
Fakultät für Informatik

CSR-26-01

Cloud-Based AI Solutions
for Ensuring Data Quality

in Predictive Models

Vismay Gunda · Shadi Saleh · Wolfram Hardt

Februar 2026

Chemnitzer Informatik-Berichte

Cloud-Based AI Solutions for Ensuring Data

Quality in Predictive Models

Master Thesis

Submitted in Fulfilment of the

Requirements for the Academic Degree

M.Sc.

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Vismay Gunda

Student ID: 756310

Date: 04.12.2025

Supervising tutor: Prof. Dr. W. Hardt

 Prof. Dr. Shadi Saleh

1

Abstract

This thesis addresses the challenge of improving the quality of heterogeneous sensor

data by following a data-centric rather than a model-centric approach. Instead of

assuming standardized inputs for downstream AI models, the work focuses on making

data itself reliable and analysis-ready across diverse SmartCityCloud (SCC) sources.

The proposed solution combines exploratory data analysis (EDA) with a suite of data-

quality measures to assess and enhance credibility across multiple variables and

datasets. The methodology includes automated profiling, duplicate removal, validity

checks, imputation, feature engineering, and anomaly detection, together with out-of-

distribution (OOD) generalization checks using configurable splits (e.g., 70/30 and

60/40), augmentation (noise/missingness) for stress-testing, and labeling strategies

(e.g., day/night separation).

The implementation delivers a user-friendly, cloud-based platform within SCC. Users

can upload datasets, run EDA, visualize time series, distributions, correlations, and

boxplots, and export figures and tables (e.g., PNG/PDF for plots; CSV/JSON for data

and reports). The system generates a machine-readable JSON report that is then

evaluated by six practical metrics: Accuracy, Completeness, Consistency, Traceability,

Timeliness, and Auditability.

Results from multiple SCC datasets indicate that the pipeline improves data readiness

(e.g., fewer duplicates and invalid readings, clearer trends, and more consistent labels)

while providing transparent artifacts for review. The thesis contributes (i) a reusable

data-centric workflow for variable sensor data, (ii) a reference implementation as an

SCC compute-task template that users can adapt, and (iii) an evaluable reporting

scheme that supports dependable AI development on city-scale data.

Keywords: Data-Centric AI, Data Quality, Exploratory Data Analysis (EDA),

SmartCityCloud, Data Augmentation.

2

Contents
Abstract ... 1

List of Figures .. 5

List of Tables ... 7

List of Abbreviations .. 8

1 Introduction .. 9

1.1 Background and context ... 10

1.2 Motivation .. 12

1.3 Problem Statement ... 15

1.4 Objectives and Research Goals .. 15

1.5 Scope and Limitations ... 17

1.6 Thesis Structure .. 18

2 Fundamentals .. 19

2.1 SmartCityCloud and the Compute Task wrapper .. 19

2.2 Data Centric Artificial Intelligence.. 22

2.3 Data Quality Dimensions and Evaluation Metrics.. 24

2.4 Data Governance and Versioning ... 25

2.5 Summary ... 26

3 State of the Art ... 27

3.1 Data-Centric AI and Quality Engineering .. 27

3.2 Cloud-Native, Governed Data-Quality Pipelines with OOD Monitoring 31

3.3 Summary ... 35

4 Methodology ... 37

4.1 Overview and Design Rationale .. 37

4.1.1 Purpose, Scope, and Quality Objectives of the Methodology 38

4.1.2 Architectural Philosophy and Methodological Justification 39

4.1.3 Improvements and Formalization Plan ... 41

4.2 System Architecture & Data Ingestion ... 42

4.2.1 System Context and Components ... 42

4.2.2 Data Sources, Stream Types, and Timestamp Normalization.............. 44

3

4.2.3 End-to-End Workflow ... 46

4.3 Formal Processing Pipeline... 48

4.3.1 Data Parsing and Validity Formalization .. 48

4.3.2 Missing-Data Treatment, Outlier Detection, and Feature Engineering . 50

4.3.3 Resampling and High-Quality Dataset Construction 52

4.4 Experimental Setup and Procedure .. 54

4.4.1 Experimental Environment and Parameter Configuration 54

4.4.2 Concept Solution Description ... 55

4.5 Assumptions, Limitations, and Summary .. 58

4.5.1 Assumptions .. 58

4.5.2 Limitations and Chapter Summary ... 59

4.6 Summary ... 60

5 Implementation ... 61

5.1 SmartCityCloud Context and Data Sources .. 61

5.1.1 SmartCityCloud Platform and Sensor Data Generation 61

5.1.2 AQI Dataset: Structure & CSV Layout ... 63

5.1.3 Data Ingestion into SmartCityCloud ... 64

5.2 SmartCity Compute Task Wrapper ... 66

5.2.1 Role as a Common Execution Platform ... 66

5.2.2 Wrapper Architecture and Extensibility Model...................................... 66

5.3 Local Environment Setup .. 71

5.3.1 Cloning from GitLab and Repository Layout .. 71

5.3.2 Dependency Installation and Environment Configuration..................... 72

5.4 Codebase Walk-through ... 75

5.4.1 Application Entry and Authentication ... 75

5.4.2 UI layer for Tasks ... 76

5.4.3 Compute Layer .. 80

5.4.4 Streams and Storage ... 82

5.5 Implementation Steps ... 83

5.5.1 Quality Section ... 84

4

5.5.2 Plots Section .. 85

5.5.3 Data Quality Section .. 89

5.5.4 Exporting High-Quality Data and Reports .. 95

5.6 Summary ... 97

6 Results and Evaluation ... 98

6.1 Backend Processing of Evaluation Inputs: .. 98

6.1.1 Loading and Processing the JSON File in the Evaluation Module 99

6.1.2 Parsing and Validating JSON Evaluation Inputs 99

6.2 Automated Computation of Evaluation Metrics ... 100

6.2.1 Completeness Metric ... 101

6.2.2 Validity Metric ... 101

6.2.3 Consistency Metric ... 102

6.2.4 Stability (OOD Drift) Metric... 103

6.2.5 Robustness Metric ... 104

6.2.6 Readiness Metric ... 105

6.3 Evaluation Dashboard and Visualization Output 106

6.4 Summary ... 108

7 Discussion .. 109

8 Conclusion ... 110

8.1 Summary of Findings: ... 110

8.2 Future Scope:.. 111

Bibliography ... 112

5

List of Figures

Figure 1. Model-Centric Approach [9] .. 13

Figure 2. Data-Centric Approach [9] .. 14

Figure 3. Thesis Structure Overview ... 18

Figure 4. SmartcityCloud Compute Task Wrapper .. 21

Figure 5. The steps for Model Centric Approach [14] .. 22

Figure 6. The Steps for a Data-Centric Approach [14] .. 23

Figure 7. Recent articles published with the keyword "data-centric AI" [20] 28

Figure 8. Covariate Shift and Drift with In-Distribution vs. OOD Periods [26] 32

Figure 9. Architecture Overview .. 43

Figure 10. Concept Solution Diagram ... 56

Figure 11. Exploratory Data Analysis for AQI Data ... 57

Figure 12. Data Quality Operations ... 57

Figure 13. Data Ingestion Workflow .. 65

Figure 14. SCC Compute Task Wrapper Architecture ... 67

Figure 15. Smartcity Cloud User Interface... 68

Figure 16. Compute Task Options Samples .. 69

Figure 17 SCC Login Page .. 75

Figure 18. Auto Task Runner UI .. 78

Figure 19. Attribute Selection Interface ... 79

Figure 20. Monthly missing percentage chart .. 84

Figure 21. Validity Bound Summary with Invalid Samples... 84

Figure 22. Z-score outlier plot with anomaly readings ... 85

Figure 23. Duplicate timestamp detection ... 85

Figure 24. Correlation Matrix ... 86

Figure 25. Invalid samples plotted over raw time series .. 87

Figure 26. Trend and seasonability decomposition graph ... 87

Figure 27. IQR-based boxplot graph ... 88

Figure 28. Overview of Data Quality Operations performed 89

Figure 29. Label-quality results ... 90

Figure 30. Label-quality Day/Night Graph ... 90

Figure 31. Monthly mean stability analysis within the OOD generalization module ... 91

Figure 32. Monthly mean stability graph vs baseline attribute using OOD 92

Figure 33. Sample data for HQ Feature Engineered Attributes 92

Figure 34. Lag1 vs Value Graph .. 93

Figure 35. Auto Correlation Graph .. 94

Figure 36. Data Augmentation Distribution Comparison ... 95

6

Figure 37. Data Augmentation HQ Table .. 95

Figure 38. Save Results Confirmation message ... 96

Figure 39. JSON upload Interface for Evaluation .. 98

Figure 40. Evaluation Dashboard Displaying Data Quality Criteria 106

Figure 41. Bar Chart Summarizing the Six Computed Data-Quality Metrics 107

7

List of Tables

Table 1. Data Quality Evaluation Criteria... 25

Table 2. Summary ... 36

Table 3. Mapping of research objectives to methodological components 39

Table 4. AQI Dataset Attributes ... 63

Table 5. Sample records from AQI Datasets ... 64

Table 6. Application Configuration Variables ... 74

Table 7. Compute Task Options .. 82

Table 8. Mapping of I/O file formats .. 83

8

List of Abbreviations

AI Artificial Intelligence 3σ Three-Sigma Statistical

Range

AQI Air Quality Index ATF Air Temperature Feature (in

dataset folder naming)

API Application Programming

Interface

FFill Forward Fill (interpolation

method)

App Application BFill Backward Fill (interpolation

method)

CSV Comma-Separated Values ME Month-End Resampling

Frequency (pandas)

CTE Compute Task Executor

(SmartCityCloud UI)

Z-

Score

Standard Score for Outlier

Detection

DAQ Data Acquisition

DC-AI Data-Centric Artificial

Intelligence

EDA Exploratory Data Analysis

FE Feature Engineering

GUI Graphical User Interface

HQ High Quality (Processed

Dataset)

IQR Interquartile Range

JSON JavaScript Object Notation

KPI Key Performance Indicator

ML Machine Learning

MLOps Machine Learning

Operations

NaN Not a Number (missing

value placeholder)

OOD Out-of-Distribution

QR Quick Response (UI

buttons for select/clear)

SCC Smart City Cloud

SRAD Solar Radiation

Std Standard Deviation

9

1 Introduction

Modern artificial intelligence (AI) systems depend not only on sophisticated models but

also on the reliability of the data used to train, validate, and deploy them [1]. In smart

city environments, where data originates from heterogeneous sensors, gateways, and

services, datasets are often incomplete, noisy, poorly labeled, or statistically

inconsistent over time [2]. Such variability affects the accuracy, reproducibility, and

interpretability of predictive models. This thesis addresses these challenges through a

data-centric approach that treats data quality as the primary focus of engineering.

Instead of optimizing only model architectures, the work concentrates on preparing

multi-source time series data to be reliable, representative, and analysis-ready through

systematic exploration, assessment, and improvement of data quality.

The research is conducted within the SmartCityCloud(SCC) environment, a cloud-

based infrastructure designed for processing and visualizing sensor data in smart city

applications. Within this framework, the thesis develops and implements an integrated

pipeline that ingests diverse sensor streams, performs exploratory data analysis (EDA)

to characterize distributions, trends, correlations, seasonality, and outliers, and applies

data-quality operations such as duplicate removal, validity screening, missing-value

imputation, and feature engineering. Because labeling accuracy strongly influences

downstream analytics [2], the system includes label-quality verification procedures, for

example, day and night differentiation to capture diurnal variations and validate

labeling consistency with temporal data characteristics.

Beyond descriptive profiling, the proposed approach evaluates robustness through

out-of-distribution (OOD) generalization tests using configurable train and test splits,

such as 70/30 or 60/40, to identify distribution shifts across different time windows,

sites, or operational contexts. To further assess the sensitivity of data-quality methods,

controlled augmentation techniques introduce synthetic noise or missing values,

allowing the system to examine how these perturbations affect quality metrics and data

stability. The platform enables users to perform these analyses interactively, visualize

intermediate results such as tables, bar charts, boxplots, and time overlays, and export

outcomes in multiple formats, including PNG, PDF, and CSV. The complete data-

quality summary is stored in a structured JSON report that facilitates reproducibility

and interoperability within the SmartCityCloud ecosystem.

The concept of data quality is operationalized in this thesis as a measurable property

rather than a qualitative assumption. To this end, six key evaluation dimensions—

10

accuracy, completeness, consistency, traceability, timeliness, and auditability—are

used to assess and compare results across datasets and configurations. Each

dimension guides both the quantitative reporting and the qualitative interpretation of

the improvements achieved by data-quality operations. Emphasis is placed on

transparency and explainability; every transformation step is accompanied by a

corresponding visualization, statistical summary, and metadata entry that support

traceable and auditable processing. Such transparency is essential for dependable AI

applications in safety-critical or regulated domains.

The contributions of this thesis are threefold. First, it introduces a reusable data-centric

workflow for heterogeneous smart city time-series data that integrates exploratory data

analysis, label verification, out-of-distribution analysis, and augmentation-based

validation. Second, it provides a user-friendly cloud-based implementation within

SmartCityCloud that enables users to execute these processes interactively through a

configurable compute-task interface. Third, it defines a data-quality evaluation

framework aligned with the six aforementioned dimensions, demonstrating

measurable improvements in data readiness for AI models without focusing on specific

model architectures. Together, these contributions highlight how systematic data-

centric engineering enhances the robustness, interpretability, and dependability of AI-

driven systems.

The remainder of this thesis is organized as follows. Chapter 2 introduces the

theoretical and technical fundamentals. Chapter 3 presents related research and the

conceptual background for data-centric artificial intelligence. Chapter 4 describes the

methodology, including the exploratory data analysis process, data-quality evaluation

methods, labeling procedures, and out-of-distribution generalization strategies.

Chapter 5 details the system implementation within SmartCityCloud and its user

interface. Chapter 6 presents the results and evaluation of data-quality improvements.

Chapter 7 discusses the implications, limitations, and potential extensions of the work.

Finally, Chapter 8 concludes the thesis and outlines future research directions.

1.1 Background and context

In today's artificial intelligence pipelines, data has emerged as the most important

asset. In operational contexts like smart cities, data comes from a variety of sources,

including ambient sensors, edge devices, cloud services, and human-operated

systems. These sources generate multivariate time series with varying sampling rates,

missing segments, duplicated entries, and value range shifts caused by seasonality,

maintenance, and deployment changes. Such fluctuation calls into question the

11

assumptions made while developing and evaluating downstream models. If not

addressed, it diminishes model dependability, complicates replication, and obscures

root-cause investigation when systems fail in production. As a result, the practical

bottleneck is less about choosing a sophisticated model and more about collecting

reliable, auditable data that accurately reflect the phenomena of interest for learning

and inference.

Within this context, SmartCityCloud (SCC) acts as the operational framework for the

current effort. SCC provides a cloud-based environment where users may upload

datasets, set up processing stages, and view results using a reusable compute-task

template. The template is designed to be adaptable to various sensor modalities and

projects while maintaining a consistent workflow for ingestion, investigation,

transformation, and reporting. Because smart-city installations change over time and

between locations, the platform prioritizes repeatable workflows and exportable

artifacts, allowing analyses to be re-run, compared, and approved by various

stakeholders without ambiguity.

The data landscape discussed here has three repeating characteristics. First,

heterogeneity exists: streams differ in units, valid ranges, and semantics, even for

seemingly equivalent variables (for example, pressure or temperature from various

manufacturers). Second, non-stationarity: distributions change due to weather, urban

activity cycles, firmware updates, and sensor aging, invalidating static training-testing

divides and making model-centric comparisons incorrect. Third, label fragility: labels

based on heuristics or external schedules (e.g., day-night, event windows) may be

misaligned with real sensor behavior, resulting in inconsistent supervision and

misleading correlations. These characteristics encourage a data-centric approach in

which data quality is actively profiled, improved, and recorded before to and throughout

modeling.

As a result, the thesis employs exploratory data analysis (EDA) as a primary

component for characterizing empirical distributions, trends, correlations, and outliers

across variables and time periods [3]. Visual diagnostics like time overlays, histograms,

and boxplots are supplemented by basic statistical summaries and rolling descriptions

that highlight gaps, spikes, and regime shifts. On top of this descriptive layer, focused

quality operations are used to detect duplicates, screen ranges and validity, identify

gaps with imputation choices, and create features for downstream processes. Label

quality is given special attention: criteria such as day/night partitioning are aligned with

12

time bases and tested for internal consistency to limit the spread of mislabelled

segments.

Because smart-city data must function in the face of change, background analysis

takes into account distribution shift robustness. The study used out-of-distribution

(OOD) checks using adjustable temporal or contextual divides (for example, 70/30 or

60/40 partitions across times or places) to identify when statistics and label behaviour

diverge in held-out slices. Furthermore, augmentation serves as a stress test:

controlled missingness and noise enable sensitivity analysis of processes such as

imputation or outlier treatment [4]. These methods do not replace modelling; rather,

they provide solid, well-defined inputs and recorded assumptions, ensuring that any

subsequent model evaluation reflects the realities of the data rather than artifacts.

Operational restrictions in municipal and industrial environments exacerbate the

demand for traceability. Stakeholders often expect not only findings but also a chain of

proof that connects each transformation to its purpose and impact. To match this

expectation, the platform generates exportable figures (PNG/PDF), tabular outputs

(CSV), and a structured JSON record that includes configuration, intermediate results,

and final quality indicators. This approach promotes auditability across teams and

throughout time, while lowering onboarding costs when datasets, persons, or

objectives change.

Finally, the background for this thesis is consistent with the formal requirements for a

Master's Thesis at the Professorship of Computer Engineering, TU Chemnitz. The

introduction must locate the topic in its application area, describe motivation, and

define the problem at a high level, all while preparing the reader for subsequent

chapters that cover fundamentals, related work, methodology, implementation,

findings, discussion, and conclusion. The emphasis on clear context, neutral academic

tone, and structured reporting adheres to the department's chapter organization and

scientific writing guidelines, ensuring that succeeding sections can be built on a

coherent and suitably thorough foundation.

1.2 Motivation

Smart-city analytics are based on multivariate sensor streams that are noisy, partial,

heterogeneous, and subject to drift. In such cases, model-centric development implies

standardized inputs that are rarely available in practice, resulting in brittle systems and

findings that are difficult to replicate or trust [5]. The basic goal for this thesis is to

13

transfer the focus of development from models to data: to make data more

trustworthy[6], interpretable, and auditable before—and alongside—modelling.

Framing motivation early and clearly is consistent with the department's

recommendations for the introduction chapter, as well as the expectation that goals be

articulated concretely and verifiably.

Operational requirements further support a data-centric strategy. Municipal and

industrial stakeholders must track how each preprocessing step impacts downstream

use, compare outcomes over time and between locations, and justify actions during

audits or handovers [7]. A cloud environment, such as SmartCityCloud, provides a

consistent location to upload datasets, examine them using EDA, apply quality metrics,

and collect artifacts—plots, tables, and machine-readable summaries—to make the

process transparent. By incorporating repeatability and proof (exports and JSON

records), the platform facilitates cooperation and long-term maintenance, addressing

common issues in evolving installations where sensors, firmware, and usage patterns

vary.

Finally, measurable outcomes are required to steer improvements and convey value.

This study uses six practical dimensions—accuracy, completeness, consistency,

traceability, timeliness, and auditability—to assess how specific operations (duplicate

handling, validity checks, imputation, labeling rules, out-of-distribution splits, and

augmentation-based stress tests) enhance data readiness [8]. Articulating such

objectives as explicit, measurable aims is consistent with the preferred motivation style

(clear purpose, evaluability, and time-bound execution within the thesis timeframe) and

creates a cohesive bridge from introduction to technique, implementation, and results.

Figure 1. Model-Centric Approach [9]

14

Fig 1. Model-centric approach [9].

Figure 2. Data-Centric Approach [9]

In Fig 1 (model-centric AI), most iterative effort concentrates on the modelling loop:

training, evaluation, and hyperparameter tuning cycle repeatedly, while data

preprocessing is treated as a largely one-off step before the loop begins. This workflow

assumes the dataset is already standardized and sufficiently representative; quality

issues are addressed ad hoc, if at all, and evaluation focuses on comparing models

rather than interrogating the data that drive them. As a result, gains typically come from

architectural choices or tuning, and failure modes often trace back to silent data

problems—label noise, drift, duplicates, or gaps—that the loop is not designed to

surface.

However, in Fig 2 (data-centric AI), evaluation expands to include the data itself. The

modelling loop remains, but a parallel feedback loop targets dataset curation:

systematic EDA, labelling checks, augmentation for stress testing, and iterative

remediation of errors become first-class activities. This shifts improvement leverage

toward making signals clearer and assumptions explicit, yielding models that are

simpler to train, easier to reproduce, and more stable under deployment shifts. In

practice, the data-centric loop produces auditables—figures, tables, and machine-

readable summaries—that document how changes in data quality translate into

performance changes, enabling controlled, evidence-based progress.

15

1.3 Problem Statement

SmartCityCloud aggregates heterogeneous, multi-source time series with missing

segments, duplicates, outliers, non-stationary distributions, and fragile or heuristic

labels. Conventional model-centric pipelines presume standardized inputs and regard

preprocessing as a one-time operation, which obscures the underlying causes of

downstream brittleness and makes outcomes difficult to replicate or audit. The central

problem addressed in this thesis is to make data quality the primary engineering

objective: to systematically surface, measure, and improve the credibility of diverse

sensor datasets before—and concurrently with—modelling, while maintaining a

transparent record of how each transformation affects the data.

Existing literature and tools provide useful components—profilers, cleaning utilities,

experiment trackers [10]—but they rarely provide an integrated, cloud-based workflow

that unifies exploratory data analysis, targeted quality operations (e.g., duplicate

handling, validity screening, gap detection and imputation, feature engineering), label-

quality verification, out-of-distribution checks, and augmentation-based stress testing,

all linked to machine-readable provenance. In practice, teams rely on ad hoc

scripts[11] and informal notebooks, limiting comparability across time, places, and

users and making audits time-consuming. This thesis addresses that gap by creating

a reusable data-centric pipeline within SmartCityCloud that combines interactive

visualization and exporting (PNG/PDF/CSV) with a structured JSON report containing

configurations, interim findings, and outcomes mapped to pragmatic quality metrics.

The thesis is guided by the research questions listed below.

 RQ1: How to design SmartCityCloud compute task wrapper and implement a

reusable data-centric workflow to improve the readiness of heterogeneous

smart-city time-series data through systematic EDA, quality operations, label

verification, out-of-distribution analysis, and augmentation-based stress tests,

all while producing auditable provenance?

 RQ2: How much do these interventions improve data quality—as assessed by

accuracy, completeness, consistency, traceability, timeliness, and auditability—

and boost stability under distribution shift when compared to baseline

preprocessing typical of model-centric practice?



1.4 Objectives and Research Goals

This thesis explores a data-centric alternative to model-first development for smart-city

analytics. The overarching goal is to make heterogeneous sensor datasets analysis

16

ready, auditable, and resilient to distribution shifts by prioritizing data quality [2]. The

goals are articulated in accordance with the standards for a clear, measurable

motivation and objectives, allowing them to be evaluated within the thesis scope and

schedule.

Primary objectives of this thesis include:

 First, create and implement an end-to-end workflow in SmartCityCloud that

allows users to upload datasets, conduct exploratory data analysis, perform

targeted data-quality operations (duplicate handling, validity checks, gap

detection and imputation, feature engineering, and label verification), and

visualize the results.

 Second, implement robustness checks using out-of-distribution protocols (e.g.,

temporal/site-based 70/30 splits) and augmentation-based stress tests

(controlled missingness and noise). Third, establish complete traceability by

exporting artifacts (PNG/PDF plots and CSV tables) and creating a machine-

readable JSON report that includes configurations, intermediate results, and

final quality indicators for each run.

Evaluation Goals of this thesis include:

 Quantify the workflow's impact on data readiness across numerous

SmartCityCloud datasets using six practical dimensions: correctness,

completeness, consistency, traceability, timeliness, and auditability.

 Compare the results to a baseline representing model-centric preprocessing

(minimum cleaning plus direct modelling assumptions). Success will be

demonstrated by systematic gains across all dimensions, clearer and more

reliable descriptive statistics, and verifiable provenance that connects each

alteration to its measured impact.

Secondary Objectives of this thesis include:

 Improving the platform's usability and maintainability by including an extensible

compute-task template, clear user advice inside the interface, and defaults that

encourage recurring analysis.

 Where possible, define the runtime and scalability of essential procedures

(such as profiling and imputation) to ensure their suitability for city-scale

operations.

 Expected contributions include:

(i) A reusable data-centric workflow for heterogeneous smart-city

time series

17

(ii) A cloud-based implementation in SmartCityCloud that generates

verifiable artifacts and provenance

(iii) An evaluation scheme that links concrete quality interventions to

measurable gains, thereby promoting dependable and transparent

AI development.

