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Abstract

This thesis addresses the challenge of improving the quality of heterogeneous sensor
data by following a data-centric rather than a model-centric approach. Instead of
assuming standardized inputs for downstream Al models, the work focuses on making
data itself reliable and analysis-ready across diverse SmartCityCloud (SCC) sources.
The proposed solution combines exploratory data analysis (EDA) with a suite of data-
guality measures to assess and enhance credibility across multiple variables and
datasets. The methodology includes automated profiling, duplicate removal, validity
checks, imputation, feature engineering, and anomaly detection, together with out-of-
distribution (OOD) generalization checks using configurable splits (e.g., 70/30 and
60/40), augmentation (noise/missingness) for stress-testing, and labeling strategies
(e.g., day/night separation).

The implementation delivers a user-friendly, cloud-based platform within SCC. Users
can upload datasets, run EDA, visualize time series, distributions, correlations, and
boxplots, and export figures and tables (e.g., PNG/PDF for plots; CSV/JSON for data
and reports). The system generates a machine-readable JSON report that is then
evaluated by six practical metrics: Accuracy, Completeness, Consistency, Traceability,
Timeliness, and Auditability.

Results from multiple SCC datasets indicate that the pipeline improves data readiness
(e.g., fewer duplicates and invalid readings, clearer trends, and more consistent labels)
while providing transparent artifacts for review. The thesis contributes (i) a reusable
data-centric workflow for variable sensor data, (ii) a reference implementation as an
SCC compute-task template that users can adapt, and (iii) an evaluable reporting
scheme that supports dependable Al development on city-scale data.

Keywords: Data-Centric Al, Data Quality, Exploratory Data Analysis (EDA),
SmartCityCloud, Data Augmentation.
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1 Introduction

Modern artificial intelligence (Al) systems depend not only on sophisticated models but
also on the reliability of the data used to train, validate, and deploy them [1]. In smart
city environments, where data originates from heterogeneous sensors, gateways, and
services, datasets are often incomplete, noisy, poorly labeled, or statistically
inconsistent over time [2]. Such variability affects the accuracy, reproducibility, and
interpretability of predictive models. This thesis addresses these challenges through a
data-centric approach that treats data quality as the primary focus of engineering.
Instead of optimizing only model architectures, the work concentrates on preparing
multi-source time series data to be reliable, representative, and analysis-ready through
systematic exploration, assessment, and improvement of data quality.

The research is conducted within the SmartCityCloud(SCC) environment, a cloud-
based infrastructure designed for processing and visualizing sensor data in smart city
applications. Within this framework, the thesis develops and implements an integrated
pipeline that ingests diverse sensor streams, performs exploratory data analysis (EDA)
to characterize distributions, trends, correlations, seasonality, and outliers, and applies
data-quality operations such as duplicate removal, validity screening, missing-value
imputation, and feature engineering. Because labeling accuracy strongly influences
downstream analytics [2], the system includes label-quality verification procedures, for
example, day and night differentiation to capture diurnal variations and validate
labeling consistency with temporal data characteristics.

Beyond descriptive profiling, the proposed approach evaluates robustness through
out-of-distribution (OOD) generalization tests using configurable train and test splits,
such as 70/30 or 60/40, to identify distribution shifts across different time windows,
sites, or operational contexts. To further assess the sensitivity of data-quality methods,
controlled augmentation techniques introduce synthetic noise or missing values,
allowing the system to examine how these perturbations affect quality metrics and data
stability. The platform enables users to perform these analyses interactively, visualize
intermediate results such as tables, bar charts, boxplots, and time overlays, and export
outcomes in multiple formats, including PNG, PDF, and CSV. The complete data-
guality summary is stored in a structured JSON report that facilitates reproducibility
and interoperability within the SmartCityCloud ecosystem.

The concept of data quality is operationalized in this thesis as a measurable property
rather than a qualitative assumption. To this end, six key evaluation dimensions—
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accuracy, completeness, consistency, traceability, timeliness, and auditability—are
used to assess and compare results across datasets and configurations. Each
dimension guides both the quantitative reporting and the qualitative interpretation of
the improvements achieved by data-quality operations. Emphasis is placed on
transparency and explainability; every transformation step is accompanied by a
corresponding visualization, statistical summary, and metadata entry that support
traceable and auditable processing. Such transparency is essential for dependable Al
applications in safety-critical or regulated domains.

