

 

 Existing Solutions: Recent advances in cloud-native data-quality frameworks 

have enabled automated and scalable data validation within AI pipelines. Tools 

such as TensorFlow Data Validation (TFDV) and Amazon Deequ perform large-

scale anomaly detection, schema validation, and constraint-based data profiling 

directly in production environments [31]. These frameworks operationalize data-

quality checks as “data unit tests,” ensuring that completeness, consistency, 

and range compliance are continuously verified. However, while they automate 

many aspects of quality assurance, most remain domain-agnostic and do not 

integrate downstream provenance tracking or contextual drift analysis—critical 

requirements for real-time smart-city data streams. 

 

Complementing these validation frameworks, data governance and versioning 

tools such as Apache Atlas and MLflow provide metadata management, lineage 

tracking, and experiment logging to maintain reproducibility across evolving 

datasets and models. However, these platforms often function in isolation and 

lack deep integration with quality metrics or time-series drift analysis, making it 

difficult to trace how data changes impact model behaviour. Research in Out-

of-Distribution (OOD) generalization and drift detection further extends this 

landscape, proposing statistical and adaptive methods to identify data 

distribution changes over time [32]. Frameworks such as Evidently AI visualize 

drift trends and monitor model degradation, yet most remain limited to static or 

model-centric monitoring and fail to incorporate contextual temporal drifts typical 

in urban sensor data streams. 

 

At the governance and accountability level, initiatives like ISO/IEC 25012 and 

open-source platforms such as Great Expectations aim to formalize measurable 

quality dimensions—accuracy, completeness, consistency, timeliness, 

traceability, and auditability. These frameworks highlight the need for 

transparency and standardization but often lack automation or unified 

provenance tracking. In contrast, this thesis integrates these fragmented 

developments into the SmartCityCloud compute-task environment, combining 

automated validation, JSON-based provenance recording, version-controlled 

dataset exports, and OOD drift monitoring within a single, cloud-native system. 

This holistic approach transforms disconnected research advances into an 
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operational, reproducible, and auditable framework tailored for data-quality 

engineering in smart-city time-series analytics. 

 

 Gaps Identified from Current Research: Despite significant progress in 

establishing cloud-based frameworks for data quality validation, governance, 

and drift detection, the majority of existing techniques are fragmented and 

domain-agnostic.  Tools like TensorFlow Data Validation (TFDV) and Amazon 

Deequ provide robust mechanisms for anomaly detection and schema 

validation, but they are primarily designed for general-purpose machine learning 

pipelines and lack domain-specific adaptability for heterogeneous time-series 

data, such as those found in smart-city environments [31]. These frameworks 

primarily evaluate data at a single moment in time, with no consideration for 

temporal dependencies or multi-modal data interactions among sensors, 

environmental variables, and event-driven dynamics.  Furthermore, while 

MLflow and Apache Atlas help with governance and version control, they work 

as separate tools, thus metadata lineage, validation metrics, and quality findings 

are frequently decoupled, making end-to-end traceability problematic.  As a 

result, the integration of data validation, governance, and drift monitoring 

remains poor, prohibiting firms from developing pipelines that are both auditable 

and continually adaptable to changing data patterns. 

 

Another critical gap lies in the limited treatment of Out-of-Distribution (OOD) 

generalization and drift evaluation within current data-quality pipelines. 

Highlights from the importance of identifying distributional and conceptual shifts, 

yet these techniques are seldom embedded within automated quality 

frameworks. Most tools focus on syntactic or statistical validation, overlooking 

semantic drifts such as those arising from seasonal variations, sensor 

recalibration, or environmental changes that influence real-world predictive 

performance. Additionally, while frameworks like Evidently AI provide 

visualization dashboards for monitoring drift, they often lack automated 

provenance generation and version-linked reporting, which are essential for 

reproducibility and accountability in AI-driven decision systems [33]. Finally, 

standardized data-quality frameworks such as ISO/IEC 25012 define the 

theoretical dimensions of data quality—accuracy, completeness, consistency, 

timeliness, traceability, and auditability—but do not provide the computational 

mechanisms to measure or enforce them in streaming environments. 

Consequently, existing research does not yet deliver a unified, domain-aware, 

and drift-resilient solution that ensures data readiness over time, leaving a 
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crucial implementation gap that this thesis addresses within the SmartCityCloud 

ecosystem. 

 

 How This Thesis Addresses the Gaps: This thesis bridges the identified gaps 

by developing a unified SmartCityCloud compute-task framework that 

operationalizes cloud-native data-quality engineering with integrated 

governance, provenance, and drift evaluation. Unlike existing fragmented 

systems, the proposed solution automates the entire data-quality lifecycle—

from validation and profiling to versioning and auditability—within a single, 

reproducible environment. The compute-task pipeline consolidates missing-

value detection, range and validity checks, duplication and flatline screening, 

and timestamp validation while automatically generating JSON-based 

provenance records that capture configurations, thresholds, and applied 

transformations. Each processing run produces High-Quality (HQ) datasets in 

CSV or Excel formats, ensuring transparency and reproducibility. To address 

OOD and drift challenges, the system incorporates temporal drift detection and 

stability monitoring, quantifying feature and distributional shifts over time to 

maintain model robustness under real-world non-stationarity. By embedding 

these mechanisms into a modular, scalable cloud architecture, the 

SmartCityCloud platform transforms disparate research advances in validation, 

governance, and OOD evaluation into a coherent, auditable, and domain-

specific data-quality pipeline for heterogeneous smart-city time-series analytics. 

 

3.3 Summary 

Research Trend Existing Solutions Gaps Identified Approach of this 
Thesis 

Data-Centric AI & 
Quality 

Engineering [24] 

Systematic improvement 
of data over model 
tinkering; practices 

include dataset curation, 
cleaning, balancing, and 
governance embedded 

into the ML lifecycle. 

Often treated as ad-hoc 
preprocessing; limited 

unification across 
labeling, validation, 
augmentation, and 

governance; weak audit 
trails in practice. 

Implements an 
integrated SCC 

compute-task: unified 
validation 

(missing/validity/duplic
ates/flatlines/timelines

s), label checks, 
augmentation, feature 

engineering, plus 
JSON provenance and 

HQ dataset export. 
Label Quality & 
Noise-Aware 
Learning [21] 

Confident 
Learning/Cleanlab to 

detect/correct mislabelled 
samples; noise-aware 

loss functions and 
relabelling protocols. 

Label fixes are rarely 
linked to time-series 

validity (e.g., day–night 
semantics) or to 

downstream 
governance; impact 

attribution across 
dimensions is unclear. 

Adds day–night label 
alignment and 

label-quality reporting 
inside SCC; records 

decisions to link label 
edits to 

quality/robustness 
outcomes. 



36 
 

Data 
Augmentation for 
Time Series [22] 

Jitter/noise, time warping, 
window slicing, mixup, 
interpolation; used to 
increase diversity and 

reduce overfitting. 

Generic augmentations 
may distort 

physics/semantics; 
rarely coupled with 

drift/stability evaluation 
or with provenance of 

synthetic data. 

Provides controlled 
interpolation and noise 
regimes tied to sensor 

meaning; exports 
augmentation configs 

in JSON and evaluates 
stability on monthly 

OOD windows. 
Feature 

Engineering for 
Analytics [34] 

Lag features, rolling 
mean/std, differences, 

calendar/diurnal 
encodings; widely used in 
classical and hybrid ML 

pipelines. 

Feature creation is often 
decoupled from 

validation & governance; 
limited reporting of 

feature provenance and 
effect on stability. 

Implements 
lag/rolling/diff features 
with automatic logging 
(config → JSON), and 

links feature sets to 
stability metrics and 

HQ exports. 
Cloud-Native 
Data-Quality 
Pipelines & 

Automation [23] 
[31] 

TFDV/TFX for 
schema/anomaly checks; 

Deequ/Great 
Expectations for 
constraint-based 

validation; CI/CD-style 
data unit tests. 

Frameworks are 
domain-agnostic and 
fragmented; limited 

temporal semantics for 
heterogeneous 

smart-city streams; 
integration burden is 

high. 

Bundles validation, 
visualization, and 
export in one SCC 

compute-task; domain-
aware checks 

(timestamps, flatlines), 
and ready-to-use UI 

for non-experts. 
Data 

Governance, 
Provenance & 

Version Control 
[16] 

MLflow for experiment 
tracking; Apache 

Atlas/catalogs for lineage; 
Git-based versioning for 
code/models/datasets. 

Metadata, validation 
metrics, and datasets 
often live in separate 

tools, with er4t565weak 
end-to-end traceability 
across runs and teams. 

Links PyCharm to a 
dedicated GitLab 

branch; emits run-level 
JSON provenance 

(options, thresholds, 
transformations) and 

versioned HQ datasets 
(CSV/XLSX). 

OOD 
Generalization & 
Drift Detection 

[32] 

Statistical drift metrics 
(KL/JS/Wasserstein), 

windowed tests; surveys 
on concept drift and 
time-series OOD. 

Embedded OOD checks 
are rare in DQ pipelines; 
little separation of ID vs 
OOD windows; minimal 

linkage to 
governance/audit. 

Adds monthly drift 
summaries and 

stability diagnostics; 
separates ID/OOD 

periods in evaluation 
and logs outcomes in 

provenance. 
Explainable & 

Auditable 
Data-Readiness 

Metrics [16] 

ISO/IEC 25012 
dimensions (accuracy, 

completeness, 
consistency, timeliness, 
traceability, auditability); 

WhyLogs/GE scorecards. 

Standards specify 
*what* to measure but 

not *how* to automate in 
streaming; few systems 
bind metrics to artifacts 

for audit. 

Computes metrics 
in-task and exports 

tables/plots + JSON; 
ties scores to concrete 
artifacts (HQ datasets, 
figures) for auditability. 

 

Table 2. Summary 

 

 

 

 

 

 

 



37 
 

4 Methodology 

This chapter provides the methodological foundation for the thesis by giving the 

systematic strategy, methodology, and experimental design used to address the 

identified research problem. It transforms the conceptual insights and research gaps 

identified in the literature review into a practical, operational framework for execution. 

The section describes the system architecture, data acquisition processes, 

preprocessing pipeline, analytical models, and evaluation strategies that allow for the 

engineering and assessment of data quality in diverse smart-city time series. By 

formally defining each processing stage—from data ingestion, cleaning, and 

transformation to outlier detection, imputation, augmentation, and quality evaluation—

the chapter demonstrates how the proposed workflow improves on existing methods 

through automation, reproducibility, and explainability. Every design decision is 

supported by methodological explanations, ensuring that it meets the objectives of 

accuracy, completeness, consistency, traceability, timeliness, and auditability. This 

chapter serves as a bridge between the state-of-the-art analysis and the practical 

realization presented in Chapter 5, ensuring that the subsequent implementation and 

evaluation are based on a well-defined, transparent, and scientifically verifiable 

framework. 

4.1 Overview and Design Rationale 

This section describes the overall methodological philosophy and reasoning that led to 

the development of the proposed data quality framework. It teaches the fundamental 

concept of using a systematic, data-centric approach to creating, analysing, and 

enhancing the quality of heterogeneous smart-city time-series data. The presentation 

focuses on how the literature review findings influenced methodological selections, 

ensuring that the chosen methodologies addressed the specific issues of temporal 

heterogeneity, missingness, and outlier behaviour in sensor environments. This 

section also discusses the motivations for essential design principles such as 

modularity, openness, and repeatability, which ensure that each stage of data 

processing contributes demonstrably to the stated quality parameters. This section 

defines the methodological framework for the following architecture, algorithms, and 

experimental settings by explaining the intellectual underpinnings and reasons for the 

chosen tactics. 

 

 

 



38 
 

4.1.1 Purpose, Scope, and Quality Objectives of the Methodology 

 

The goal of this methodology is to create a systematic, data-centric framework for 

designing, evaluating, and validating the quality of diverse time-series datasets derived 

from smart-city sensor settings.  The framework describes a unified process that 

combines data ingestion, preprocessing, exploratory analysis, quality evaluation, and 

artifact generation into a single, reproducible pipeline.  Within this setting, the 

methodology serves as the research's operational core, transforming conceptual 

findings from previous studies into a measured, automated, and transparent workflow 

that enables a quantitative assessment of data preparation.  

 

This methodology encompasses the entire process, from raw data collection to the 

creation of high-quality (HQ) datasets and evaluation dashboards. It includes a variety 

of operations, such as timestamp alignment, duplication removal, validity screening, 

missing-value imputation, outlier detection using z-score and rolling statistics, feature 

derivation, and out-of-distribution (OOD) stability checks. Each of these processes is 

parametrically customizable, allowing the system to adapt to a variety of sensor 

properties and operational scenarios. This adaptability ensures that the same 

methodology may be used for numerous qualities and sensor types while preserving 

consistency and traceability in quality evaluation. 

 

The technique directly addresses ten important data quality dimensions, as described 

in Table 3: accuracy, completeness, consistency, traceability, timeliness, and 

auditability. These dimensions collectively establish the standards for evaluating the 

fitness of smart-city time-series data in relation to the research objectives. Timeliness 

is verified by resampling and temporal aggregation mechanisms that track data delays 

or irregular intervals; accuracy is strengthened by detecting and eliminating erroneous 

or out-of-range values; completeness is ensured by identifying and imputing missing 

records; consistency is maintained by enforcing duplicate-free and range-constrained 

datasets; traceability is achieved through detailed JSON-based provenance reporting 

and versioned output artifacts; and auditability is realized by integrating transparent, 

UI-driven workflows that enable the reproduction and export. By defining these 

methodological purposes and objectives, this subsection situates the research 

framework as a bridge between theoretical understanding and practical validation. It 

establishes how the system operationalizes abstract data quality principles into 

measurable, interpretable, and automatable components, forming the foundation upon 

which the subsequent architecture, algorithms, and evaluation processes are built. 
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Research Objective Methodological 
Component 

Expected Outcome 

Improve data accuracy Outlier detection (z-
score, range screening) 

Reliable and error-free 
sensor values 

Enhance completeness Missing-value detection 
and imputation 

Continuous time-series 
without gaps 

Ensure consistency Duplicate removal and 
temporal resampling 

Uniform and stable data 
representation 

Strengthen traceability Provenance logging 
(JSON metadata) 

Transparent and 
reproducible workflow 

Maintain timeliness Timestamp alignment 
and delay monitoring 

Regular and up-to-date 
data streams 

Support auditability Exportable HQ reports 
and UI configuration 

tracking 

Verifiable and 
reviewable analytical 

outputs 

Assure overall data 
quality 

Integrated quality 
metrics and six-

dimensional evaluation 

Quantified assessment 
of dataset readiness 

Enable OOD 
generalization 

Stability and drift 
screening across time 

segments 

Robust performance 
under data distribution 

shifts 

Improve feature 
representation 

Rolling statistics and 
derived temporal 

features 

Enhanced interpretability 
for downstream analysis 

Simulate real-world 
variability 

Data augmentation 
through noise and 

missingness injection 

Improved model 
robustness and pipeline 

validation 
 

Table 3. Mapping of research objectives to methodological components 

 

4.1.2 Architectural Philosophy and Methodological Justification 

 

The proposed methodology is based on a data-centric and pipeline-oriented 

architectural philosophy, with a focus on systematic data quality management as the 

foundation for analytical reliability. Unlike typical model-centric techniques, which 

promote prediction accuracy or algorithmic optimization, the accepted framework 

prioritizes data integrity, completeness, and consistency before beginning any 

modeling or evaluation process. This design perspective is consistent with current 

trends in data-driven system engineering, in which the quality of input data directly 

influences the validity of analytical results. The methodology uses a pipeline-first 

structure to ensure that each data transformation—from ingestion to high-quality (HQ) 

dataset generation—is clear, modular, and reproducible. 
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The architecture is organized into well-defined stages that include data ingestion, 

validation, cleaning, feature derivation, exploratory analysis, and quality evaluation, all 

of which are controlled by adjustable parameters. Each stage operates independently 

but cooperatively within the unified processing workflow. This modularity allows for 

scalability across several smart-city sensor streams, such as temperature, humidity, 

barometric pressure, and solar radiation, while preserving common data handling 

standards. The pipeline is designed in a tiered structure that separates stream 

management, option setup, and output creation, resulting in scalability and 

maintainability. This design choice enables the system to detect timestamps, handle 

duplication, rectify invalid or missing entries, and perform statistical quality checks 

without requiring operator interaction, resulting in a completely traceable and self-

documenting process. 

 

From a methodological standpoint, this data-centric design is supported by current 

literature, which emphasizes that the bulk of analytical inconsistencies in Internet-of-

Things (IoT) and smart-city applications are caused by data-level shortcomings rather 

than model restrictions [20]. Previous research has shown that flaws, including missing 

values, outliers, and uneven sample intervals, can spread and amplify through 

downstream analysis, resulting in incorrect insights and poor model generalization [24]. 

As a result, the emphasis on preprocessing, imputation, and quality assessment before 

model training directly solves the cited limitations. The proposed methodology 

incorporates rolling statistics, z-score-based outlier detection, resampling, and out-of-

distribution (OOD) drift analysis, which are empirically verified best practices for 

managing temporal and statistical variability in sensor environments. 