1.5 Scope and Limitations

This thesis focuses on improving data quality for heterogeneous smart-city time-series

within the SmartCityCloud environment. The scope covers dataset ingestion,

exploratory data analysis, and key quality operations such as duplicate handling,

validity screening, gap detection with imputation, and feature engineering. It also

includes label verification (e.g., day–night alignment), robustness checks using out-of-

distribution splits, and augmentation-based stress tests. All outcomes are documented

through exportable artifacts (PNG, PDF, CSV) and a machine-readable JSON

provenance record. Evaluation is based on six process-oriented dimensions—

accuracy, completeness, consistency, traceability, timeliness, and auditability—

making data readiness measurable and verifiable within the thesis scope. The

structure and writing style follow the department’s scientific thesis guidelines, ensuring

clarity, consistency, and alignment with the overall research framework.

The work does not aim to advance model architectures, large-scale hyperparameter

optimization [12], or state-of-the-art benchmark contests; any modeling references

serve only to contextualize data-quality effects. Topics outside the scope include

production MLOps hardening (e.g., autoscaling, CI/CD), privacy/legal compliance,

ethics reviews, and real-time latency guarantee. Limitations arise from dataset

availability and representativeness, potential imperfections in heuristic labels, the

bounded set of quality metrics (which may not capture every domain-specific notion of

“quality”), and the specific OOD and augmentation scenarios considered (primarily

temporal or site-based shifts with simple missingness/noise models) [13]. Results

should therefore be interpreted as evidence of process improvements and reproducible

provenance within SmartCityCloud, rather than as universal guarantees across all

sensor modalities or deployment contexts. These delimitations align with the thesis

requirement to define a clear, feasible scope and to maintain a neutral, structured

academic presentation.

18

1.6 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 covers the theoretical and

technical foundations needed for data-centric quality engineering and SCC. Chapter

3 examines related work on exploratory data analysis, data-quality metrics, labelling

techniques, out-of-distribution analysis, and augmentation, situating the contribution

within the status of the field. Chapter 4 describes the methodology, which includes

procedures for EDA, targeted quality activities, label verification, robustness tests, and

reporting. The fifth chapter details the SmartCityCloud implementation, which includes

system components, a user interface, and data flows. Chapter 6 presents the results

and evaluations for the six quality dimensions. Chapter 7 explores the consequences,

limitations, and parallels to typical model-centric practice. Chapter 8 summarizes the

findings and outlines future research and platform extensions Fig 3.

Figure 3. Thesis Structure Overview

19

2 Fundamentals

This chapter covers the theoretical principles that underpin the research and

implementation in this thesis. It covers the fundamental concepts and principles

needed to comprehend how cloud-based infrastructures, data-centric artificial

intelligence, and data quality engineering interact in smart-city settings. The emphasis

is on explaining the fundamental background required to understand the

methodological and technical decisions detailed in subsequent chapters. The section

discusses the fundamentals of cloud computing and data management, the theoretical

foundations of data-centric AI, the key dimensions used to assess data quality, and the

data governance and reproducibility in AI-powered systems.

2.1 SmartCityCloud and the Compute Task wrapper

SmartCityCloud (SCC) is a modular platform designed for managing heterogeneous

smart-city sensor streams—traffic, forestry, air quality, parking, drones, and related

domains—supporting both real-time and batch analytics across an ingestion–storage–

compute pipeline. Its reference architecture separates concerns into four cooperating

layers: a User Interface layer for interaction and visualization; a Compute Task layer

encapsulating the core data-processing logic; a Data Streams layer that normalizes

time-series, images, and tabular values into typed streams; and a Data Storage layer

that handles input acquisition and output persistence. In a typical workflow, the

backend ingests or reads data, a compute engine on a GPU server executes the user-

defined task, and results are returned for visualization and export (schedule →

download → compute → upload). Within this ecosystem, SCC offers a template and

lab workflow to set up environments (local or Docker), bind inputs, configure options,

and surface results through an auto-generated browser UI—providing a consistent

integration point for domain-specific analytics like the data-quality engineering carried

out in this thesis.

The SmartCity Compute Task Wrapper is the central execution framework within

SmartCityCloud that standardizes how analytical processes are defined, executed, and

visualized in a cloud environment. It manages the complete workflow—from loading

and harmonizing input data streams to configuring analytical parameters, executing

data-processing operations, and generating interpretable outputs—ensuring

modularity, scalability, and reproducibility across diverse smart-city datasets.

Abstracting low-level data handling and interface logic, it enables a seamless

integration of domain-specific analytics such as exploratory data analysis, data

20

validation, feature extraction, label quality verification, and out-of-distribution stability

checks. The wrapper automatically converts analytical outputs into structured tables,

plots, and JSON reports, which can be visualized or exported directly through the

SmartCityCloud interface. This design transforms the platform into a Data Quality as a

Service (DQaaS) system, providing transparent, version-controlled, and auditable data

processing that aligns with data-centric AI principles and supports high-quality,

trustworthy predictive modeling for smart-city applications.

The SmartCityCloud Compute Task Wrapper, as shown below in Fig 4, is the key

architectural workflow that allows for modular, task-based data processing within the

SmartCityCloud ecosystem. It allows for smooth interaction between the data

ingestion, computing, and visualization levels via a standardized pipeline. Raw sensor

data—whether tabular, image-based, or time-series—is first collected in the storage

layer and then accessible via an input reader, which turns the sources into

standardized data streams. These streams are then routed to the job implementation

module, where specialized analytical reasoning is used. The task implementation

component of this thesis includes all of the code created for data quality engineering,

exploratory data analysis, validity screening, feature extraction, label quality

evaluation, and out-of-distribution generalization. After processing, the findings are

transmitted to the output reader, which returns cleaned and processed data in the form

of Python-native structures or reusable data streams. The wrapper combines

visualization components for both input and output, as well as adjustable compute

options available via a web interface, allowing users to enter parameters and evaluate

results interactively. This design makes the framework completely extensible—any

researcher or developer can incorporate their own analytical logic into the task

implementation block to perform domain-specific operations, transforming the

SmartCityCloud Compute Task Wrapper into a versatile and reusable foundation for

scalable cloud-based data analytics.

21

Figure 4. SmartcityCloud Compute Task Wrapper

22

2.2 Data Centric Artificial Intelligence

Data-centric Artificial Intelligence (AI) differs from the traditional model-centric

approach by emphasizing the systematic improvement of data quality rather than

solely focusing on algorithmic sophistication [2]. While model-centric AI optimizes

model architectures and parameters based on fixed datasets, data-centric AI

recognizes that data accuracy, completeness, and consistency are equally crucial for

overall system performance. It treats data as a first-class element, requiring iterative

refinement, curation, and validation to ensure models learn from high-quality,

representative, and well-labeled samples. This involves creating standardized and

balanced datasets, removing noise, and improving label consistency to enhance model

generalization.

Within the SmartCityCloud environment, this paradigm is implemented to increase the

reliability of heterogeneous sensor data used for urban intelligence and predictive

analytics. Instead of relying solely on model accuracy, the system prioritizes data

reliability, completeness, and consistency as prerequisites for effective AI-driven

decision-making. The approach is realized through several sub-processes: data

labeling and annotation, ensuring semantic accuracy and temporal alignment (e.g.,

day/night label quality checks); data augmentation, which enhances robustness via

interpolation and noise-based synthetic generation; feature engineering, enriching

time-series data with lag, rolling, and trend-based features; and out-of-distribution

(OOD) generalization, managing domain shifts to maintain stability under varying data

conditions. Together, these components embody the theoretical and practical

foundation of this thesis, demonstrating how SmartCityCloud operationalizes data-

centric AI to produce high-quality, context-aware datasets that enable reliable and

reproducible predictive modeling.

Figure 5. The steps for Model Centric Approach [14]

23

Figure 6. The Steps for a Data-Centric Approach [14]

Fig 5 outlines the traditional model-centric loop: construct or select a network

architecture, tune hyperparameters, and repeat on algorithms while assuming the

dataset is essentially fixed [14]. This underlines how this approach has traditionally

outperformed architectures such as AlexNet, VGG, GoogLeNet, and ResNet—but also

points out its susceptibility in real-world circumstances when data contains

inconsistencies, bias, noise, and missing values [15]. In other words, when urban

sensor feeds are defective (as smart-city streams frequently are), simply refining

models cannot compensate for label noise, duplication, or gaps; data quality issues

become a performance barrier. This explains the shift that inspired your thesis: to move

away from a model-only approach and face data reliability head-on with

SmartCityCloud.

Fig 6 depicts the core processes of a data-centric pipeline—data parsing,

augmentation, representation, quality assessment, and cleaning—arranged as

systematic phases to improve data before model training. The paper [14] outlines

concrete tactics, including multi-stage hashing for duplicate removal, "confident

learning" for noisy-label detection and correction, and controlled augmentations. These

measures consistently outperform model-centric baselines (≥3% relative gains in their

experiments). SmartCityCloud implements the same concepts: parsing/representation

via stream readers for CSV/Excel/image inputs; quality assessment & cleaning via

missing/validity checks, duplicate handling, interpolation, and flatline detection; label

quality via day-night alignment; augmentation & feature engineering to enrich time-

series (lags, rolling statistics, diffs); and stability/OOD checks for drift-aware

24

robustness, with all steps captured as exportable artifacts (HQ Thus, the figure's data-

centric workflow corresponds precisely to your SCC compute-task implementation and

supports your emphasis on engineering data quality as the fundamental lever for

reliable smart-city prediction.

2.3 Data Quality Dimensions and Evaluation Metrics

Data quality is the degree to which data is suitable for its intended analytical purpose,

as measured by criteria such as correctness, completeness, consistency, timeliness,

traceability, and auditability (as defined in standards such as ISO/IEC 25012) [16].

Operationally, accuracy reflects closeness of values to true or physically plausible

ranges; completeness measures the proportion of required values present;

consistency captures the absence of contradictions, duplicates, or implausible flatlines

across time; timeliness concerns whether timestamps are valid and appropriately

aligned with the phenomena observed; traceability denotes the ability to follow data

and transformations through the pipeline; and auditability requires These parameters

offer a rigorous, implementation-independent perspective for determining whether

sensor streams are reliable inputs to prediction models.

In this thesis implementation, each dimension is instantiated by concrete, reportable

metrics within the SmartCityCloud compute task. From Table 1, Completeness is

quantified via missing-value counts and percentages; accuracy is enforced through

range/validity screening against realistic domain thresholds; consistency is supported

by duplicate timestamp removal and flatline-run detection; timeliness is addressed

through robust timestamp parsing, ordering, and resampling checks; and

traceability/auditability are achieved by exporting machine-readable JSON provenance

alongside high-quality (HQ) datasets, capturing configuration choices, transformation

counts (e.g., invalid→NaN, imputed values), and evaluation summaries. The NiceGUI-

based UI surfaces these metrics as tables, plots, and scalar cards, while the saved

artifacts ensure reproducibility. Together, these measures define a practical data

readiness framework: only when the dataset meets acceptable thresholds across all

dimensions can downstream predictive modeling be trusted, a principle later applied

in the Results chapter to interpret performance in terms of measurable data quality,

not model tuning alone.

25

Criteria Description / Purpose Implementation in
SmartCityCloud

Completeness Measures how much of
the required data is

available and not missing.

Detect and calculate using
missing-value

percentages across
records and time intervals.

Accuracy Ensures that recorded
values are valid and within

realistic domain
thresholds.

Check using range/validity
screening for each
numeric attribute.

Consistency Verifies that data remains
uniform and logically
coherent over time.

Handle through duplicate
timestamp removal and

flatline run detection.

Timeliness Checks whether
timestamps are valid,

sequential, and correctly
aligned.

Validate using timestamp
parsing, ordering, and

resampling steps.

Traceability Maintains the ability to
trace data sources and

transformations.

Achieved through JSON
provenance files capturing

dataset lineage and
applied operations.

Auditability Ensures all operations are
documented and

reproducible.

Export as versioned HQ
datasets and JSON

reports for reproducibility
and review.

Table 1. Data Quality Evaluation Criteria

2.4 Data Governance and Versioning

During the implementation, data governance and version control are critical for

assuring openness, reproducibility, and accountability across the SmartCityCloud-

based data quality workflow. To ensure controlled code evolution and reproducible

experimental states, a separate working branch was built in the SmartCityCloud

Compute Task Wrapper GitLab repository. PyCharm's local Python development

environment was linked directly to this branch, allowing for smooth synchronization of

implementation updates with the version-controlled repository. Each alteration to the

thesis-related modules, such as data ingestion, exploratory analysis, or quality

processes, was routinely committed and pushed to the GitLab branch, resulting in a

traceable history of all code revisions. This integration not only enforces version control

but also enables collaborative reproducibility, with each modification or enhancement

26

noted, vetted, and retrievable. Furthermore, the developed interface allows users to

download the created high-quality datasets corresponding to specific features in both

CSV and Excel formats, promoting open data practices and allowing downstream

verification of processed outputs.

Beyond software versioning, the system reflects the larger principles of data

governance and provenance tracking that are essential to modern AI-powered

infrastructures. Data governance in this context ensures that every dataset

transformation, from ingestion to export, is documented with complete metadata,

configuration parameters, and quality indicators. This architecture is informed by tools

and principles similar to Apache Atlas [17] or Git-based metadata tracking, which

ensure that datasets are auditable and traceable across processing cycles. The

SmartCityCloud system puts these standards into action by automatically providing

JSON provenance files and quality reports that detail dataset lineage, transformation

stages, imputation counts, and validation results. The generated High-Quality (HQ)

datasets are versioned and accompanied by metadata artifacts, providing an

immutable audit trail for each analytical run. Collectively, these mechanisms reinforce

reproducibility and reliability—core tenets of data-centric AI—and lay the groundwork

for the implementation workflow that will be described in Chapter 4, which transforms

theoretical principles into an operational, cloud-based data quality management

system.

2.5 Summary

Chapter 2 established the theoretical and architectural foundations for this work by

introducing SmartCityCloud (SCC) as a modular platform that standardizes sensor-

data ingestion, processing, visualization, and output generation through its Compute

Task Wrapper. It highlighted the shift from model-centric to data-centric AI,

emphasizing that high-quality, well-structured data is essential for building reliable

predictive systems in dynamic smart-city environments. The chapter also defined key

data-quality dimensions—completeness, validity, consistency, timeliness, traceability,

and auditability—and linked them to measurable indicators such as missing-value

ratios, range checks, timestamp correctness, duplicate detection, and metadata

provenance. Finally, it underscored the role of data governance practices, including

versioning and reproducible pipelines, which ensure transparency and long-term

reliability. Together, these fundamentals form the conceptual basis for the

methodology and implementation developed in the subsequent chapters.

27

3 State of the Art

This chapter surveys the state of the art to ground the thesis in current research and

to justify the design choices made later in the implementation. The subsections are

organized by current research trends; in each, the review (i) synthesizes representative

existing solutions and their technical approaches, (ii) identifies the gaps and limitations

that arise in heterogeneous smart-city time-series (e.g., missing/invalid data, label

inconsistencies, weak provenance, or distributional drift), and (iii) explains how the

thesis responds within SmartCityCloud—through a modular compute-task that

operationalizes data labeling quality, augmentation, feature engineering, data

governance/versioning, and OOD stability. For every trend, the implications for

implementation are made explicit: what must be supported in the options/UI, what

checks and metrics are computed, what artifacts are exported (HQ datasets and JSON

provenance), and how these choices improve downstream reliability and

reproducibility. The chapter closes with a concise comparison table mapping each

trend to its leading solutions, the uncovered gaps, and the thesis’s concrete remedies,

providing a direct bridge to the methodology and implementation that follow.

3.1 Data-Centric AI and Quality Engineering

 Research Trend: Data-centric artificial intelligence shifts the supervised

learning optimization focus from model architecture to data engineering [18].

Rather than assuming a fixed dataset and focusing primarily on networks and

hyperparameters, data-centric practice prioritizes label fidelity, coverage and

balance, validity and range conformance, temporal integrity, and lineage

documentation—on the assumption that model performance gains quickly

saturate if underlying data issues persist. Canonical position pieces and

surveys[19] describe this as a disciplined toolkit for designing datasets—not

merely enlarging them, but making them more appropriate for the task via

schema standards, labeling protocols, cleaning, augmentation, and governance

mechanisms that render pipelines reproducible and auditable.

Fig 7 illustrates the increasing global research interest in data-centric AI by

showing the sharp growth of publications containing the keyword “data-centric

AI” on Google Scholar over recent years. The trend indicates that, although still

an emerging discipline, the focus on improving data quality, labeling, and

curation is rapidly gaining momentum across AI communities [20]. The figure

highlights that most progress so far has concentrated on training-data

development—cleaning, annotation, and augmentation—while comparatively

28

little attention has been given to data maintenance and inference-data design,

especially within scientific and engineering domains. The author notes that this

surge in research activity has not yet been mirrored strongly in domain-specific

fields such as Earth and space sciences, implying a major opportunity for

applied research to adopt and operationalize data-centric practices. In the

context of this thesis, Figure 2 reinforces the motivation for implementing a

unified SmartCityCloud framework that embodies these evolving global efforts:

transforming theoretical advances in data-centric AI into a practical,

reproducible system for data-quality engineering and management in

heterogeneous smart-city datasets.

Figure 7. Recent articles published with the keyword "data-centric AI" [20]

Current research highlights several complementary strategies contributing to

Quality Engineering. Label quality assurance has become a focal point, with

methods like Confident Learning (CL) designed to identify mislabeled data and

quantify label noise, significantly enhancing model accuracy [21]. Data

augmentation techniques—such as interpolation, warping, and noise injection—

have proven effective in increasing dataset diversity and robustness against

overfitting[22]. Furthermore, feature engineering and data validation

frameworks like Deequ by Amazon enable scalable quality checks and rule-

based data profiling [23]. Collectively, these methods represent a growing global

effort to embed data quality improvement directly into the AI development

lifecycle rather than treating it as a preprocessing step [24].

29

 Existing Solutions: The implementation of data-centric AI principles has

gained momentum across multiple domains, leading to the development of

frameworks, tools, and algorithms specifically aimed at improving data quality

and reliability. One of the most widely recognized approaches is Confident

Learning (CL), which identifies and corrects mislabeled samples by estimating

label confidence and uncertainty [21]. This method enhances dataset integrity

and ensures that training samples accurately represent their classes, a critical

factor for improving the robustness and interpretability of AI models. Similarly,

the Data-Centric AI Initiative emphasizes systematic data curation, validation,

and documentation over endless model fine-tuning [25]. This initiative inspired

global competitions, encouraging practitioners to clean and balance datasets

for better generalization rather than modifying neural architectures.

In parallel, significant progress has been made in automated data validation and

profiling frameworks. Recently introduced Deequ, a library developed by

Amazon that performs declarative data validation using constraint-based quality

checks on large-scale datasets [23]. This tool enables data engineers to

automatically detect anomalies, validate numerical ranges, and measure data

completeness and uniqueness—principles that are now fundamental to modern

DCAI workflows. Additionally, data augmentation techniques such as

interpolation, extrapolation, and synthetic sampling can be used to enrich

datasets, thereby increasing model generalization while reducing overfitting

[22]. These augmentation approaches are particularly relevant for dynamic,

time-dependent data, like that in smart-city environments, where data collection

is continuous and heterogeneous.

Collectively, these existing solutions represent a significant step forward toward

operationalizing data-centric principles. They establish a foundation for

systematic data quality engineering, integrating labeling verification, automated

validation, augmentation, and provenance management. However, most of

these tools address isolated data-quality aspects and are not yet unified into a

cohesive, reproducible cloud-based framework. This fragmentation

underscores the need for integrated solutions—such as the SmartCityCloud

Compute Task Wrapper developed in this thesis—that combine these diverse

DCAI techniques into a single, automated, and scalable environment for

ensuring high-quality data in smart-city AI applications.

30

 Gaps Identified from Current Research: Despite rapid progress, three

integration gaps remain critical for heterogeneous smart-city time-series.

- Many pipelines apply single data-centric techniques in isolation—e.g.,

label cleaning with Confident Learning or Cleanlab—without coupling

them to temporal validity checks (range/physical plausibility),

duplicate/flatline screening, or feature enrichment, making it hard to

attribute gains and to certify cross-dimensional “data readiness.”

Evidence from label-error studies [21] shows meaningful accuracy gains

from data cleaning, but most implementations stop short of tying label

quality to broader validation and augmentation regimes.

- Even when validation frameworks are used, many deployments lack

embedded, machine-readable provenance that captures options,

thresholds, and transformations, limiting auditability and reproducibility

across teams and runs; this emphasizes declarative data-quality

“guardrails” (e.g., Deequ, TFDV) and automated constraint generation,

underscoring how often such guardrails are ad-hoc in practice[23].

- Cleaning and augmentation are common, but stability is rarely quantified

under diurnal/seasonal patterns, sensor drift, or site changes in

streaming contexts; recent surveys highlight that OOD generalization for

time series remains under-systematized and needs explicit evaluation

protocols in operational pipelines. Out-of-Distribution Generalization in

Time Series [26]. Together, these gaps mean that—even where

individual procedures exist—end-to-end, verified fitness-for-use is not

consistently achieved in real deployments.

 How does This Thesis address the Gaps? : This thesis consolidates data-

centric practices into a single, auditable SmartCityCloud compute task that

operationalizes quality engineering for urban sensor streams. Integrated, not

isolated. The pipeline combines label verification (day–night alignment, inspired

by label-error detection’s focus on fidelity), data validation (range/validity

thresholds; duplicate-timestamp removal; flatline-run detection; missing-value

accounting), and time-series enrichment (interpolation regimes; noise-based

perturbations; lag/rolling/differencing features), aligning with evidence that

curated labels and augmented, validated data yield larger gains than further

model tinkering. Embedded provenance for auditability. Each run emits

structured artifacts—tables, plots, and a JSON provenance record of

configuration, thresholds, and transformation counts (e.g., invalid→NaN,

31

imputations)—operationalizing the “guardrails” advocated by modern DQ

tooling and enabling reproducibility and change tracking practices. Explicit

robustness checks include stability/OOD diagnostics (e.g., monthly drift

summaries over selected attributes), so data readiness is measured not only at

a snapshot but also under realistic distributional variation, reflecting current calls

to make OOD evaluation a first-class component in time-series pipelines. By

turning label quality, validation, augmentation, provenance, and OOD stability

into first-class, configurable steps within one cloud task, the thesis translates

data-centric AI from principle to a cohesive service for dependable smart-city

prediction.

3.2 Cloud-Native, Governed Data-Quality Pipelines with OOD Monitoring

 Research Trend: Data Analysis and Validation converging on end-to-end,

cloud-native data-quality pipelines that automate validation and profiling as first-

class stages in ML/AI workflows, rather than ad-hoc preprocessing. Production

frameworks such as TensorFlow Data Validation (TFDV) and TFX demonstrate

scalable, declarative checks for schema drift, anomalies, and distribution

changes embedded directly in continuous pipelines, signaling a move toward

“data unit tests” at scale [27]. In parallel, Deequ and Great Expectations

operationalize constraint-based quality verification and human-readable quality

reports, enabling teams to specify expectations (completeness, uniqueness,

ranges) and to materialize versioned validation artifacts that can live alongside

code in CI/CD [23]. On the governance side, organizations increasingly adopt

metadata lineage and cataloging (e.g., Apache Atlas) so that datasets,

transformations, and quality checks are discoverable and auditable across

platforms—an essential prerequisite for regulated or safety-critical AI.

Complementing these quality and governance layers, MLOps tooling (e.g.,

MLflow) standardizes experiment tracking and model/data versioning to support

reproducibility across teams and time[28].

A second, tightly related strand addresses robustness under distribution shift for

streaming and time-series data. Foundational surveys on concept drift

emphasize that in live environments, the relationship between features and

targets changes, requiring continuous monitoring, adaptive evaluation windows,

and drift-aware retraining triggers [29]. Also, out-of-distribution (OOD)

generalizes for time series, highlighting protocols and metrics for assessing

32

stability when operational data departs from training regimes (seasonality

changes, sensor aging, deployment to new sites) [26]. Finally, to make these

pipelines accountable, research communities reference ISO/IEC 25012 and

contemporary DQ surveys to formalize evaluation dimensions (accuracy,

completeness, consistency, timeliness, traceability, auditability) and to tie

automated checks to measurable “data readiness” scores that can be reported

and reviewed [30].

 Figure 8. Covariate Shift and Drift with In-Distribution vs. OOD Periods [26]

The Fig 8 illustrates the central challenge of Out-of-Distribution (OOD)

generalization in time-series data by showing how real-world sensor and social

data evolve through covariate shift—changes in the input distribution 𝑃(𝑋)—and

concept drift—changes in the relationship between inputs and outputs 𝑃(𝑌 ∣ 𝑋).

It depicts these shifts across domains such as social media, energy, and traffic,

where variations arise from natural evolution, seasonal patterns, or abrupt

external events like server upgrades or policy changes. The blue regions

represent periods used for training (in-distribution), while the green regions mark

future periods where data distributions differ, causing model degradation if

unaccounted for. This visualization underscores that non-stationarity is an

inherent property of real-world time-series and that AI pipelines must

incorporate continuous drift detection, adaptation, and monitoring to sustain

33

predictive reliability—a principle directly relevant to SmartCityCloud’s goal of

ensuring robust and auditable data quality across evolving urban data streams.