 

Furthermore, the formalization of quality metrics—which encompass characteristics 

such as correctness, completeness, and timeliness—expands previous frameworks by 

including traceability and auditability as additional dimensions required for explainable 

AI and transparent data governance. This methodological emphasis on end-to-end 

data quality is consistent with TU Chemnitz's academic criteria for applied computer 

engineering research, which emphasize methodological rigor, reproducibility, and 

measurable progress over previous art. Thus, the selected architectural philosophy not 

only expands on existing research but also turns it into a realistic, automated, and 

extendable solution for real-world smart-city data pipelines. 
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4.1.3 Improvements and Formalization Plan 

 

The proposed methodology significantly improves on existing data-quality assessment 

methodologies for smart-city time series by combining automation, repeatability, and 

provenance tracking inside a unified, user-driven framework. Traditional data-quality 

solutions frequently rely on static scripts or offline analysis, which necessitate human 

interaction and domain-specific configuration. In contrast, the proposed system 

automates the entire processing sequence—from data ingestion and validation to high-

quality dataset production and evaluation—via a user-configurable task pipeline. This 

automation lowers human bias, operational errors, and assures consistent execution 

across different datasets and sensor properties. 

 

A significant development is the inclusion of a graphical user interface (GUI) that 

enables dynamic configuration of preprocessing and quality-analysis tasks. Users can 

interact with numerical attributes, resampling intervals, z-score thresholds, and 

imputation algorithms without changing the underlying code. These UI-driven choices 

improve accessibility and transparency, allowing non-technical stakeholders to carry 

out reproducible experiments while retaining scientific rigor. The addition of 

provenance metadata via JSON-based reporting sets the system apart from previous 

approaches. Each execution contains critical parameters, statistical summaries, and 

data-quality measurements, ensuring total traceability and accountability—essential 

needs for explainable and auditable smart-city analytics. 

 

From a scientific perspective, the methodology formalizes the entire data-quality 

workflow into measurable and mathematically expressible components. Subsequent 

sections of this chapter present the formal definitions for major processes, including 

range-based validity screening, z-score outlier detection, rolling statistical 

computation, missing-value imputation, and out-of-distribution (OOD) stability 

evaluation. Each operation is defined as a function 𝑓𝑖(𝐷, 𝜃𝑖) that maps an input dataset 

𝐷and configuration parameters 𝜃𝑖to a transformed dataset and quality score. This 

mathematical formalization enables consistent comparison, parameter optimization, 

and quantitative evaluation of the quality dimensions—accuracy, completeness, 

consistency, traceability, timeliness, and auditability—defined earlier in this chapter. 

 

Collectively, these innovations shift the approach from a human and fragmented 

process to a standardized, automated, and verifiable pipeline, offering both conceptual 

and operational advantages over previous literature. The chapter thus moves from 

establishing these theoretical components to their organized implementation and 
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assessment, serving as an analytical bridge between the research framework and the 

practical system realization detailed in Chapter 5. 

 

4.2 System Architecture & Data Ingestion 

This section describes the architectural design and operational flow of the proposed 

SmartCity data-quality framework, including how data is ingested, formatted, and 

prepared for analytical analysis.  It explains the system's functional organization, 

including the interaction of core components such as the task runner, option parser, 

processing modules, and output writers, which together allow for automatic and 

reproducible data-quality review.  The section also describes the input data streams, 

which are predominantly time-series sensor datasets in CSV and Excel formats, as 

well as the techniques for timestamp detection, attribute selection, and schema 

validation, all of which ensure structural consistency before analysis.  It also provides 

variable experimental elements such as resampling frequency, z-score thresholds, 

imputation procedures, and output formats, all of which define the methodology's 

flexibility and adaptability. This section provides a complete overview of the system's 

architecture and data-handling pipeline, laying the groundwork for transforming raw 

sensor data into high-quality, verified, and analysis-ready datasets. As a result, it acts 

as the methodology's operational backbone, connecting the previously stated 

conceptual framework to the documented data-processing operations that follow. 

 

4.2.1 System Context and Components 

 

The proposed SmartCity data-quality framework works in a distributed computing 

environment, connecting the SmartCityCloud data repository to the CE GPU Server, 

where analytical activities are performed. The system is built on a modular and service-

oriented architecture, which separates data storage, computation, and visualization 

components. The framework's central feature is a task-execution mechanism that can 

be configured to automate the whole data-quality evaluation process. The main internal 

components of this system are listed below: 

 Task Runner – Serves as the central execution engine that orchestrates the 

complete pipeline once a user initiates a task. It loads the selected dataset, 

triggers the data-processing modules sequentially (validation, cleaning, 

analysis, and reporting), and manages the flow of intermediate and final results. 

 Option Parser – Interprets the configuration parameters received from the web 

interface—such as attribute selection, resampling frequency, z-score threshold, 

imputation strategy, or export format—and converts them into executable 
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settings. This ensures reproducibility and parameter traceability for every 

experimental run. 

 Processors – Represent the functional units that perform the actual data 

transformations, including timestamp normalization, duplicate elimination, 

range and validity screening, missing-value imputation, rolling-statistic 

computation, z-score-based outlier detection, and out-of-distribution stability 

analysis. Each processor outputs both transformed data and quantitative quality 

metrics. 

 Writers / Exporters – Handle the generation and storage of final artifacts such 

as high-quality (HQ) datasets, JSON reports, and evaluation tables. They apply 

standardized file naming and versioning to maintain provenance and ensure 

that data are saved only when explicitly requested by the user. 

 UI Triggers – Constitute the interactive bridge between the user and the 

computational backend. Actions such as Run Task, Save Results, or View Plots 

activate corresponding Python functions in the task runner, enabling real-time 

visualization and control through the graphical interface. 

 

Together, these components enable an end-to-end automated process that transforms 

raw, heterogeneous sensor inputs into validated, high-quality datasets ready for 

analysis or visualization.  

 
Figure 9. Architecture Overview 

 

Fig 9 depicts the broader system environment, as well as the SmartCity Compute 

framework's overall Overview Architecture. The design has two core environments: the 
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SmartCityCloud and the CE GPU Server. SmartCityCloud acts as the persistent data 

repository where sensor streams are recorded based on timestamps and may include 

various attributes such as speed, latitude, longitude, or environmental parameters. 

When new datasets are added, additional artificial timestamps can be used to preserve 

temporal compatibility with the existing storage format, ensuring synchronization and 

consistent sampling for downstream processing. On the computational side, the CE 

GPU Server hosts the task logic created for this thesis. Users initiate a job through the 

web interface, which schedules and begins execution on the compute server. The 

workflow consists of three stages:  

 Scheduling and configuring the task. 

 Downloading the relevant sensor streams from SmartCityCloud 

 Returning the processed results—typically JSON summaries or HQ datasets—

to the platform for viewing or further evaluation.  

This interaction establishes a clear line of responsibility: SmartCityCloud maintains 

data gathering and persistence, while the CE GPU Server handles computation, 

validation, and quality analytics. The cyclical interchange between these two levels 

serves as the operational backbone of the proposed technique, ensuring that data 

retrieval, processing, and reporting are seamlessly integrated, automated, and 

traceable inside the TU Chemnitz SmartCity computing ecosystem. 

 

4.2.2 Data Sources, Stream Types, and Timestamp Normalization 

 

The datasets employed in this study are derived from several air-quality and 

environmental sensor streams, constituting a broad and complex data ecosystem 

within a smart-city infrastructure.  These datasets include observations of air 

temperature, barometric pressure, relative humidity, wind speed, and particulate 

matter concentrations, all of which are timestamped and collected from scattered 

monitoring sites.  Multiple datasets are used to assess the framework's resilience and 

flexibility, which is consistent with the proposed methodology's data-centric mindset.  

This multi-dataset testing assures that the system is not specific to a single data source 

or device type, but rather generalizes across different sensor conditions, sampling 

rates, and data quality attributes, hence proving the pipeline's universality. 

 

All sensor streams are collected in CSV or Excel formats, which are standard formats 

used in environmental and IoT data collecting systems. Each stream typically contains 

a timestamp column and one or more numeric attributes that indicate sensor readings. 

In keeping with the data-centric goal, the framework does not rely on a fixed schema 

and instead interprets each dataset dynamically upon intake. This allows for easy 
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integration of additional data sources with different attribute names and formats, 

allowing the methodology to function independently of the original data-collecting 

environment. The architecture allows for simultaneous management of many qualities, 

with the user picking specific numeric variables via the web interface for extensive 

quality analysis. This flexibility ensures that both univariate and multivariate datasets 

can be examined under identical methodological settings, further emphasizing 

reproducibility and comparability across experiments. 

 

Timestamp discovery and normalization are crucial steps in the intake process, as they 

provide temporal consistency before performing analytical processes. As time 

alignment is the foundation of all subsequent processes—from resampling and 

imputation to outlier detection and OOD analysis—the system uses a hierarchical 

detection method to automatically locate the timestamp column. During dataset 

loading, the framework first looks for columns with names that match popular time-

related identifiers (such as "timestamp," "time," "date," "datetime," and "recorded_at"). 

If numerous possibilities are identified, the algorithm selects the column with the 

highest proportion of successfully parsed date-time values. When explicit timestamp 

columns are missing or inconsistently constructed, the system automatically creates a 

temporal index based on row order or sampling intervals derived from metadata. This 

multi-layered detection approach guarantees robustness against schema variations, 

which is a common drawback in previous cutting-edge data-quality frameworks that 

commonly presume consistent timestamp fields. 

 

Once found, timestamps are normalized to a consistent format (ISO 8601 standard) 

and transformed to a pandas DateTimeIndex for more efficient temporal operations. 

The normalization procedure also accounts for uneven intervals, missing time steps, 

and overlapping entries, which are prevalent in sensor-based recordings due to 

transmission delays or system resets. These corrected and ordered timestamps serve 

as the temporal foundation for subsequent quality assessment tasks such as missing-

value analysis, resampling at predetermined granularities (hourly, daily, or monthly), 

rolling statistical computation, and time-dependent outlier detection. The result is a 

consistent time-series representation that retains both temporal precision and 

analytical integrity across datasets. 

 

In summary, this part lays the groundwork for the technique by describing how 

disparate smart-city air-quality datasets are systematically digested, temporally 

aligned, and standardized into a single analytical structure. By automating timestamp 

discovery and supporting several dataset formats, the suggested technique addresses 
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interoperability issues that exist in existing systems. It thereby operationalizes the 

basic principles of data-centric research by emphasizing data readiness, flexibility, and 

cross-source generalization, all of which are critical to maintaining the validity and 

scalability of the SmartCity data-quality evaluation system. 

 

4.2.3 End-to-End Workflow 

 

The integrity of the data-quality analysis process is dependent on rigorous input 

validation and schema conformance before execution. The suggested system is meant 

to accommodate diverse datasets while maintaining a uniform logical schema to 

ensure correct interpretation and replication. Every dataset that is put into the system 

is first checked for minimum structural criteria, such as the availability of a timestamp 

column and at least one numeric characteristic suitable for statistical analysis. The 

ingestion layer automatically checks for data completeness, ensuring that timestamps 

are unique, chronologically ordered, and parseable into a single DateTimeIndex. Non-

numeric or categorical columns are disregarded during analysis but remain in the 

metadata for traceability. To ensure analytical consistency, type casting is used to 

transform numerical fields to floating-point representations, and columns with 

incompatible datatypes are omitted from downstream computation. This pre-validation 

stage prevents schema mistakes, enforces uniform data types, and ensures that the 

following quality-assessment algorithms perform reliably. 

 

Beyond structural validation, the system allows for a large range of experimental 

configuration parameters, known as the Option Space. These options establish the 

methodology's operational flexibility, allowing the same pipeline to be evaluated with a 

variety of parameter settings and data conditions. Each customizable piece is an 

experimental factor that can be controlled to alter data quality interpretation. The most 

crucial options are: 

 Resampling Frequency: Determines the temporal granularity at which the data 

are aggregated—Hourly (H), Daily (D), or Monthly (M). This enables the 

analysis of short-term fluctuations versus long-term trends in sensor behaviour. 

 Z-Score Threshold: Sets the statistical cutoff for outlier detection. Common 

values include ±2.5 or ±3, allowing control over sensitivity to extreme deviations. 

 Duplicate Handling: Removes repeated timestamps or sensor readings, 

preserving the first valid occurrence to maintain consistency. 

 Imputation Method: Specifies how missing values are replaced, with available 

strategies including forward fill (ffill), backward fill (bfill), or linear interpolation 

based on temporal index continuity. 
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 Augmentation Preview: Applies simulated perturbations (noise or artificial 

missingness) to assess pipeline robustness. 

These options transform the system into a parameterized experimentation framework, 

supporting controlled comparisons across datasets and configurations. Each run is 

automatically logged with its specific parameter set, ensuring that experiments can be 

reproduced and independently verified. Once the inputs have been validated and the 

experimental parameters have been determined, the framework's end-to-end workflow 

is carried out in a well-defined series of steps. The process begins when the user picks 

an input dataset and starts the execution via the user interface. The task runner gets 

the desired file, applies the specified settings, and starts the data-processing pipeline. 

This pipeline includes the following important stages: 

 Input Acquisition and Validation: The dataset is parsed, schema conformity 

is checked, and timestamps are standardized. 

 Preprocessing and Cleaning: Duplicate entries are removed, invalid values 

are replaced with NaN, and missing data are handled through the configured 

imputation method. 

 Feature Derivation: Rolling statistics, resampled means, and lag features are 

computed to reveal temporal patterns and anomalies. 

 Quality Evaluation: Z-score and range-based outlier detection, completeness 

calculation, and OOD stability checks are performed. 

 Result Compilation and Export: The final high-quality (HQ) dataset and its 

associated JSON report are generated, summarizing all statistics, parameter 

settings, and quality metrics. 

 

This method produces tabular datasets, graphic plots (such as time series, boxplots, 

and trend analyses), and machine-readable JSON reports. Each result product 

contains complete provenance metadata, including processing timestamps, parameter 

configurations, and evaluation summaries, allowing for traceable and auditable 

documentation of each run. This automated report production also facilitates later 

performance benchmarking or sensitivity analysis by maintaining a consistent format 

across studies. 

 

The tight integration of the user interface and backend processing is an important 

design aspect of this workflow. The user interface triggers are directly related to 

backend functions: "Run Task" starts data processing, "Show Results" shows plots 

and statistical summaries, and "Save Results" saves the HQ dataset and reports to the 

output folder. This combination of automation and user-driven setup improves 
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productivity and transparency by reducing the need for human data handling while still 

retaining total control over analytical parameters. 

 

In essence, the combination of schema validation, parameter configurability, and 

automated end-to-end execution transforms the suggested technique into an 

adaptable and reproducible framework for assessing the quality of data in smart cities. 

The design not only supports numerous datasets and sensor types, but it also allows 

for systematic testing in a variety of scenarios, which is essential for data-driven 

research. The system's design combines a conceptual approach with operational 

pragmatism, ensuring that each stage—from input ingestion to artifact generation—is 

both computationally robust and scientifically clear. 

4.3 Formal Processing Pipeline 

This section provides a formal description of the whole data-processing pipeline that 

implements the methods provided in this thesis. It describes each computational stage, 

including its mathematical formulation and functional significance in transforming raw, 

diverse sensor data into analytically valid, high-quality datasets. The formalization 

ensures that the underlying procedures—from parsing and ordering to outlier detection 

and feature engineering—are not only implemented programmatically, but also 

described in a reproducible, verifiable manner that adheres to scientific norms. The 

pipeline is portrayed as a linear yet modular process that starts with timestamp 

alignment and schema validation, then moves on to range screening, missing-value 

treatment, and statistical outlier analysis. 

 

4.3.1 Data Parsing and Validity Formalization 

 

The formal processing of sensor data begins with defining the notation, data structures, 

and rules that establish the mathematical foundation of the proposed data-quality 

framework. Let each dataset D represent a multivariate time series consisting of n 

temporal observations. Each observation is indexed by a timestamp ti ∈ T, where T =

{t1, t2, . . . , tn} denotes the ordered set of sampling times. The corresponding sensor 

measurement at time ti is represented as xti ∈ ℝ, forming a sequence X =

{xt1, xt2 , . . . , xtn}. Missing or invalid readings are treated as special cases within the 

dataset and represented as 

 

𝑥𝑡𝑖 =  {
 𝑁𝑎𝑁,   𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑟 𝑖𝑛𝑣𝑎𝑙𝑖𝑑,

      𝑣𝑡𝑖  ,   𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 𝑎𝑛𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒.
                           

 



49 
 

Accordingly, three disjoint sets are defined: 

 

𝑉 = { 𝑥𝑡𝑖  ∣∣  𝑥𝑡𝑖 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 }, 𝑀 = {𝑥𝑡𝑖  ∣∣  𝑥𝑡𝑖 = 𝑁𝑎𝑁 }, 𝐼 = {𝑥𝑡𝑖 ∣  𝑥𝑡𝑖 𝑖𝑠 𝑖𝑛𝑣𝑎𝑙𝑖𝑑} 

The first stage in the processing pipeline involves parsing, ordering, and duplicate 

handling, which ensures the dataset’s temporal consistency. Parsing converts 

timestamp strings into numerical or datetime representations suitable for ordered 

computation. Let the mapping  𝑝:string → datetime define this conversion such that 

 

𝑡𝑖′ = 𝑝(𝑡𝑖), ∀𝑡𝑖 ∈ 𝑇. 