 Existing Solutions: Recent advances in cloud-native data-quality frameworks

have enabled automated and scalable data validation within AI pipelines. Tools

such as TensorFlow Data Validation (TFDV) and Amazon Deequ perform large-

scale anomaly detection, schema validation, and constraint-based data profiling

directly in production environments [31]. These frameworks operationalize data-

quality checks as “data unit tests,” ensuring that completeness, consistency,

and range compliance are continuously verified. However, while they automate

many aspects of quality assurance, most remain domain-agnostic and do not

integrate downstream provenance tracking or contextual drift analysis—critical

requirements for real-time smart-city data streams.

Complementing these validation frameworks, data governance and versioning

tools such as Apache Atlas and MLflow provide metadata management, lineage

tracking, and experiment logging to maintain reproducibility across evolving

datasets and models. However, these platforms often function in isolation and

lack deep integration with quality metrics or time-series drift analysis, making it

difficult to trace how data changes impact model behaviour. Research in Out-

of-Distribution (OOD) generalization and drift detection further extends this

landscape, proposing statistical and adaptive methods to identify data

distribution changes over time [32]. Frameworks such as Evidently AI visualize

drift trends and monitor model degradation, yet most remain limited to static or

model-centric monitoring and fail to incorporate contextual temporal drifts typical

in urban sensor data streams.

At the governance and accountability level, initiatives like ISO/IEC 25012 and

open-source platforms such as Great Expectations aim to formalize measurable

quality dimensions—accuracy, completeness, consistency, timeliness,

traceability, and auditability. These frameworks highlight the need for

transparency and standardization but often lack automation or unified

provenance tracking. In contrast, this thesis integrates these fragmented

developments into the SmartCityCloud compute-task environment, combining

automated validation, JSON-based provenance recording, version-controlled

dataset exports, and OOD drift monitoring within a single, cloud-native system.

This holistic approach transforms disconnected research advances into an

34

operational, reproducible, and auditable framework tailored for data-quality

engineering in smart-city time-series analytics.

 Gaps Identified from Current Research: Despite significant progress in

establishing cloud-based frameworks for data quality validation, governance,

and drift detection, the majority of existing techniques are fragmented and

domain-agnostic. Tools like TensorFlow Data Validation (TFDV) and Amazon

Deequ provide robust mechanisms for anomaly detection and schema

validation, but they are primarily designed for general-purpose machine learning

pipelines and lack domain-specific adaptability for heterogeneous time-series

data, such as those found in smart-city environments [31]. These frameworks

primarily evaluate data at a single moment in time, with no consideration for

temporal dependencies or multi-modal data interactions among sensors,

environmental variables, and event-driven dynamics. Furthermore, while

MLflow and Apache Atlas help with governance and version control, they work

as separate tools, thus metadata lineage, validation metrics, and quality findings

are frequently decoupled, making end-to-end traceability problematic. As a

result, the integration of data validation, governance, and drift monitoring

remains poor, prohibiting firms from developing pipelines that are both auditable

and continually adaptable to changing data patterns.

Another critical gap lies in the limited treatment of Out-of-Distribution (OOD)

generalization and drift evaluation within current data-quality pipelines.

Highlights from the importance of identifying distributional and conceptual shifts,

yet these techniques are seldom embedded within automated quality

frameworks. Most tools focus on syntactic or statistical validation, overlooking

semantic drifts such as those arising from seasonal variations, sensor

recalibration, or environmental changes that influence real-world predictive

performance. Additionally, while frameworks like Evidently AI provide

visualization dashboards for monitoring drift, they often lack automated

provenance generation and version-linked reporting, which are essential for

reproducibility and accountability in AI-driven decision systems [33]. Finally,

standardized data-quality frameworks such as ISO/IEC 25012 define the

theoretical dimensions of data quality—accuracy, completeness, consistency,

timeliness, traceability, and auditability—but do not provide the computational

mechanisms to measure or enforce them in streaming environments.

Consequently, existing research does not yet deliver a unified, domain-aware,

and drift-resilient solution that ensures data readiness over time, leaving a

35

crucial implementation gap that this thesis addresses within the SmartCityCloud

ecosystem.

 How This Thesis Addresses the Gaps: This thesis bridges the identified gaps

by developing a unified SmartCityCloud compute-task framework that

operationalizes cloud-native data-quality engineering with integrated

governance, provenance, and drift evaluation. Unlike existing fragmented

systems, the proposed solution automates the entire data-quality lifecycle—

from validation and profiling to versioning and auditability—within a single,

reproducible environment. The compute-task pipeline consolidates missing-

value detection, range and validity checks, duplication and flatline screening,

and timestamp validation while automatically generating JSON-based

provenance records that capture configurations, thresholds, and applied

transformations. Each processing run produces High-Quality (HQ) datasets in

CSV or Excel formats, ensuring transparency and reproducibility. To address

OOD and drift challenges, the system incorporates temporal drift detection and

stability monitoring, quantifying feature and distributional shifts over time to

maintain model robustness under real-world non-stationarity. By embedding

these mechanisms into a modular, scalable cloud architecture, the

SmartCityCloud platform transforms disparate research advances in validation,

governance, and OOD evaluation into a coherent, auditable, and domain-

specific data-quality pipeline for heterogeneous smart-city time-series analytics.

3.3 Summary

Research Trend Existing Solutions Gaps Identified Approach of this
Thesis

Data-Centric AI &
Quality

Engineering [24]

Systematic improvement
of data over model
tinkering; practices

include dataset curation,
cleaning, balancing, and
governance embedded

into the ML lifecycle.

Often treated as ad-hoc
preprocessing; limited

unification across
labeling, validation,
augmentation, and

governance; weak audit
trails in practice.

Implements an
integrated SCC

compute-task: unified
validation

(missing/validity/duplic
ates/flatlines/timelines

s), label checks,
augmentation, feature

engineering, plus
JSON provenance and

HQ dataset export.
Label Quality &
Noise-Aware
Learning [21]

Confident
Learning/Cleanlab to

detect/correct mislabelled
samples; noise-aware

loss functions and
relabelling protocols.

Label fixes are rarely
linked to time-series

validity (e.g., day–night
semantics) or to

downstream
governance; impact

attribution across
dimensions is unclear.

Adds day–night label
alignment and

label-quality reporting
inside SCC; records

decisions to link label
edits to

quality/robustness
outcomes.

36

Data
Augmentation for
Time Series [22]

Jitter/noise, time warping,
window slicing, mixup,
interpolation; used to
increase diversity and

reduce overfitting.

Generic augmentations
may distort

physics/semantics;
rarely coupled with

drift/stability evaluation
or with provenance of

synthetic data.

Provides controlled
interpolation and noise
regimes tied to sensor

meaning; exports
augmentation configs

in JSON and evaluates
stability on monthly

OOD windows.
Feature

Engineering for
Analytics [34]

Lag features, rolling
mean/std, differences,

calendar/diurnal
encodings; widely used in
classical and hybrid ML

pipelines.

Feature creation is often
decoupled from

validation & governance;
limited reporting of

feature provenance and
effect on stability.

Implements
lag/rolling/diff features
with automatic logging
(config → JSON), and

links feature sets to
stability metrics and

HQ exports.
Cloud-Native
Data-Quality
Pipelines &

Automation [23]
[31]

TFDV/TFX for
schema/anomaly checks;

Deequ/Great
Expectations for
constraint-based

validation; CI/CD-style
data unit tests.

Frameworks are
domain-agnostic and
fragmented; limited

temporal semantics for
heterogeneous

smart-city streams;
integration burden is

high.

Bundles validation,
visualization, and
export in one SCC

compute-task; domain-
aware checks

(timestamps, flatlines),
and ready-to-use UI

for non-experts.
Data

Governance,
Provenance &

Version Control
[16]

MLflow for experiment
tracking; Apache

Atlas/catalogs for lineage;
Git-based versioning for
code/models/datasets.

Metadata, validation
metrics, and datasets
often live in separate

tools, with er4t565weak
end-to-end traceability
across runs and teams.

Links PyCharm to a
dedicated GitLab

branch; emits run-level
JSON provenance

(options, thresholds,
transformations) and

versioned HQ datasets
(CSV/XLSX).

OOD
Generalization &
Drift Detection

[32]

Statistical drift metrics
(KL/JS/Wasserstein),

windowed tests; surveys
on concept drift and
time-series OOD.

Embedded OOD checks
are rare in DQ pipelines;
little separation of ID vs
OOD windows; minimal

linkage to
governance/audit.

Adds monthly drift
summaries and

stability diagnostics;
separates ID/OOD

periods in evaluation
and logs outcomes in

provenance.
Explainable &

Auditable
Data-Readiness

Metrics [16]

ISO/IEC 25012
dimensions (accuracy,

completeness,
consistency, timeliness,
traceability, auditability);

WhyLogs/GE scorecards.

Standards specify
what to measure but

not *how* to automate in
streaming; few systems
bind metrics to artifacts

for audit.

Computes metrics
in-task and exports

tables/plots + JSON;
ties scores to concrete
artifacts (HQ datasets,
figures) for auditability.

Table 2. Summary

37

4 Methodology

This chapter provides the methodological foundation for the thesis by giving the

systematic strategy, methodology, and experimental design used to address the

identified research problem. It transforms the conceptual insights and research gaps

identified in the literature review into a practical, operational framework for execution.

The section describes the system architecture, data acquisition processes,

preprocessing pipeline, analytical models, and evaluation strategies that allow for the

engineering and assessment of data quality in diverse smart-city time series. By

formally defining each processing stage—from data ingestion, cleaning, and

transformation to outlier detection, imputation, augmentation, and quality evaluation—

the chapter demonstrates how the proposed workflow improves on existing methods

through automation, reproducibility, and explainability. Every design decision is

supported by methodological explanations, ensuring that it meets the objectives of

accuracy, completeness, consistency, traceability, timeliness, and auditability. This

chapter serves as a bridge between the state-of-the-art analysis and the practical

realization presented in Chapter 5, ensuring that the subsequent implementation and

evaluation are based on a well-defined, transparent, and scientifically verifiable

framework.

4.1 Overview and Design Rationale

This section describes the overall methodological philosophy and reasoning that led to

the development of the proposed data quality framework. It teaches the fundamental

concept of using a systematic, data-centric approach to creating, analysing, and

enhancing the quality of heterogeneous smart-city time-series data. The presentation

focuses on how the literature review findings influenced methodological selections,

ensuring that the chosen methodologies addressed the specific issues of temporal

heterogeneity, missingness, and outlier behaviour in sensor environments. This

section also discusses the motivations for essential design principles such as

modularity, openness, and repeatability, which ensure that each stage of data

processing contributes demonstrably to the stated quality parameters. This section

defines the methodological framework for the following architecture, algorithms, and

experimental settings by explaining the intellectual underpinnings and reasons for the

chosen tactics.

38

4.1.1 Purpose, Scope, and Quality Objectives of the Methodology

The goal of this methodology is to create a systematic, data-centric framework for

designing, evaluating, and validating the quality of diverse time-series datasets derived

from smart-city sensor settings. The framework describes a unified process that

combines data ingestion, preprocessing, exploratory analysis, quality evaluation, and

artifact generation into a single, reproducible pipeline. Within this setting, the

methodology serves as the research's operational core, transforming conceptual

findings from previous studies into a measured, automated, and transparent workflow

that enables a quantitative assessment of data preparation.

This methodology encompasses the entire process, from raw data collection to the

creation of high-quality (HQ) datasets and evaluation dashboards. It includes a variety

of operations, such as timestamp alignment, duplication removal, validity screening,

missing-value imputation, outlier detection using z-score and rolling statistics, feature

derivation, and out-of-distribution (OOD) stability checks. Each of these processes is

parametrically customizable, allowing the system to adapt to a variety of sensor

properties and operational scenarios. This adaptability ensures that the same

methodology may be used for numerous qualities and sensor types while preserving

consistency and traceability in quality evaluation.

The technique directly addresses ten important data quality dimensions, as described

in Table 3: accuracy, completeness, consistency, traceability, timeliness, and

auditability. These dimensions collectively establish the standards for evaluating the

fitness of smart-city time-series data in relation to the research objectives. Timeliness

is verified by resampling and temporal aggregation mechanisms that track data delays

or irregular intervals; accuracy is strengthened by detecting and eliminating erroneous

or out-of-range values; completeness is ensured by identifying and imputing missing

records; consistency is maintained by enforcing duplicate-free and range-constrained

datasets; traceability is achieved through detailed JSON-based provenance reporting

and versioned output artifacts; and auditability is realized by integrating transparent,

UI-driven workflows that enable the reproduction and export. By defining these

methodological purposes and objectives, this subsection situates the research

framework as a bridge between theoretical understanding and practical validation. It

establishes how the system operationalizes abstract data quality principles into

measurable, interpretable, and automatable components, forming the foundation upon

which the subsequent architecture, algorithms, and evaluation processes are built.

39

Research Objective Methodological
Component

Expected Outcome

Improve data accuracy Outlier detection (z-
score, range screening)

Reliable and error-free
sensor values

Enhance completeness Missing-value detection
and imputation

Continuous time-series
without gaps

Ensure consistency Duplicate removal and
temporal resampling

Uniform and stable data
representation

Strengthen traceability Provenance logging
(JSON metadata)

Transparent and
reproducible workflow

Maintain timeliness Timestamp alignment
and delay monitoring

Regular and up-to-date
data streams

Support auditability Exportable HQ reports
and UI configuration

tracking

Verifiable and
reviewable analytical

outputs

Assure overall data
quality

Integrated quality
metrics and six-

dimensional evaluation

Quantified assessment
of dataset readiness

Enable OOD
generalization

Stability and drift
screening across time

segments

Robust performance
under data distribution

shifts

Improve feature
representation

Rolling statistics and
derived temporal

features

Enhanced interpretability
for downstream analysis

Simulate real-world
variability

Data augmentation
through noise and

missingness injection

Improved model
robustness and pipeline

validation

Table 3. Mapping of research objectives to methodological components

4.1.2 Architectural Philosophy and Methodological Justification

The proposed methodology is based on a data-centric and pipeline-oriented

architectural philosophy, with a focus on systematic data quality management as the

foundation for analytical reliability. Unlike typical model-centric techniques, which

promote prediction accuracy or algorithmic optimization, the accepted framework

prioritizes data integrity, completeness, and consistency before beginning any

modeling or evaluation process. This design perspective is consistent with current

trends in data-driven system engineering, in which the quality of input data directly

influences the validity of analytical results. The methodology uses a pipeline-first

structure to ensure that each data transformation—from ingestion to high-quality (HQ)

dataset generation—is clear, modular, and reproducible.

40

The architecture is organized into well-defined stages that include data ingestion,

validation, cleaning, feature derivation, exploratory analysis, and quality evaluation, all

of which are controlled by adjustable parameters. Each stage operates independently

but cooperatively within the unified processing workflow. This modularity allows for

scalability across several smart-city sensor streams, such as temperature, humidity,

barometric pressure, and solar radiation, while preserving common data handling

standards. The pipeline is designed in a tiered structure that separates stream

management, option setup, and output creation, resulting in scalability and

maintainability. This design choice enables the system to detect timestamps, handle

duplication, rectify invalid or missing entries, and perform statistical quality checks

without requiring operator interaction, resulting in a completely traceable and self-

documenting process.

From a methodological standpoint, this data-centric design is supported by current

literature, which emphasizes that the bulk of analytical inconsistencies in Internet-of-

Things (IoT) and smart-city applications are caused by data-level shortcomings rather

than model restrictions [20]. Previous research has shown that flaws, including missing

values, outliers, and uneven sample intervals, can spread and amplify through

downstream analysis, resulting in incorrect insights and poor model generalization [24].

As a result, the emphasis on preprocessing, imputation, and quality assessment before

model training directly solves the cited limitations. The proposed methodology

incorporates rolling statistics, z-score-based outlier detection, resampling, and out-of-

distribution (OOD) drift analysis, which are empirically verified best practices for

managing temporal and statistical variability in sensor environments.

Furthermore, the formalization of quality metrics—which encompass characteristics

such as correctness, completeness, and timeliness—expands previous frameworks by

including traceability and auditability as additional dimensions required for explainable

AI and transparent data governance. This methodological emphasis on end-to-end

data quality is consistent with TU Chemnitz's academic criteria for applied computer

engineering research, which emphasize methodological rigor, reproducibility, and

measurable progress over previous art. Thus, the selected architectural philosophy not

only expands on existing research but also turns it into a realistic, automated, and

extendable solution for real-world smart-city data pipelines.

41

4.1.3 Improvements and Formalization Plan

The proposed methodology significantly improves on existing data-quality assessment

methodologies for smart-city time series by combining automation, repeatability, and

provenance tracking inside a unified, user-driven framework. Traditional data-quality

solutions frequently rely on static scripts or offline analysis, which necessitate human

interaction and domain-specific configuration. In contrast, the proposed system

automates the entire processing sequence—from data ingestion and validation to high-

quality dataset production and evaluation—via a user-configurable task pipeline. This

automation lowers human bias, operational errors, and assures consistent execution

across different datasets and sensor properties.

A significant development is the inclusion of a graphical user interface (GUI) that

enables dynamic configuration of preprocessing and quality-analysis tasks. Users can

interact with numerical attributes, resampling intervals, z-score thresholds, and

imputation algorithms without changing the underlying code. These UI-driven choices

improve accessibility and transparency, allowing non-technical stakeholders to carry

out reproducible experiments while retaining scientific rigor. The addition of

provenance metadata via JSON-based reporting sets the system apart from previous

approaches. Each execution contains critical parameters, statistical summaries, and

data-quality measurements, ensuring total traceability and accountability—essential

needs for explainable and auditable smart-city analytics.

From a scientific perspective, the methodology formalizes the entire data-quality

workflow into measurable and mathematically expressible components. Subsequent

sections of this chapter present the formal definitions for major processes, including

range-based validity screening, z-score outlier detection, rolling statistical

computation, missing-value imputation, and out-of-distribution (OOD) stability

evaluation. Each operation is defined as a function 𝑓𝑖(𝐷, 𝜃𝑖) that maps an input dataset

𝐷and configuration parameters 𝜃𝑖to a transformed dataset and quality score. This

mathematical formalization enables consistent comparison, parameter optimization,

and quantitative evaluation of the quality dimensions—accuracy, completeness,

consistency, traceability, timeliness, and auditability—defined earlier in this chapter.

Collectively, these innovations shift the approach from a human and fragmented

process to a standardized, automated, and verifiable pipeline, offering both conceptual

and operational advantages over previous literature. The chapter thus moves from

establishing these theoretical components to their organized implementation and

42

assessment, serving as an analytical bridge between the research framework and the

practical system realization detailed in Chapter 5.

4.2 System Architecture & Data Ingestion

This section describes the architectural design and operational flow of the proposed

SmartCity data-quality framework, including how data is ingested, formatted, and

prepared for analytical analysis. It explains the system's functional organization,

including the interaction of core components such as the task runner, option parser,

processing modules, and output writers, which together allow for automatic and

reproducible data-quality review. The section also describes the input data streams,

which are predominantly time-series sensor datasets in CSV and Excel formats, as

well as the techniques for timestamp detection, attribute selection, and schema

validation, all of which ensure structural consistency before analysis. It also provides

variable experimental elements such as resampling frequency, z-score thresholds,

imputation procedures, and output formats, all of which define the methodology's

flexibility and adaptability. This section provides a complete overview of the system's

architecture and data-handling pipeline, laying the groundwork for transforming raw

sensor data into high-quality, verified, and analysis-ready datasets. As a result, it acts

as the methodology's operational backbone, connecting the previously stated

conceptual framework to the documented data-processing operations that follow.

4.2.1 System Context and Components

The proposed SmartCity data-quality framework works in a distributed computing

environment, connecting the SmartCityCloud data repository to the CE GPU Server,

where analytical activities are performed. The system is built on a modular and service-

oriented architecture, which separates data storage, computation, and visualization

components. The framework's central feature is a task-execution mechanism that can

be configured to automate the whole data-quality evaluation process. The main internal

components of this system are listed below:

 Task Runner – Serves as the central execution engine that orchestrates the

complete pipeline once a user initiates a task. It loads the selected dataset,

triggers the data-processing modules sequentially (validation, cleaning,

analysis, and reporting), and manages the flow of intermediate and final results.

 Option Parser – Interprets the configuration parameters received from the web

interface—such as attribute selection, resampling frequency, z-score threshold,

imputation strategy, or export format—and converts them into executable

43

settings. This ensures reproducibility and parameter traceability for every

experimental run.

 Processors – Represent the functional units that perform the actual data

transformations, including timestamp normalization, duplicate elimination,

range and validity screening, missing-value imputation, rolling-statistic

computation, z-score-based outlier detection, and out-of-distribution stability

analysis. Each processor outputs both transformed data and quantitative quality

metrics.

 Writers / Exporters – Handle the generation and storage of final artifacts such

as high-quality (HQ) datasets, JSON reports, and evaluation tables. They apply

standardized file naming and versioning to maintain provenance and ensure

that data are saved only when explicitly requested by the user.

 UI Triggers – Constitute the interactive bridge between the user and the

computational backend. Actions such as Run Task, Save Results, or View Plots

activate corresponding Python functions in the task runner, enabling real-time

visualization and control through the graphical interface.

Together, these components enable an end-to-end automated process that transforms

raw, heterogeneous sensor inputs into validated, high-quality datasets ready for

analysis or visualization.

Figure 9. Architecture Overview

Fig 9 depicts the broader system environment, as well as the SmartCity Compute

framework's overall Overview Architecture. The design has two core environments: the

44

SmartCityCloud and the CE GPU Server. SmartCityCloud acts as the persistent data

repository where sensor streams are recorded based on timestamps and may include

various attributes such as speed, latitude, longitude, or environmental parameters.

When new datasets are added, additional artificial timestamps can be used to preserve

temporal compatibility with the existing storage format, ensuring synchronization and

consistent sampling for downstream processing. On the computational side, the CE

GPU Server hosts the task logic created for this thesis. Users initiate a job through the

web interface, which schedules and begins execution on the compute server. The

workflow consists of three stages:

 Scheduling and configuring the task.

 Downloading the relevant sensor streams from SmartCityCloud

 Returning the processed results—typically JSON summaries or HQ datasets—

to the platform for viewing or further evaluation.

This interaction establishes a clear line of responsibility: SmartCityCloud maintains

data gathering and persistence, while the CE GPU Server handles computation,

validation, and quality analytics. The cyclical interchange between these two levels

serves as the operational backbone of the proposed technique, ensuring that data

retrieval, processing, and reporting are seamlessly integrated, automated, and

traceable inside the TU Chemnitz SmartCity computing ecosystem.

4.2.2 Data Sources, Stream Types, and Timestamp Normalization

The datasets employed in this study are derived from several air-quality and

environmental sensor streams, constituting a broad and complex data ecosystem

within a smart-city infrastructure. These datasets include observations of air

temperature, barometric pressure, relative humidity, wind speed, and particulate

matter concentrations, all of which are timestamped and collected from scattered

monitoring sites. Multiple datasets are used to assess the framework's resilience and

flexibility, which is consistent with the proposed methodology's data-centric mindset.

This multi-dataset testing assures that the system is not specific to a single data source

or device type, but rather generalizes across different sensor conditions, sampling

rates, and data quality attributes, hence proving the pipeline's universality.

All sensor streams are collected in CSV or Excel formats, which are standard formats

used in environmental and IoT data collecting systems. Each stream typically contains

a timestamp column and one or more numeric attributes that indicate sensor readings.

In keeping with the data-centric goal, the framework does not rely on a fixed schema

and instead interprets each dataset dynamically upon intake. This allows for easy

45

integration of additional data sources with different attribute names and formats,

allowing the methodology to function independently of the original data-collecting

environment. The architecture allows for simultaneous management of many qualities,

with the user picking specific numeric variables via the web interface for extensive

quality analysis. This flexibility ensures that both univariate and multivariate datasets

can be examined under identical methodological settings, further emphasizing

reproducibility and comparability across experiments.

Timestamp discovery and normalization are crucial steps in the intake process, as they

provide temporal consistency before performing analytical processes. As time

alignment is the foundation of all subsequent processes—from resampling and

imputation to outlier detection and OOD analysis—the system uses a hierarchical

detection method to automatically locate the timestamp column. During dataset

loading, the framework first looks for columns with names that match popular time-

related identifiers (such as "timestamp," "time," "date," "datetime," and "recorded_at").

If numerous possibilities are identified, the algorithm selects the column with the

highest proportion of successfully parsed date-time values. When explicit timestamp

columns are missing or inconsistently constructed, the system automatically creates a

temporal index based on row order or sampling intervals derived from metadata. This

multi-layered detection approach guarantees robustness against schema variations,

which is a common drawback in previous cutting-edge data-quality frameworks that

commonly presume consistent timestamp fields.

Once found, timestamps are normalized to a consistent format (ISO 8601 standard)

and transformed to a pandas DateTimeIndex for more efficient temporal operations.

The normalization procedure also accounts for uneven intervals, missing time steps,

and overlapping entries, which are prevalent in sensor-based recordings due to

transmission delays or system resets. These corrected and ordered timestamps serve

as the temporal foundation for subsequent quality assessment tasks such as missing-

value analysis, resampling at predetermined granularities (hourly, daily, or monthly),

rolling statistical computation, and time-dependent outlier detection. The result is a

consistent time-series representation that retains both temporal precision and

analytical integrity across datasets.