 

The timestamps are then sorted in ascending order 𝑡1
′ < 𝑡2

′ <. . . < 𝑡𝑛
′ , establishing the 

chronological sequence required for temporal analytics. Duplicate timestamps often 

arise due to sensor synchronization issues or redundant data transmission. A duplicate 

predicate 𝛿(𝑡𝑖)is defined as: 

 

𝛿(𝑡𝑖) = {
 1, 𝑖𝑓 ∃ 𝑡𝑗 ≠  𝑡𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑗 = 𝑡𝑖
0,                                           𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 

 

 

All instances where 𝛿(𝑡𝑖) = 1 are flagged as duplicates, and the system retains only 

the first occurrence, following a keep-first policy. This decision preserves temporal 

continuity while preventing inflation of sample counts. The number of duplicates 

removed is logged as 𝑁dup = 𝑠𝑢𝑚 𝑜𝑓 𝛿(𝑡𝑖), forming part of the provenance record. This 

stage enhances consistency—one of the six quality dimensions—by ensuring that 

each timestamp uniquely identifies a single, valid observation. Once the dataset is 

temporally ordered and duplicates removed, the next phase applies validity screening, 

which ensures that all recorded sensor values fall within realistic operational limits. 

Each numeric attribute is associated with a predefined range function: 

 

𝑏(𝑛𝑎𝑚𝑒) = (𝐿, 𝑈) 

 

where L and U denote the lower and upper acceptable bounds, respectively. For 

instance, for the air temperature attribute, b(temperature) = (−40,60); for barometric 

pressure, b(pressure) = (850,1100); and for relative humidity, b(humidity) = (0,100). 

A validity operator ϕ(xti) determines whether a measurement falls within the defined 

range: 

𝜙(𝑥𝑡𝑖) =  {
1, 𝑖𝑓 𝐿 ≤ 𝑥𝑡𝑖 ≤ 𝑈.
0,                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
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All values failing this criterion (ϕ(xti) = 0) are replaced with NaN, effectively marking 

them as missing for subsequent imputation. The total number of invalid entries is stored 

as 𝑁𝑖𝑛𝑣 =∑(1 − ϕ(xti))
i

, which contributes to the accuracy metric during data-quality 

evaluation. By enforcing these attribute-specific validity constraints, the framework 

eliminates physically implausible sensor readings and ensures the accuracy and 

reliability of downstream analyses. 

 

Collectively, the parsing, ordering, and validity screening procedures establish the first 

layer of data quality assurance in the SmartCity pipeline. Parsing and ordering 

guarantee temporal integrity, while duplicate handling enforces consistency. Range-

based screening ensures attribute-level validity and corrects systematic anomalies 

such as out-of-range spikes or negative physical quantities. These foundational 

transformations not only reduce noise and inconsistencies but also prepare the dataset 

for higher-level processes such as missing-value imputation, outlier analysis, and 

rolling-feature computation. Through their mathematical formalization, these 

operations transform raw sensor inputs into structured, interpretable, and quality-

verified time series, thereby forming the essential basis for the subsequent stages of 

the data-quality framework. 

 

4.3.2 Missing-Data Treatment, Outlier Detection, and Feature Engineering 

 

An essential part of the formal data-quality pipeline is the treatment of missing values, 

identification of statistical outliers, and derivation of temporal features that capture 

trends, variability, and stability in sensor data. These processes transform irregular, 

incomplete, and noisy raw observations into structured and analytically robust 

sequences suitable for further evaluation. 

 

Sensor-based time-series data are inherently prone to missing readings due to 

transmission errors, hardware malfunctions, or latency in data recording. In the 

proposed methodology, missing entries are denoted as NaN and are handled through 

a configurable imputation function. Let the observed series be 𝑥𝑡1, 𝑥𝑡2, . . . , 𝑥𝑡𝑛 , where 

some 𝑥𝑡𝑖are missing. The general imputation operator ℑ(𝑥𝑡𝑖)is defined as: 

 

𝑥̂ₜᵢ =  ℐ(𝑥ₜᵢ) =  

{
 
 

 
 𝑥𝑡𝑖−1,         𝑓𝑜𝑟 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑖𝑙𝑙 

 𝑥𝑡𝑖+1, 𝑓𝑜𝑟 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑓𝑖𝑙𝑙

  𝑥ₜₜ + (
(𝑥𝑡𝑘+1 −  𝑥ₜₜ)

(𝑡𝑘+1 −  𝑡ₜ)
) × (𝑡ᵢ −  𝑡ₜ), 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛 
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Here, 𝑡𝑘 and 𝑡𝑘+1 represent the timestamps immediately before and after the missing 

value. The method fills gaps using the chosen interpolation mode, ensuring temporal 

continuity while avoiding the introduction of unrealistic fluctuations. The number of 

imputed values, 𝑁imp, is reported for each dataset as: 

 

𝑁_𝑖𝑚𝑝 =  𝛴 [𝑥ₜᵢ =  𝑁𝑎𝑁 →  𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑] 

 

After imputation, the dataset is subjected to statistical outlier detection to remove or 

flag anomalous values. The framework applies the Z-score method, which 

standardizes each observation relative to the mean and standard deviation of the 

series. For every time point 𝑡𝑖, the standardized score is computed as: 

 

𝑧ₜᵢ =  (𝑥ₜᵢ −  𝜇ₓ) / 𝜎ₓ 

 

where μx is the sample mean and σx is the sample standard deviation. 

Any observation satisfying the condition |𝑧ₜᵢ|  >  𝜏 is flagged as an outlier, where 𝜏 is 

a user-defined threshold (typically 2.5 or 3). These flagged points are marked as invalid 

and treated as missing (NaN) for subsequent imputation or exclusion. 

To complement Z-score detection, an Interquartile Range (IQR) method is applied to 

describe the overall distributional shape. The IQR is calculated as: 

 

𝐼𝑄𝑅 =  𝑄₃ −  𝑄₁ 

 

Values outside the range [𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅,  𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅] are considered extreme and 

may indicate data drift. This dual outlier framework—combining Z-score and IQR 

screening—improves accuracy and robustness, ensuring that retained values 

represent physically plausible and statistically consistent measurements. Once the 

dataset is cleaned of missing and extreme values, the system computes derived 

temporal features that quantify evolving patterns and enhance interpretability. The 

feature-engineering stage generates higher-level metrics such as rolling mean, rolling 

standard deviation, first differences, and lag features. The rolling mean 𝑥̄𝑡 and rolling 

standard deviation 𝑠𝑡 over a moving window of size 𝑤 are defined as: 

 

𝑥̄ₜ =  (1/𝑤) × ∑ 𝑥ₜ₋ₜ

𝑤−1

𝑘−0
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𝑠𝑡 = (1/𝑤) × ∑(𝑥𝑡−𝑘 − 𝑥̄ₜ )
2

𝑤−1

𝑘−0

  

These features capture local trends and volatility, providing insight into the short-term 

stability of sensor readings. The temporal change between consecutive readings is 

computed as:   

 

𝛥𝑥ₜ =  𝑥ₜ −  𝑥ₜ₋₁ 

 

This highlights sudden deviations, often indicative of potential anomalies or system 

events. To detect prolonged sensor inactivity, the framework checks for consecutive 

identical values across 𝐾time steps. A flatline indicator 𝐹𝑡 is defined as: 

 

𝐹𝑡 = {
1,    𝑖𝑓 𝑥𝑡 = 𝑥𝑡−1 = ⋯ = 𝑥𝑡−𝑘   𝑓𝑜𝑟 𝐾 ≥  𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0,                                𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.
 

 

Flatline detection helps identify faulty sensors that report constant values over 

extended durations—an important aspect of assessing data reliability. Together, the 

missing-data treatment, outlier detection, and feature-engineering stages form the core 

refinement layer of the SmartCity data-quality pipeline. These operations transform 

raw, noisy sensor readings into a structured, continuous, and statistically consistent 

time series, ready for subsequent resampling and high-quality dataset construction. By 

combining mathematical rigor with configurable parameters, the methodology ensures 

that the resulting data are accurate, complete, consistent, and interpretable, satisfying 

the key quality dimensions required for reliable smart-city analytics. 

 

4.3.3 Resampling and High-Quality Dataset Construction 

 

The concluding stage of the formal data-processing pipeline involves temporal 

resampling of the cleaned sensor streams and the construction of a High-Quality (HQ) 

dataset that satisfies all established data-quality dimensions. This stage ensures that 

all previously validated and imputed observations are aggregated at consistent 

temporal intervals and exported in a standardized structure suitable for analytical 

evaluation and visualization. The outcome is a dataset that is duplicate-free, temporally 

aligned, range-validated, statistically consistent, and complete—fulfilling the 

fundamental criteria of accuracy, completeness, and consistency in data-quality 

assessment. 
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Sensor data collected in smart-city environments are often recorded at irregular or 

device-specific intervals, which can hinder statistical comparison and temporal 

modelling. Resampling converts such irregular sequences into uniform time grids by 

aggregating values into fixed time buckets (e.g., hourly, daily, or monthly). Let the 

cleaned time-series after imputation be 𝑋 = {𝑥𝑡1 , 𝑥𝑡2, . . . , 𝑥𝑡𝑛}with corresponding 

timestamps 𝑡𝑖. For a chosen resampling frequency 𝑓 ∈ {𝐻,𝐷,𝑀} (Hourly, Daily, or 

Monthly), each period 𝑃𝑗 is defined as a set of timestamps belonging to that interval. 

 

𝑥̄_𝑃ₜ =  (1 / |𝑃ₜ|) ×  𝛴_{𝑡ᵢ ∈  𝑃ₜ} 𝑥ₜᵢ 

 

Where ∣ 𝑃𝑗 ∣ is the number of valid points in the interval 𝑃𝑗. If ∣ 𝑃𝑗 ∣= 0, the resampled 

value is set to NaN, preserving transparency of missing intervals. The resampling 

operator transforms the original series into a new time-indexed series 𝑋𝑓 =

{𝑥̄𝑃1, 𝑥̄𝑃2, . . . , 𝑥̄𝑃𝑚}, where 𝑚 depends on the total observation window and the chosen 

frequency 𝑓. However, resampling introduces certain caveats: if a large proportion of 

data within a window is missing, the mean may not accurately represent the period’s 

true conditions. Therefore, resampling is performed only after imputation and outlier 

correction to prevent distortion of underlying statistics. 

 

Following resampling, the cleaned and temporally harmonized data are assembled into 

the final High-Quality (HQ) dataset. The HQ dataset represents the definitive product 

of the data-quality pipeline and serves as the foundation for evaluation and 

visualization. It adheres to a strict post-processing contract ensuring that all integrity 

and consistency conditions are satisfied. The formal definition of the HQ dataset 𝐷𝐻𝑄 

is given as: 

 

𝐷_𝐻𝑄 =  { 𝑥ₜᵢ ∈  𝑋 | 𝛿(𝑡ᵢ) = 0,𝜑(𝑥ₜᵢ) = 1, 𝑥ₜᵢ ≠  𝑁𝑎𝑁 } 

 

where: 

 𝛿(𝑡𝑖) = 0, ensures that no duplicate timestamps exist, 

 𝜑(𝑥𝑡𝑖) = 1, confirms that the value has passed validity screening, 

 𝑥𝑡𝑖 ≠ 𝑁𝑎𝑁, guarantees the absence of unhandled missing values. 

 

Thus, every observation in 𝐷𝐻𝑄 represents a verified, validated, and temporally aligned 

data point. To maintain reproducibility, the system records metadata such as: 

 Number of duplicates removed (𝑁𝑑𝑢𝑝), 

 Invalid values replaced (𝑁𝑖𝑛𝑣), 
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 Imputed values (𝑁𝑖𝑚𝑝), 

 Outliers flagged (𝑁𝑜𝑢𝑡), and 

 Resampling frequency 𝑓applied. 

This metadata is stored alongside the HQ dataset in a JSON report, ensuring 

transparency and auditability of every computational step. The HQ dataset 

construction phase also supports strict and flexible configurations. In strict mode, only 

records with complete values are retained, ensuring absolute completeness. By 

ensuring consistent temporal resolution, attribute validity, and completeness, the 

process transforms disparate raw sensor streams into comparable analytical units. 

This not only enhances data interpretability but also ensures that subsequent 

evaluation metrics—such as accuracy, completeness, and stability—are grounded in 

reliable data structures. Moreover, the creation of HQ datasets for each attribute forms 

the basis for comparative benchmarking across time, sensors, or configurations, a 

critical aspect of data-centric experimentation emphasized in this thesis. 

 

4.4 Experimental Setup and Procedure 

This section outlines the experimental setup and execution procedures used to test the 

proposed SmartCity data-quality framework. It defines the computing environment, 

datasets, parameter grid, and workflow for systematically testing and benchmarking 

the methodology's performance. The experimental setup is intended to ensure that all 

processes—from data ingestion to quality evaluation—are carried out under controlled, 

reproducible conditions, allowing for objective comparison across datasets and 

parameter settings. The technical context of experimentation is established by 

providing details on the hardware and software environment, the properties of the 

datasets under study, and the changeable experimental parameters. The section also 

explains the entire procedural flow that occurs through the system's user interface, 

emphasizing how user-defined options influence data processing and quality 

assessment. Finally, repeatability techniques including provenance logging, fixed 

random seeds, and consistent file-naming conventions are explored to ensure that all 

results are transparent and verifiable. This structured experimental design empirically 

demonstrates the suggested methodology's dependability, scalability, and 

generalizability. 

 

4.4.1 Experimental Environment and Parameter Configuration 

 

The experimental evaluation of the proposed SmartCity data-quality framework was 

conducted within a controlled computing environment designed to ensure consistent 
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performance, reproducibility, and scalability. All experiments were executed on a 

Smart city Compute Task wrapper. This configuration provided adequate 

computational resources for handling large-scale sensor datasets and performing time-

series analyses efficiently. The software environment was implemented using Python 

3.10, with core dependencies including pandas (v2.1.1) for data manipulation, NumPy 

(v1.26.0) for numerical operations, Matplotlib (v3.8.0) for plotting and visualization, and 

SciPy (v1.11.3) for statistical computation. The interactive user interface (UI) was 

developed using the NiceGUI framework, which enables seamless interaction between 

the Python backend and visualization frontend. All code modules, including data 

ingestion (csv_streams.py, excel_streams.py), processing (task_impl.py, options.py, 

output.py), and visualization (streamvis.py), were deployed within this environment and 

orchestrated by the SmartCity Task Wrapper for automated task scheduling and 

execution. 

 

The framework was validated using multiple air-quality and environmental datasets 

collected from simulated smart-city sensor networks and open-source repositories. 

These datasets represent diverse sensor attributes such as air temperature (°C), 

barometric pressure (hPa), relative humidity (%), wind speed (m/s), and solar radiation 

(W/m²). Each dataset was structured as a time-series stream containing a timestamp 

column and multiple numeric attributes, stored in CSV or Excel (.xls/.xlsx) formats. The 

datasets span different time intervals, sampling rates, and data densities to 

comprehensively test the adaptability of the data-centric methodology. On average, 

each dataset contained approximately 28,000–30,000 rows and covered a temporal 

range of several months, with varying degrees of missingness, duplicates, and outliers. 

This heterogeneity was intentionally preserved to assess the robustness of the 

framework across multiple data-quality conditions and to confirm its generalization 

capability to unseen sensor streams. 

 

4.4.2 Concept Solution Description 

 

The suggested experimental setup employs a data-centric solution flow, with each 

dataset going through a predetermined series of quality-oriented activities before being 

approved as a high-quality (HQ) air-quality dataset. The Air Quality Index (AQI) dataset 

(Input) serves as the starting point. In practice, this dataset may originate from several 

sensors or external sources, and hence may not always be in the exact structure 

required by the SmartCityCloud environment. As a result, the first stage is import 

preparation, which includes adding or normalizing a timestamp column to ensure that 

each record is identified in time. This is critical since all subsequent operations—



56 
 

resampling, imputation, outlier detection, label checks, and OOD generalization—are 

time-series operations that necessitate a proper temporal index. 

 

 

 
Figure 10. Concept Solution Diagram 

 

Following this preparation, the dataset is uploaded or linked to the SmartCityCloud 

(SCC), which serves as the primary data repository. SCC is responsible for storing 

various sensor streams in a consistent, time-indexed fashion. At this point, the AQI 

dataset is integrated into the same context as other smart-city data, allowing for 

comparison, resampling, and running the same task wrapper on other attributes. The 

Fig 10 also mentions that SCC may "timestamp the AQI dataset," — which means it 

can enhance or regularize the time column if the original source has irregular or 

missing timestamps, assuring system interoperability. 

 

The subsequent key block is Exploratory Data Analysis (EDA) Fig 11. During this 

stage, the implementation performs the descriptive and structural checks you 

previously created: counting missing values, detecting duplicate timestamps, 

displaying basic statistics, visualizing trends and boxplots, and identifying potentially 

invalid ranges for attributes such as temperature, pressure, or humidity. EDA is used 

not just for human inspection, but also to generate preprocessed data, which is then 



57 
 

input into quality procedures. This is where you use the options set earlier in the 

process (resample frequency, z-threshold, imputation method). This stage produces a 

cleaned, temporarily ordered AQI series that is ready for more rigorous quality 

enforcement. 

 

 
Figure 11. Exploratory Data Analysis for AQI Data 

 

The subsequent step post the EDA is “Data Quality Operations (Ensuring high-quality 

data)” Fig 12. This is the core of your thesis contribution and consists of four logical 

stages: 

 Label Quality Check: Ensures correctness of labels such as sensor-based 

conditions (e.g., SRAD > 0), preventing analytical bias from mislabeled records. 

 Data Augmentation: Introduces controlled noise or artificial missingness to test 

the robustness and generalizability of the pipeline across diverse datasets. 

 Feature Engineering: Generates temporal descriptors such as rolling mean, 

rolling standard deviation, and first differences to capture trends in AQI data. 

 OOD Generalisation: Splits the series into base and future segments and 

compares their statistical profiles to detect distribution drift in sensor data. 

 

 
Figure 12. Data Quality Operations 



58 
 

Once these operations are complete, the resulting dataset is written as a High-Quality 

Dataset (AQI). The data quality operations diagram, which is important: every time the 

task is run with a different option set, a separate HQ version is stored (usually with a 

timestamped filename). This enables reproducibility and rollback — a key requirement 

. In parallel, the pipeline evaluates the dataset against the Data Evaluation Criteria you 

defined earlier (accuracy, consistency, completeness, traceability, timeliness, 

auditability). These criteria are computed from the counts collected during processing 

(missing replaced, outliers flagged, duplicates removed, OOD flags, etc.). Finally, the 

system produces the JSON file (Output). This file is the machine-readable report 

containing: the options used in the run, the quality metrics for the six dimensions, any 

warnings (e.g. “high missingness in February”), and references to the HQ dataset that 

was saved. This JSON is what the UI can display in your evaluation dashboard and 

what you can later include in Chapter 6 for results. In this way, the concept solution 

diagram shows a closed loop: raw AQI → SCC → analysis → quality enforcement → 

HQ dataset → JSON report — fully aligned with the data-centric, reproducible 

methodology defined in Chapter 4. 

 

4.5 Assumptions, Limitations, and Summary 

This section describes the underlying assumptions, methodological restrictions, and 

validation metrics used in the design and evaluation of the proposed data-quality 

framework. Every data-centric methodology is based on some simplifying assumptions 

about sensor behavior, data distribution, and temporal stability, which are required for 

formalization but may affect generalizability.  The identified constraints emphasize 

potential sources of uncertainty, such as heuristic parameter sets, dataset reliance, 

and imputation bias, which can all have an impact on results interpretation.  

Furthermore, mitigation measures and sensitivity assessments are described to 

guarantee that these constraints are addressed consistently and their consequences 

are minimized. The section concludes with a summary that links the methodological 

framework presented in this chapter to the practical realization described in Chapter 5 

and the empirical evaluation presented in Chapter 6, thereby completing the bridge 

between conceptual design, system implementation, and quantitative assessment. 

 

4.5.1 Assumptions 

 

The proposed methodology is developed under a set of foundational assumptions that 

ensure the stability and interpretability of the data-quality evaluation process. It is 

assumed that the sensor metadata provided by the SmartCityCloud environment, 



59 
 

including timestamps, units of measurement, and attribute labels, is accurate and 

reliable, allowing for consistent parsing and identification of variables. Furthermore, the 

validity bounds defined for each attribute (such as temperature, pressure, or humidity) 

are considered to be approximate yet representative of realistic environmental 

conditions. These bounds are derived from empirical studies and literature but may not 

perfectly capture local or seasonal variations. Finally, the approach presumes 

stationarity within the baseline window used for out-of-distribution (OOD) stability 

checks—that is, the statistical properties of the reference data segment (mean and 

variance) remain relatively constant over the observed period. This assumption 

enables meaningful comparison between baseline and future windows, forming the 

basis for detecting drift or instability in long-term sensor performance. 

 

4.5.2 Limitations and Chapter Summary 

 

While the proposed methodology provides a structured and automated framework for 

smart-city data-quality assessment, several limitations and validity threats must be 

acknowledged. The first limitation arises from the use of heuristic validity bounds, 

which, although empirically grounded, may not universally represent all sensor 

operating environments. This introduces potential bias when attributes deviate from 

expected physical ranges due to local calibration differences or extreme environmental 

conditions. Similarly, the Z-score-based outlier detection approach exhibits sensitivity 

to the underlying data distribution; highly skewed or non-Gaussian variables may yield 

false outlier flags or overlook subtle anomalies. The imputation methods (forward fill, 

backward fill, and linear interpolation) also introduce bias when missing values span 

large gaps or when the signal exhibits nonlinear dynamics. Moreover, the evaluation 

outcomes depend partly on dataset specificity—that is, the heterogeneity and volume 

of the sensor streams used for testing—which may affect the generalizability of the 

reported results to other cities or sensor infrastructures. 

 

To address these challenges, several mitigation and sensitivity measures are 

incorporated into the experimental design. Parameter option sweeps are conducted to 

evaluate the influence of varying thresholds, resampling frequencies, and imputation 

strategies, ensuring that conclusions are not dependent on a single configuration. 

Alternative statistical thresholds and adaptive methods are compared to assess the 

stability of quality metrics across different parameter settings. In addition, manual spot 

audits—involving direct inspection of selected datasets and their visual summaries—

are performed to verify the correctness of automated decisions, particularly in outlier 

and imputation validation. Together, these measures strengthen the robustness and 
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reliability of the findings. This section also concludes the methodology chapter by 

establishing continuity with the subsequent parts of the thesis: Chapter 5 

(Implementation) details how the defined processes and algorithms are realized in 

software. In contrast, Chapter 6 (Results and Evaluation) presents the empirical 

performance of the framework across diverse datasets. Collectively, these chapters 

transform the conceptual and formal models introduced here into practical outcomes, 

completing the transition from theoretical design to experimental validation. 

4.6 Summary 

Overall, Chapter 4 presented the methodological framework that operationalizes the 

thesis’s data-centric quality engineering approach by defining a systematic, 

reproducible, and transparent workflow for preparing heterogeneous smart-city time-

series data. The chapter outlined the conceptual rationale for the methodology, 

explaining how design choices were informed by challenges identified in the 

literature—namely, temporal heterogeneity, missingness, outlier behavior, and label 

fragility. It then detailed the end-to-end system architecture, covering data ingestion, 

stream typing, timestamp normalization, and the overall workflow required to transform 

raw sensor datasets into analysis-ready inputs. The formal processing pipeline was 

introduced, defining each operation—validity screening, missing-data treatment, Z-

score outlier detection, rolling statistics, feature engineering, resampling, and HQ 

dataset construction—as structured, parametrizable procedures that ensure consistent 

and explainable transformations across datasets. The chapter further described the 

experimental setup, including parameter configurations, concept-solution logic, and 

the generation of artifacts such as HQ datasets and JSON provenance reports that 

support auditability and reproducibility. Finally, the assumptions and limitations 

underlying the methodology were acknowledged, along with mitigation measures such 

as parameter sweeps, sensitivity analyses, and manual spot audits, thereby 

positioning the methodology as a scientifically grounded bridge between the 

foundational concepts and the implementation and evaluation presented in Chapters 

5 and 6 
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5 Implementation 

This chapter describes the practical application of the concepts, data pipelines, and 

design principles introduced in earlier chapters. Building on the methodological 

foundation presented in Chapter 4, the implementation transforms the suggested data-

centric pipeline into a fully functioning system within the SmartCityCloud (SCC) 

environment. While previous sections highlighted the limitations of existing model-

centric approaches and the importance of high-quality, traceable sensor data, this 

chapter shows how those theoretical foundations are realized through code, modular 

architecture, and automated data-quality evaluation mechanisms. The implementation 

details include SmartCity Compute Task Wrapper configuration, environment setup, 

integration of local development with SCC's cloud infrastructure, and the 

implementation of each functional component—from data ingestion and exploratory 

analysis to validation and high-quality (HQ) dataset generation. This section bridges 

methodological design and execution, providing a comprehensive view of how the 

proposed system addresses the missingness, inconsistency, and traceability 

challenges identified in the state-of-the-art review, thereby establishing a reproducible 

foundation for the Results and Evaluation chapter. 

 

5.1 SmartCityCloud Context and Data Sources 

This section describes the technology and data foundations for the proposed 

implementation. It describes the SmartCityCloud (SCC) platform, which serves as the 

underlying cloud infrastructure for large-scale management, processing, and analysis 

of various sensor data streams. The debate focuses on how environmental and urban 

sensors generate data, notably air-quality information, which is then stored and 

transmitted in common forms such as CSV. This section also describes the structure 

and semantics of the Air Quality Index (AQI) dataset used in this thesis, including its 

properties, temporal characteristics, and data-generation workflow inside the SCC 

ecosystem. By creating this backdrop, the section gives the necessary understanding 

of the platform architecture and sensor data flow, on which the future compute-task 

implementation is based. 

 

5.1.1 SmartCityCloud Platform and Sensor Data Generation 

 

The SmartCityCloud (SCC) is a modular, cloud-based platform for managing, 

processing, and evaluating sensor data from a variety of smart city domains. It offers 

an integrated platform that enables real-time and batch analytics, allowing for scalable 
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data management in urban applications including traffic monitoring, forest inspection, 

environmental evaluation, parking management, and drone-based surveillance. The 

platform's architecture is layered, with layers for data intake, processing, storage, and 

visualization that work together to ensure that data streams from diverse sources are 

processed equally. As described in Chapter 4, compute tasks are deployed using the 

SCC's Compute Task Wrapper, which encapsulates the execution environment and 

allows users to add custom AI or data-quality modules without affecting the underlying 

infrastructure. This modularity enhances interoperability and facilitates the rapid 

prototyping of analytical solutions for various urban scenarios. 

 

The creation of sensor data is critical to this architecture. Sensors located across the 

city continuously record environmental data such as air temperature, humidity, wind 

speed, sun radiation, barometric pressure, and rainfall. These measurements are sent 

to the cloud in organized tabular format—typically as comma-separated values (CSV) 

files or live data streams—with each record labelled with a timestamp and, in some 

circumstances, a geographical identifier. The CSV format is a lightweight and 

consistent way to describe heterogeneous sensor outputs, ensuring interoperability 

with both local compute environments and SCC ingestion interfaces. Each dataset 

follows a consistent schema: a timestamp column indicating the measurement time, 

followed by attribute columns representing sensor readings with associated physical 

units (e.g., °C for air temperature, % for humidity, m/s for wind speed). The SCC 

ingestion layer validates the structural integrity of these files, detects missing or 

duplicated entries, and stores them in cloud-based repositories for subsequent 

analysis. 

 

The dataset employed in this thesis, the Air Quality Index (AQI), is an example of such 

data production. It collects continuous air-quality readings from scattered sensors and 

uses important environmental indicators to assess atmospheric conditions. This 

dataset, stored in CSV format, serves as the experimental foundation for testing the 

data-quality measures and analytical methods described later in this chapter. The 

SmartCityCloud platform and its standardized sensor data pipelines create a solid 

foundation for executing compute activities and verifying data-centric AI approaches 

that aim to improve data reliability, traceability, and overall quality in smart-city 

ecosystems. 
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5.1.2 AQI Dataset: Structure & CSV Layout 

 

The Air Quality Index (AQI) dataset is the key data source for assessing the proposed 

data-quality methodology in the SmartCityCloud environment. It is a time-series sensor 

dataset compiled by many environmental monitoring devices spread throughout the 

urban network. Each record refers to an instantaneous measurement taken at a 

specified timestamp, representing atmospheric and meteorological variables that 

together characterize local air quality conditions. The dataset is saved in structured 

comma-separated values (CSV) format, making it simple to import, preprocess, and 

validate within the SmartCity Compute Task Wrapper. 

 

The dataset used in this thesis comprises approximately 28,448 rows and a fixed set 

of sensor-based attributes. Table 4 summarizes the main columns, their physical 

meanings, and measurement units. 

 

 

Attribute Description Unit Typical Range 

CollectedDateAt Timestamp of data collection 
(synchronized to sensor clock) 

– ISO 8601 
datetime 

AirTemperature Ambient air temperature 
measured near the surface 

°C –20 to 50 

Humidity Relative humidity in the 
atmosphere 

% 0 to 100 

WindSpeed Instantaneous wind speed m/s 0 to 60 

WindDirection Direction of wind flow 
measured clockwise from north 

° 0 to 360 

SRAD Solar radiation intensity W/m² 0 to 1200 

BarometricPressure Atmospheric pressure at 
ground level 

hPa 870 to 1080 

Rain Daily rainfall accumulation mm/day 0 to 500 

Flag (optional) Quality indicator for flagged or 
missing records 

– 0 = valid, 1 = 
flagged 

 

Table 4. AQI Dataset Attributes 

Each attribute represents a continuous numeric stream sampled at regular intervals. 

In the provided dataset, the sampling cadence corresponds approximately to 10-

minute intervals, enabling both fine-grained temporal analysis and monthly 

aggregation for detecting long-term trends. The dataset includes occasional missing 

values, duplicates, and anomalous readings, which are intentionally retained to 

evaluate the system’s ability to perform data cleaning, outlier detection, and imputation. 

The presence of these real-world irregularities ensures that the proposed data-centric 



64 
 

quality evaluation methods—such as z-score–based outlier identification, rolling mean 

smoothing, and resampled aggregations—can be rigorously validated. 

 

A typical CSV layout of the dataset is shown below in Table 5 (values redacted for 

privacy and readability): 

 

Collected
DateAt 

AirTemp
erature 

Humidi
ty 

WindS
peed 

WindDir
ection 

SRAD Barometric
Pressure 

Ra
in 

2023-01-
01 

00:00:00 

6.171400
796 

46.320 1.7506
71397 

111.540
7247 

19.868
56612 

1019.44350
3 

0 

2023-01-
01 

00:30:00 

4.714289
308 

49.228
60209 

3.1623
89981 

357.936
1896 

0 1018.40230
8 

0 

2023-01-
01 

01:00:00 

6.226648
054 

48.232
69796 

4.5433
12422 

137.914
5006 

25.907
54152 

1017.60483
8 

0 

2023-01-
01 

01:30:00 

6.615140
918 

49.449
152 

6.2368
40863 

136.310
372 

60.921
19426 

1018.58129
7 

0 

2023-01-
01 

02:00:00 

7.717235
023 

56.430
89952 

1.9327
5409 

322.869
064 

0 1017.69595
9 

0 

 

Table 5. Sample records from AQI Datasets 

This structured format ensures seamless integration with the SmartCityCloud ingestion 

module, where each column is automatically detected as a separate data stream and 

analyzed within the Exploratory Data Analysis (EDA) and Data Quality modules 

implemented in this work. The AQI dataset thus provides a representative and 

challenging basis for testing the robustness of the proposed cloud-based, data-centric 

quality assurance framework. 

 

5.1.3 Data Ingestion into SmartCityCloud 

 

The data ingestion pipeline describes how sensor data files are introduced, registered, 

and prepared for analysis in the SmartCityCloud (SCC) environment. This method 

serves as the first step in the cloud's data pipeline, ensuring that incoming datasets 

are standardized, version-controlled, and easily accessible for compute-task 

execution. The pipeline starts with data collection from field-deployed sensors, which 

send raw readings in the form of CSV or Excel files with timestamped environmental 

measurements such air temperature, humidity, wind factors, and sun radiation. These 



65 
 

files are then loaded into the SCC platform via a regulated ingestion interface, which 

validates the structure and information before further processing. 

 

In this implementation, the data ingestion process is integrated into a user-friendly 

graphical interface (UI) that enables direct uploading of CSV or Excel files through the 

SmartCityCloud Compute Task platform Fig 13. Upon upload, the system automatically 

identifies the file type and processes it using the corresponding data reader module—

CsvStreamReader for comma-separated files or ExcelStreamReader for 

spreadsheets. Each dataset is internally decomposed into multiple data streams, with 

each stream representing a single sensor attribute such as air temperature, humidity, 

or solar radiation. The ingestion layer further performs automated timestamp detection 

and data-type assignment to maintain consistency. All datasets follow a structured 

naming format (e.g., AQI/AirTemperature) and include version tracking to ensure 

reproducibility and auditability across evaluations. This streamlined workflow forms a 

crucial bridge between raw sensor inputs and SmartCityCloud’s computational 

environment, enabling a seamless transition from data acquisition to standardized 

analytical processing within the Compute Task Wrapper. 

 

 
Figure 13. Data Ingestion Workflow 



66 
 

5.2 SmartCity Compute Task Wrapper 

This section introduces the SmartCity Compute Task Wrapper, the main execution 

framework that enables the modular and flexible implementation of analytical activities 

on the SmartCityCloud platform. The wrapper serves as an abstraction layer between 

raw sensor data and computational logic, allowing researchers and developers to 

incorporate new data-centric or AI-driven workflows without affecting the cloud 

architecture. It standardizes critical processes, including data loading, validation, 

transformation, and result export, ensuring interoperability and reproducibility across 

several smart-city applications. As part of this thesis, the Compute Task Wrapper was 

improved and expanded to allow data-quality operations, Exploratory Data Analysis 

(EDA), and high-quality (HQ) dataset production. This contribution not only improves 

the system’s scalability and maintainability but also demonstrates how a unified 

compute framework can facilitate AI task execution on heterogeneous urban datasets, 

bridging the gap between theoretical design and practical deployment within 

SmartCityCloud. 