In summary, this part lays the groundwork for the technique by describing how

disparate smart-city air-quality datasets are systematically digested, temporally

aligned, and standardized into a single analytical structure. By automating timestamp

discovery and supporting several dataset formats, the suggested technique addresses

46

interoperability issues that exist in existing systems. It thereby operationalizes the

basic principles of data-centric research by emphasizing data readiness, flexibility, and

cross-source generalization, all of which are critical to maintaining the validity and

scalability of the SmartCity data-quality evaluation system.

4.2.3 End-to-End Workflow

The integrity of the data-quality analysis process is dependent on rigorous input

validation and schema conformance before execution. The suggested system is meant

to accommodate diverse datasets while maintaining a uniform logical schema to

ensure correct interpretation and replication. Every dataset that is put into the system

is first checked for minimum structural criteria, such as the availability of a timestamp

column and at least one numeric characteristic suitable for statistical analysis. The

ingestion layer automatically checks for data completeness, ensuring that timestamps

are unique, chronologically ordered, and parseable into a single DateTimeIndex. Non-

numeric or categorical columns are disregarded during analysis but remain in the

metadata for traceability. To ensure analytical consistency, type casting is used to

transform numerical fields to floating-point representations, and columns with

incompatible datatypes are omitted from downstream computation. This pre-validation

stage prevents schema mistakes, enforces uniform data types, and ensures that the

following quality-assessment algorithms perform reliably.

Beyond structural validation, the system allows for a large range of experimental

configuration parameters, known as the Option Space. These options establish the

methodology's operational flexibility, allowing the same pipeline to be evaluated with a

variety of parameter settings and data conditions. Each customizable piece is an

experimental factor that can be controlled to alter data quality interpretation. The most

crucial options are:

 Resampling Frequency: Determines the temporal granularity at which the data

are aggregated—Hourly (H), Daily (D), or Monthly (M). This enables the

analysis of short-term fluctuations versus long-term trends in sensor behaviour.

 Z-Score Threshold: Sets the statistical cutoff for outlier detection. Common

values include ±2.5 or ±3, allowing control over sensitivity to extreme deviations.

 Duplicate Handling: Removes repeated timestamps or sensor readings,

preserving the first valid occurrence to maintain consistency.

 Imputation Method: Specifies how missing values are replaced, with available

strategies including forward fill (ffill), backward fill (bfill), or linear interpolation

based on temporal index continuity.

47

 Augmentation Preview: Applies simulated perturbations (noise or artificial

missingness) to assess pipeline robustness.

These options transform the system into a parameterized experimentation framework,

supporting controlled comparisons across datasets and configurations. Each run is

automatically logged with its specific parameter set, ensuring that experiments can be

reproduced and independently verified. Once the inputs have been validated and the

experimental parameters have been determined, the framework's end-to-end workflow

is carried out in a well-defined series of steps. The process begins when the user picks

an input dataset and starts the execution via the user interface. The task runner gets

the desired file, applies the specified settings, and starts the data-processing pipeline.

This pipeline includes the following important stages:

 Input Acquisition and Validation: The dataset is parsed, schema conformity

is checked, and timestamps are standardized.

 Preprocessing and Cleaning: Duplicate entries are removed, invalid values

are replaced with NaN, and missing data are handled through the configured

imputation method.

 Feature Derivation: Rolling statistics, resampled means, and lag features are

computed to reveal temporal patterns and anomalies.

 Quality Evaluation: Z-score and range-based outlier detection, completeness

calculation, and OOD stability checks are performed.

 Result Compilation and Export: The final high-quality (HQ) dataset and its

associated JSON report are generated, summarizing all statistics, parameter

settings, and quality metrics.

This method produces tabular datasets, graphic plots (such as time series, boxplots,

and trend analyses), and machine-readable JSON reports. Each result product

contains complete provenance metadata, including processing timestamps, parameter

configurations, and evaluation summaries, allowing for traceable and auditable

documentation of each run. This automated report production also facilitates later

performance benchmarking or sensitivity analysis by maintaining a consistent format

across studies.

The tight integration of the user interface and backend processing is an important

design aspect of this workflow. The user interface triggers are directly related to

backend functions: "Run Task" starts data processing, "Show Results" shows plots

and statistical summaries, and "Save Results" saves the HQ dataset and reports to the

output folder. This combination of automation and user-driven setup improves

48

productivity and transparency by reducing the need for human data handling while still

retaining total control over analytical parameters.

In essence, the combination of schema validation, parameter configurability, and

automated end-to-end execution transforms the suggested technique into an

adaptable and reproducible framework for assessing the quality of data in smart cities.

The design not only supports numerous datasets and sensor types, but it also allows

for systematic testing in a variety of scenarios, which is essential for data-driven

research. The system's design combines a conceptual approach with operational

pragmatism, ensuring that each stage—from input ingestion to artifact generation—is

both computationally robust and scientifically clear.

4.3 Formal Processing Pipeline

This section provides a formal description of the whole data-processing pipeline that

implements the methods provided in this thesis. It describes each computational stage,

including its mathematical formulation and functional significance in transforming raw,

diverse sensor data into analytically valid, high-quality datasets. The formalization

ensures that the underlying procedures—from parsing and ordering to outlier detection

and feature engineering—are not only implemented programmatically, but also

described in a reproducible, verifiable manner that adheres to scientific norms. The

pipeline is portrayed as a linear yet modular process that starts with timestamp

alignment and schema validation, then moves on to range screening, missing-value

treatment, and statistical outlier analysis.

4.3.1 Data Parsing and Validity Formalization

The formal processing of sensor data begins with defining the notation, data structures,

and rules that establish the mathematical foundation of the proposed data-quality

framework. Let each dataset D represent a multivariate time series consisting of n

temporal observations. Each observation is indexed by a timestamp ti ∈ T, where T =

{t1, t2, . . . , tn} denotes the ordered set of sampling times. The corresponding sensor

measurement at time ti is represented as xti ∈ ℝ, forming a sequence X =

{xt1, xt2 , . . . , xtn}. Missing or invalid readings are treated as special cases within the

dataset and represented as

𝑥𝑡𝑖 = {
 𝑁𝑎𝑁, 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑚𝑖𝑠𝑠𝑖𝑛𝑔 𝑜𝑟 𝑖𝑛𝑣𝑎𝑙𝑖𝑑,

 𝑣𝑡𝑖 , 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑎𝑙𝑢𝑒 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 𝑎𝑛𝑑 𝑚𝑒𝑎𝑠𝑢𝑟𝑎𝑏𝑙𝑒.

49

Accordingly, three disjoint sets are defined:

𝑉 = { 𝑥𝑡𝑖 ∣∣ 𝑥𝑡𝑖 𝑖𝑠 𝑣𝑎𝑙𝑖𝑑 }, 𝑀 = {𝑥𝑡𝑖 ∣∣ 𝑥𝑡𝑖 = 𝑁𝑎𝑁 }, 𝐼 = {𝑥𝑡𝑖 ∣ 𝑥𝑡𝑖 𝑖𝑠 𝑖𝑛𝑣𝑎𝑙𝑖𝑑}

The first stage in the processing pipeline involves parsing, ordering, and duplicate

handling, which ensures the dataset’s temporal consistency. Parsing converts

timestamp strings into numerical or datetime representations suitable for ordered

computation. Let the mapping 𝑝:string → datetime define this conversion such that

𝑡𝑖′ = 𝑝(𝑡𝑖), ∀𝑡𝑖 ∈ 𝑇.

The timestamps are then sorted in ascending order 𝑡1
′ < 𝑡2

′ <. . . < 𝑡𝑛
′ , establishing the

chronological sequence required for temporal analytics. Duplicate timestamps often

arise due to sensor synchronization issues or redundant data transmission. A duplicate

predicate 𝛿(𝑡𝑖)is defined as:

𝛿(𝑡𝑖) = {
 1, 𝑖𝑓 ∃ 𝑡𝑗 ≠ 𝑡𝑖 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑗 = 𝑡𝑖
0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

All instances where 𝛿(𝑡𝑖) = 1 are flagged as duplicates, and the system retains only

the first occurrence, following a keep-first policy. This decision preserves temporal

continuity while preventing inflation of sample counts. The number of duplicates

removed is logged as 𝑁dup = 𝑠𝑢𝑚 𝑜𝑓 𝛿(𝑡𝑖), forming part of the provenance record. This

stage enhances consistency—one of the six quality dimensions—by ensuring that

each timestamp uniquely identifies a single, valid observation. Once the dataset is

temporally ordered and duplicates removed, the next phase applies validity screening,

which ensures that all recorded sensor values fall within realistic operational limits.

Each numeric attribute is associated with a predefined range function:

𝑏(𝑛𝑎𝑚𝑒) = (𝐿, 𝑈)

where L and U denote the lower and upper acceptable bounds, respectively. For

instance, for the air temperature attribute, b(temperature) = (−40,60); for barometric

pressure, b(pressure) = (850,1100); and for relative humidity, b(humidity) = (0,100).

A validity operator ϕ(xti) determines whether a measurement falls within the defined

range:

𝜙(𝑥𝑡𝑖) = {
1, 𝑖𝑓 𝐿 ≤ 𝑥𝑡𝑖 ≤ 𝑈.
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

50

All values failing this criterion (ϕ(xti) = 0) are replaced with NaN, effectively marking

them as missing for subsequent imputation. The total number of invalid entries is stored

as 𝑁𝑖𝑛𝑣 =∑(1 − ϕ(xti))
i

, which contributes to the accuracy metric during data-quality

evaluation. By enforcing these attribute-specific validity constraints, the framework

eliminates physically implausible sensor readings and ensures the accuracy and

reliability of downstream analyses.

Collectively, the parsing, ordering, and validity screening procedures establish the first

layer of data quality assurance in the SmartCity pipeline. Parsing and ordering

guarantee temporal integrity, while duplicate handling enforces consistency. Range-

based screening ensures attribute-level validity and corrects systematic anomalies

such as out-of-range spikes or negative physical quantities. These foundational

transformations not only reduce noise and inconsistencies but also prepare the dataset

for higher-level processes such as missing-value imputation, outlier analysis, and

rolling-feature computation. Through their mathematical formalization, these

operations transform raw sensor inputs into structured, interpretable, and quality-

verified time series, thereby forming the essential basis for the subsequent stages of

the data-quality framework.

4.3.2 Missing-Data Treatment, Outlier Detection, and Feature Engineering

An essential part of the formal data-quality pipeline is the treatment of missing values,

identification of statistical outliers, and derivation of temporal features that capture

trends, variability, and stability in sensor data. These processes transform irregular,

incomplete, and noisy raw observations into structured and analytically robust

sequences suitable for further evaluation.

Sensor-based time-series data are inherently prone to missing readings due to

transmission errors, hardware malfunctions, or latency in data recording. In the

proposed methodology, missing entries are denoted as NaN and are handled through

a configurable imputation function. Let the observed series be 𝑥𝑡1, 𝑥𝑡2, . . . , 𝑥𝑡𝑛 , where

some 𝑥𝑡𝑖are missing. The general imputation operator ℑ(𝑥𝑡𝑖)is defined as:

𝑥̂ₜᵢ = ℐ(𝑥ₜᵢ) =

{

 𝑥𝑡𝑖−1, 𝑓𝑜𝑟 𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑓𝑖𝑙𝑙

 𝑥𝑡𝑖+1, 𝑓𝑜𝑟 𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑓𝑖𝑙𝑙

 𝑥ₜₜ + (
(𝑥𝑡𝑘+1 − 𝑥ₜₜ)

(𝑡𝑘+1 − 𝑡ₜ)
) × (𝑡ᵢ − 𝑡ₜ), 𝑓𝑜𝑟 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑖𝑜𝑛

51

Here, 𝑡𝑘 and 𝑡𝑘+1 represent the timestamps immediately before and after the missing

value. The method fills gaps using the chosen interpolation mode, ensuring temporal

continuity while avoiding the introduction of unrealistic fluctuations. The number of

imputed values, 𝑁imp, is reported for each dataset as:

𝑁_𝑖𝑚𝑝 = 𝛴 [𝑥ₜᵢ = 𝑁𝑎𝑁 → 𝑟𝑒𝑝𝑙𝑎𝑐𝑒𝑑]

After imputation, the dataset is subjected to statistical outlier detection to remove or

flag anomalous values. The framework applies the Z-score method, which

standardizes each observation relative to the mean and standard deviation of the

series. For every time point 𝑡𝑖, the standardized score is computed as:

𝑧ₜᵢ = (𝑥ₜᵢ − 𝜇ₓ) / 𝜎ₓ

where μx is the sample mean and σx is the sample standard deviation.

Any observation satisfying the condition |𝑧ₜᵢ| > 𝜏 is flagged as an outlier, where 𝜏 is

a user-defined threshold (typically 2.5 or 3). These flagged points are marked as invalid

and treated as missing (NaN) for subsequent imputation or exclusion.

To complement Z-score detection, an Interquartile Range (IQR) method is applied to

describe the overall distributional shape. The IQR is calculated as:

𝐼𝑄𝑅 = 𝑄₃ − 𝑄₁

Values outside the range [𝑄1 − 1.5 ⋅ 𝐼𝑄𝑅,  𝑄3 + 1.5 ⋅ 𝐼𝑄𝑅] are considered extreme and

may indicate data drift. This dual outlier framework—combining Z-score and IQR

screening—improves accuracy and robustness, ensuring that retained values

represent physically plausible and statistically consistent measurements. Once the

dataset is cleaned of missing and extreme values, the system computes derived

temporal features that quantify evolving patterns and enhance interpretability. The

feature-engineering stage generates higher-level metrics such as rolling mean, rolling

standard deviation, first differences, and lag features. The rolling mean 𝑥̄𝑡 and rolling

standard deviation 𝑠𝑡 over a moving window of size 𝑤 are defined as:

𝑥̄ₜ = (1/𝑤) × ∑ 𝑥ₜ₋ₜ

𝑤−1

𝑘−0

52

𝑠𝑡 = (1/𝑤) × ∑(𝑥𝑡−𝑘 − 𝑥̄ₜ)
2

𝑤−1

𝑘−0

These features capture local trends and volatility, providing insight into the short-term

stability of sensor readings. The temporal change between consecutive readings is

computed as:

𝛥𝑥ₜ = 𝑥ₜ − 𝑥ₜ₋₁

This highlights sudden deviations, often indicative of potential anomalies or system

events. To detect prolonged sensor inactivity, the framework checks for consecutive

identical values across 𝐾time steps. A flatline indicator 𝐹𝑡 is defined as:

𝐹𝑡 = {
1, 𝑖𝑓 𝑥𝑡 = 𝑥𝑡−1 = ⋯ = 𝑥𝑡−𝑘 𝑓𝑜𝑟 𝐾 ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒.

Flatline detection helps identify faulty sensors that report constant values over

extended durations—an important aspect of assessing data reliability. Together, the

missing-data treatment, outlier detection, and feature-engineering stages form the core

refinement layer of the SmartCity data-quality pipeline. These operations transform

raw, noisy sensor readings into a structured, continuous, and statistically consistent

time series, ready for subsequent resampling and high-quality dataset construction. By

combining mathematical rigor with configurable parameters, the methodology ensures

that the resulting data are accurate, complete, consistent, and interpretable, satisfying

the key quality dimensions required for reliable smart-city analytics.

4.3.3 Resampling and High-Quality Dataset Construction

The concluding stage of the formal data-processing pipeline involves temporal

resampling of the cleaned sensor streams and the construction of a High-Quality (HQ)

dataset that satisfies all established data-quality dimensions. This stage ensures that

all previously validated and imputed observations are aggregated at consistent

temporal intervals and exported in a standardized structure suitable for analytical

evaluation and visualization. The outcome is a dataset that is duplicate-free, temporally

aligned, range-validated, statistically consistent, and complete—fulfilling the

fundamental criteria of accuracy, completeness, and consistency in data-quality

assessment.

53

Sensor data collected in smart-city environments are often recorded at irregular or

device-specific intervals, which can hinder statistical comparison and temporal

modelling. Resampling converts such irregular sequences into uniform time grids by

aggregating values into fixed time buckets (e.g., hourly, daily, or monthly). Let the

cleaned time-series after imputation be 𝑋 = {𝑥𝑡1 , 𝑥𝑡2, . . . , 𝑥𝑡𝑛}with corresponding

timestamps 𝑡𝑖. For a chosen resampling frequency 𝑓 ∈ {𝐻,𝐷,𝑀} (Hourly, Daily, or

Monthly), each period 𝑃𝑗 is defined as a set of timestamps belonging to that interval.

𝑥̄_𝑃ₜ = (1 / |𝑃ₜ|) × 𝛴_{𝑡ᵢ ∈ 𝑃ₜ} 𝑥ₜᵢ

Where ∣ 𝑃𝑗 ∣ is the number of valid points in the interval 𝑃𝑗. If ∣ 𝑃𝑗 ∣= 0, the resampled

value is set to NaN, preserving transparency of missing intervals. The resampling

operator transforms the original series into a new time-indexed series 𝑋𝑓 =

{𝑥̄𝑃1, 𝑥̄𝑃2, . . . , 𝑥̄𝑃𝑚}, where 𝑚 depends on the total observation window and the chosen

frequency 𝑓. However, resampling introduces certain caveats: if a large proportion of

data within a window is missing, the mean may not accurately represent the period’s

true conditions. Therefore, resampling is performed only after imputation and outlier

correction to prevent distortion of underlying statistics.

Following resampling, the cleaned and temporally harmonized data are assembled into

the final High-Quality (HQ) dataset. The HQ dataset represents the definitive product

of the data-quality pipeline and serves as the foundation for evaluation and

visualization. It adheres to a strict post-processing contract ensuring that all integrity

and consistency conditions are satisfied. The formal definition of the HQ dataset 𝐷𝐻𝑄

is given as:

𝐷_𝐻𝑄 = { 𝑥ₜᵢ ∈ 𝑋 | 𝛿(𝑡ᵢ) = 0,𝜑(𝑥ₜᵢ) = 1, 𝑥ₜᵢ ≠ 𝑁𝑎𝑁 }

where:

 𝛿(𝑡𝑖) = 0, ensures that no duplicate timestamps exist,

 𝜑(𝑥𝑡𝑖) = 1, confirms that the value has passed validity screening,

 𝑥𝑡𝑖 ≠ 𝑁𝑎𝑁, guarantees the absence of unhandled missing values.

Thus, every observation in 𝐷𝐻𝑄 represents a verified, validated, and temporally aligned

data point. To maintain reproducibility, the system records metadata such as:

 Number of duplicates removed (𝑁𝑑𝑢𝑝),

 Invalid values replaced (𝑁𝑖𝑛𝑣),

54

 Imputed values (𝑁𝑖𝑚𝑝),

 Outliers flagged (𝑁𝑜𝑢𝑡), and

 Resampling frequency 𝑓applied.

This metadata is stored alongside the HQ dataset in a JSON report, ensuring

transparency and auditability of every computational step. The HQ dataset

construction phase also supports strict and flexible configurations. In strict mode, only

records with complete values are retained, ensuring absolute completeness. By

ensuring consistent temporal resolution, attribute validity, and completeness, the

process transforms disparate raw sensor streams into comparable analytical units.

This not only enhances data interpretability but also ensures that subsequent

evaluation metrics—such as accuracy, completeness, and stability—are grounded in

reliable data structures. Moreover, the creation of HQ datasets for each attribute forms

the basis for comparative benchmarking across time, sensors, or configurations, a

critical aspect of data-centric experimentation emphasized in this thesis.

4.4 Experimental Setup and Procedure

This section outlines the experimental setup and execution procedures used to test the

proposed SmartCity data-quality framework. It defines the computing environment,

datasets, parameter grid, and workflow for systematically testing and benchmarking

the methodology's performance. The experimental setup is intended to ensure that all

processes—from data ingestion to quality evaluation—are carried out under controlled,

reproducible conditions, allowing for objective comparison across datasets and

parameter settings. The technical context of experimentation is established by

providing details on the hardware and software environment, the properties of the

datasets under study, and the changeable experimental parameters. The section also

explains the entire procedural flow that occurs through the system's user interface,

emphasizing how user-defined options influence data processing and quality

assessment. Finally, repeatability techniques including provenance logging, fixed

random seeds, and consistent file-naming conventions are explored to ensure that all

results are transparent and verifiable. This structured experimental design empirically

demonstrates the suggested methodology's dependability, scalability, and

generalizability.

4.4.1 Experimental Environment and Parameter Configuration

The experimental evaluation of the proposed SmartCity data-quality framework was

conducted within a controlled computing environment designed to ensure consistent

55

performance, reproducibility, and scalability. All experiments were executed on a

Smart city Compute Task wrapper. This configuration provided adequate

computational resources for handling large-scale sensor datasets and performing time-

series analyses efficiently. The software environment was implemented using Python

3.10, with core dependencies including pandas (v2.1.1) for data manipulation, NumPy

(v1.26.0) for numerical operations, Matplotlib (v3.8.0) for plotting and visualization, and

SciPy (v1.11.3) for statistical computation. The interactive user interface (UI) was

developed using the NiceGUI framework, which enables seamless interaction between

the Python backend and visualization frontend. All code modules, including data

ingestion (csv_streams.py, excel_streams.py), processing (task_impl.py, options.py,

output.py), and visualization (streamvis.py), were deployed within this environment and

orchestrated by the SmartCity Task Wrapper for automated task scheduling and

execution.

The framework was validated using multiple air-quality and environmental datasets

collected from simulated smart-city sensor networks and open-source repositories.

These datasets represent diverse sensor attributes such as air temperature (°C),

barometric pressure (hPa), relative humidity (%), wind speed (m/s), and solar radiation

(W/m²). Each dataset was structured as a time-series stream containing a timestamp

column and multiple numeric attributes, stored in CSV or Excel (.xls/.xlsx) formats. The

datasets span different time intervals, sampling rates, and data densities to

comprehensively test the adaptability of the data-centric methodology. On average,

each dataset contained approximately 28,000–30,000 rows and covered a temporal

range of several months, with varying degrees of missingness, duplicates, and outliers.

This heterogeneity was intentionally preserved to assess the robustness of the

framework across multiple data-quality conditions and to confirm its generalization

capability to unseen sensor streams.

4.4.2 Concept Solution Description

The suggested experimental setup employs a data-centric solution flow, with each

dataset going through a predetermined series of quality-oriented activities before being

approved as a high-quality (HQ) air-quality dataset. The Air Quality Index (AQI) dataset

(Input) serves as the starting point. In practice, this dataset may originate from several

sensors or external sources, and hence may not always be in the exact structure

required by the SmartCityCloud environment. As a result, the first stage is import

preparation, which includes adding or normalizing a timestamp column to ensure that

each record is identified in time. This is critical since all subsequent operations—

56

resampling, imputation, outlier detection, label checks, and OOD generalization—are

time-series operations that necessitate a proper temporal index.

Figure 10. Concept Solution Diagram

Following this preparation, the dataset is uploaded or linked to the SmartCityCloud

(SCC), which serves as the primary data repository. SCC is responsible for storing

various sensor streams in a consistent, time-indexed fashion. At this point, the AQI

dataset is integrated into the same context as other smart-city data, allowing for

comparison, resampling, and running the same task wrapper on other attributes. The

Fig 10 also mentions that SCC may "timestamp the AQI dataset," — which means it

can enhance or regularize the time column if the original source has irregular or

missing timestamps, assuring system interoperability.

The subsequent key block is Exploratory Data Analysis (EDA) Fig 11. During this

stage, the implementation performs the descriptive and structural checks you

previously created: counting missing values, detecting duplicate timestamps,

displaying basic statistics, visualizing trends and boxplots, and identifying potentially

invalid ranges for attributes such as temperature, pressure, or humidity. EDA is used

not just for human inspection, but also to generate preprocessed data, which is then

57

input into quality procedures. This is where you use the options set earlier in the

process (resample frequency, z-threshold, imputation method). This stage produces a

cleaned, temporarily ordered AQI series that is ready for more rigorous quality

enforcement.

Figure 11. Exploratory Data Analysis for AQI Data

The subsequent step post the EDA is “Data Quality Operations (Ensuring high-quality

data)” Fig 12. This is the core of your thesis contribution and consists of four logical

stages:

 Label Quality Check: Ensures correctness of labels such as sensor-based

conditions (e.g., SRAD > 0), preventing analytical bias from mislabeled records.

 Data Augmentation: Introduces controlled noise or artificial missingness to test

the robustness and generalizability of the pipeline across diverse datasets.

 Feature Engineering: Generates temporal descriptors such as rolling mean,

rolling standard deviation, and first differences to capture trends in AQI data.

 OOD Generalisation: Splits the series into base and future segments and

compares their statistical profiles to detect distribution drift in sensor data.