 

5.2.1 Role as a Common Execution Platform 

 

The SmartCity Compute Task Wrapper acts as a unified execution platform that 

simplifies and standardizes the integration of analytical tasks within the 

SmartCityCloud (SCC) ecosystem. As sensor data in smart-city environments 

originates from heterogeneous sources with varying formats and sampling rates, direct 

algorithm implementation becomes complex and inconsistent. The wrapper resolves 

this by offering a standardized interface that abstracts low-level data handling, enabling 

developers to focus on analytical logic. Its modular structure converts key operations—

such as input discovery, stream parsing, option setup, task execution, and output 

generation—into reusable components, supporting plug-and-play development of new 

modules like data-quality analysis or anomaly detection without altering the core 

infrastructure. By managing task lifecycles and enforcing a consistent input–output 

structure, the framework ensures interoperability and reproducibility across datasets 

and projects. Overall, it forms the foundation of the SCC analytical layer, enabling 

scalable, maintainable, and reliable deployment of AI-driven and data-centric 

applications in smart-city contexts. 

 

5.2.2 Wrapper Architecture and Extensibility Model 

 

The SmartCity Compute Task Wrapper is the foundational architectural component 

that integrates data ingestion, processing, visualization, and output generation in the 
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SmartCityCloud (SCC) framework. It captures the technological difficulty of managing 

heterogeneous smart-city sensor data through a layered and extensible framework. As 

depicted in Fig 14, the architecture is made up of four interconnected layers: the User 

Interface Layer, the Compute Task Layer, the Data Stream Layer, and the Data 

Storage Layer. These layers constitute a standardized execution pipeline that allows 

users to run analytical or AI-based operations with little configuration work while 

ensuring reproducibility, maintainability, and interoperability across datasets and 

projects. 

 

 
Figure 14. SCC Compute Task Wrapper Architecture 

 

a) User Interface Layer - The User Interface Layer represents the topmost 

abstraction through which users interact with the SmartCityCloud platform. It is 

implemented using the NiceGUI framework in the show_ui.py module, which 

automatically generates a responsive web interface. This interface allows users 

to log in, upload input datasets (in CSV or Excel format), configure task 

parameters, and visualize the results of the computation. The UI communicates 

directly with the Compute Task Wrapper through the AutoTaskRunnerUI class, 

dynamically loading available tasks and their configurable options. 

 

When a user uploads a dataset, the interface immediately triggers the ingestion 

process and displays input-data previews and configuration panels. After 

execution, the results—such as statistical summaries, visual plots, or high-

quality (HQ) dataset exports—are rendered back in the UI as part of the 

visualization dashboard Fig 15. This design ensures that even non-technical 

users can interact with the analytical pipeline without needing to modify the 
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codebase, establishing an accessible yet controlled environment for urban data 

analysis. 

 

 
Figure 15. Smartcity Cloud User Interface 

 

b) Compute Task Layer - The Compute Task Layer is the computational 

backbone of the SmartCity Compute Task Wrapper. It manages the entire job 

lifecycle in four standardized stages: discover, options, process, and write, 

ensuring a consistent and reproducible workflow across all analytical modules. 

During the discover phase, the wrapper automatically analyzes accessible 

datasets in the inputs/ directory and recognizes them as data streams for 

analysis. The options stage then exposes changeable parameters defined in 

task_impl.py's get_default_options() method, allowing for dynamic task 

customization prior to execution. In the process phase, the core analytical logic 

executes operations such as missing-value detection, z-score–based outlier 

identification, rolling mean smoothing, or feature generation, depending on the 

task type. Finally, the write phase serializes the processed results through 

standardized stream writers, ensuring consistent formatting for visualization and 

storage. This lifecycle enforces a strict input–output contract that allows tasks 

to operate independently while maintaining interoperability with other 

SmartCityCloud components. 
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Figure 16. Compute Task Options Samples 

 

The graphical interface for configuring task parameters—illustrated in Fig 16 is 

automatically generated by the system using the Compute Task Options 

framework. Each task option defined in the code (e.g., numeric sliders, 

dropdown selections, or Boolean toggles) is dynamically translated into an 

interactive widget within the user interface. This design provides an intuitive 

bridge between the user and the underlying Python implementation, enabling 

users to control algorithmic parameters such as detection sensitivity, threshold 

levels, or choice of anomaly detection method without modifying the source 

code. The figure demonstrates a typical configuration panel, where options for 

selecting the numeric stream attributes that need to be analysed with respect to 

the timestamp attribute. Such modular option handling not only enhances 

flexibility and usability but also ensures that the same computational logic can 

be applied to varied datasets or use cases with minimal configuration. This 

adaptability exemplifies the extensibility of the Compute Task Layer and its role 

in enabling user-driven experimentation and reproducible AI workflows within 

the SmartCityCloud environment. 

 

c) Data Stream Layer - The Data Stream Layer acts as the intermediary between 

computation and storage, transforming raw datasets into structured, streamable 

objects. It handles data flow, type inference, and conversion across multiple file 

formats. The implementation utilizes specialized stream classes such as 

CsvStreamReader, ExcelStreamReader, and ImageStreamReader, each 

responsible for parsing a specific data type and converting it into unified 

DataStream objects.  

 

Once ingested, each attribute in the dataset (e.g., AirTemperature, Humidity, 

SRAD) is treated as an independent data stream. The StreamReader and 

StreamWriter interfaces define how these streams are read and written, 
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supporting both real-time and batch modes. This abstraction enables low-

latency data access and pipeline flexibility, ensuring that analytical modules can 

handle continuous or discrete inputs without additional transformation. The layer 

thus provides an essential bridge between physical data representation and the 

logical processing model used by compute tasks. 

 

d) Data Storage Layer - The Data Storage Layer manages persistent input and 

output datasets within the SCC system. It stores raw data files, processed 

results, and high-quality (HQ) outputs produced after cleaning, imputation, and 

augmentation. The storage layer ensures that each dataset is versioned and 

traceable, allowing experiments to be reproduced consistently. Input datasets 

are typically placed in the /inputs folder, while output artifacts—such as 

processed CSV/Excel files, JSON reports, or visualizations—are written 

automatically to the /outputs directory through the wrapper’s stream writers. 

 

In the current local implementation, the layer relies on filesystem storage but 

maintains a structure that can be easily extended to cloud databases or 

distributed storage systems. Each stored file retains a metadata signature 

containing dataset name, timestamp, and attribute identifiers, enabling efficient 

retrieval during subsequent analysis or evaluation. 

 

The interaction among the four layers of the SmartCity Compute Task Wrapper follows 

a top-down execution flow that ensures smooth data movement from ingestion to 

visualization. The User Interface Layer initiates the workflow when a user uploads a 

dataset and selects a task. The Compute Task Layer then retrieves configuration 

options and executes the analytical logic, while the Data Stream Layer manages data 

flow between input readers, processors, and output writers to maintain consistency 

and synchronization. Finally, the Data Storage Layer saves the processed outputs, 

which are sent back to the interface for visualization and interpretation. This 

standardized lifecycle—discover → configure → process → visualize → store—

ensures uniformity, reproducibility, and reliability across all analytical tasks within 

SmartCityCloud. 

 

A key contribution of this thesis is the extension of the wrapper to support data-quality-

centric compute tasks, enabling advanced operations such as missing-value detection, 

outlier analysis, imputation, and high-quality dataset generation. These enhancements 

adhere to the same base interfaces (TaskRunner, DataStream, and 

ComputeTaskOption), ensuring seamless compatibility with existing components. The 
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architecture remains fully extensible, allowing future integration of AI-driven models 

like predictive air-quality forecasting or anomaly detection without structural changes. 

This modular, plug-and-play design establishes the Compute Task Wrapper as a 

scalable and reusable analytical framework for both experimental research and large-

scale smart-city applications. 

 

5.3 Local Environment Setup 

This section describes the complete setup process required to replicate and execute 

the developed SmartCityCloud (SCC) Compute Task Wrapper in a local computing 

environment. Establishing a consistent and reproducible setup is essential for ensuring 

that the implementation can be deployed seamlessly across different systems and 

development platforms. The section outlines the step-by-step procedure for cloning the 

project repository from GitLab, installing required dependencies and toolchains, and 

configuring the working environment using Python and Conda. It also covers the 

procedures for connecting the local workspace to the GitLab remote repository to 

facilitate version control, collaborative development, and continuous integration. 

Finally, reproducibility practices—such as environment pinning, version locking, and 

consistent seed initialization—are discussed to guarantee that all experiments and 

executions can be reliably reproduced under identical conditions. 

 

5.3.1 Cloning from GitLab and Repository Layout 

 

The implementation of the SmartCityCloud (SCC) Compute Task Wrapper began by 

cloning the official template repository from the TU Chemnitz GitLab server into a 

dedicated working directory on the local machine. A separate folder named 

SmartCityCloud-template was created to maintain an isolated environment for 

development and experimentation. Using Git, the repository was cloned from the 

university’s remote instance via the following command executed in the terminal 

 

 

This operation downloaded the entire SCC Compute Task Wrapper source code, 

including all submodules and configuration files. After cloning, a Python 3.11 Conda 

environment was created and activated to ensure a clean and reproducible 
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workspace for running the project. The environment was set up using the following 

commands: 

 

 

The cloned repository followed a well-defined folder structure designed for modular 

development and task execution. A simplified overview of the repository layout is 

shown below: 

 

 

Once the repository was cloned and dependencies were installed, a sample “Hello 

World” program was executed to verify successful setup and connectivity. The 

task_impl.py file was modified to print a simple message within the UI framework, 

confirming that the Compute Task Wrapper, the NiceGUI interface, and the local 

environment were functioning correctly. The test output displayed “Hello, 

SmartCityCloud!” in the browser interface, indicating that the cloning and configuration 

were completed successfully and the local SCC environment was fully operational for 

further implementation work. 

 

5.3.2 Dependency Installation and Environment Configuration 

 

The development and execution of the SmartCityCloud (SCC) Compute Task Wrapper 

required a consistent software toolchain capable of supporting asynchronous web 

frameworks, data-stream processing, and user-interface rendering. To ensure 
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reproducibility and cross-platform compatibility, a dedicated Conda environment was 

configured using Python 3.11, serving as the foundation for all compute and 

visualization tasks. This environment guarantees that the same dependency versions 

are preserved throughout testing, deployment, and evaluation stages. These libraries 

support the compute framework, user interface, and visualization modules. The 

dependencies can be grouped as follows: 

 

 Data Processing and Analytics: pandas, numpy, scipy, and pytz for time-

series manipulation, numerical operations, and statistical computations. 

 Visualization and Plotting: matplotlib, contourpy, and fonttools to generate 

plots and data-quality dashboards. 

 User Interface and Frontend Rendering: nicegui (v2.10.1), jinja2, and 

markdown2 for automatic UI generation, input selection, and display of outputs 

via web interface. 

 Backend Services and Communication: fastapi, uvicorn, starlette, and httpx 

for REST-based service communication and local hosting. 

 File and Stream Handling: openpyxl and aiofiles for handling Excel and 

asynchronous file I/O. 

 Configuration and Environment Management: python-dotenv for secure 

loading of environment variables and system-level parameters. 

 Utility and OS Integration: colorama, winshell, and ifaddr for Windows shell 

automation, shortcut creation, and network interface resolution. 

 

The dependency installation was carried out using the following procedure within the 

Conda environment: 
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The above setup ensures that all libraries—particularly NiceGUI, Matplotlib, and 

FastAPI—are configured to support interactive visualization, real-time user input, and 

smooth UI execution. Once installed, the environment can be replicated on any 

machine using the same requirements.txt file, guaranteeing portability and 

reproducibility of results. To further standardize execution, a configuration file (.env) 

was created in the project’s root directory. This file defines environment variables that 

manage user authentication, port configuration, and runtime behaviour. The main 

parameters are listed below in Table 6. These variables are loaded dynamically 

through the function _load_users_from_env() in show_ui.py, ensuring secure user 

access and flexible runtime configuration.  

 

Variable Purpose 

APP_USERNAME / 
APP_PASSWORD 

Default credentials for UI login 

APP_USERS Optional JSON structure for multi-user 
access 

APP_PORT Defines port for hosting the NiceGUI server 
(default: 8080) 

APP_LOG_LEVEL Sets verbosity for console logging 
(INFO/DEBUG) 

 

Table 6. Application Configuration Variables 

 

Upon execution, the system initializes the NiceGUI server and launches a local web 

instance at http://localhost:8080, displaying the SmartCityCloud login page. After 

authentication, users can upload datasets, configure options, and execute compute 

tasks. The environment setup also supports log management and automatic shortcut 

generation (via WinShell) for ease of access. 

 

To maintain long-term reproducibility, version control was integrated using Git. The 

following best practices were adopted: 

 All dependencies are version-pinned in requirements.txt. 

 Commits are regularly synchronized with the TU Chemnitz GitLab repository. 

 The Conda environment can be exported using conda env export > 

environment.yml for archival. 

 Random seeds and configuration options are fixed within task modules to 

ensure consistent evaluation results. 

This configuration process establishes a portable and deterministic software 

foundation for executing SmartCityCloud compute tasks locally. It ensures that all 

system components—from data ingestion to UI rendering—operate in a synchronized 

http://localhost:8080/
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and reproducible environment, enabling robust experimentation and future scalability 

to cloud-based deployments. 

 

5.4 Codebase Walk-through 

This section provides a detailed overview of the codebase developed and integrated 

as part of the SmartCityCloud (SCC) Compute Task Wrapper implementation. It 

explains the functional responsibilities and interactions among the core modules that 

collectively enable data ingestion, compute-task execution, visualization, and output 

management. The discussion covers the major components of the system, including 

the application entry and authentication layer, the auto-generated user interface, the 

compute layer, and the data streams and storage modules. Each subsection describes 

the internal logic, data flow, and role of individual Python scripts such as show_ui.py, 

auto_ui.py, task_impl.py, and the modular packages under compute, streams, and 

storage. Together, these modules establish the operational backbone of the SCC 

platform, ensuring modularity, extensibility, and reproducibility in executing AI-driven 

and data-quality tasks on smart-city sensor data. 

 

5.4.1 Application Entry and Authentication 

 

show_ui.py serves as the application entry point, launching the SmartCityCloud (SCC) 

UI and enforcing authentication before any compute task can run. At startup, it loads 

credentials from environment variables (preferably a JSON map via APP_USERS, 

otherwise APP_USERNAME/APP_PASSWORD), supports hashed secrets, and 

verifies logins with constant-time comparison to reduce timing-attack risk. 

Authentication is tracked per client session, so the root route decides at request time 

whether to render the login form or the main application. The login view provides 

username/password inputs Fig 17, Enter-to-submit handling, feedback toasts on 

failure, and a logout action that clears the session and returns users to the login page. 

 

 
Figure 17 SCC Login Page 



76 
 

After a successful login, the script wires the compute stack into the interface. It 

constructs a TaskRunner around a DelegateComputeTask that references this thesis’s 

task hooks (TASK_TITLE, get_default_options(), process()), then uses the Auto UI 

builder to materialize the full configuration and results interface from the option 

schema—covering input selection, parameter widgets, execution controls, and 

output/visualization panes—without manual routing. Inputs are discovered on demand 

(not pre-loaded), which ensures reproducible execution given the same .env, options, 

and files. The entry module also sets window aesthetics and can create a desktop 

shortcut for convenience, before launching the app as a native NiceGUI window on the 

configured port. 

 

5.4.2 UI layer for Tasks 

 

a. Purpose and role in the system: The Auto Task Runner UI encapsulated in 

auto_ui.py provides a declarative, reusable user interface for executing 

SmartCityCloud compute tasks without hand-coding web forms or plots for 

each task. It connects the UI to the core execution wrapper (TaskRunner) and 

renders: (i) an upload/ingestion panel, (ii) task options auto-derived from 

ComputeTaskOptions, (iii) result visualizations, and (iv) export/evaluation 

utilities. This design adheres to the guideline’s recommendation to document 

implementation steps and testing artifacts in a reproducible, structured manner 

(Implementation → Documentation of the Implementation). 

b. Architecture & key components: auto_ui.py builds on NiceGUI and the 

wrapper API: 

 Runner binding: accepts a TaskRunner instance; all UI actions 

delegate to runner.discover_inputs(), runner.execute(), and 

runner.write_outputs() where applicable.  

 Option rendering: uses OptionVisualizationUI to transform 

ComputeTaskOption definitions (e.g., ChoiceOption, 

InputStreamMultiChoiceOption) into widgets automatically. 

 Stream visualization: uses StreamVisualizationUI to produce time-

series and summary plots with automatic down-/re-sampling and 

readable date ticks. 

 Results model: stores task outputs in self.outputs and renders grouped 

“Summary/Quality/Plots/Evaluation” expansions; utilities convert 

DataStream to native values where needed. 
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A minimal sketch of the control flow: 

 

 

 

 

 

c. Input acquisition & upload workflow: The UI exposes a file upload that 

accepts CSV/Excel and persists it to a temporary folder. After saving, it re-

discovers input streams using the registered readers (CSV/Excel), refreshes 

option widgets (so the attribute multi-select reflects the new columns), and 

builds a “Quick Overview” with rows/columns, type buckets, and per-column 

missingness/min/max. This gives a layperson-friendly yet audit-ready snapshot 

before computation. The summary logic detects numeric, datetime, and text  

columns, computes overall and per-column missingness, and shows min/max 

for numeric fields—supporting data-quality awareness before running the task. 

       

 

 

 

 

 

 

 

Fig 18 illustrates the automated data ingestion and initial validation workflow 

generated by the AutoTaskRunnerUI. Once the user uploads a dataset (here: 

AQI_Data.xlsx), the system immediately analyzes the file and produces a 

structured “Quick Overview” summarizing key metadata, including file size, row 

and column counts, detected data types, and overall missing-data proportion. 

Below this summary, the interface provides a detailed per-column breakdown 

showing the inferred type (numeric or datetime), the percentage of missing 

values, example entries, and the minimum–maximum ranges. This automatic 

inspection step enables users to verify dataset integrity, understand variable 

characteristics, and ensure suitability for downstream Exploratory Data Analysis 

(EDA) and Data Quality operations without requiring any manual preprocessing.                  
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Figure 18. Auto Task Runner UI 

 

d. Auto-rendered options & execution flow: Options are not hard-coded in the 

UI; they’re derived from the task’s default options and rendered via 

OptionVisualizationUI. When inputs change, on_inputs_changed in each 

option (notably InputStreamMultiChoiceOption) repopulates choices to list only 

valid numeric attributes. The “Run Task” button collects widget values and calls 

runner.execute. Relevant snippets: 
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By pushing option semantics into ComputeTaskOption classes (ChoiceOption,   

InputStreamMultiChoiceOption), the UI layer remains generic and reusable 

across tasks. 

 

 
Figure 19. Attribute Selection Interface 

 

 Fig 19 shows the automatically generated attribute-selection interface of the 

AutoTaskRunnerUI. After the dataset is uploaded, the system lists all available 

sensor attributes as checkboxes, supported by “Select All,” “Clear All,” and a 

search field for quick filtering. The interface also displays the number of selected 

attributes and suggests starting with a small subset for initial analysis. Once the 

user chooses the required variables, clicking Run Task triggers the EDA and 

Data Quality workflow. This component highlights the system’s focus on 

usability, configurability, and efficient task execution without manual coding. 

 

e. Results rendering & visualization: After execution, the UI builds multiple 

expansions: 

 Summary cards/tables: compact statistics (count, mean, std, 

min/median/max) per attribute. Values are extracted from DataStream or 

nested dicts and formatted for readability.  

 Quality sections: per-attribute panels for Missing/Validity/Outliers, 

including warning thresholds and explanatory notes, which is useful for 

documenting testing and validation steps as required in the guideline. 
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 Plots: time-series plots automatically re-sampled (5min→monthly 

depending on span), auto-formatted date ticks, and gentle rolling means 

for readability. (Underlying helpers live in StreamVisualizationUI.)  

 

 

 

 

 

 

 

f. Export & evaluation utilities: The UI implements a one-click export that 

preferentially writes High-Quality (HQ) tables and a promoted JSON report 

(with key metrics elevated to top-level keys such as rows_total, missing_total, 

outliers_z_percent), and it selects Excel if an engine is available, else 

CSV/JSON. This balances reproducibility (dataset snapshots) and auditability 

(JSON metrics), matching the guideline’s emphasis on documenting 

implementation artifacts and testing/validation outputs. Example: 

 

An evaluation tab also accepts a JSON report (from a prior run or external tool) 

and computes readiness and data-quality scores (Completeness, Validity, 

Consistency, Stability/Drift, Outliers). The UI explains how scores were derived 

(e.g., “Missing values handled: x/y”), which is valuable for the Testing and 

Validation subsection of the Implementation chapter. 

 

5.4.3 Compute Layer 

 

The Compute Layer forms the operational core of the SmartCityCloud framework and 

defines how analytical tasks are structured, configured, and executed. Its foundation 

is the ComputeTask abstraction in tasks.py, which specifies the required lifecycle 

functions: title, get_default_options(), and process(). Each concrete task conforms to 

this interface, ensuring that all implementations behave consistently regardless of their 

internal logic. The system uses DelegateComputeTask to bridge user-implemented 

functions (such as this thesis’s EDA and data-quality pipeline) with the unified 

execution engine. The TaskRunner orchestrates the full workflow by discovering input 
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streams using registered StreamReader classes, validating names and data types, and 

passing the loaded streams to the selected compute task. During execution, the runner 

invokes the task’s process() method and then automatically converts primitive results 

(scalars, lists, numeric arrays) into standardized DataStream objects so downstream 

components—including the UI and storage subsystems—can treat outputs uniformly. 

The runner also provides safe write-back functionality through write_outputs(), 

matching result streams with appropriate writers (e.g., CSV, Excel, or image data 

streams). This creates a strict contract ensuring that every task moves through a 

consistent, reproducible cycle: discover → configure → process → materialize outputs. 

 

Task configuration shown in Table 7 relies on the flexible option framework defined in 

options.py. Core option types such as NumberOption and ChoiceOption allow numeric 

ranges, dropdowns, and custom selections, while stream-aware options 

(InputStreamChoiceOption, InputStreamMultiChoiceOption) dynamically adapt to 

dataset attributes during input discovery. For example, InputStreamMultiChoiceOption 

automatically filters available columns to include only numeric streams (INT/FLOAT), 

ensuring that algorithms such as outlier detection or interpolation are only applied to 

valid attributes. The output.py module complements this by providing the 

StreamOutputHelper, which creates writable streams for images and leaves extension 

points for user-defined export formats. The thesis-specific task_impl.py builds on this 

compute infrastructure to implement a complete data-quality pipeline: missing-value 

detection, z-score outlier filtering, rolling statistics, interpolation strategies, and 

generation of high-quality (HQ) datasets. Options defined in get_default_options() 

(e.g., selected attributes, resampling frequency, z-thresholds, interpolation mode) 

control the behavior of these algorithms, while the structured outputs—summary 

statistics, cleaned streams, and promoted JSON quality reports—flow back through 

TaskRunner for UI rendering and file export. Together, the Compute Layer establishes 

a modular, extensible, and reproducible execution backend that transforms user 

configuration into concrete analytical results. 

 

Option Default Purpose 

stream_numeric_multi (none) Select numeric attributes for 

EDA & quality checks 

resample_freq M Aggregation frequency (H/D/M) 

zscore_threshold 3.0 Outlier detection threshold 

clean_invalid yes Remove unrealistic values 

drop_duplicate_timestamps yes Ensure unique timestamps 

interpolate_method none Missing value handling 



82 
 

rolling_window 15 Rolling statistics window 

augment none Diagnostic augmentation 

ood_split 70/30 Baseline vs OOD split 

export_format both Export result format 

 

Table 7. Compute Task Options 

 

5.4.4 Streams and Storage 

 

The Streams subsystem provides the unified data abstraction used throughout the 

SmartCityCloud Compute Task Wrapper. At its core is the DataStream base class, 

which encapsulates sensor values along with an associated StreamDataType that 

describes the semantic type of the stream (e.g., INT, FLOAT, STRING, DATETIME, 

IMAGE_SEQUENCE). All concrete stream types inherit from this abstraction and 

expose consistent interfaces for retrieving values, counting elements, and expressing 

whether the stream is writable. The standard in-memory types include 

InMemoryDataStream for homogeneous numeric/text series, NumpyDataStream for 

NumPy-backed arrays with automatic dtype inference, and ScalarStream for single-

value outputs, such as summary metrics or quality scores. The image subsystem 

extends the same abstraction: LocalFilesImageDataStream represents lazily loaded 

images, while WritableImageDataStream provides a structured mechanism for writing 

generated visual outputs to disk, ensuring that even non-tabular results conform to the 

same stream interface used throughout the wrapper. These classes collectively ensure 

that all inputs and outputs—whether numeric time series, scalar indicators, or image 

sequences—can be processed, visualized, and exported through a common API 

without special-case handling. 

 

The Storage subsystem complements the streams by providing format-specific readers 

and writers that convert physical files into typed DataStream objects. As shown in 

Table 8, CSV, Excel, and image directories are handled by their respective readers 

(CsvStreamReader, ExcelStreamReader, and ImageStreamReader), each 

responsible for parsing the raw file, inferring attribute types, and returning a dictionary 

of stream name → stream object. During input discovery, the TaskRunner iterates 

through all files in the given folder, queries each available reader via 

supports_source(), and loads the corresponding streams using read_source() . 

Naming conventions ensure that each column becomes an addressable stream (e.g., 

"AQI/AirTemperature"), enabling the auto-UI and compute logic to treat them 

consistently. Output writing follows a similar model, where the runner matches each 
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result stream with appropriate stream writers; image outputs use 

WritableImageDataStream, while tabular results are exported through CSV/Excel 

writers depending on availability. This structured mapping—from file → stream 

abstraction → output writer—forms a stable, extensible foundation enabling all 

modules in the SmartCityCloud framework to interoperate seamlessly with diverse data 

formats while maintaining reproducibility and a clear separation between data 

representation and computation. 

 

Source Stream Type Usage 

CSV InMemoryDataStream AQI ingestion; numeric & 

datetime columns. 

Excel InMemoryDataStream Alternate ingestion & HQ 

table export. 

Images ImageDataStream Supported for 

sequences; not used 

here. 

Generated plots WritableImageDataStream Stores PNG/SVG 

artifacts. 

Numpy arrays NumpyDataStream Internal numeric data for 

calculations. 

Scalar outputs ScalarStream Single metrics like 

counts or percentages. 

 

Table 8. Mapping of I/O file formats 

 

5.5 Implementation Steps 

After the user selects the AQI dataset and clicks Run Task, the compute task 

processes all selected numeric attributes and organizes the outputs within three major 

interface blocks: the Quality section, the Plots section, and the Data Quality section. 

This structure reflects the complete analytical workflow implemented in task_impl.py 

and orchestrated by auto_ui.py. The system’s behaviour is therefore best understood 

by following the sequence in which the interface presents results, as each section 

corresponds to a specific stage of computation within the EDA and data-quality 

pipeline. Once all analyses are completed, the user may export the high-quality dataset 

and the JSON-based diagnostic report. The following subsections describe these 

interface blocks in detail and explain how they map to the underlying code paths. 
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5.5.1 Quality Section 

 

Immediately after the task execution completes, the interface expands the Quality 

section, which contains a set of essential diagnostic metrics for each selected attribute. 

These metrics serve as the first level of verification and correspond to the 

completeness, validity, and consistency checks defined in Chapter 4. The missing-data 

component quantifies both the total number and percentage of missing values and 

identifies the number of months during which missing entries occur. This behaviour is 

implemented by grouping the raw values at a monthly level and computing 

missingness statistics before any cleaning or interpolation is applied Fig 20. A 

summary of these values appears directly in the interface, and a bar-chart visualization 

highlights the temporal distribution of missing data across months. 

 
Figure 20. Monthly missing percentage chart 

 

The validity-bound analysis evaluates whether sensor readings fall within the plausible 

physical limits corresponding to the attribute. Using the _guess_validity_bounds() 

method, the system automatically infers appropriate lower and upper bounds based 

on the attribute name (for example, air temperature, humidity, wind speed, and solar 

radiation). Values outside these limits are classified as invalid, and a representative 

preview of such entries is provided to the user alongside a numerical count and 

percentage Fig 21. This enables early detection of malfunctioning sensor periods or 

data-entry errors. 

 
Figure 21. Validity Bound Summary with Invalid Samples 
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Outlier detection is performed using the Z-score method. The standard deviation and 

mean of the cleaned values are computed, and readings whose absolute Z-score 

exceeds the user-defined threshold (with 3.0 as the default) are identified. The 

interface reports the number and proportion of detected outliers and displays a time-

series plot that overlays outlier points on top of the smoothed mean curve Fig 22. This 

visualization allows the user to distinguish isolated anomalies from more persistent 

deviations in sensor behaviour. 

 
Figure 22. Z-score outlier plot with anomaly readings 

 

The system also inspects the dataset for duplicate timestamps. Duplicate records 

frequently occur when sensors transmit multiple signals within the same time interval 

Fig 23. If the user has enabled duplicate removal, the system retains only the first entry 

for each timestamp and reports the number of removed records. Together, these four 

components—missing values, validity bounds, Z-score outliers, and duplicate 

timestamps—form a comprehensive first-stage quality assessment that validates the 

structural integrity of the AQI dataset. 

 
Figure 23. Duplicate timestamp detection 

 

5.5.2 Plots Section 

 

The Plots section provides the user with a comprehensive set of visualization tools 

aimed at facilitating exploratory data analysis. These visual outputs are generated 

directly from the dictionary returned by process() and rendered by AutoTaskRunnerUI 

through Matplotlib. The system applies adaptive downsampling to ensure 

responsiveness even for datasets containing several hundred thousand rows. 
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For datasets with multiple numeric attributes, a correlation matrix is produced to reveal 

pairwise linear relationships across variables. This matrix is displayed as a heatmap 

where stronger positive or negative correlations appear as more pronounced color 

intensities Fig 24. The histogram view complements this by illustrating the distribution 

of sensor values and providing insight into skewness, heavy tails, or multimodal 

patterns that may affect downstream modelling tasks. 

 

 
Figure 24. Correlation Matrix 

 

The interface also includes an “Invalid Samples vs Time” visualization, which overlays 

invalid readings on the complete time series Fig 25. This graph assists in identifying 

periods of sensor drift, physical anomalies, or calibration issues. The “Missing by 

Month” graph, produced earlier in the Quality section, is also accessible here as a 

standalone plot to facilitate visual comparison with other indicators. 

 

Temporal dynamics are further explored through the resampled mean plot, which 

computes average values over user-defined or automatically determined intervals 

(hourly, daily, weekly, or monthly). This provides a smoothed representation of long-

term behaviour. The raw time-series plot presents the full-resolution values with 

adaptive downsampling and serves as the reference point for analysis 
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Figure 25. Invalid samples plotted over raw time series 

 
Figure 26. Trend and seasonability decomposition graph 
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A more sophisticated visualization is the Trend and Seasonality graph Fig 26. This plot 

decomposes the daily-aggregated series into a long-term trend component and a 

seasonal component based on monthly averages. It helps verify whether the sensor 

exhibits expected environmental rhythms, such as diurnal or seasonal variations. the 

IQR boxplot is also included within this section, providing two complementary 

perspectives on the distributional behaviour of the data Fig 27. The IQR plot 

emphasizes relative spread, median shifts, and potential skewness.  

 

 
Figure 27. IQR-based boxplot graph 
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5.5.3 Data Quality Section 

 

The Data Quality section provides deeper diagnostic information generated after all 

cleaning, interpolation, and transformation operations have been completed. This 

section, therefore, reflects the “high-quality” (HQ) portion of the dataset, which serves 

as the basis for downstream machine-learning and predictive-modelling tasks. 

 

The first subsection in this group is the Overview, which summarizes the configuration 

and results of the complete data processing workflow Fig 28. It reports whether 

duplicate removal, invalid-value handling, and interpolation were enabled; the number 

of values replaced by NaN; the number of imputations performed; the count of detected 

flatline segments; and the final number of rows retained in the HQ dataset. This 

overview consolidates all earlier operations and provides a concise description of the 

transformed dataset. 

 

 
Figure 28. Overview of Data Quality Operations performed 

 

The Label Quality subsection evaluates differences in sensor behaviour between 

daytime and nighttime readings Fig 29. Using the timestamp hour, the system 
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determines which periods correspond to daylight. It computes separate means for day 

and night values, the difference between them, and the relative balance of 

observations. These metrics are complemented by visualizations such as bar charts 

comparing day and night averages, boxplots for distributional differences, and an 

overlay plot showing the temporal alignment of both groups. The presence of a strong 

and physiologically plausible day–night contrast reinforces the reliability of the dataset. 

 
Figure 29. Label-quality results 

 

The Day vs Night Mean plot Fig 30 compares the average sensor values observed 

during daytime and nighttime and is used to assess the label quality of the dataset. A 

clear difference between day (25.8) and night (21.8) values, with a ΔMean of 4.02 

(18.55%), indicates that the sensor responds realistically to natural diurnal patterns, 

confirming that the timestamps, label assignments, and cleaned HQ values follow 

expected environmental behaviour. This contrast is a strong indicator of high-quality, 

physically plausible data, and helps verify that preprocessing has preserved 

meaningful temporal structure essential for reliable analysis and downstream 

modelling. 

 
Figure 30. Label-quality Day/Night Graph 
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The OOD Generalization (Drift Detection) subsection investigates temporal stability 

using a baseline period (for example, 70% of the time span) and comparing later 

months against the computed baseline statistics. The interface displays the baseline 

mean and standard deviation and shades the ±3σ stability band. Monthly mean values 

are plotted against this band, and any months falling outside the acceptable range are 

flagged as potential drift events. A rolling 30-day mean plot offers a more fine-grained 

view of long-term behaviour and helps confirm whether the dataset remains stable for 

predictive modelling. 

 

 
Figure 31. Monthly mean stability analysis within the OOD generalization module 

 

The OOD generalization in Fig 31 summarizes the long-term stability of the air 

temperature sensor by comparing later months of data against a baseline period. The 

baseline mean (20.945) and standard deviation (8.512) define an expected operating 

range, with the ±3σ bounds spanning approximately –4.59 to 46.48 degrees. Values 

or monthly averages falling outside this interval indicate potential drift or abnormal 

behaviour. In this case, two months were flagged, meaning their monthly mean 

temperatures deviated beyond the established 3σ stability band. This indicates mild 

temporal drift in the sensor’s behaviour and highlights periods that may require closer 

inspection or exclusion when constructing a high-quality dataset.  

 

The Monthly Stability vs Baseline plot Fig 32 illustrates how the monthly mean air-

temperature values evolve relative to a baseline statistical range. The dashed line 

represents the baseline mean computed from the first 70% of the dataset, while the 

shaded green band denotes the expected ±3σ stability interval. Monthly averages that 

fall within this band indicate normal and stable sensor behaviour, whereas values 

outside the band suggest potential drift or abnormal environmental conditions. In this 

example, most months remain within the acceptable range, but a few later months rise 

sharply above the upper 3σ threshold, confirming the drift flags observed in the OOD 
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summary. This visualization, therefore, helps assess long-term consistency and 

identify periods where sensor reliability may be reduced. 