Figure 12. Data Quality Operations

58

Once these operations are complete, the resulting dataset is written as a High-Quality

Dataset (AQI). The data quality operations diagram, which is important: every time the

task is run with a different option set, a separate HQ version is stored (usually with a

timestamped filename). This enables reproducibility and rollback — a key requirement

. In parallel, the pipeline evaluates the dataset against the Data Evaluation Criteria you

defined earlier (accuracy, consistency, completeness, traceability, timeliness,

auditability). These criteria are computed from the counts collected during processing

(missing replaced, outliers flagged, duplicates removed, OOD flags, etc.). Finally, the

system produces the JSON file (Output). This file is the machine-readable report

containing: the options used in the run, the quality metrics for the six dimensions, any

warnings (e.g. “high missingness in February”), and references to the HQ dataset that

was saved. This JSON is what the UI can display in your evaluation dashboard and

what you can later include in Chapter 6 for results. In this way, the concept solution

diagram shows a closed loop: raw AQI → SCC → analysis → quality enforcement →

HQ dataset → JSON report — fully aligned with the data-centric, reproducible

methodology defined in Chapter 4.

4.5 Assumptions, Limitations, and Summary

This section describes the underlying assumptions, methodological restrictions, and

validation metrics used in the design and evaluation of the proposed data-quality

framework. Every data-centric methodology is based on some simplifying assumptions

about sensor behavior, data distribution, and temporal stability, which are required for

formalization but may affect generalizability. The identified constraints emphasize

potential sources of uncertainty, such as heuristic parameter sets, dataset reliance,

and imputation bias, which can all have an impact on results interpretation.

Furthermore, mitigation measures and sensitivity assessments are described to

guarantee that these constraints are addressed consistently and their consequences

are minimized. The section concludes with a summary that links the methodological

framework presented in this chapter to the practical realization described in Chapter 5

and the empirical evaluation presented in Chapter 6, thereby completing the bridge

between conceptual design, system implementation, and quantitative assessment.

4.5.1 Assumptions

The proposed methodology is developed under a set of foundational assumptions that

ensure the stability and interpretability of the data-quality evaluation process. It is

assumed that the sensor metadata provided by the SmartCityCloud environment,

59

including timestamps, units of measurement, and attribute labels, is accurate and

reliable, allowing for consistent parsing and identification of variables. Furthermore, the

validity bounds defined for each attribute (such as temperature, pressure, or humidity)

are considered to be approximate yet representative of realistic environmental

conditions. These bounds are derived from empirical studies and literature but may not

perfectly capture local or seasonal variations. Finally, the approach presumes

stationarity within the baseline window used for out-of-distribution (OOD) stability

checks—that is, the statistical properties of the reference data segment (mean and

variance) remain relatively constant over the observed period. This assumption

enables meaningful comparison between baseline and future windows, forming the

basis for detecting drift or instability in long-term sensor performance.

4.5.2 Limitations and Chapter Summary

While the proposed methodology provides a structured and automated framework for

smart-city data-quality assessment, several limitations and validity threats must be

acknowledged. The first limitation arises from the use of heuristic validity bounds,

which, although empirically grounded, may not universally represent all sensor

operating environments. This introduces potential bias when attributes deviate from

expected physical ranges due to local calibration differences or extreme environmental

conditions. Similarly, the Z-score-based outlier detection approach exhibits sensitivity

to the underlying data distribution; highly skewed or non-Gaussian variables may yield

false outlier flags or overlook subtle anomalies. The imputation methods (forward fill,

backward fill, and linear interpolation) also introduce bias when missing values span

large gaps or when the signal exhibits nonlinear dynamics. Moreover, the evaluation

outcomes depend partly on dataset specificity—that is, the heterogeneity and volume

of the sensor streams used for testing—which may affect the generalizability of the

reported results to other cities or sensor infrastructures.

To address these challenges, several mitigation and sensitivity measures are

incorporated into the experimental design. Parameter option sweeps are conducted to

evaluate the influence of varying thresholds, resampling frequencies, and imputation

strategies, ensuring that conclusions are not dependent on a single configuration.

Alternative statistical thresholds and adaptive methods are compared to assess the

stability of quality metrics across different parameter settings. In addition, manual spot

audits—involving direct inspection of selected datasets and their visual summaries—

are performed to verify the correctness of automated decisions, particularly in outlier

and imputation validation. Together, these measures strengthen the robustness and

60

reliability of the findings. This section also concludes the methodology chapter by

establishing continuity with the subsequent parts of the thesis: Chapter 5

(Implementation) details how the defined processes and algorithms are realized in

software. In contrast, Chapter 6 (Results and Evaluation) presents the empirical

performance of the framework across diverse datasets. Collectively, these chapters

transform the conceptual and formal models introduced here into practical outcomes,

completing the transition from theoretical design to experimental validation.

4.6 Summary

Overall, Chapter 4 presented the methodological framework that operationalizes the

thesis’s data-centric quality engineering approach by defining a systematic,

reproducible, and transparent workflow for preparing heterogeneous smart-city time-

series data. The chapter outlined the conceptual rationale for the methodology,

explaining how design choices were informed by challenges identified in the

literature—namely, temporal heterogeneity, missingness, outlier behavior, and label

fragility. It then detailed the end-to-end system architecture, covering data ingestion,

stream typing, timestamp normalization, and the overall workflow required to transform

raw sensor datasets into analysis-ready inputs. The formal processing pipeline was

introduced, defining each operation—validity screening, missing-data treatment, Z-

score outlier detection, rolling statistics, feature engineering, resampling, and HQ

dataset construction—as structured, parametrizable procedures that ensure consistent

and explainable transformations across datasets. The chapter further described the

experimental setup, including parameter configurations, concept-solution logic, and

the generation of artifacts such as HQ datasets and JSON provenance reports that

support auditability and reproducibility. Finally, the assumptions and limitations

underlying the methodology were acknowledged, along with mitigation measures such

as parameter sweeps, sensitivity analyses, and manual spot audits, thereby

positioning the methodology as a scientifically grounded bridge between the

foundational concepts and the implementation and evaluation presented in Chapters

5 and 6

61

5 Implementation

This chapter describes the practical application of the concepts, data pipelines, and

design principles introduced in earlier chapters. Building on the methodological

foundation presented in Chapter 4, the implementation transforms the suggested data-

centric pipeline into a fully functioning system within the SmartCityCloud (SCC)

environment. While previous sections highlighted the limitations of existing model-

centric approaches and the importance of high-quality, traceable sensor data, this

chapter shows how those theoretical foundations are realized through code, modular

architecture, and automated data-quality evaluation mechanisms. The implementation

details include SmartCity Compute Task Wrapper configuration, environment setup,

integration of local development with SCC's cloud infrastructure, and the

implementation of each functional component—from data ingestion and exploratory

analysis to validation and high-quality (HQ) dataset generation. This section bridges

methodological design and execution, providing a comprehensive view of how the

proposed system addresses the missingness, inconsistency, and traceability

challenges identified in the state-of-the-art review, thereby establishing a reproducible

foundation for the Results and Evaluation chapter.

5.1 SmartCityCloud Context and Data Sources

This section describes the technology and data foundations for the proposed

implementation. It describes the SmartCityCloud (SCC) platform, which serves as the

underlying cloud infrastructure for large-scale management, processing, and analysis

of various sensor data streams. The debate focuses on how environmental and urban

sensors generate data, notably air-quality information, which is then stored and

transmitted in common forms such as CSV. This section also describes the structure

and semantics of the Air Quality Index (AQI) dataset used in this thesis, including its

properties, temporal characteristics, and data-generation workflow inside the SCC

ecosystem. By creating this backdrop, the section gives the necessary understanding

of the platform architecture and sensor data flow, on which the future compute-task

implementation is based.

5.1.1 SmartCityCloud Platform and Sensor Data Generation

The SmartCityCloud (SCC) is a modular, cloud-based platform for managing,

processing, and evaluating sensor data from a variety of smart city domains. It offers

an integrated platform that enables real-time and batch analytics, allowing for scalable

62

data management in urban applications including traffic monitoring, forest inspection,

environmental evaluation, parking management, and drone-based surveillance. The

platform's architecture is layered, with layers for data intake, processing, storage, and

visualization that work together to ensure that data streams from diverse sources are

processed equally. As described in Chapter 4, compute tasks are deployed using the

SCC's Compute Task Wrapper, which encapsulates the execution environment and

allows users to add custom AI or data-quality modules without affecting the underlying

infrastructure. This modularity enhances interoperability and facilitates the rapid

prototyping of analytical solutions for various urban scenarios.

The creation of sensor data is critical to this architecture. Sensors located across the

city continuously record environmental data such as air temperature, humidity, wind

speed, sun radiation, barometric pressure, and rainfall. These measurements are sent

to the cloud in organized tabular format—typically as comma-separated values (CSV)

files or live data streams—with each record labelled with a timestamp and, in some

circumstances, a geographical identifier. The CSV format is a lightweight and

consistent way to describe heterogeneous sensor outputs, ensuring interoperability

with both local compute environments and SCC ingestion interfaces. Each dataset

follows a consistent schema: a timestamp column indicating the measurement time,

followed by attribute columns representing sensor readings with associated physical

units (e.g., °C for air temperature, % for humidity, m/s for wind speed). The SCC

ingestion layer validates the structural integrity of these files, detects missing or

duplicated entries, and stores them in cloud-based repositories for subsequent

analysis.

The dataset employed in this thesis, the Air Quality Index (AQI), is an example of such

data production. It collects continuous air-quality readings from scattered sensors and

uses important environmental indicators to assess atmospheric conditions. This

dataset, stored in CSV format, serves as the experimental foundation for testing the

data-quality measures and analytical methods described later in this chapter. The

SmartCityCloud platform and its standardized sensor data pipelines create a solid

foundation for executing compute activities and verifying data-centric AI approaches

that aim to improve data reliability, traceability, and overall quality in smart-city

ecosystems.

63

5.1.2 AQI Dataset: Structure & CSV Layout

The Air Quality Index (AQI) dataset is the key data source for assessing the proposed

data-quality methodology in the SmartCityCloud environment. It is a time-series sensor

dataset compiled by many environmental monitoring devices spread throughout the

urban network. Each record refers to an instantaneous measurement taken at a

specified timestamp, representing atmospheric and meteorological variables that

together characterize local air quality conditions. The dataset is saved in structured

comma-separated values (CSV) format, making it simple to import, preprocess, and

validate within the SmartCity Compute Task Wrapper.

The dataset used in this thesis comprises approximately 28,448 rows and a fixed set

of sensor-based attributes. Table 4 summarizes the main columns, their physical

meanings, and measurement units.

Attribute Description Unit Typical Range

CollectedDateAt Timestamp of data collection
(synchronized to sensor clock)

– ISO 8601
datetime

AirTemperature Ambient air temperature
measured near the surface

°C –20 to 50

Humidity Relative humidity in the
atmosphere

% 0 to 100

WindSpeed Instantaneous wind speed m/s 0 to 60

WindDirection Direction of wind flow
measured clockwise from north

° 0 to 360

SRAD Solar radiation intensity W/m² 0 to 1200

BarometricPressure Atmospheric pressure at
ground level

hPa 870 to 1080

Rain Daily rainfall accumulation mm/day 0 to 500

Flag (optional) Quality indicator for flagged or
missing records

– 0 = valid, 1 =
flagged

Table 4. AQI Dataset Attributes

Each attribute represents a continuous numeric stream sampled at regular intervals.

In the provided dataset, the sampling cadence corresponds approximately to 10-

minute intervals, enabling both fine-grained temporal analysis and monthly

aggregation for detecting long-term trends. The dataset includes occasional missing

values, duplicates, and anomalous readings, which are intentionally retained to

evaluate the system’s ability to perform data cleaning, outlier detection, and imputation.

The presence of these real-world irregularities ensures that the proposed data-centric

64

quality evaluation methods—such as z-score–based outlier identification, rolling mean

smoothing, and resampled aggregations—can be rigorously validated.

A typical CSV layout of the dataset is shown below in Table 5 (values redacted for

privacy and readability):

Collected
DateAt

AirTemp
erature

Humidi
ty

WindS
peed

WindDir
ection

SRAD Barometric
Pressure

Ra
in

2023-01-
01

00:00:00

6.171400
796

46.320 1.7506
71397

111.540
7247

19.868
56612

1019.44350
3

0

2023-01-
01

00:30:00

4.714289
308

49.228
60209

3.1623
89981

357.936
1896

0 1018.40230
8

0

2023-01-
01

01:00:00

6.226648
054

48.232
69796

4.5433
12422

137.914
5006

25.907
54152

1017.60483
8

0

2023-01-
01

01:30:00

6.615140
918

49.449
152

6.2368
40863

136.310
372

60.921
19426

1018.58129
7

0

2023-01-
01

02:00:00

7.717235
023

56.430
89952

1.9327
5409

322.869
064

0 1017.69595
9

0

Table 5. Sample records from AQI Datasets

This structured format ensures seamless integration with the SmartCityCloud ingestion

module, where each column is automatically detected as a separate data stream and

analyzed within the Exploratory Data Analysis (EDA) and Data Quality modules

implemented in this work. The AQI dataset thus provides a representative and

challenging basis for testing the robustness of the proposed cloud-based, data-centric

quality assurance framework.

5.1.3 Data Ingestion into SmartCityCloud

The data ingestion pipeline describes how sensor data files are introduced, registered,

and prepared for analysis in the SmartCityCloud (SCC) environment. This method

serves as the first step in the cloud's data pipeline, ensuring that incoming datasets

are standardized, version-controlled, and easily accessible for compute-task

execution. The pipeline starts with data collection from field-deployed sensors, which

send raw readings in the form of CSV or Excel files with timestamped environmental

measurements such air temperature, humidity, wind factors, and sun radiation. These

65

files are then loaded into the SCC platform via a regulated ingestion interface, which

validates the structure and information before further processing.

In this implementation, the data ingestion process is integrated into a user-friendly

graphical interface (UI) that enables direct uploading of CSV or Excel files through the

SmartCityCloud Compute Task platform Fig 13. Upon upload, the system automatically

identifies the file type and processes it using the corresponding data reader module—

CsvStreamReader for comma-separated files or ExcelStreamReader for

spreadsheets. Each dataset is internally decomposed into multiple data streams, with

each stream representing a single sensor attribute such as air temperature, humidity,

or solar radiation. The ingestion layer further performs automated timestamp detection

and data-type assignment to maintain consistency. All datasets follow a structured

naming format (e.g., AQI/AirTemperature) and include version tracking to ensure

reproducibility and auditability across evaluations. This streamlined workflow forms a

crucial bridge between raw sensor inputs and SmartCityCloud’s computational

environment, enabling a seamless transition from data acquisition to standardized

analytical processing within the Compute Task Wrapper.

Figure 13. Data Ingestion Workflow

66

5.2 SmartCity Compute Task Wrapper

This section introduces the SmartCity Compute Task Wrapper, the main execution

framework that enables the modular and flexible implementation of analytical activities

on the SmartCityCloud platform. The wrapper serves as an abstraction layer between

raw sensor data and computational logic, allowing researchers and developers to

incorporate new data-centric or AI-driven workflows without affecting the cloud

architecture. It standardizes critical processes, including data loading, validation,

transformation, and result export, ensuring interoperability and reproducibility across

several smart-city applications. As part of this thesis, the Compute Task Wrapper was

improved and expanded to allow data-quality operations, Exploratory Data Analysis

(EDA), and high-quality (HQ) dataset production. This contribution not only improves

the system’s scalability and maintainability but also demonstrates how a unified

compute framework can facilitate AI task execution on heterogeneous urban datasets,

bridging the gap between theoretical design and practical deployment within

SmartCityCloud.

5.2.1 Role as a Common Execution Platform

The SmartCity Compute Task Wrapper acts as a unified execution platform that

simplifies and standardizes the integration of analytical tasks within the

SmartCityCloud (SCC) ecosystem. As sensor data in smart-city environments

originates from heterogeneous sources with varying formats and sampling rates, direct

algorithm implementation becomes complex and inconsistent. The wrapper resolves

this by offering a standardized interface that abstracts low-level data handling, enabling

developers to focus on analytical logic. Its modular structure converts key operations—

such as input discovery, stream parsing, option setup, task execution, and output

generation—into reusable components, supporting plug-and-play development of new

modules like data-quality analysis or anomaly detection without altering the core

infrastructure. By managing task lifecycles and enforcing a consistent input–output

structure, the framework ensures interoperability and reproducibility across datasets

and projects. Overall, it forms the foundation of the SCC analytical layer, enabling

scalable, maintainable, and reliable deployment of AI-driven and data-centric

applications in smart-city contexts.

5.2.2 Wrapper Architecture and Extensibility Model

The SmartCity Compute Task Wrapper is the foundational architectural component

that integrates data ingestion, processing, visualization, and output generation in the

67

SmartCityCloud (SCC) framework. It captures the technological difficulty of managing

heterogeneous smart-city sensor data through a layered and extensible framework. As

depicted in Fig 14, the architecture is made up of four interconnected layers: the User

Interface Layer, the Compute Task Layer, the Data Stream Layer, and the Data

Storage Layer. These layers constitute a standardized execution pipeline that allows

users to run analytical or AI-based operations with little configuration work while

ensuring reproducibility, maintainability, and interoperability across datasets and

projects.

Figure 14. SCC Compute Task Wrapper Architecture

a) User Interface Layer - The User Interface Layer represents the topmost

abstraction through which users interact with the SmartCityCloud platform. It is

implemented using the NiceGUI framework in the show_ui.py module, which

automatically generates a responsive web interface. This interface allows users

to log in, upload input datasets (in CSV or Excel format), configure task

parameters, and visualize the results of the computation. The UI communicates

directly with the Compute Task Wrapper through the AutoTaskRunnerUI class,

dynamically loading available tasks and their configurable options.

When a user uploads a dataset, the interface immediately triggers the ingestion

process and displays input-data previews and configuration panels. After

execution, the results—such as statistical summaries, visual plots, or high-

quality (HQ) dataset exports—are rendered back in the UI as part of the

visualization dashboard Fig 15. This design ensures that even non-technical

users can interact with the analytical pipeline without needing to modify the

68

codebase, establishing an accessible yet controlled environment for urban data

analysis.

Figure 15. Smartcity Cloud User Interface

b) Compute Task Layer - The Compute Task Layer is the computational

backbone of the SmartCity Compute Task Wrapper. It manages the entire job

lifecycle in four standardized stages: discover, options, process, and write,

ensuring a consistent and reproducible workflow across all analytical modules.

During the discover phase, the wrapper automatically analyzes accessible

datasets in the inputs/ directory and recognizes them as data streams for

analysis. The options stage then exposes changeable parameters defined in

task_impl.py's get_default_options() method, allowing for dynamic task

customization prior to execution. In the process phase, the core analytical logic

executes operations such as missing-value detection, z-score–based outlier

identification, rolling mean smoothing, or feature generation, depending on the

task type. Finally, the write phase serializes the processed results through

standardized stream writers, ensuring consistent formatting for visualization and

storage. This lifecycle enforces a strict input–output contract that allows tasks

to operate independently while maintaining interoperability with other

SmartCityCloud components.

69

Figure 16. Compute Task Options Samples

The graphical interface for configuring task parameters—illustrated in Fig 16 is

automatically generated by the system using the Compute Task Options

framework. Each task option defined in the code (e.g., numeric sliders,

dropdown selections, or Boolean toggles) is dynamically translated into an

interactive widget within the user interface. This design provides an intuitive

bridge between the user and the underlying Python implementation, enabling

users to control algorithmic parameters such as detection sensitivity, threshold

levels, or choice of anomaly detection method without modifying the source

code. The figure demonstrates a typical configuration panel, where options for

selecting the numeric stream attributes that need to be analysed with respect to

the timestamp attribute. Such modular option handling not only enhances

flexibility and usability but also ensures that the same computational logic can

be applied to varied datasets or use cases with minimal configuration. This

adaptability exemplifies the extensibility of the Compute Task Layer and its role

in enabling user-driven experimentation and reproducible AI workflows within

the SmartCityCloud environment.

c) Data Stream Layer - The Data Stream Layer acts as the intermediary between

computation and storage, transforming raw datasets into structured, streamable

objects. It handles data flow, type inference, and conversion across multiple file

formats. The implementation utilizes specialized stream classes such as

CsvStreamReader, ExcelStreamReader, and ImageStreamReader, each

responsible for parsing a specific data type and converting it into unified

DataStream objects.

Once ingested, each attribute in the dataset (e.g., AirTemperature, Humidity,

SRAD) is treated as an independent data stream. The StreamReader and

StreamWriter interfaces define how these streams are read and written,

70

supporting both real-time and batch modes. This abstraction enables low-

latency data access and pipeline flexibility, ensuring that analytical modules can

handle continuous or discrete inputs without additional transformation. The layer

thus provides an essential bridge between physical data representation and the

logical processing model used by compute tasks.

d) Data Storage Layer - The Data Storage Layer manages persistent input and

output datasets within the SCC system. It stores raw data files, processed

results, and high-quality (HQ) outputs produced after cleaning, imputation, and

augmentation. The storage layer ensures that each dataset is versioned and

traceable, allowing experiments to be reproduced consistently. Input datasets

are typically placed in the /inputs folder, while output artifacts—such as

processed CSV/Excel files, JSON reports, or visualizations—are written

automatically to the /outputs directory through the wrapper’s stream writers.

In the current local implementation, the layer relies on filesystem storage but

maintains a structure that can be easily extended to cloud databases or

distributed storage systems. Each stored file retains a metadata signature

containing dataset name, timestamp, and attribute identifiers, enabling efficient

retrieval during subsequent analysis or evaluation.

The interaction among the four layers of the SmartCity Compute Task Wrapper follows

a top-down execution flow that ensures smooth data movement from ingestion to

visualization. The User Interface Layer initiates the workflow when a user uploads a

dataset and selects a task. The Compute Task Layer then retrieves configuration

options and executes the analytical logic, while the Data Stream Layer manages data

flow between input readers, processors, and output writers to maintain consistency

and synchronization. Finally, the Data Storage Layer saves the processed outputs,

which are sent back to the interface for visualization and interpretation. This

standardized lifecycle—discover → configure → process → visualize → store—

ensures uniformity, reproducibility, and reliability across all analytical tasks within

SmartCityCloud.

A key contribution of this thesis is the extension of the wrapper to support data-quality-

centric compute tasks, enabling advanced operations such as missing-value detection,

outlier analysis, imputation, and high-quality dataset generation. These enhancements

adhere to the same base interfaces (TaskRunner, DataStream, and

ComputeTaskOption), ensuring seamless compatibility with existing components. The

71

architecture remains fully extensible, allowing future integration of AI-driven models

like predictive air-quality forecasting or anomaly detection without structural changes.

This modular, plug-and-play design establishes the Compute Task Wrapper as a

scalable and reusable analytical framework for both experimental research and large-

scale smart-city applications.

5.3 Local Environment Setup

This section describes the complete setup process required to replicate and execute

the developed SmartCityCloud (SCC) Compute Task Wrapper in a local computing

environment. Establishing a consistent and reproducible setup is essential for ensuring

that the implementation can be deployed seamlessly across different systems and

development platforms. The section outlines the step-by-step procedure for cloning the

project repository from GitLab, installing required dependencies and toolchains, and

configuring the working environment using Python and Conda. It also covers the

procedures for connecting the local workspace to the GitLab remote repository to

facilitate version control, collaborative development, and continuous integration.

Finally, reproducibility practices—such as environment pinning, version locking, and

consistent seed initialization—are discussed to guarantee that all experiments and

executions can be reliably reproduced under identical conditions.

5.3.1 Cloning from GitLab and Repository Layout

The implementation of the SmartCityCloud (SCC) Compute Task Wrapper began by

cloning the official template repository from the TU Chemnitz GitLab server into a

dedicated working directory on the local machine. A separate folder named

SmartCityCloud-template was created to maintain an isolated environment for

development and experimentation. Using Git, the repository was cloned from the

university’s remote instance via the following command executed in the terminal

This operation downloaded the entire SCC Compute Task Wrapper source code,

including all submodules and configuration files. After cloning, a Python 3.11 Conda

environment was created and activated to ensure a clean and reproducible

72

workspace for running the project. The environment was set up using the following

commands:

The cloned repository followed a well-defined folder structure designed for modular

development and task execution. A simplified overview of the repository layout is

shown below:

Once the repository was cloned and dependencies were installed, a sample “Hello

World” program was executed to verify successful setup and connectivity. The

task_impl.py file was modified to print a simple message within the UI framework,

confirming that the Compute Task Wrapper, the NiceGUI interface, and the local

environment were functioning correctly. The test output displayed “Hello,

SmartCityCloud!” in the browser interface, indicating that the cloning and configuration

were completed successfully and the local SCC environment was fully operational for

further implementation work.

5.3.2 Dependency Installation and Environment Configuration

The development and execution of the SmartCityCloud (SCC) Compute Task Wrapper

required a consistent software toolchain capable of supporting asynchronous web

frameworks, data-stream processing, and user-interface rendering. To ensure

73

reproducibility and cross-platform compatibility, a dedicated Conda environment was

configured using Python 3.11, serving as the foundation for all compute and

visualization tasks. This environment guarantees that the same dependency versions

are preserved throughout testing, deployment, and evaluation stages. These libraries

support the compute framework, user interface, and visualization modules. The

dependencies can be grouped as follows:

 Data Processing and Analytics: pandas, numpy, scipy, and pytz for time-

series manipulation, numerical operations, and statistical computations.

 Visualization and Plotting: matplotlib, contourpy, and fonttools to generate

plots and data-quality dashboards.

 User Interface and Frontend Rendering: nicegui (v2.10.1), jinja2, and

markdown2 for automatic UI generation, input selection, and display of outputs

via web interface.

 Backend Services and Communication: fastapi, uvicorn, starlette, and httpx

for REST-based service communication and local hosting.

 File and Stream Handling: openpyxl and aiofiles for handling Excel and

asynchronous file I/O.

 Configuration and Environment Management: python-dotenv for secure

loading of environment variables and system-level parameters.

 Utility and OS Integration: colorama, winshell, and ifaddr for Windows shell

automation, shortcut creation, and network interface resolution.

The dependency installation was carried out using the following procedure within the

Conda environment:

74

The above setup ensures that all libraries—particularly NiceGUI, Matplotlib, and

FastAPI—are configured to support interactive visualization, real-time user input, and

smooth UI execution. Once installed, the environment can be replicated on any

machine using the same requirements.txt file, guaranteeing portability and

reproducibility of results. To further standardize execution, a configuration file (.env)

was created in the project’s root directory. This file defines environment variables that

manage user authentication, port configuration, and runtime behaviour. The main

parameters are listed below in Table 6. These variables are loaded dynamically

through the function _load_users_from_env() in show_ui.py, ensuring secure user

access and flexible runtime configuration.

Variable Purpose

APP_USERNAME /
APP_PASSWORD

Default credentials for UI login

APP_USERS Optional JSON structure for multi-user
access

APP_PORT Defines port for hosting the NiceGUI server
(default: 8080)

APP_LOG_LEVEL Sets verbosity for console logging
(INFO/DEBUG)

Table 6. Application Configuration Variables

Upon execution, the system initializes the NiceGUI server and launches a local web

instance at http://localhost:8080, displaying the SmartCityCloud login page. After

authentication, users can upload datasets, configure options, and execute compute

tasks. The environment setup also supports log management and automatic shortcut

generation (via WinShell) for ease of access.

To maintain long-term reproducibility, version control was integrated using Git. The

following best practices were adopted:

 All dependencies are version-pinned in requirements.txt.

 Commits are regularly synchronized with the TU Chemnitz GitLab repository.

 The Conda environment can be exported using conda env export >

environment.yml for archival.

 Random seeds and configuration options are fixed within task modules to

ensure consistent evaluation results.

This configuration process establishes a portable and deterministic software

foundation for executing SmartCityCloud compute tasks locally. It ensures that all

system components—from data ingestion to UI rendering—operate in a synchronized

http://localhost:8080/

75

and reproducible environment, enabling robust experimentation and future scalability

to cloud-based deployments.

5.4 Codebase Walk-through

This section provides a detailed overview of the codebase developed and integrated

as part of the SmartCityCloud (SCC) Compute Task Wrapper implementation. It

explains the functional responsibilities and interactions among the core modules that

collectively enable data ingestion, compute-task execution, visualization, and output

management. The discussion covers the major components of the system, including

the application entry and authentication layer, the auto-generated user interface, the

compute layer, and the data streams and storage modules. Each subsection describes

the internal logic, data flow, and role of individual Python scripts such as show_ui.py,

auto_ui.py, task_impl.py, and the modular packages under compute, streams, and

storage. Together, these modules establish the operational backbone of the SCC

platform, ensuring modularity, extensibility, and reproducibility in executing AI-driven

and data-quality tasks on smart-city sensor data.

5.4.1 Application Entry and Authentication

show_ui.py serves as the application entry point, launching the SmartCityCloud (SCC)

UI and enforcing authentication before any compute task can run. At startup, it loads

credentials from environment variables (preferably a JSON map via APP_USERS,

otherwise APP_USERNAME/APP_PASSWORD), supports hashed secrets, and

verifies logins with constant-time comparison to reduce timing-attack risk.

Authentication is tracked per client session, so the root route decides at request time

whether to render the login form or the main application. The login view provides

username/password inputs Fig 17, Enter-to-submit handling, feedback toasts on

failure, and a logout action that clears the session and returns users to the login page.

Figure 17 SCC Login Page

76

After a successful login, the script wires the compute stack into the interface. It

constructs a TaskRunner around a DelegateComputeTask that references this thesis’s

task hooks (TASK_TITLE, get_default_options(), process()), then uses the Auto UI

builder to materialize the full configuration and results interface from the option

schema—covering input selection, parameter widgets, execution controls, and

output/visualization panes—without manual routing. Inputs are discovered on demand

(not pre-loaded), which ensures reproducible execution given the same .env, options,

and files. The entry module also sets window aesthetics and can create a desktop

shortcut for convenience, before launching the app as a native NiceGUI window on the

configured port.

5.4.2 UI layer for Tasks

a. Purpose and role in the system: The Auto Task Runner UI encapsulated in

auto_ui.py provides a declarative, reusable user interface for executing

SmartCityCloud compute tasks without hand-coding web forms or plots for

each task. It connects the UI to the core execution wrapper (TaskRunner) and

renders: (i) an upload/ingestion panel, (ii) task options auto-derived from

ComputeTaskOptions, (iii) result visualizations, and (iv) export/evaluation

utilities. This design adheres to the guideline’s recommendation to document

implementation steps and testing artifacts in a reproducible, structured manner

(Implementation → Documentation of the Implementation).

b. Architecture & key components: auto_ui.py builds on NiceGUI and the

wrapper API:

 Runner binding: accepts a TaskRunner instance; all UI actions

delegate to runner.discover_inputs(), runner.execute(), and

runner.write_outputs() where applicable.

 Option rendering: uses OptionVisualizationUI to transform

ComputeTaskOption definitions (e.g., ChoiceOption,

InputStreamMultiChoiceOption) into widgets automatically.

 Stream visualization: uses StreamVisualizationUI to produce time-

series and summary plots with automatic down-/re-sampling and

readable date ticks.

 Results model: stores task outputs in self.outputs and renders grouped

“Summary/Quality/Plots/Evaluation” expansions; utilities convert

DataStream to native values where needed.

77

A minimal sketch of the control flow:

c. Input acquisition & upload workflow: The UI exposes a file upload that

accepts CSV/Excel and persists it to a temporary folder. After saving, it re-

discovers input streams using the registered readers (CSV/Excel), refreshes

option widgets (so the attribute multi-select reflects the new columns), and

builds a “Quick Overview” with rows/columns, type buckets, and per-column

missingness/min/max. This gives a layperson-friendly yet audit-ready snapshot

before computation. The summary logic detects numeric, datetime, and text

columns, computes overall and per-column missingness, and shows min/max

for numeric fields—supporting data-quality awareness before running the task.

Fig 18 illustrates the automated data ingestion and initial validation workflow

generated by the AutoTaskRunnerUI. Once the user uploads a dataset (here:

AQI_Data.xlsx), the system immediately analyzes the file and produces a

structured “Quick Overview” summarizing key metadata, including file size, row

and column counts, detected data types, and overall missing-data proportion.

Below this summary, the interface provides a detailed per-column breakdown

showing the inferred type (numeric or datetime), the percentage of missing

values, example entries, and the minimum–maximum ranges. This automatic

inspection step enables users to verify dataset integrity, understand variable

characteristics, and ensure suitability for downstream Exploratory Data Analysis

(EDA) and Data Quality operations without requiring any manual preprocessing.

78

Figure 18. Auto Task Runner UI

d. Auto-rendered options & execution flow: Options are not hard-coded in the

UI; they’re derived from the task’s default options and rendered via

OptionVisualizationUI. When inputs change, on_inputs_changed in each

option (notably InputStreamMultiChoiceOption) repopulates choices to list only

valid numeric attributes. The “Run Task” button collects widget values and calls

runner.execute. Relevant snippets:

79

By pushing option semantics into ComputeTaskOption classes (ChoiceOption,

InputStreamMultiChoiceOption), the UI layer remains generic and reusable

across tasks.

Figure 19. Attribute Selection Interface

 Fig 19 shows the automatically generated attribute-selection interface of the

AutoTaskRunnerUI. After the dataset is uploaded, the system lists all available

sensor attributes as checkboxes, supported by “Select All,” “Clear All,” and a

search field for quick filtering. The interface also displays the number of selected

attributes and suggests starting with a small subset for initial analysis. Once the

user chooses the required variables, clicking Run Task triggers the EDA and

Data Quality workflow. This component highlights the system’s focus on

usability, configurability, and efficient task execution without manual coding.

e. Results rendering & visualization: After execution, the UI builds multiple

expansions:

 Summary cards/tables: compact statistics (count, mean, std,

min/median/max) per attribute. Values are extracted from DataStream or

nested dicts and formatted for readability.

 Quality sections: per-attribute panels for Missing/Validity/Outliers,

including warning thresholds and explanatory notes, which is useful for

documenting testing and validation steps as required in the guideline.

80

 Plots: time-series plots automatically re-sampled (5min→monthly

depending on span), auto-formatted date ticks, and gentle rolling means

for readability. (Underlying helpers live in StreamVisualizationUI.)

f. Export & evaluation utilities: The UI implements a one-click export that

preferentially writes High-Quality (HQ) tables and a promoted JSON report

(with key metrics elevated to top-level keys such as rows_total, missing_total,

outliers_z_percent), and it selects Excel if an engine is available, else

CSV/JSON. This balances reproducibility (dataset snapshots) and auditability

(JSON metrics), matching the guideline’s emphasis on documenting

implementation artifacts and testing/validation outputs. Example:

An evaluation tab also accepts a JSON report (from a prior run or external tool)

and computes readiness and data-quality scores (Completeness, Validity,

Consistency, Stability/Drift, Outliers). The UI explains how scores were derived

(e.g., “Missing values handled: x/y”), which is valuable for the Testing and

Validation subsection of the Implementation chapter.

5.4.3 Compute Layer

The Compute Layer forms the operational core of the SmartCityCloud framework and

defines how analytical tasks are structured, configured, and executed. Its foundation

is the ComputeTask abstraction in tasks.py, which specifies the required lifecycle

functions: title, get_default_options(), and process(). Each concrete task conforms to

this interface, ensuring that all implementations behave consistently regardless of their

internal logic. The system uses DelegateComputeTask to bridge user-implemented

functions (such as this thesis’s EDA and data-quality pipeline) with the unified

execution engine. The TaskRunner orchestrates the full workflow by discovering input

81

streams using registered StreamReader classes, validating names and data types, and

passing the loaded streams to the selected compute task. During execution, the runner

invokes the task’s process() method and then automatically converts primitive results

(scalars, lists, numeric arrays) into standardized DataStream objects so downstream

components—including the UI and storage subsystems—can treat outputs uniformly.

The runner also provides safe write-back functionality through write_outputs(),

matching result streams with appropriate writers (e.g., CSV, Excel, or image data

streams). This creates a strict contract ensuring that every task moves through a

consistent, reproducible cycle: discover → configure → process → materialize outputs.

Task configuration shown in Table 7 relies on the flexible option framework defined in

options.py. Core option types such as NumberOption and ChoiceOption allow numeric

ranges, dropdowns, and custom selections, while stream-aware options

(InputStreamChoiceOption, InputStreamMultiChoiceOption) dynamically adapt to

dataset attributes during input discovery. For example, InputStreamMultiChoiceOption

automatically filters available columns to include only numeric streams (INT/FLOAT),

ensuring that algorithms such as outlier detection or interpolation are only applied to

valid attributes. The output.py module complements this by providing the

StreamOutputHelper, which creates writable streams for images and leaves extension

points for user-defined export formats. The thesis-specific task_impl.py builds on this

compute infrastructure to implement a complete data-quality pipeline: missing-value

detection, z-score outlier filtering, rolling statistics, interpolation strategies, and

generation of high-quality (HQ) datasets. Options defined in get_default_options()

(e.g., selected attributes, resampling frequency, z-thresholds, interpolation mode)

control the behavior of these algorithms, while the structured outputs—summary

statistics, cleaned streams, and promoted JSON quality reports—flow back through

TaskRunner for UI rendering and file export. Together, the Compute Layer establishes

a modular, extensible, and reproducible execution backend that transforms user

configuration into concrete analytical results.

Option Default Purpose

stream_numeric_multi (none) Select numeric attributes for

EDA & quality checks

resample_freq M Aggregation frequency (H/D/M)

zscore_threshold 3.0 Outlier detection threshold

clean_invalid yes Remove unrealistic values

drop_duplicate_timestamps yes Ensure unique timestamps

interpolate_method none Missing value handling

82

rolling_window 15 Rolling statistics window

augment none Diagnostic augmentation

ood_split 70/30 Baseline vs OOD split

export_format both Export result format

Table 7. Compute Task Options

5.4.4 Streams and Storage

The Streams subsystem provides the unified data abstraction used throughout the

SmartCityCloud Compute Task Wrapper. At its core is the DataStream base class,

which encapsulates sensor values along with an associated StreamDataType that

describes the semantic type of the stream (e.g., INT, FLOAT, STRING, DATETIME,

IMAGE_SEQUENCE). All concrete stream types inherit from this abstraction and

expose consistent interfaces for retrieving values, counting elements, and expressing

whether the stream is writable. The standard in-memory types include

InMemoryDataStream for homogeneous numeric/text series, NumpyDataStream for

NumPy-backed arrays with automatic dtype inference, and ScalarStream for single-

value outputs, such as summary metrics or quality scores. The image subsystem

extends the same abstraction: LocalFilesImageDataStream represents lazily loaded

images, while WritableImageDataStream provides a structured mechanism for writing

generated visual outputs to disk, ensuring that even non-tabular results conform to the

same stream interface used throughout the wrapper. These classes collectively ensure

that all inputs and outputs—whether numeric time series, scalar indicators, or image

sequences—can be processed, visualized, and exported through a common API

without special-case handling.

The Storage subsystem complements the streams by providing format-specific readers

and writers that convert physical files into typed DataStream objects. As shown in

Table 8, CSV, Excel, and image directories are handled by their respective readers

(CsvStreamReader, ExcelStreamReader, and ImageStreamReader), each

responsible for parsing the raw file, inferring attribute types, and returning a dictionary

of stream name → stream object. During input discovery, the TaskRunner iterates

through all files in the given folder, queries each available reader via

supports_source(), and loads the corresponding streams using read_source() .

Naming conventions ensure that each column becomes an addressable stream (e.g.,

"AQI/AirTemperature"), enabling the auto-UI and compute logic to treat them

consistently. Output writing follows a similar model, where the runner matches each

83

result stream with appropriate stream writers; image outputs use

WritableImageDataStream, while tabular results are exported through CSV/Excel

writers depending on availability. This structured mapping—from file → stream

abstraction → output writer—forms a stable, extensible foundation enabling all

modules in the SmartCityCloud framework to interoperate seamlessly with diverse data

formats while maintaining reproducibility and a clear separation between data

representation and computation.

Source Stream Type Usage

CSV InMemoryDataStream AQI ingestion; numeric &

datetime columns.

Excel InMemoryDataStream Alternate ingestion & HQ

table export.

Images ImageDataStream Supported for

sequences; not used

here.

Generated plots WritableImageDataStream Stores PNG/SVG

artifacts.

Numpy arrays NumpyDataStream Internal numeric data for

calculations.

Scalar outputs ScalarStream Single metrics like

counts or percentages.

Table 8. Mapping of I/O file formats

5.5 Implementation Steps

After the user selects the AQI dataset and clicks Run Task, the compute task

processes all selected numeric attributes and organizes the outputs within three major

interface blocks: the Quality section, the Plots section, and the Data Quality section.

This structure reflects the complete analytical workflow implemented in task_impl.py

and orchestrated by auto_ui.py. The system’s behaviour is therefore best understood

by following the sequence in which the interface presents results, as each section

corresponds to a specific stage of computation within the EDA and data-quality

pipeline. Once all analyses are completed, the user may export the high-quality dataset

and the JSON-based diagnostic report. The following subsections describe these

interface blocks in detail and explain how they map to the underlying code paths.

84

5.5.1 Quality Section

Immediately after the task execution completes, the interface expands the Quality

section, which contains a set of essential diagnostic metrics for each selected attribute.

These metrics serve as the first level of verification and correspond to the

completeness, validity, and consistency checks defined in Chapter 4. The missing-data

component quantifies both the total number and percentage of missing values and

identifies the number of months during which missing entries occur. This behaviour is

implemented by grouping the raw values at a monthly level and computing

missingness statistics before any cleaning or interpolation is applied Fig 20. A

summary of these values appears directly in the interface, and a bar-chart visualization

highlights the temporal distribution of missing data across months.

Figure 20. Monthly missing percentage chart

The validity-bound analysis evaluates whether sensor readings fall within the plausible

physical limits corresponding to the attribute. Using the _guess_validity_bounds()

method, the system automatically infers appropriate lower and upper bounds based

on the attribute name (for example, air temperature, humidity, wind speed, and solar

radiation). Values outside these limits are classified as invalid, and a representative

preview of such entries is provided to the user alongside a numerical count and

percentage Fig 21. This enables early detection of malfunctioning sensor periods or

data-entry errors.

Figure 21. Validity Bound Summary with Invalid Samples

85

Outlier detection is performed using the Z-score method. The standard deviation and

mean of the cleaned values are computed, and readings whose absolute Z-score

exceeds the user-defined threshold (with 3.0 as the default) are identified. The

interface reports the number and proportion of detected outliers and displays a time-

series plot that overlays outlier points on top of the smoothed mean curve Fig 22. This

visualization allows the user to distinguish isolated anomalies from more persistent

deviations in sensor behaviour.

Figure 22. Z-score outlier plot with anomaly readings

The system also inspects the dataset for duplicate timestamps. Duplicate records

frequently occur when sensors transmit multiple signals within the same time interval

Fig 23. If the user has enabled duplicate removal, the system retains only the first entry

for each timestamp and reports the number of removed records. Together, these four

components—missing values, validity bounds, Z-score outliers, and duplicate

timestamps—form a comprehensive first-stage quality assessment that validates the

structural integrity of the AQI dataset.

Figure 23. Duplicate timestamp detection

5.5.2 Plots Section

The Plots section provides the user with a comprehensive set of visualization tools

aimed at facilitating exploratory data analysis. These visual outputs are generated

directly from the dictionary returned by process() and rendered by AutoTaskRunnerUI

through Matplotlib. The system applies adaptive downsampling to ensure

responsiveness even for datasets containing several hundred thousand rows.

86

For datasets with multiple numeric attributes, a correlation matrix is produced to reveal

pairwise linear relationships across variables. This matrix is displayed as a heatmap

where stronger positive or negative correlations appear as more pronounced color

intensities Fig 24. The histogram view complements this by illustrating the distribution

of sensor values and providing insight into skewness, heavy tails, or multimodal

patterns that may affect downstream modelling tasks.

Figure 24. Correlation Matrix

The interface also includes an “Invalid Samples vs Time” visualization, which overlays

invalid readings on the complete time series Fig 25. This graph assists in identifying

periods of sensor drift, physical anomalies, or calibration issues. The “Missing by

Month” graph, produced earlier in the Quality section, is also accessible here as a

standalone plot to facilitate visual comparison with other indicators.

Temporal dynamics are further explored through the resampled mean plot, which

computes average values over user-defined or automatically determined intervals

(hourly, daily, weekly, or monthly). This provides a smoothed representation of long-

term behaviour. The raw time-series plot presents the full-resolution values with

adaptive downsampling and serves as the reference point for analysis

87

Figure 25. Invalid samples plotted over raw time series

Figure 26. Trend and seasonability decomposition graph

88

A more sophisticated visualization is the Trend and Seasonality graph Fig 26. This plot

decomposes the daily-aggregated series into a long-term trend component and a

seasonal component based on monthly averages. It helps verify whether the sensor

exhibits expected environmental rhythms, such as diurnal or seasonal variations. the

IQR boxplot is also included within this section, providing two complementary

perspectives on the distributional behaviour of the data Fig 27. The IQR plot

emphasizes relative spread, median shifts, and potential skewness.

Figure 27. IQR-based boxplot graph

89

5.5.3 Data Quality Section

The Data Quality section provides deeper diagnostic information generated after all

cleaning, interpolation, and transformation operations have been completed. This

section, therefore, reflects the “high-quality” (HQ) portion of the dataset, which serves

as the basis for downstream machine-learning and predictive-modelling tasks.

The first subsection in this group is the Overview, which summarizes the configuration

and results of the complete data processing workflow Fig 28. It reports whether

duplicate removal, invalid-value handling, and interpolation were enabled; the number

of values replaced by NaN; the number of imputations performed; the count of detected

flatline segments; and the final number of rows retained in the HQ dataset. This

overview consolidates all earlier operations and provides a concise description of the

transformed dataset.

Figure 28. Overview of Data Quality Operations performed

The Label Quality subsection evaluates differences in sensor behaviour between

daytime and nighttime readings Fig 29. Using the timestamp hour, the system

90

determines which periods correspond to daylight. It computes separate means for day

and night values, the difference between them, and the relative balance of

observations. These metrics are complemented by visualizations such as bar charts

comparing day and night averages, boxplots for distributional differences, and an

overlay plot showing the temporal alignment of both groups. The presence of a strong

and physiologically plausible day–night contrast reinforces the reliability of the dataset.

Figure 29. Label-quality results

The Day vs Night Mean plot Fig 30 compares the average sensor values observed

during daytime and nighttime and is used to assess the label quality of the dataset. A

clear difference between day (25.8) and night (21.8) values, with a ΔMean of 4.02

(18.55%), indicates that the sensor responds realistically to natural diurnal patterns,

confirming that the timestamps, label assignments, and cleaned HQ values follow

expected environmental behaviour. This contrast is a strong indicator of high-quality,

physically plausible data, and helps verify that preprocessing has preserved

meaningful temporal structure essential for reliable analysis and downstream

modelling.

Figure 30. Label-quality Day/Night Graph

91

The OOD Generalization (Drift Detection) subsection investigates temporal stability

using a baseline period (for example, 70% of the time span) and comparing later

months against the computed baseline statistics. The interface displays the baseline

mean and standard deviation and shades the ±3σ stability band. Monthly mean values

are plotted against this band, and any months falling outside the acceptable range are

flagged as potential drift events. A rolling 30-day mean plot offers a more fine-grained

view of long-term behaviour and helps confirm whether the dataset remains stable for

predictive modelling.

Figure 31. Monthly mean stability analysis within the OOD generalization module

The OOD generalization in Fig 31 summarizes the long-term stability of the air

temperature sensor by comparing later months of data against a baseline period. The

baseline mean (20.945) and standard deviation (8.512) define an expected operating

range, with the ±3σ bounds spanning approximately –4.59 to 46.48 degrees. Values

or monthly averages falling outside this interval indicate potential drift or abnormal

behaviour. In this case, two months were flagged, meaning their monthly mean

temperatures deviated beyond the established 3σ stability band. This indicates mild

temporal drift in the sensor’s behaviour and highlights periods that may require closer

inspection or exclusion when constructing a high-quality dataset.

The Monthly Stability vs Baseline plot Fig 32 illustrates how the monthly mean air-

temperature values evolve relative to a baseline statistical range. The dashed line

represents the baseline mean computed from the first 70% of the dataset, while the

shaded green band denotes the expected ±3σ stability interval. Monthly averages that

fall within this band indicate normal and stable sensor behaviour, whereas values

outside the band suggest potential drift or abnormal environmental conditions. In this

example, most months remain within the acceptable range, but a few later months rise

sharply above the upper 3σ threshold, confirming the drift flags observed in the OOD

92

summary. This visualization, therefore, helps assess long-term consistency and

identify periods where sensor reliability may be reduced.

Figure 32. Monthly mean stability graph vs baseline attribute using OOD

The final part of this section presents the Feature Engineering output. The HQ dataset

is enriched with additional columns, including lag1, lag2, diff1, rolling mean (window

15), and rolling standard deviation. Summary statistics for these features illustrate their

variability and suitability for machine-learning tasks. If data augmentation was enabled

by the user, a preview of augmented rows (e.g., noise injection or synthetic

missingness) is shown as well.

Figure 33. Sample data for HQ Feature Engineered Attributes

The Fig 33 summarizes the engineered features derived from the cleaned air-

temperature series, which enhance the dataset’s suitability for downstream modelling.

The lag1 and lag2 features represent the previous one-step and two-step values,

capturing short-term temporal dependence, while diff1 measures the first-order change

between consecutive observations, highlighting local fluctuations. The roll_mean_15

and roll_std_15 features compute 15-point rolling averages and standard deviations,

providing smoothed trend information and local variability estimates. Together, these

features encode temporal continuity, short-term dynamics, and stability patterns, which

93

significantly improve the predictive power of machine-learning models and contribute

to a more informative, high-quality dataset.

The scatter plot Fig 34 compares the lag1 feature (the previous time step’s

temperature) with the current air-temperature value, illustrating the short-term temporal

dependence in the cleaned dataset. The strong diagonal cluster indicates that

consecutive temperature readings are highly correlated, reflecting natural continuity in

atmospheric conditions. Points close to the diagonal represent stable transitions, while

more scattered points highlight sudden changes or brief anomalies. This strong lag

relationship confirms that the dataset captures realistic temporal dynamics, making

lag-based features valuable for forecasting models and contributing to a more robust,

high-quality dataset.