 

 
Figure 32. Monthly mean stability graph vs baseline attribute using OOD 

The final part of this section presents the Feature Engineering output. The HQ dataset 

is enriched with additional columns, including lag1, lag2, diff1, rolling mean (window 

15), and rolling standard deviation. Summary statistics for these features illustrate their 

variability and suitability for machine-learning tasks. If data augmentation was enabled 

by the user, a preview of augmented rows (e.g., noise injection or synthetic 

missingness) is shown as well. 

 

 
Figure 33. Sample data for HQ Feature Engineered Attributes 

 

The Fig 33 summarizes the engineered features derived from the cleaned air-

temperature series, which enhance the dataset’s suitability for downstream modelling. 

The lag1 and lag2 features represent the previous one-step and two-step values, 

capturing short-term temporal dependence, while diff1 measures the first-order change 

between consecutive observations, highlighting local fluctuations. The roll_mean_15 

and roll_std_15 features compute 15-point rolling averages and standard deviations, 

providing smoothed trend information and local variability estimates. Together, these 

features encode temporal continuity, short-term dynamics, and stability patterns, which 
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significantly improve the predictive power of machine-learning models and contribute 

to a more informative, high-quality dataset.  

 

The scatter plot Fig 34 compares the lag1 feature (the previous time step’s 

temperature) with the current air-temperature value, illustrating the short-term temporal 

dependence in the cleaned dataset. The strong diagonal cluster indicates that 

consecutive temperature readings are highly correlated, reflecting natural continuity in 

atmospheric conditions. Points close to the diagonal represent stable transitions, while 

more scattered points highlight sudden changes or brief anomalies. This strong lag 

relationship confirms that the dataset captures realistic temporal dynamics, making 

lag-based features valuable for forecasting models and contributing to a more robust, 

high-quality dataset. 

 
Figure 34. Lag1 vs Value Graph 

 

The autocorrelation plot Fig 35 shows how strongly the air-temperature readings are 

correlated with their own past values across different time lags. The high positive 

correlation at small lags indicates strong short-term persistence, meaning consecutive 

temperature measurements change gradually rather than abruptly. As the lag 

increases, the autocorrelation decreases and becomes negative, reflecting the natural 

temperature cycle where warmer and cooler periods alternate over time. The 

oscillating pattern suggests a repeating seasonal or daily trend in the data, while 

correlations eventually decay toward zero, indicating diminishing influence of distant 

past values. This behaviour confirms the presence of meaningful temporal structure—

an essential property for forecasting models and a key indicator of high-quality time-

series data. 
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Figure 35. Auto Correlation Graph 

 

This distribution comparison plot Fig 36 illustrates how different augmentation 

strategies—Gaussian noise addition, random missingness injection, and a combined 

mode—affect the air-temperature attribute relative to the original high-quality (HQ) 

data. The augmented distributions closely follow the shape of the HQ histogram, 

indicating that the transformations preserve the underlying statistical structure while 

introducing controlled variability. Noise injection mimics natural sensor fluctuations, 

missingness simulates real-world data gaps, and the combined mode prepares models 

to handle both simultaneously. By exposing downstream algorithms to realistic 

perturbations, these augmented datasets improve model robustness, reduce 

overfitting to ideal conditions, and ultimately contribute to a more reliable and high-

quality learning pipeline. 

 

Fig. 37 presents a row-level comparison between the original high-quality (HQ) air 

temperature values and the augmented versions generated through controlled 

perturbations. The Noise (σ = 5% of std) column shows values where small Gaussian 

noise has been added to mimic natural sensor variability, while the Missingness (10%) 

column replaces a random 10% of entries with missing values to simulate realistic data 

gaps. The final Noise + Missingness column combines both effects, producing a more 

challenging dataset for robust model training. Together, these augmented samples 

preserve the underlying temporal patterns of the HQ data while introducing realistic 

imperfections, thereby improving model generalization and ensuring that downstream 
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analytics are resilient to noise and missing data conditions commonly encountered in 

real-world sensor environments. 

 

 

 
Figure 36. Data Augmentation Distribution Comparison 

 

 

 
 

Figure 37. Data Augmentation HQ Table 

 

 

5.5.4 Exporting High-Quality Data and Reports 

 

After reviewing all analyses, the user can export the resulting datasets and diagnostic 

reports by clicking the “Save Results” button. The system supports JSON and Excel 

formats. All files follow a standardized naming convention that includes sanitized 

attribute names and timestamps to ensure reproducibility. The exported Excel file 

typically contains separate sheets for the high-quality dataset, the augmentation 

preview (if available), and the data-quality report. The JSON output includes a 



96 
 

structured summary of all quality indicators, stability metrics, and feature-engineering 

details. These exported artifacts ensure that the full data-processing pipeline can be 

reproduced or integrated into subsequent modelling workflows. 

 

 
Figure 38. Save Results Confirmation message 

 

The confirmation message Fig 38 indicates that the system has completed the export 

stage by saving both the JSON report and the high-quality (HQ) dataset to the 

designated output directory, consistent with the SmartCityCloud workflow shown in the 

overview architecture. This illustrates how processed results are returned from the CE 

GPU server back to the SmartCityCloud environment. This notification verifies that the 

implementation has written all required artifacts—such as the HQ dataset in 

CSV/XLSX format and the structured JSON quality report—into the correct local output 

folder. This ensures reproducibility, proper integration with downstream components, 

and reliable storage of final results exactly where the framework expects them to be. 

 

The exported JSON file contains two main parts: the cleaned high-quality time series 

and descriptive metadata. At the top level it stores the dataset name and export 

timestamp, followed by the field hq_rows, which is a list of records representing the 

final HQ dataset for the selected attribute. Each record includes the timestamp and the 

cleaned sensor value, together with all engineered features that were generated during 

the pipeline, such as one-step and two-step lags (lag1, lag2), rolling mean and rolling 

standard deviation over the chosen window (roll_mean_15, roll_std_15), and the first 

difference (diff1). The schema of these rows is mirrored in the hq_columns entry, which 

lists the exact column names of the exported HQ table. 

 

The second part is the report object, which translates the full data-quality process into 

a compact, machine-readable summary. It records global statistics such as the total 

number of rows, missing values, values converted to NaN because they violated 

validity bounds, removed duplicates, and the number of imputed points and flatline 

runs. It further captures outlier diagnostics (z-score count and percentage), stability 

and out-of-distribution information (for example the number of flagged months out of 

all months and the monthly means relative to a baseline band), as well as other 

counters used by the evaluation dashboard. Altogether, this JSON file therefore 

encodes both the refined HQ data series and all key quality indicators, so that 
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SmartCityCloud or any external tool can reconstruct what was done to the data and 

assess its quality without rerunning the pipeline. 

 

5.6 Summary 

Overall, Chapter 5 translated the methodological framework into a fully functional, 

cloud-based implementation within the SmartCityCloud environment, demonstrating 

how the proposed data-centric pipeline operates in practice. The chapter first 

described the SCC ecosystem, its sensor data sources, and the structure of the AQI 

dataset used for evaluation, establishing the operational context in which the compute 

task is executed. It then detailed the architecture and extensibility of the SmartCity 

Compute Task Wrapper, which standardizes execution by managing input discovery, 

parameter configuration, processing logic, visualization, and output persistence across 

heterogeneous datasets. The implementation further included the setup of the local 

development environment, repository structure, and dependency configuration, 

enabling reproducible execution and consistent integration with SCC’s cloud interface. 

A comprehensive walkthrough of the codebase clarified how the UI layer, compute 

layer, data streams, and storage components interact to support automated EDA, 

validity checks, outlier detection, feature engineering, and high-quality (HQ) dataset 

generation. The chapter concluded with a detailed explanation of the implemented 

quality, plots, and data-quality modules—including label verification, OOD stability 

analysis, augmentation, and export mechanisms—alongside utilities for producing 

structured artifacts such as HQ CSV/XLSX files and machine-readable JSON 

provenance reports. Collectively, the implementation chapter demonstrated how the 

conceptual workflow defined in Chapter 4 is operationalized in software, providing a 

robust, auditable, and user-friendly system for executing data-centric quality 

engineering at scale within SmartCityCloud. 
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6 Results and Evaluation 

After completing the Exploratory Data Analysis and Data Quality operations, the 

system automatically compiles all relevant metrics, cleaning actions, statistical 

summaries, and high-quality data records into a structured JSON file. This file is stored 

in the output directory of the GPU server and transmitted back to the SCC platform as 

defined in the system architecture. The JSON artifact serves as the basis for the 

evaluation stage, where the user uploads it into the evaluation interface to compute 

the final quality metrics. The following sections describe the backend evaluation 

workflow, the computation of six quantitative data-quality criteria, and the resulting 

dashboard visualisations. 

 

 
Figure 39. JSON upload Interface for Evaluation 

 

Fig 39 allows the user to upload the JSON file generated during the EDA and Data 

Quality processing stage for further evaluation. Once the JSON file is successfully 

uploaded, as shown by the confirmation and file details displayed in the panel, the 

system prepares the file for backend parsing and metric extraction. By clicking the 

“Display Evaluation Criteria” button, the user initiates the evaluation workflow, which 

reads the JSON content, validates its structure, and computes the six data-quality 

metrics that will be visualized in the evaluation dashboard. 

 

6.1 Backend Processing of Evaluation Inputs: 

This section describes the internal workflow responsible for processing the evaluation 

inputs once a user uploads the generated JSON file to the evaluation interface. The 

backend implementation, primarily contained within the auto_ui.py module, parses the 

uploaded JSON, validates its structure, and extracts the metadata and quality-related 
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statistics produced during the EDA and Data Quality stages. The evaluation 

component then normalizes these values, prepares them for metric computation, and 

initializes the required internal data structures for subsequent scoring. The following 

subsections detail how the system loads the JSON file, maps its contents to evaluation 

variables, and performs the preliminary checks necessary for generating the final data-

quality assessment. 

 

6.1.1 Loading and Processing the JSON File in the Evaluation Module 

 

The evaluation stage begins when the user uploads the JSON artifact generated during 

the EDA and Data Quality pipeline. This upload triggers the on_upload_json() routine 

within auto_ui.py, which is responsible for reading and validating the contents of the 

file. The module first decodes the raw byte stream, converts it into a UTF-8 JSON 

string, and parses it into a Python dictionary structure. During this stage, the system 

verifies that the file contains the expected fields such as hq_rows, report, and other 

metadata describing missing values, invalid readings, outliers, feature engineering 

results, and OOD drift statistics. If the JSON does not conform to the expected schema, 

the routine raises a controlled error and prompts the user to provide a valid evaluation 

file. This ensures that only complete and structurally correct artifacts are used for 

subsequent metric computation. 

 

Once the JSON data has been successfully parsed, the internal evaluation workflow 

begins by extracting relevant metrics and converting them into normalized numerical 

forms. This process is executed inside the compute_evaluation_scores() function in 

auto_ui.py, which reads values such as missing-value counts, invalid-to-NaN 

conversions, outlier statistics, duplication indicators, and stability measures from the 

JSON. The function also determines the total number of rows available for evaluation 

and applies several helper routines to convert raw textual or numeric inputs into 

floating-point values suitable for scoring. The module then initializes the internal 

evaluation state, storing the extracted values and preparing them for metric 

computation. At this stage, the backend has fully transformed the uploaded JSON file 

into a structured and validated data model that can be used to compute the six 

quantitative criteria presented in the evaluation dashboard. 

 

6.1.2 Parsing and Validating JSON Evaluation Inputs 

 

After loading the JSON file, the evaluation module proceeds with parsing and 

extracting all relevant metrics required for computing the data-quality criteria. This is 
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primarily handled by the compute_evaluation_scores() routine in auto_ui.py, which 

accesses key fields such as hq_rows, report, and attribute-level statistics generated 

during the data quality pipeline. The function systematically retrieves numerical 

indicators—missing-value counts, invalid-to-NaN conversions, duplication counts, 

imputation totals, outlier ratios, and OOD drift metrics—while converting these values 

into a unified floating-point representation. Several helper functions, such as 

_to_float_or_none() and internal ratio calculations, ensure that heterogeneous data 

types from the JSON are normalized into a consistent format suitable for quantitative 

scoring. This normalization step is essential for enabling uniform computation across 

different sensor attributes and datasets. 

 

In parallel, the module performs validation checks to ensure that the uploaded JSON 

artifact is structurally complete and semantically consistent. The system verifies that 

mandatory keys are present, that numerical fields contain valid values, and that the 

number of rows reported matches the size of the high-quality dataset. If anomalies are 

detected—for example, malformed fields, missing metrics, or type inconsistencies—

the evaluation module gracefully terminates the computation and notifies the user 

through UI-level warnings. These precondition checks prevent invalid or corrupted files 

from influencing the final data-quality scores and ensure that the evaluation is 

performed only on standardized, correctly formatted artifacts. 

 

6.2 Automated Computation of Evaluation Metrics 

This section details the automated computation of the six data-quality metrics that form 

the core of the evaluation framework. Once the JSON artifact has been parsed and 

validated, the evaluation backend, implemented within the 

compute_evaluation_scores() function, derives quantitative scores that reflect the 

cleanliness, reliability, and readiness of the processed dataset. Each metric captures 

a distinct dimension of data quality, including completeness, validity, internal 

consistency, temporal stability, robustness to outliers, and the degree of feature 

enrichment achieved through preprocessing. The system transforms raw statistical 

indicators into normalized percentage scores, enabling a unified comparison across 

attributes and datasets. The following subsections explain the rationale, computation 

method, and evaluation significance of each metric, as well as the underlying logic 

applied by the evaluation module to aggregate and standardize the results. 
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6.2.1 Completeness Metric 

 

The completeness metric quantifies the proportion of valid, non-missing observations 

in the dataset after preprocessing. In the context of sensor-driven SmartCityCloud 

data, completeness refers to the extent to which the original dataset remains usable 

for downstream analytical tasks, such as prediction or anomaly detection. Missing 

values arise due to sensor outages, transmission delays, or corruption during 

collection. The evaluation module measures completeness by comparing the total 

number of missing entries against the total number of observations represented in the 

JSON artifact. A higher completeness score indicates that the dataset provides a more 

reliable and uninterrupted representation of the underlying environmental process. 

Formally, completeness is defined as: 

 

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 1 −
𝑀

𝑁
 

 

where 𝑀 denotes the number of missing values and 𝑁 denotes the total number of 

rows in the dataset. This normalized ratio is later scaled to a percentage for 

presentation in the evaluation dashboard. The backend evaluation logic for 

completeness is implemented in the compute_evaluation_scores() function located in 

auto_ui.py. The function extracts the missing_total value from the "report" section of 

the uploaded JSON file and determines the dataset size using the rows_total field. 

Helper routines such as _to_float_or_none() ensure that missing and total counts are 

converted into valid numerical values before computation. The metric is then calculated 

using an internal helper get_ratio() that safeguards against division by zero and 

normalizes the result. The completeness score is subsequently transformed into a 

percentage and included in the evaluation results shown in the dashboard. This metric 

plays a critical role in assessing overall data integrity, as datasets with substantial 

missingness can bias model training, degrade predictive performance, and undermine 

the stability of real-time analytics within the SCC environment. 

 

6.2.2 Validity Metric 

 

The validity metric measures the proportion of sensor readings that fall within 

acceptable physical or domain-specific thresholds. In environmental datasets such as 

air temperature, humidity, or solar radiation, each attribute has a known realistic 

operational range. Values that lie outside these bounds typically indicate sensor 

malfunction, calibration drift, extreme noise, or data corruption. The validity metric 
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quantifies how many such unrealistic or impossible readings were detected and 

corrected during the preprocessing stage. Formally, the metric is expressed as: 

 

𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = 1 −
𝐼

𝑁′
 

 

where 𝐼 denotes the count of invalid values (i.e., values replaced with NaN due to 

failing the domain-range check) and 𝑁 denotes the total number of observations. A 

higher validity score, therefore, reflects a dataset whose measurements adhere closely 

to physical reality, making it more suitable for accurate inference and predictive 

modeling. The backend computation of this metric occurs within the 

compute_evaluation_scores() function in auto_ui.py. During preprocessing, the task 

implementation records the number of invalid values converted into NaN under the 

field "invalid_to_nan" within the exported JSON report. The evaluation module 

retrieves this value, normalizes it against rows_total, and computes the final validity 

score using the same get_ratio() helper that protects against incorrect division and 

ensures consistent numerical formatting. Threshold ranges for detecting invalid values 

originate from the domain definitions in task_impl.py, where attributes such as air 

temperature or barometric pressure are assigned realistic minimum and maximum 

limits. The validity metric is essential because datasets containing a high proportion of 

invalid readings can distort statistical distributions, impair model generalization, and 

lead to unreliable predictions within SmartCityCloud applications. 

 

6.2.3 Consistency Metric 

 

The consistency metric evaluates the internal coherence of the dataset by measuring 

the extent to which redundant, contradictory, or structurally inconsistent entries have 

been removed during preprocessing. In sensor-driven datasets, inconsistencies 

commonly appear as duplicate timestamps, repeated measurements, or extended 

flatline sequences where the sensor reports the same value for an unrealistically long 

period. Such anomalies indicate data-logging errors, transmission glitches, or sensor 

stagnation. The consistency score aggregates the impact of these detected 

inconsistencies by considering both duplicate removals and flatline runs. 