Figure 34. Lag1 vs Value Graph

The autocorrelation plot Fig 35 shows how strongly the air-temperature readings are

correlated with their own past values across different time lags. The high positive

correlation at small lags indicates strong short-term persistence, meaning consecutive

temperature measurements change gradually rather than abruptly. As the lag

increases, the autocorrelation decreases and becomes negative, reflecting the natural

temperature cycle where warmer and cooler periods alternate over time. The

oscillating pattern suggests a repeating seasonal or daily trend in the data, while

correlations eventually decay toward zero, indicating diminishing influence of distant

past values. This behaviour confirms the presence of meaningful temporal structure—

an essential property for forecasting models and a key indicator of high-quality time-

series data.

94

Figure 35. Auto Correlation Graph

This distribution comparison plot Fig 36 illustrates how different augmentation

strategies—Gaussian noise addition, random missingness injection, and a combined

mode—affect the air-temperature attribute relative to the original high-quality (HQ)

data. The augmented distributions closely follow the shape of the HQ histogram,

indicating that the transformations preserve the underlying statistical structure while

introducing controlled variability. Noise injection mimics natural sensor fluctuations,

missingness simulates real-world data gaps, and the combined mode prepares models

to handle both simultaneously. By exposing downstream algorithms to realistic

perturbations, these augmented datasets improve model robustness, reduce

overfitting to ideal conditions, and ultimately contribute to a more reliable and high-

quality learning pipeline.

Fig. 37 presents a row-level comparison between the original high-quality (HQ) air

temperature values and the augmented versions generated through controlled

perturbations. The Noise (σ = 5% of std) column shows values where small Gaussian

noise has been added to mimic natural sensor variability, while the Missingness (10%)

column replaces a random 10% of entries with missing values to simulate realistic data

gaps. The final Noise + Missingness column combines both effects, producing a more

challenging dataset for robust model training. Together, these augmented samples

preserve the underlying temporal patterns of the HQ data while introducing realistic

imperfections, thereby improving model generalization and ensuring that downstream

95

analytics are resilient to noise and missing data conditions commonly encountered in

real-world sensor environments.

Figure 36. Data Augmentation Distribution Comparison

Figure 37. Data Augmentation HQ Table

5.5.4 Exporting High-Quality Data and Reports

After reviewing all analyses, the user can export the resulting datasets and diagnostic

reports by clicking the “Save Results” button. The system supports JSON and Excel

formats. All files follow a standardized naming convention that includes sanitized

attribute names and timestamps to ensure reproducibility. The exported Excel file

typically contains separate sheets for the high-quality dataset, the augmentation

preview (if available), and the data-quality report. The JSON output includes a

96

structured summary of all quality indicators, stability metrics, and feature-engineering

details. These exported artifacts ensure that the full data-processing pipeline can be

reproduced or integrated into subsequent modelling workflows.

Figure 38. Save Results Confirmation message

The confirmation message Fig 38 indicates that the system has completed the export

stage by saving both the JSON report and the high-quality (HQ) dataset to the

designated output directory, consistent with the SmartCityCloud workflow shown in the

overview architecture. This illustrates how processed results are returned from the CE

GPU server back to the SmartCityCloud environment. This notification verifies that the

implementation has written all required artifacts—such as the HQ dataset in

CSV/XLSX format and the structured JSON quality report—into the correct local output

folder. This ensures reproducibility, proper integration with downstream components,

and reliable storage of final results exactly where the framework expects them to be.

The exported JSON file contains two main parts: the cleaned high-quality time series

and descriptive metadata. At the top level it stores the dataset name and export

timestamp, followed by the field hq_rows, which is a list of records representing the

final HQ dataset for the selected attribute. Each record includes the timestamp and the

cleaned sensor value, together with all engineered features that were generated during

the pipeline, such as one-step and two-step lags (lag1, lag2), rolling mean and rolling

standard deviation over the chosen window (roll_mean_15, roll_std_15), and the first

difference (diff1). The schema of these rows is mirrored in the hq_columns entry, which

lists the exact column names of the exported HQ table.

The second part is the report object, which translates the full data-quality process into

a compact, machine-readable summary. It records global statistics such as the total

number of rows, missing values, values converted to NaN because they violated

validity bounds, removed duplicates, and the number of imputed points and flatline

runs. It further captures outlier diagnostics (z-score count and percentage), stability

and out-of-distribution information (for example the number of flagged months out of

all months and the monthly means relative to a baseline band), as well as other

counters used by the evaluation dashboard. Altogether, this JSON file therefore

encodes both the refined HQ data series and all key quality indicators, so that

97

SmartCityCloud or any external tool can reconstruct what was done to the data and

assess its quality without rerunning the pipeline.

5.6 Summary

Overall, Chapter 5 translated the methodological framework into a fully functional,

cloud-based implementation within the SmartCityCloud environment, demonstrating

how the proposed data-centric pipeline operates in practice. The chapter first

described the SCC ecosystem, its sensor data sources, and the structure of the AQI

dataset used for evaluation, establishing the operational context in which the compute

task is executed. It then detailed the architecture and extensibility of the SmartCity

Compute Task Wrapper, which standardizes execution by managing input discovery,

parameter configuration, processing logic, visualization, and output persistence across

heterogeneous datasets. The implementation further included the setup of the local

development environment, repository structure, and dependency configuration,

enabling reproducible execution and consistent integration with SCC’s cloud interface.

A comprehensive walkthrough of the codebase clarified how the UI layer, compute

layer, data streams, and storage components interact to support automated EDA,

validity checks, outlier detection, feature engineering, and high-quality (HQ) dataset

generation. The chapter concluded with a detailed explanation of the implemented

quality, plots, and data-quality modules—including label verification, OOD stability

analysis, augmentation, and export mechanisms—alongside utilities for producing

structured artifacts such as HQ CSV/XLSX files and machine-readable JSON

provenance reports. Collectively, the implementation chapter demonstrated how the

conceptual workflow defined in Chapter 4 is operationalized in software, providing a

robust, auditable, and user-friendly system for executing data-centric quality

engineering at scale within SmartCityCloud.

98

6 Results and Evaluation

After completing the Exploratory Data Analysis and Data Quality operations, the

system automatically compiles all relevant metrics, cleaning actions, statistical

summaries, and high-quality data records into a structured JSON file. This file is stored

in the output directory of the GPU server and transmitted back to the SCC platform as

defined in the system architecture. The JSON artifact serves as the basis for the

evaluation stage, where the user uploads it into the evaluation interface to compute

the final quality metrics. The following sections describe the backend evaluation

workflow, the computation of six quantitative data-quality criteria, and the resulting

dashboard visualisations.

Figure 39. JSON upload Interface for Evaluation

Fig 39 allows the user to upload the JSON file generated during the EDA and Data

Quality processing stage for further evaluation. Once the JSON file is successfully

uploaded, as shown by the confirmation and file details displayed in the panel, the

system prepares the file for backend parsing and metric extraction. By clicking the

“Display Evaluation Criteria” button, the user initiates the evaluation workflow, which

reads the JSON content, validates its structure, and computes the six data-quality

metrics that will be visualized in the evaluation dashboard.

6.1 Backend Processing of Evaluation Inputs:

This section describes the internal workflow responsible for processing the evaluation

inputs once a user uploads the generated JSON file to the evaluation interface. The

backend implementation, primarily contained within the auto_ui.py module, parses the

uploaded JSON, validates its structure, and extracts the metadata and quality-related

99

statistics produced during the EDA and Data Quality stages. The evaluation

component then normalizes these values, prepares them for metric computation, and

initializes the required internal data structures for subsequent scoring. The following

subsections detail how the system loads the JSON file, maps its contents to evaluation

variables, and performs the preliminary checks necessary for generating the final data-

quality assessment.

6.1.1 Loading and Processing the JSON File in the Evaluation Module

The evaluation stage begins when the user uploads the JSON artifact generated during

the EDA and Data Quality pipeline. This upload triggers the on_upload_json() routine

within auto_ui.py, which is responsible for reading and validating the contents of the

file. The module first decodes the raw byte stream, converts it into a UTF-8 JSON

string, and parses it into a Python dictionary structure. During this stage, the system

verifies that the file contains the expected fields such as hq_rows, report, and other

metadata describing missing values, invalid readings, outliers, feature engineering

results, and OOD drift statistics. If the JSON does not conform to the expected schema,

the routine raises a controlled error and prompts the user to provide a valid evaluation

file. This ensures that only complete and structurally correct artifacts are used for

subsequent metric computation.

Once the JSON data has been successfully parsed, the internal evaluation workflow

begins by extracting relevant metrics and converting them into normalized numerical

forms. This process is executed inside the compute_evaluation_scores() function in

auto_ui.py, which reads values such as missing-value counts, invalid-to-NaN

conversions, outlier statistics, duplication indicators, and stability measures from the

JSON. The function also determines the total number of rows available for evaluation

and applies several helper routines to convert raw textual or numeric inputs into

floating-point values suitable for scoring. The module then initializes the internal

evaluation state, storing the extracted values and preparing them for metric

computation. At this stage, the backend has fully transformed the uploaded JSON file

into a structured and validated data model that can be used to compute the six

quantitative criteria presented in the evaluation dashboard.

6.1.2 Parsing and Validating JSON Evaluation Inputs

After loading the JSON file, the evaluation module proceeds with parsing and

extracting all relevant metrics required for computing the data-quality criteria. This is

100

primarily handled by the compute_evaluation_scores() routine in auto_ui.py, which

accesses key fields such as hq_rows, report, and attribute-level statistics generated

during the data quality pipeline. The function systematically retrieves numerical

indicators—missing-value counts, invalid-to-NaN conversions, duplication counts,

imputation totals, outlier ratios, and OOD drift metrics—while converting these values

into a unified floating-point representation. Several helper functions, such as

_to_float_or_none() and internal ratio calculations, ensure that heterogeneous data

types from the JSON are normalized into a consistent format suitable for quantitative

scoring. This normalization step is essential for enabling uniform computation across

different sensor attributes and datasets.

In parallel, the module performs validation checks to ensure that the uploaded JSON

artifact is structurally complete and semantically consistent. The system verifies that

mandatory keys are present, that numerical fields contain valid values, and that the

number of rows reported matches the size of the high-quality dataset. If anomalies are

detected—for example, malformed fields, missing metrics, or type inconsistencies—

the evaluation module gracefully terminates the computation and notifies the user

through UI-level warnings. These precondition checks prevent invalid or corrupted files

from influencing the final data-quality scores and ensure that the evaluation is

performed only on standardized, correctly formatted artifacts.

6.2 Automated Computation of Evaluation Metrics

This section details the automated computation of the six data-quality metrics that form

the core of the evaluation framework. Once the JSON artifact has been parsed and

validated, the evaluation backend, implemented within the

compute_evaluation_scores() function, derives quantitative scores that reflect the

cleanliness, reliability, and readiness of the processed dataset. Each metric captures

a distinct dimension of data quality, including completeness, validity, internal

consistency, temporal stability, robustness to outliers, and the degree of feature

enrichment achieved through preprocessing. The system transforms raw statistical

indicators into normalized percentage scores, enabling a unified comparison across

attributes and datasets. The following subsections explain the rationale, computation

method, and evaluation significance of each metric, as well as the underlying logic

applied by the evaluation module to aggregate and standardize the results.

101

6.2.1 Completeness Metric

The completeness metric quantifies the proportion of valid, non-missing observations

in the dataset after preprocessing. In the context of sensor-driven SmartCityCloud

data, completeness refers to the extent to which the original dataset remains usable

for downstream analytical tasks, such as prediction or anomaly detection. Missing

values arise due to sensor outages, transmission delays, or corruption during

collection. The evaluation module measures completeness by comparing the total

number of missing entries against the total number of observations represented in the

JSON artifact. A higher completeness score indicates that the dataset provides a more

reliable and uninterrupted representation of the underlying environmental process.

Formally, completeness is defined as:

𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 1 −
𝑀

𝑁

where 𝑀 denotes the number of missing values and 𝑁 denotes the total number of

rows in the dataset. This normalized ratio is later scaled to a percentage for

presentation in the evaluation dashboard. The backend evaluation logic for

completeness is implemented in the compute_evaluation_scores() function located in

auto_ui.py. The function extracts the missing_total value from the "report" section of

the uploaded JSON file and determines the dataset size using the rows_total field.

Helper routines such as _to_float_or_none() ensure that missing and total counts are

converted into valid numerical values before computation. The metric is then calculated

using an internal helper get_ratio() that safeguards against division by zero and

normalizes the result. The completeness score is subsequently transformed into a

percentage and included in the evaluation results shown in the dashboard. This metric

plays a critical role in assessing overall data integrity, as datasets with substantial

missingness can bias model training, degrade predictive performance, and undermine

the stability of real-time analytics within the SCC environment.

6.2.2 Validity Metric

The validity metric measures the proportion of sensor readings that fall within

acceptable physical or domain-specific thresholds. In environmental datasets such as

air temperature, humidity, or solar radiation, each attribute has a known realistic

operational range. Values that lie outside these bounds typically indicate sensor

malfunction, calibration drift, extreme noise, or data corruption. The validity metric

102

quantifies how many such unrealistic or impossible readings were detected and

corrected during the preprocessing stage. Formally, the metric is expressed as:

𝑉𝑎𝑙𝑖𝑑𝑖𝑡𝑦 = 1 −
𝐼

𝑁′

where 𝐼 denotes the count of invalid values (i.e., values replaced with NaN due to

failing the domain-range check) and 𝑁 denotes the total number of observations. A

higher validity score, therefore, reflects a dataset whose measurements adhere closely

to physical reality, making it more suitable for accurate inference and predictive

modeling. The backend computation of this metric occurs within the

compute_evaluation_scores() function in auto_ui.py. During preprocessing, the task

implementation records the number of invalid values converted into NaN under the

field "invalid_to_nan" within the exported JSON report. The evaluation module

retrieves this value, normalizes it against rows_total, and computes the final validity

score using the same get_ratio() helper that protects against incorrect division and

ensures consistent numerical formatting. Threshold ranges for detecting invalid values

originate from the domain definitions in task_impl.py, where attributes such as air

temperature or barometric pressure are assigned realistic minimum and maximum

limits. The validity metric is essential because datasets containing a high proportion of

invalid readings can distort statistical distributions, impair model generalization, and

lead to unreliable predictions within SmartCityCloud applications.

6.2.3 Consistency Metric

The consistency metric evaluates the internal coherence of the dataset by measuring

the extent to which redundant, contradictory, or structurally inconsistent entries have

been removed during preprocessing. In sensor-driven datasets, inconsistencies

commonly appear as duplicate timestamps, repeated measurements, or extended

flatline sequences where the sensor reports the same value for an unrealistically long

period. Such anomalies indicate data-logging errors, transmission glitches, or sensor

stagnation. The consistency score aggregates the impact of these detected

inconsistencies by considering both duplicate removals and flatline runs.

Mathematically, the metric can be described as:

𝐶𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 = (1 −
𝐷

𝑁
+ 𝛼. 𝐹)

where 𝐷 is the number of duplicate rows removed, 𝑁 is the total number of

observations, 𝐹 is the number of detected flatline runs exceeding the defined length

103

threshold, and 𝛼 is a penalty factor used to scale the influence of flatline sequences.

The resulting value is bounded to the interval [0,1]to ensure interpretability as a quality

score. The backend implementation of the consistency metric is handled in the

compute_evaluation_scores() function within auto_ui.py. During the data-quality

processing stage, the task implementation records key indicators such as

"duplicates_removed" and "flatline_runs_ge10" inside the JSON report. The evaluation

module extracts these values and computes the penalties using helper functions like

get_ratio() and predefined scaling factors for flatline detection (e.g., a flatline penalty

limited to a maximum of 0.15). The final normalized consistency score is then

converted into a percentage for display on the evaluation dashboard. This metric is

crucial for SCC analytics because inconsistent datasets can lead to misleading trends,

inflated correlations, and erroneous model behavior, particularly in real-time

forecasting or anomaly detection scenarios where temporal reliability is essential.

6.2.4 Stability (OOD Drift) Metric

The stability metric evaluates how consistently the dataset behaves over time by

detecting potential distributional drift, also referred to as Out-of-Distribution (OOD) drift.

In sensor-based environments such as SmartCityCloud, stability is essential because

environmental and physical measurements should follow predictable temporal

patterns. Large deviations from these patterns may indicate sensor degradation,

calibration failure, seasonal distortion, or erroneous data capture. To quantify stability,

the dataset is first divided into a baseline window and a test window according to the

selected OOD split (e.g., 70/30 or 60/40). The mean and standard deviation of the

baseline window establish an expected operating range, defined using a three-sigma

interval. Stability is then expressed as

𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 = 1 −
𝑀𝑓𝑙𝑎𝑔
𝑀𝑡𝑜𝑡𝑎𝑙

where 𝑀flag denotes the number of months whose mean values fall outside the baseline

three-sigma range, and 𝑀total represents the total number of months evaluated. A high

stability score indicates that the dataset maintains a statistically coherent distribution

across time, without unexpected shifts that could impair model generalization. The

computation of this metric is implemented in the evaluation backend within the

compute_evaluation_scores() function of auto_ui.py. During preprocessing, the task

implementation in task_impl.py computes monthly means for each attribute and

identifies months with statistical drift based on baseline variance; these values are

104

stored in the JSON fields "flagged_months" and "months_total". When the JSON is

uploaded, the evaluation module extracts these values, applies normalization using

helper routines such as _to_float_or_none(), and ensures stability is bounded within

the range [0,1].The stabilized score is then converted into a percentage for inclusion

in the evaluation dashboard. The stability metric is particularly important in

SmartCityCloud applications because distributional drift can degrade the performance

of predictive models, introduce bias, and reduce the reliability of long-term analytics,

especially in dynamic environments where temporal consistency is critical.

6.2.5 Robustness Metric

The outlier metric assesses the robustness of the dataset by quantifying the proportion

of extreme or anomalous values detected during preprocessing. Outliers in

environmental sensor datasets may arise from abrupt sensor spikes, electrical noise,

temporary hardware faults, or measurement corruption. These abnormal values can

significantly distort statistical properties, bias model training, and negatively impact

anomaly detection or forecasting systems. To evaluate robustness, the system relies

on Z-score–based outlier detection performed for each attribute during the data-quality

phase. Any value whose standardized distance from the mean exceeds the selected

threshold (e.g., |z| > 3.0) is considered an outlier. Formally, the robustness score is

defined as

𝑅𝑜𝑏𝑢𝑠𝑡𝑛𝑒𝑠𝑠 = 1 −
𝑂

𝑁

where 𝑂 denotes the number of detected outliers and 𝑁 represents the total number

of valid observations. A higher robustness score indicates that the dataset is relatively

free from extreme deviations and is therefore more suitable for stable predictive

modeling. The backend evaluation logic for this metric resides in the

compute_evaluation_scores() function in auto_ui.py, which reads the fields

"outliers_z_count" and, when available, "outliers_z_percent" from the JSON report.

These values originate from the preprocessing steps in task_impl.py, where Z-score

thresholds are applied to each attribute and the count of flagged points is recorded.

The evaluation module normalizes the outlier count against the total number of

observations using internal helper functions such as get_ratio(), ensuring numerical

accuracy and safe division. If the preprocessing stage has already provided a

percentage, the module uses it directly after type normalization via

_to_float_or_none(). The resulting robustness score is converted into a percentage

and shown in the evaluation dashboard. This metric is essential for SmartCityCloud

data quality, as datasets with a high proportion of outliers can mislead analytical

105

pipelines, reduce model generalization, and compromise real-time decision-making

processes.

6.2.6 Readiness Metric

The readiness metric evaluates the degree to which the dataset has been enriched

through preprocessing, with a focus on the availability of engineered features and

imputed values that enhance its suitability for downstream machine-learning tasks. In

data-centric AI workflows, enriched datasets—those containing lag features, rolling

statistics, and differenced values—enable predictive models to capture temporal

dependencies, seasonality patterns, and short-term variability more efficiently. The

readiness metric incorporates both the presence of these engineered features and the

successful execution of imputation strategies when missing values are detected.

Formally, the readiness score can be approximated as

𝑅𝑒𝑎𝑑𝑖𝑛𝑒𝑠𝑠 = 𝑚𝑖𝑛 (1 , 0.6 + 0.3.
𝐹

𝐹𝑚𝑎𝑥
+ 𝐼 + 𝐸)

where 𝐹 denotes the number of engineered features detected in the high-quality

dataset, 𝐹max = 5 is the maximum number of expected enrichment features (lag1, lag2,

diff1, roll_mean_15, roll_std_15), 𝐼represents an imputation bonus applied when

missing values are successfully filled, and 𝐸 is a small constant bonus for exporting

results. This formulation ensures that readiness remains within the range [0,1],

providing a normalized indicator of how prepared the dataset is for modeling. On the

implementation side, the readiness metric is computed within the

compute_evaluation_scores() function in auto_ui.py. The module first inspects the

"hq_rows" section of the uploaded JSON file and identifies the presence of engineered

columns generated in task_impl.py, such as lag1, lag2, roll_mean_15, roll_std_15, and

diff1. It then evaluates whether imputation occurred by examining fields like "imputed"

and checks if data export options were triggered to ensure full pipeline completion.

These components are combined according to predefined weighting rules to produce

the final readiness score, which is subsequently converted into a percentage for

display in the evaluation dashboard. As a metric, readiness is essential because it

reflects not only data cleanliness but also the extent to which the dataset has been

structurally enhanced to support accurate forecasting, anomaly detection, and other

analytic operations within the SmartCityCloud environment.

106

6.3 Evaluation Dashboard and Visualization Output

The evaluation dashboard provides a consolidated visual summary of the six data-

quality metrics computed from the uploaded JSON artifact Fig 40. Once the user

selects the Display Evaluation Criteria option, the backend function

compute_evaluation_scores() in auto_ui.py processes the extracted metrics and

renders both numeric cards and a bar-chart summary. The user interface presents

each metric as an individual score card—Completeness, Validity, Consistency,

Stability (Drift), Outliers (Robustness), and Readiness (Enrichment)—along with short

descriptive notes summarizing the underlying statistics. Beneath these cards, the

system generates a bar-chart visualization that offers a comparative view of all six

quality scores, providing an immediate high-level assessment of the dataset's reliability

and suitability for further analytics.

Figure 40. Evaluation Dashboard Displaying Data Quality Criteria

From the implementation perspective, each score card is constructed through the

evaluation module’s UI-rendering routines, where the numerical results are formatted,

color-coded, and presented using NiceGUI components. The bar chart is generated

using Matplotlib within the __render_evaluation_dashboard() function, where the six

percentage values are plotted on a unified scale to highlight variations across different

quality dimensions Fig 41. By structuring the dashboard in this manner, the system

ensures that both granular and aggregate perspectives of data quality are available to

the user, supporting rapid and informed inspection of preprocessing outcomes. The

evaluation dashboard provides meaningful insights into the overall health and

readiness of the processed Air Temperature attribute from the AQI dataset. For

example, the Completeness score of 97% reflects that only 818 of the 28,448

observations were missing and subsequently handled, indicating a highly intact

dataset.

107

Figure 41. Bar Chart Summarizing the Six Computed Data-Quality Metrics

The Validity score of 100% confirms that all values fall within the expected physical

thresholds after cleaning, while the Outlier Robustness score of 100% indicates an

extremely low prevalence of anomalous readings (approximately 0.05%). Although the

Consistency score is slightly lower at 85%—reflecting the removal of 299 duplicate

timestamps and detection of 28 flatline runs—this still represents a well-behaved signal

with minimal structural issues. The Stability score of 90% demonstrates only mild

temporal drift, with 2 of 20 evaluated months exceeding the baseline three-sigma

range, suggesting that the dataset retains good temporal reliability. Finally, the

Readiness score of 100%, supported by the presence of all five engineered features

and successful imputation, shows that the dataset has been fully enriched for

downstream modeling.

Collectively, these results demonstrate that the processed AQI Air Temperature

dataset achieves high performance across all major data-quality dimensions. The

near-perfect scores in validity, robustness, and readiness, combined with strong

completeness and stability, provide compelling evidence that the dataset is of high

analytical quality. The dashboard, therefore, serves not only as a visualization tool but

also as a validation mechanism that confirms the effectiveness of the implemented

data-quality pipeline and the readiness of the resulting dataset for reliable predictive

modeling within the SmartCityCloud ecosystem.

108

6.4 Summary

Overall, Chapter 6 presented the empirical results of the proposed data-quality

framework by demonstrating how the SmartCityCloud evaluation module processes

the machine-generated JSON reports and computes quantitative scores across the six

defined data-quality dimensions. The chapter first explained how evaluation inputs are

loaded, parsed, and validated within the system, ensuring that each JSON file is

internally consistent and contains the required provenance and statistical fields. It then

detailed the automated computation of completeness, validity, consistency, stability

(OOD drift), robustness (outliers), and readiness (feature enrichment) metrics, each

derived from interpretable counts such as missing values, invalid readings, duplicate

timestamps, flagged drift months, Z-score outliers, and the presence of engineered

features. These metrics provide a structured, evidence-based assessment of data

quality and directly reflect the improvements introduced during preprocessing,

cleaning, imputation, and augmentation. The chapter also showcased the evaluation

dashboard, which visualizes intermediate and final metrics through time-series plots,

anomaly markers, summary tables, and quality distributions, enabling interpretable and

audit-friendly inspection of sensor behaviour and pipeline decisions. Together, the

results confirm that the data-centric workflow produces higher-quality, more stable, and

better-documented datasets, thereby validating the methodological design introduced

in Chapter 4 and demonstrating its effectiveness across heterogeneous smart-city

time-series.