Mathematically, the metric can be described as: 

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = (1 −
𝐷

𝑁
+  𝛼. 𝐹) 

 

where 𝐷 is the number of duplicate rows removed, 𝑁 is the total number of 

observations, 𝐹 is the number of detected flatline runs exceeding the defined length 
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threshold, and 𝛼 is a penalty factor used to scale the influence of flatline sequences. 

The resulting value is bounded to the interval [0,1]to ensure interpretability as a quality 

score. The backend implementation of the consistency metric is handled in the 

compute_evaluation_scores() function within auto_ui.py. During the data-quality 

processing stage, the task implementation records key indicators such as 

"duplicates_removed" and "flatline_runs_ge10" inside the JSON report. The evaluation 

module extracts these values and computes the penalties using helper functions like 

get_ratio() and predefined scaling factors for flatline detection (e.g., a flatline penalty 

limited to a maximum of 0.15). The final normalized consistency score is then 

converted into a percentage for display on the evaluation dashboard. This metric is 

crucial for SCC analytics because inconsistent datasets can lead to misleading trends, 

inflated correlations, and erroneous model behavior, particularly in real-time 

forecasting or anomaly detection scenarios where temporal reliability is essential. 

 

6.2.4 Stability (OOD Drift) Metric 

 

The stability metric evaluates how consistently the dataset behaves over time by 

detecting potential distributional drift, also referred to as Out-of-Distribution (OOD) drift. 

In sensor-based environments such as SmartCityCloud, stability is essential because 

environmental and physical measurements should follow predictable temporal 

patterns. Large deviations from these patterns may indicate sensor degradation, 

calibration failure, seasonal distortion, or erroneous data capture. To quantify stability, 

the dataset is first divided into a baseline window and a test window according to the 

selected OOD split (e.g., 70/30 or 60/40). The mean and standard deviation of the 

baseline window establish an expected operating range, defined using a three-sigma 

interval. Stability is then expressed as 

 

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
𝑀𝑓𝑙𝑎𝑔
𝑀𝑡𝑜𝑡𝑎𝑙

 

 

where 𝑀flag denotes the number of months whose mean values fall outside the baseline 

three-sigma range, and 𝑀total represents the total number of months evaluated. A high 

stability score indicates that the dataset maintains a statistically coherent distribution 

across time, without unexpected shifts that could impair model generalization. The 

computation of this metric is implemented in the evaluation backend within the 

compute_evaluation_scores() function of auto_ui.py. During preprocessing, the task 

implementation in task_impl.py computes monthly means for each attribute and 

identifies months with statistical drift based on baseline variance; these values are 
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stored in the JSON fields "flagged_months" and "months_total". When the JSON is 

uploaded, the evaluation module extracts these values, applies normalization using 

helper routines such as _to_float_or_none(), and ensures stability is bounded within 

the range [0,1].The stabilized score is then converted into a percentage for inclusion 

in the evaluation dashboard. The stability metric is particularly important in 

SmartCityCloud applications because distributional drift can degrade the performance 

of predictive models, introduce bias, and reduce the reliability of long-term analytics, 

especially in dynamic environments where temporal consistency is critical. 

 

6.2.5 Robustness Metric 

 

The outlier metric assesses the robustness of the dataset by quantifying the proportion 

of extreme or anomalous values detected during preprocessing. Outliers in 

environmental sensor datasets may arise from abrupt sensor spikes, electrical noise, 

temporary hardware faults, or measurement corruption. These abnormal values can 

significantly distort statistical properties, bias model training, and negatively impact 

anomaly detection or forecasting systems. To evaluate robustness, the system relies 

on Z-score–based outlier detection performed for each attribute during the data-quality 

phase. Any value whose standardized distance from the mean exceeds the selected 

threshold (e.g., |z| > 3.0) is considered an outlier. Formally, the robustness score is 

defined as 

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 = 1 −
𝑂

𝑁
 

 

where 𝑂 denotes the number of detected outliers and 𝑁 represents the total number 

of valid observations. A higher robustness score indicates that the dataset is relatively 

free from extreme deviations and is therefore more suitable for stable predictive 

modeling. The backend evaluation logic for this metric resides in the 

compute_evaluation_scores() function in auto_ui.py, which reads the fields 

"outliers_z_count" and, when available, "outliers_z_percent" from the JSON report. 

These values originate from the preprocessing steps in task_impl.py, where Z-score 

thresholds are applied to each attribute and the count of flagged points is recorded. 

The evaluation module normalizes the outlier count against the total number of 

observations using internal helper functions such as get_ratio(), ensuring numerical 

accuracy and safe division. If the preprocessing stage has already provided a 

percentage, the module uses it directly after type normalization via 

_to_float_or_none(). The resulting robustness score is converted into a percentage 

and shown in the evaluation dashboard. This metric is essential for SmartCityCloud 

data quality, as datasets with a high proportion of outliers can mislead analytical 
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pipelines, reduce model generalization, and compromise real-time decision-making 

processes. 

 

6.2.6 Readiness Metric 

 

The readiness metric evaluates the degree to which the dataset has been enriched 

through preprocessing, with a focus on the availability of engineered features and 

imputed values that enhance its suitability for downstream machine-learning tasks. In 

data-centric AI workflows, enriched datasets—those containing lag features, rolling 

statistics, and differenced values—enable predictive models to capture temporal 

dependencies, seasonality patterns, and short-term variability more efficiently. The 

readiness metric incorporates both the presence of these engineered features and the 

successful execution of imputation strategies when missing values are detected. 

Formally, the readiness score can be approximated as 

 

𝑅𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛 ( 1 , 0.6 + 0.3.
𝐹

𝐹𝑚𝑎𝑥
+ 𝐼 + 𝐸) 

 

where 𝐹 denotes the number of engineered features detected in the high-quality 

dataset, 𝐹max = 5 is the maximum number of expected enrichment features (lag1, lag2, 

diff1, roll_mean_15, roll_std_15), 𝐼represents an imputation bonus applied when 

missing values are successfully filled, and 𝐸 is a small constant bonus for exporting 

results. This formulation ensures that readiness remains within the range [0,1], 

providing a normalized indicator of how prepared the dataset is for modeling. On the 

implementation side, the readiness metric is computed within the 

compute_evaluation_scores() function in auto_ui.py. The module first inspects the 

"hq_rows" section of the uploaded JSON file and identifies the presence of engineered 

columns generated in task_impl.py, such as lag1, lag2, roll_mean_15, roll_std_15, and 

diff1. It then evaluates whether imputation occurred by examining fields like "imputed" 

and checks if data export options were triggered to ensure full pipeline completion. 

These components are combined according to predefined weighting rules to produce 

the final readiness score, which is subsequently converted into a percentage for 

display in the evaluation dashboard. As a metric, readiness is essential because it 

reflects not only data cleanliness but also the extent to which the dataset has been 

structurally enhanced to support accurate forecasting, anomaly detection, and other 

analytic operations within the SmartCityCloud environment. 
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6.3 Evaluation Dashboard and Visualization Output 

 

The evaluation dashboard provides a consolidated visual summary of the six data-

quality metrics computed from the uploaded JSON artifact Fig 40. Once the user 

selects the Display Evaluation Criteria option, the backend function 

compute_evaluation_scores() in auto_ui.py processes the extracted metrics and 

renders both numeric cards and a bar-chart summary. The user interface presents 

each metric as an individual score card—Completeness, Validity, Consistency, 

Stability (Drift), Outliers (Robustness), and Readiness (Enrichment)—along with short 

descriptive notes summarizing the underlying statistics. Beneath these cards, the 

system generates a bar-chart visualization that offers a comparative view of all six 

quality scores, providing an immediate high-level assessment of the dataset's reliability 

and suitability for further analytics. 

 

 
Figure 40. Evaluation Dashboard Displaying Data Quality Criteria 

 

From the implementation perspective, each score card is constructed through the 

evaluation module’s UI-rendering routines, where the numerical results are formatted, 

color-coded, and presented using NiceGUI components. The bar chart is generated 

using Matplotlib within the __render_evaluation_dashboard() function, where the six 

percentage values are plotted on a unified scale to highlight variations across different 

quality dimensions Fig 41. By structuring the dashboard in this manner, the system 

ensures that both granular and aggregate perspectives of data quality are available to 

the user, supporting rapid and informed inspection of preprocessing outcomes. The 

evaluation dashboard provides meaningful insights into the overall health and 

readiness of the processed Air Temperature attribute from the AQI dataset. For 

example, the Completeness score of 97% reflects that only 818 of the 28,448 

observations were missing and subsequently handled, indicating a highly intact 

dataset. 
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Figure 41. Bar Chart Summarizing the Six Computed Data-Quality Metrics 

 

The Validity score of 100% confirms that all values fall within the expected physical 

thresholds after cleaning, while the Outlier Robustness score of 100% indicates an 

extremely low prevalence of anomalous readings (approximately 0.05%). Although the 

Consistency score is slightly lower at 85%—reflecting the removal of 299 duplicate 

timestamps and detection of 28 flatline runs—this still represents a well-behaved signal 

with minimal structural issues. The Stability score of 90% demonstrates only mild 

temporal drift, with 2 of 20 evaluated months exceeding the baseline three-sigma 

range, suggesting that the dataset retains good temporal reliability. Finally, the 

Readiness score of 100%, supported by the presence of all five engineered features 

and successful imputation, shows that the dataset has been fully enriched for 

downstream modeling. 

 

Collectively, these results demonstrate that the processed AQI Air Temperature 

dataset achieves high performance across all major data-quality dimensions. The 

near-perfect scores in validity, robustness, and readiness, combined with strong 

completeness and stability, provide compelling evidence that the dataset is of high 

analytical quality. The dashboard, therefore, serves not only as a visualization tool but 

also as a validation mechanism that confirms the effectiveness of the implemented 

data-quality pipeline and the readiness of the resulting dataset for reliable predictive 

modeling within the SmartCityCloud ecosystem. 
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6.4 Summary 

Overall, Chapter 6 presented the empirical results of the proposed data-quality 

framework by demonstrating how the SmartCityCloud evaluation module processes 

the machine-generated JSON reports and computes quantitative scores across the six 

defined data-quality dimensions. The chapter first explained how evaluation inputs are 

loaded, parsed, and validated within the system, ensuring that each JSON file is 

internally consistent and contains the required provenance and statistical fields. It then 

detailed the automated computation of completeness, validity, consistency, stability 

(OOD drift), robustness (outliers), and readiness (feature enrichment) metrics, each 

derived from interpretable counts such as missing values, invalid readings, duplicate 

timestamps, flagged drift months, Z-score outliers, and the presence of engineered 

features. These metrics provide a structured, evidence-based assessment of data 

quality and directly reflect the improvements introduced during preprocessing, 

cleaning, imputation, and augmentation. The chapter also showcased the evaluation 

dashboard, which visualizes intermediate and final metrics through time-series plots, 

anomaly markers, summary tables, and quality distributions, enabling interpretable and 

audit-friendly inspection of sensor behaviour and pipeline decisions. Together, the 

results confirm that the data-centric workflow produces higher-quality, more stable, and 

better-documented datasets, thereby validating the methodological design introduced 

in Chapter 4 and demonstrating its effectiveness across heterogeneous smart-city 

time-series. 
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7 Discussion 

The results obtained from the implemented SmartCityCloud data-quality pipeline 

demonstrate that a data-centric approach provides significant improvements in the 

integrity, stability, and analytical readiness of heterogeneous smart-city sensor 

streams. The findings indicate that the systematic workflow—comprising EDA, validity 

screening, missing-value treatment, outlier detection, feature enrichment, label-quality 

verification, and OOD stability analysis—successfully addresses the core challenges 

of temporal heterogeneity, irregular sampling, range violations, and drift identified in 

the problem statement. 

 

Quantitatively, the evaluation dashboard shows that high completeness, perfect 

validity, strong robustness to outliers, and well-preserved temporal structure enable 

the Air Temperature attribute to function as a dependable and analysis-ready signal. 

These outcomes validate earlier methodological assumptions that structured 

preprocessing, rather than model-centric adjustments, is the dominant determinant of 

downstream analytical reliability. Drift analysis further shows that most months fall 

within expected three-sigma stability bounds, with only mild deviations detected, 

confirming that the sensor maintains long-term coherence suitable for predictive 

modelling and anomaly detection tasks. The presence of strong diurnal patterns in the 

label-quality module, with clear day–night separation, offers additional evidence that 

the pipeline preserves physically meaningful structure and enhances interpretability. 

 

When compared with the literatures on data-centric AI, the SCC implementation not 

only integrates multiple established techniques—such as validity constraints, 

augmented stress testing, rolling-window statistics, and provenance capture—but also 

unifies them into a cloud-native workflow that produces reproducible HQ datasets and 

machine-readable JSON diagnostics, something only partially addressed in existing 

tools such as TFDV, Deequ, or Confident Learning. The combined interpretation of 

these outcomes demonstrates that SmartCityCloud’s extensible compute-task 

wrapper effectively operationalizes data-centric principles by improving accuracy, 

completeness, consistency, traceability, timeliness, and auditability while producing 

transparent, verifiable artifacts that align with TU Chemnitz’s expectations for scientific 

rigor. Overall, the discussion confirms that the implemented system not only improves 

data quality in a measurable and reproducible manner but also offers a scalable and 

generalizable foundation for future smart-city analytics, where dependable, well-

curated data are essential for stable model performance and long-term operational 

trustworthiness. 
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8 Conclusion 

8.1 Summary of Findings:  

This thesis investigated the problem of ensuring high-quality, analysis-ready sensor 

data within the SmartCityCloud (SCC) platform, addressing the persistent challenges 

of missingness, invalid measurements, temporal inconsistencies, outliers, and 

distributional drift that commonly affect real-world environmental datasets such as the 

Air Quality Index (AQI) stream. Motivated by the limitations of model-centric 

optimization in the presence of noisy or unstable data, the thesis adopted a data-centric 

methodology that integrates exploratory data analysis, multi-stage data-quality 

operations, feature enrichment, label-quality verification, and OOD stability evaluation 

into an automated cloud-based compute-task pipeline. The implemented solution 

successfully transformed raw AQI sensor readings into a validated, enriched, and drift-

assessed high-quality dataset, supported by machine-readable JSON diagnostics and 

user-facing visual dashboards. Through automated validity checks, missing-value 

imputation, duplicate-timestamp removal, outlier detection using Z-score thresholds, 

feature engineering (lags, rolling statistics, derivatives), and month-level OOD drift 

detection, the system consistently produced standardized, reproducible artifacts 

demonstrating strong completeness, validity, robust outlier handling, and stable long-

term behaviour through ±3σ drift analysis. Across evaluation results, the system met 

or exceeded the predefined criteria, ensuring consistency, reliability, and 

interpretability, thereby directly addressing the research question concerning how 

data-centric pipelines can enhance data quality in smart-city environments. The work’s 

primary contributions include:  

 

 the design of a modular compute-task architecture that integrates seamlessly 

with SCC’s input discovery and stream-handling framework; 

 the development of a comprehensive data-quality workflow that outputs high-

quality datasets, enriched features, and audit-ready JSON reports; 

 The introduction of a consolidated evaluation dashboard that quantifies quality 

across six criteria. 

 empirical evidence that data-centric preprocessing substantially improves the 

analytical readiness and robustness of environmental sensor streams. 

 

By achieving these outcomes, the thesis successfully fulfilled its objectives and 

demonstrated that reliable data quality can be operationalized as a cloud service within 

SmartCityCloud. 
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8.2 Future Scope: 

Although the developed data-quality pipeline provides a strong foundation for 

processing smart-city sensor streams, several opportunities remain for future 

improvement and expansion. First, the current implementation focuses on univariate 

attribute-level processing, and future work could extend the system toward multivariate 

fusion, enabling cross-sensor consistency checks and joint anomaly detection for 

correlated parameters such as temperature, humidity, and particulate matter. 

Moreover, the OOD generalization framework could be enhanced through advanced 

drift-detection techniques—such as Kolmogorov–Smirnov tests [35], population 

stability indices, or neural drift estimators [36]—to capture better subtle seasonal or 

behavioural shifts in multimodal sensor environments. Another promising direction 

involves integrating adaptive feature engineering, where features are dynamically 

selected based on domain conditions or learning-based relevance scoring, improving 

downstream modeling performance. From a system perspective, converting the 

pipeline into a fully continuous data-quality service would enable real-time monitoring, 

automated alerts, and progressive dataset versioning across large-scale IoT 

deployments. Improvements could also include automated hyperparameter selection 

for thresholds, imputation strategies, and anomaly boundaries, using optimization or 

reinforcement learning to adapt to changing sensor behaviours.  

 

Furthermore, research could explore the integration of synthetic data generation or 

calibrated augmentation strategies to improve data diversity for machine-learning tasks 

in scenarios with sparse, noisy, or seasonally varying signals. Finally, applying this 

pipeline to other SmartCityCloud datasets—such as traffic, mobility, or energy 

streams—would validate its generality and reveal cross-domain use cases, supporting 

broader smart-city applications in forecasting, anomaly detection, resource 

optimization, and environmental reliability analysis. Collectively, these avenues 

demonstrate that the proposed solution is not only functional for the current AQI 

application but also serves as a flexible, extensible framework capable of supporting 

future advancements in data-centric AI within large-scale urban computing systems. 
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