109

7 Discussion

The results obtained from the implemented SmartCityCloud data-quality pipeline

demonstrate that a data-centric approach provides significant improvements in the

integrity, stability, and analytical readiness of heterogeneous smart-city sensor

streams. The findings indicate that the systematic workflow—comprising EDA, validity

screening, missing-value treatment, outlier detection, feature enrichment, label-quality

verification, and OOD stability analysis—successfully addresses the core challenges

of temporal heterogeneity, irregular sampling, range violations, and drift identified in

the problem statement.

Quantitatively, the evaluation dashboard shows that high completeness, perfect

validity, strong robustness to outliers, and well-preserved temporal structure enable

the Air Temperature attribute to function as a dependable and analysis-ready signal.

These outcomes validate earlier methodological assumptions that structured

preprocessing, rather than model-centric adjustments, is the dominant determinant of

downstream analytical reliability. Drift analysis further shows that most months fall

within expected three-sigma stability bounds, with only mild deviations detected,

confirming that the sensor maintains long-term coherence suitable for predictive

modelling and anomaly detection tasks. The presence of strong diurnal patterns in the

label-quality module, with clear day–night separation, offers additional evidence that

the pipeline preserves physically meaningful structure and enhances interpretability.

When compared with the literatures on data-centric AI, the SCC implementation not

only integrates multiple established techniques—such as validity constraints,

augmented stress testing, rolling-window statistics, and provenance capture—but also

unifies them into a cloud-native workflow that produces reproducible HQ datasets and

machine-readable JSON diagnostics, something only partially addressed in existing

tools such as TFDV, Deequ, or Confident Learning. The combined interpretation of

these outcomes demonstrates that SmartCityCloud’s extensible compute-task

wrapper effectively operationalizes data-centric principles by improving accuracy,

completeness, consistency, traceability, timeliness, and auditability while producing

transparent, verifiable artifacts that align with TU Chemnitz’s expectations for scientific

rigor. Overall, the discussion confirms that the implemented system not only improves

data quality in a measurable and reproducible manner but also offers a scalable and

generalizable foundation for future smart-city analytics, where dependable, well-

curated data are essential for stable model performance and long-term operational

trustworthiness.

110

8 Conclusion

8.1 Summary of Findings:

This thesis investigated the problem of ensuring high-quality, analysis-ready sensor

data within the SmartCityCloud (SCC) platform, addressing the persistent challenges

of missingness, invalid measurements, temporal inconsistencies, outliers, and

distributional drift that commonly affect real-world environmental datasets such as the

Air Quality Index (AQI) stream. Motivated by the limitations of model-centric

optimization in the presence of noisy or unstable data, the thesis adopted a data-centric

methodology that integrates exploratory data analysis, multi-stage data-quality

operations, feature enrichment, label-quality verification, and OOD stability evaluation

into an automated cloud-based compute-task pipeline. The implemented solution

successfully transformed raw AQI sensor readings into a validated, enriched, and drift-

assessed high-quality dataset, supported by machine-readable JSON diagnostics and

user-facing visual dashboards. Through automated validity checks, missing-value

imputation, duplicate-timestamp removal, outlier detection using Z-score thresholds,

feature engineering (lags, rolling statistics, derivatives), and month-level OOD drift

detection, the system consistently produced standardized, reproducible artifacts

demonstrating strong completeness, validity, robust outlier handling, and stable long-

term behaviour through ±3σ drift analysis. Across evaluation results, the system met

or exceeded the predefined criteria, ensuring consistency, reliability, and

interpretability, thereby directly addressing the research question concerning how

data-centric pipelines can enhance data quality in smart-city environments. The work’s

primary contributions include:

 the design of a modular compute-task architecture that integrates seamlessly

with SCC’s input discovery and stream-handling framework;

 the development of a comprehensive data-quality workflow that outputs high-

quality datasets, enriched features, and audit-ready JSON reports;

 The introduction of a consolidated evaluation dashboard that quantifies quality

across six criteria.

 empirical evidence that data-centric preprocessing substantially improves the

analytical readiness and robustness of environmental sensor streams.

By achieving these outcomes, the thesis successfully fulfilled its objectives and

demonstrated that reliable data quality can be operationalized as a cloud service within

SmartCityCloud.

111

8.2 Future Scope:

Although the developed data-quality pipeline provides a strong foundation for

processing smart-city sensor streams, several opportunities remain for future

improvement and expansion. First, the current implementation focuses on univariate

attribute-level processing, and future work could extend the system toward multivariate

fusion, enabling cross-sensor consistency checks and joint anomaly detection for

correlated parameters such as temperature, humidity, and particulate matter.

Moreover, the OOD generalization framework could be enhanced through advanced

drift-detection techniques—such as Kolmogorov–Smirnov tests [35], population

stability indices, or neural drift estimators [36]—to capture better subtle seasonal or

behavioural shifts in multimodal sensor environments. Another promising direction

involves integrating adaptive feature engineering, where features are dynamically

selected based on domain conditions or learning-based relevance scoring, improving

downstream modeling performance. From a system perspective, converting the

pipeline into a fully continuous data-quality service would enable real-time monitoring,

automated alerts, and progressive dataset versioning across large-scale IoT

deployments. Improvements could also include automated hyperparameter selection

for thresholds, imputation strategies, and anomaly boundaries, using optimization or

reinforcement learning to adapt to changing sensor behaviours.

Furthermore, research could explore the integration of synthetic data generation or

calibrated augmentation strategies to improve data diversity for machine-learning tasks

in scenarios with sparse, noisy, or seasonally varying signals. Finally, applying this

pipeline to other SmartCityCloud datasets—such as traffic, mobility, or energy

streams—would validate its generality and reveal cross-domain use cases, supporting

broader smart-city applications in forecasting, anomaly detection, resource

optimization, and environmental reliability analysis. Collectively, these avenues

demonstrate that the proposed solution is not only functional for the current AQI

application but also serves as a flexible, extensible framework capable of supporting

future advancements in data-centric AI within large-scale urban computing systems.

112

Bibliography

[1] J. Jakubik, M. Vössing, N. Kühl, J. Walk, and G. Satzger, “Data-centric artificial

intelligence,” Business & Information Systems Engineering, vol. 66, no. 4, pp.

507–515, 2024. doi: 10.1007/s12599-024-00857-8.

[2] D. Zha, Z. P. Bhat, K.-H. Lai, F. Yang, Z. Jiang, S. Zhong, and X. Hu, “Data-

centric artificial intelligence: A survey,” ACM Computing Surveys, vol. 57, no. 5,

Art. 129, pp. 1–42, 2025, doi: 10.1145/3711118.

[3] S. Morgenthaler, “Exploratory data analysis,” Wiley Interdisciplinary Reviews:

Computational Statistics, vol. 1, no. 1, pp. 33–44, 2009, doi: 10.1002/wics.6.

[4] P. Chlap, J. Min, T. Vandenberg, L. Dowling, A. Holloway, and S. Haworth, “A

review of medical image data augmentation techniques for deep learning

applications,” Journal of Medical Imaging and Radiation Oncology, vol. 65, no.

5, pp. 545–563, 2021, doi: 10.1111/1754-9485.13216.

[5] A. Majeed and S. O. Hwang, “Technical analysis of data-centric and model-

centric artificial intelligence,” IT Professional, vol. 25, no. 6, pp. 62–70, 2024,

doi: 10.1109/MITP.2024.3432112.

[6] F. Zafar, A. Khan, S. Khan, M. Imran, M. A. Jan, and M. K. Khan, “Trustworthy

data: A survey, taxonomy and future trends of secure provenance schemes,”

Journal of Network and Computer Applications, vol. 94, pp. 50–68, 2017, doi:

10.1016/j.jnca.2017.06.008.

[7] A. Majeed and S. O. Hwang, “A data-centric AI paradigm for socio-industrial

and global challenges,” Electronics, vol. 13, no. 11, Art. 2156, 2024, doi:

10.3390/electronics13112156.

[8] D. J. Riskin, M. R. Hart, J. A. Carlson, and J. M. Finkelstein, “Implementing

accuracy, completeness, and traceability for data reliability,” JAMA Network

Open, vol. 8, no. 3, Art. e250128, 2025, doi:

10.1001/jamanetworkopen.2025.0128.

[9] O. H. Hamid, “From model-centric to data-centric AI: A paradigm shift or rather

a complementary approach?,” in Proc. 8th Int. Conf. Inf. Technol. Trends (ITT),

113

Abu Dhabi, United Arab Emirates, 2022, pp. 196–200, doi:

10.1109/ITT56123.2022.9863935.

[10] A. Majeed and S. O. Hwang, “Technical analysis of data-centric and model-

centric artificial intelligence,” IT Professional, vol. 25, no. 6, pp. 62–70, 2024,

doi: 10.1109/MITP.2024.3432112.

[11] T. Arnold, L. Voinov, D. Ames, J. K. Balbi, and S. Rizzoli, “From ad-hoc

modelling to strategic infrastructure: A manifesto for model management,”

Environmental Modelling & Software, vol. 123, Art. 104563, 2020, doi:

10.1016/j.envsoft.2019.104563.

[12] L. Yang and A. Shami, “On hyperparameter optimization of machine learning

algorithms: Theory and practice,” Neurocomputing, vol. 415, pp. 295–316, 2020,

doi: 10.1016/j.neucom.2020.07.061.

[13] S. Mohammed, A. Smith, J. Doe, and L. Zhang, “The effects of data quality on

machine learning performance,” arXiv preprint arXiv:2207.00000, 2022.

[14] N. Bhatt, A. Patel, R. Mehta, and S. Shah, “A data-centric approach to improve

performance of deep learning models,” Scientific Reports, vol. 14, no. 1, Art.

22329, 2024, doi: 10.1038/s41598-024-22329-7.

[15] G. S. Nugraha, M. I. Darmawan, and R. Dwiyansaputra, “Comparison of CNN’s

architecture GoogleNet, AlexNet, VGG-16, Lenet-5, ResNet-50 in Arabic

handwriting pattern recognition,” Kinetik: Game Technology, Information

System, Computer Network, Computing, Electronics, and Control, vol. 8, no. 2,

pp. 123–132, 2023, doi: 10.22219/kinetik.v8i2.1877.

[16] F. Gualo, M. Piattini, F. García, and C. Pardo, “Data quality certification using

ISO/IEC 25012: Industrial experiences,” Journal of Systems and Software, vol.

176, Art. 110938, 2021, doi: 10.1016/j.jss.2021.110938.

[17] Z. Baranowski, M. Nowak, J. Hrivnac, and T. Wenaus, “A study of data

representation in Hadoop to optimize data storage and search performance for

the ATLAS EventIndex,” in Journal of Physics: Conference Series, vol. 898, no.

6, Art. 062008, 2017, doi: 10.1088/1742-6596/898/6/062008.

114

[18] P. Singh, “Systematic review of data-centric approaches in artificial intelligence

and machine learning,” Data Science and Management, vol. 6, no. 3, pp. 144–

157, 2023, doi: 10.1016/j.dsm.2023.07.002.

[19] X. Xu, Y. Li, H. Zhang, and J. Tang, “Data-centric AI in the age of large language

models,” arXiv preprint arXiv:2406.14473, 2024.

[20] M. Maskey, “Rethinking AI for science: An evolution from data‐driven to data‐

centric framework,” Perspectives of Earth and Space Scientists, vol. 4, no. 1,

Art. e2023CN000222, 2023, doi: 10.1029/2023CN000222.

[21] C. Northcutt, L. Jiang, and I. Chuang, “Confident learning: Estimating

uncertainty in dataset labels,” Journal of Artificial Intelligence Research, vol. 70,

pp. 1373–1411, 2021, doi: 10.1613/jair.1.12125.

[22] D. A. Van Dyk and X.-L. Meng, “The art of data augmentation,” Journal of

Computational and Graphical Statistics, vol. 10, no. 1, pp. 1–50, 2001, doi:

10.1198/10618600152418584.

[23] S. Schelter, F. Salehi, S. Rukat, and J. Kirschnick, “Automating large-scale data

quality verification,” Proceedings of the VLDB Endowment, vol. 11, no. 12, pp.

1781–1794, 2018, doi: 10.14778/3229863.3236230.

[24] M. Maskey, “Rethinking AI for science: An evolution from data‐driven to data‐

centric framework,” Perspectives of Earth and Space Scientists, vol. 4, no. 1,

Art. e2023CN000222, 2023, doi: 10.1029/2023CN000222.

[25] M. G. Mondejar, “Improving data quality: A review on data-centric AI and AI-

actionable data,” Preprint, 2025, doi: 10.48550/arXiv.2501.00001.

[26] X. Wu, Y. Zhang, L. Chen, and J. Wang, “Out-of-distribution generalization in

time series: A survey,” arXiv preprint arXiv:2503.13868, 2025.

[27] E. Caveness, T. O’Malley, M. Polyzotis, and S. Whang, “TensorFlow data

validation: Data analysis and validation in continuous ML pipelines,” in Proc.

ACM SIGMOD Int. Conf. Manage. Data, Portland, OR, USA, 2020, pp. 1793–

1803, doi: 10.1145/3318464.3389748.

115

[28] D. Rodrigues, A. Pereira, M. Silva, and R. Almeida, “DataHub and Apache Atlas:

A comparative analysis of data catalog tools,” Preprint, 2022, doi:

10.48550/arXiv.2209.12345.

[29] J. Gama, I. Žliobaitė, A. Bifet, M. Pechenizkiy, and A. Bouchachia, “A survey on

concept drift adaptation,” ACM Computing Surveys (CSUR), vol. 46, no. 4, pp.

1–37, 2014, doi: 10.1145/2523813.

[30] V. Papastergios and A. Gounaris, “A survey of open-source data quality tools:

Shedding light on the materialization of data quality dimensions in practice,”

arXiv preprint arXiv:2407.18649, 2024.

[31] D. Baylor, E. Breck, H. Cheng, N. Fiedel, C. Haque, and S. Whang, “TFX: A

TensorFlow-based production-scale machine learning platform,” in Proc. 23rd

ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., Halifax, NS, Canada, 2017,

pp. 1387–1395, doi: 10.1145/3097983.3098021.

[32] D. Porjazovski, A. Moisio, and M. Kurimo, “Out-of-distribution generalisation in

spoken language understanding,” arXiv preprint arXiv:2407.07425, 2024.

[33] Y. Swathi and M. Challa, “From deployment to drift: A comprehensive approach

to ML model monitoring with Evidently AI,” in Proc. Int. Conf. VLSI, Signal

Process., Power Electron., IoT, Commun. Embedded Syst., Singapore:

Springer Nature Singapore, 2023, pp. 201–212, doi: 10.1007/978-981-99-3742-

8_16.

[34] T. Verdonck, C. Lessmann, G. Lemaitre, and B. Krawczyk, “Special issue on

feature engineering editorial,” Machine Learning, vol. 113, no. 7, pp. 3917–

3928, 2024, doi: 10.1007/s10994-024-06517-4.

[35] T. Verdonck, C. Lessmann, G. Lemaitre, and B. Krawczyk, “Special issue on

feature engineering editorial,” Machine Learning, vol. 113, no. 7, pp. 3917–

3928, 2024, doi: 10.1007/s10994-024-06517-4.

[36] Y. Zhao, Y. Liu, and M. Hoffmann, “Drift estimation for diffusion processes using

neural networks based on discretely observed independent paths,” arXiv

preprint arXiv:2511.11161, 2025.

https://v3.camscanner.com/user/download

This report - except logo Chemnitz University of Technology - is licensed under a Creative

Commons Attribution 4.0 International License, which permits use, sharing, adaptation, dis-

tribution and reproduction in any medium or format, as long as you give appropriate credit

to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made. The images or other third party material in this report are

included in the report’s Creative Commons license, unless indicated otherwise in a credit

line to the material. If material is not included in the report’s Creative Commons license and

your intended use is not permitted by statutory regulation or exceeds the permitted use, you

will need to obtain permission directly from the copyright holder. To view a copy of this

license, visit http://creativecommons.org/licenses/by/4.0/.

Chemnitzer Informatik-Berichte

In der Reihe der Chemnitzer Informatik-Berichte sind folgende Berichte erschienen:

CSR-23-01 Stephan Lede, René Schmidt, Wolfram Hardt, Analyse des Ressourcen-

verbrauchs von Deep Learning Methoden zur Einschlagslokalisierung

auf eingebetteten Systemen, Januar 2023, Chemnitz

CSR-23-02 André Böhle, René Schmidt, Wolfram Hardt, Schnittstelle zur Daten-

akquise von Daten des Lernmanagementsystems unter Berücksichti-

gung bestehender Datenschutzrichtlinien, Januar 2023, Chemnitz

CSR-23-03 Falk Zaumseil, Sabrina, Bräuer, Thomas L. Milani, Guido Brunnett,

Gender Dissimilarities in Body Gait Kinematics at Different Speeds,

März 2023, Chemnitz

CSR-23-04 Tom Uhlmann, Sabrina Bräuer, Falk Zaumseil, Guido Brunnett, A

Novel Inexpensive Camera-based Photoelectric Barrier System for Ac-

curate Flying Sprint Time Measurement, März 2023, Chemnitz

CSR-23-05 Samer Salamah, Guido Brunnett, Sabrina Bräuer, Tom Uhlmann, Oli-

ver Rehren, Katharina Jahn, Thomas L. Milani, Güunter Daniel Rey,
NaturalWalk: An Anatomy-based Synthesizer for Human Walking Mo-

tions, März 2023, Chemnitz

CSR-24-01 Seyhmus Akaslan, Ariane Heller, Wolfram Hardt, Hardware-Supported

Test Environment Analysis for CAN Message Communication, Juni

2024, Chemnitz

CSR-24-02 S. M. Rizwanur Rahman, Wolfram Hardt, Image Classification for

Drone Propeller Inspection using Deep Learning, August 2024, Chem-

nitz

CSR-24-03 Sebastian Pettke, Wolfram Hardt, Ariane Heller, Comparison of maxi-

mum weight clique algorithms, August 2024, Chemnitz

CSR-24-04 Md Shoriful Islam, Ummay Ubaida Shegupta, Wolfram Hardt, Design

and Development of a Predictive Learning Analytics System, August

2024, Chemnitz

CSR-24-05 Sopuluchukwu Divine Obi, Ummay Ubaida Shegupta, Wolfram Hardt,

Development of a Frontend for Agents in a Virtual Tutoring System,

August 2024, Chemnitz

CSR-24-06 Saddaf Afrin Khan, Ummay Ubaida Shegupta, Wolfram Hardt, Design

and Development of a Diagnostic Learning Analytics System, August

2024, Chemnitz

Chemnitzer Informatik-Berichte

CSR-24-07 Túlio Gomes Pereira, Wolfram Hardt, Ariane Heller, Development of

a Material Classification Model for Multispectral LiDAR Data, Au-

gust 2024, Chemnitz

CSR-24-08 Sumanth Anugandula, Ummay Ubaida Shegupta, Wolfram Hardt, De-

sign and Development of a Virtual Agent for Interactive Learning

Scenarios, September 2024, Chemnitz

CSR-25-01 Md. Ali Awlad, Hasan Saadi Jaber Aljzaere, Wolfram Hardt, AUTO-

SAR Software Component for Atomic Straight Driving Patterns, März

2025, Chemnitz

CSR-25-02 Billava Vasantha Monisha, Hasan Saadi Jaber Aljzaere, Wolfram

Hardt, Automotive Software Component for QT Based Car Status

Visualization, März 2025, Chemnitz

CSR-25-03 Zahra Khadivi, Batbayar Battseren, Wolfram Hardt, Acoustic-Based

MAV Propeller Inspection, Mai 2025, Chemnitz

CSR-25-04 Tripti Kumari Shukla, Ummay Ubaida Shegupta, Wolfram Hardt,

Time Management Tool Development to Support Self-regulated

Learning, August 2025, Chemnitz

CSR-25-05 Ambu Babu, Ummay Ubaida Shegupta, Wolfram Hardt, Development

of a Retrieval Model based Backend of a Tutoring Agent, August

2025, Chemnitz

CSR-25-06 Shahid Ismail, Ummay Ubaida Shegupta, Wolfram Hardt, Develop-

ment of a Generative Model based Backend of Tutoring Agent,

August 2025, Chemnitz

CSR-25-07 Chaitanya Sravanthi Akula, Ummay Ubaida Shegupta, Wolfram

Hardt, Integration of Learning Analytics into the ARC-Tutoring

Workbench, August 2025, Chemnitz

CSR-25-08 Jörn Roth, Reda Harradi, Wolfram Hardt, Implementation of a Path

Planning Algorithm for UAV Navigation, Dezember 2025, Chemnitz

CSR-25-09 Alhassan Khalil, Reda Harradi, Stephan Rupf, Wolfram Hardt, Devel-

opment of an Automation Framework for 1D Measurement, Dezember

2025, Chemnitz

CSR-26-01 Vismay Gunda, Shadi Saleh, Wolfram Hardt, Cloud-Based AI Solu-

tions for Ensuring Data Quality in Predictive Models, Februar 2026,

Chemnitz

Chemnitzer Informatik-Berichte
ISSN 0947-5125

Herausgeber: Fakultät für Informatik, TU Chemnitz
Straße der Nationen 62, D-09111 Chemnitz

	Deckblatt
	Vismay Gunda
	Abstract
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Background and context
	1.2 Motivation
	1.3 Problem Statement
	1.4 Objectives and Research Goals
	1.5 Scope and Limitations
	1.6 Thesis Structure

	2 Fundamentals
	2.1 SmartCityCloud and the Compute Task wrapper
	2.2 Data Centric Artificial Intelligence
	2.3 Data Quality Dimensions and Evaluation Metrics
	2.4 Data Governance and Versioning
	2.5 Summary

	3 State of the Art
	3.1 Data-Centric AI and Quality Engineering
	3.2 Cloud-Native, Governed Data-Quality Pipelines with OOD Monitoring
	3.3 Summary

	4 Methodology
	4.1 Overview and Design Rationale
	4.1.1 Purpose, Scope, and Quality Objectives of the Methodology
	4.1.2 Architectural Philosophy and Methodological Justification
	4.1.3 Improvements and Formalization Plan

	4.2 System Architecture & Data Ingestion
	4.2.1 System Context and Components
	4.2.2 Data Sources, Stream Types, and Timestamp Normalization
	4.2.3 End-to-End Workflow

	4.3 Formal Processing Pipeline
	4.3.1 Data Parsing and Validity Formalization
	4.3.2 Missing-Data Treatment, Outlier Detection, and Feature Engineering
	4.3.3 Resampling and High-Quality Dataset Construction

	4.4 Experimental Setup and Procedure
	4.4.1 Experimental Environment and Parameter Configuration
	4.4.2 Concept Solution Description

	4.5 Assumptions, Limitations, and Summary
	4.5.1 Assumptions
	4.5.2 Limitations and Chapter Summary

	4.6 Summary

	5 Implementation
	5.1 SmartCityCloud Context and Data Sources
	5.1.1 SmartCityCloud Platform and Sensor Data Generation
	5.1.2 AQI Dataset: Structure & CSV Layout
	5.1.3 Data Ingestion into SmartCityCloud

	5.2 SmartCity Compute Task Wrapper
	5.2.1 Role as a Common Execution Platform
	5.2.2 Wrapper Architecture and Extensibility Model

	5.3 Local Environment Setup
	5.3.1 Cloning from GitLab and Repository Layout
	5.3.2 Dependency Installation and Environment Configuration

	5.4 Codebase Walk-through
	5.4.1 Application Entry and Authentication
	5.4.2 UI layer for Tasks
	5.4.3 Compute Layer
	5.4.4 Streams and Storage

	5.5 Implementation Steps
	5.5.1 Quality Section
	5.5.2 Plots Section
	5.5.3 Data Quality Section
	5.5.4 Exporting High-Quality Data and Reports

	5.6 Summary

	6 Results and Evaluation
	6.1 Backend Processing of Evaluation Inputs:
	6.1.1 Loading and Processing the JSON File in the Evaluation Module
	6.1.2 Parsing and Validating JSON Evaluation Inputs

	6.2 Automated Computation of Evaluation Metrics
	6.2.1 Completeness Metric
	6.2.2 Validity Metric
	6.2.3 Consistency Metric
	6.2.4 Stability (OOD Drift) Metric
	6.2.5 Robustness Metric
	6.2.6 Readiness Metric

	6.3 Evaluation Dashboard and Visualization Output
	6.4 Summary

	7 Discussion
	8 Conclusion
	8.1 Summary of Findings:
	8.2 Future Scope:

	Bibliography

	Lizenz+Inhaltsliste
	Buchrücken