The contributions of this thesis are threefold. First, it introduces a reusable data-centric
workflow for heterogeneous smart city time-series data that integrates exploratory data
analysis, label verification, out-of-distribution analysis, and augmentation-based
validation. Second, it provides a user-friendly cloud-based implementation within
SmartCityCloud that enables users to execute these processes interactively through a
configurable compute-task interface. Third, it defines a data-quality evaluation
framework aligned with the six aforementioned dimensions, demonstrating
measurable improvements in data readiness for Al models without focusing on specific
model architectures. Together, these contributions highlight how systematic data-
centric engineering enhances the robustness, interpretability, and dependability of Al-
driven systems.

The remainder of this thesis is organized as follows. Chapter 2 introduces the
theoretical and technical fundamentals. Chapter 3 presents related research and the
conceptual background for data-centric artificial intelligence. Chapter 4 describes the
methodology, including the exploratory data analysis process, data-quality evaluation
methods, labeling procedures, and out-of-distribution generalization strategies.
Chapter 5 details the system implementation within SmartCityCloud and its user
interface. Chapter 6 presents the results and evaluation of data-quality improvements.
Chapter 7 discusses the implications, limitations, and potential extensions of the work.
Finally, Chapter 8 concludes the thesis and outlines future research directions.

1.1 Background and context

In today's artificial intelligence pipelines, data has emerged as the most important
asset. In operational contexts like smart cities, data comes from a variety of sources,
including ambient sensors, edge devices, cloud services, and human-operated
systems. These sources generate multivariate time series with varying sampling rates,
missing segments, duplicated entries, and value range shifts caused by seasonality,
maintenance, and deployment changes. Such fluctuation calls into question the
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assumptions made while developing and evaluating downstream models. If not
addressed, it diminishes model dependability, complicates replication, and obscures
root-cause investigation when systems fail in production. As a result, the practical
bottleneck is less about choosing a sophisticated model and more about collecting
reliable, auditable data that accurately reflect the phenomena of interest for learning
and inference.

Within this context, SmartCityCloud (SCC) acts as the operational framework for the
current effort. SCC provides a cloud-based environment where users may upload
datasets, set up processing stages, and view results using a reusable compute-task
template. The template is designed to be adaptable to various sensor modalities and
projects while maintaining a consistent workflow for ingestion, investigation,
transformation, and reporting. Because smart-city installations change over time and
between locations, the platform prioritizes repeatable workflows and exportable
artifacts, allowing analyses to be re-run, compared, and approved by various
stakeholders without ambiguity.

The data landscape discussed here has three repeating characteristics. First,
heterogeneity exists: streams differ in units, valid ranges, and semantics, even for
seemingly equivalent variables (for example, pressure or temperature from various
manufacturers). Second, non-stationarity: distributions change due to weather, urban
activity cycles, firmware updates, and sensor aging, invalidating static training-testing
divides and making model-centric comparisons incorrect. Third, label fragility: labels
based on heuristics or external schedules (e.g., day-night, event windows) may be
misaligned with real sensor behavior, resulting in inconsistent supervision and
misleading correlations. These characteristics encourage a data-centric approach in
which data quality is actively profiled, improved, and recorded before to and throughout
modeling.

As a result, the thesis employs exploratory data analysis (EDA) as a primary
component for characterizing empirical distributions, trends, correlations, and outliers
across variables and time periods [3]. Visual diagnostics like time overlays, histograms,
and boxplots are supplemented by basic statistical summaries and rolling descriptions
that highlight gaps, spikes, and regime shifts. On top of this descriptive layer, focused
guality operations are used to detect duplicates, screen ranges and validity, identify
gaps with imputation choices, and create features for downstream processes. Label
quality is given special attention: criteria such as day/night partitioning are aligned with
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time bases and tested for internal consistency to limit the spread of mislabelled
segments.

Because smart-city data must function in the face of change, background analysis
takes into account distribution shift robustness. The study used out-of-distribution
(OOD) checks using adjustable temporal or contextual divides (for example, 70/30 or
60/40 partitions across times or places) to identify when statistics and label behaviour
diverge in held-out slices. Furthermore, augmentation serves as a stress test:
controlled missingness and noise enable sensitivity analysis of processes such as
imputation or outlier treatment [4]. These methods do not replace modelling; rather,
they provide solid, well-defined inputs and recorded assumptions, ensuring that any
subsequent model evaluation reflects the realities of the data rather than artifacts.

Operational restrictions in municipal and industrial environments exacerbate the
demand for traceability. Stakeholders often expect not only findings but also a chain of
proof that connects each transformation to its purpose and impact. To match this
expectation, the platform generates exportable figures (PNG/PDF), tabular outputs
(CSV), and a structured JSON record that includes configuration, intermediate results,
and final quality indicators. This approach promotes auditability across teams and
throughout time, while lowering onboarding costs when datasets, persons, or
objectives change.

Finally, the background for this thesis is consistent with the formal requirements for a
Master's Thesis at the Professorship of Computer Engineering, TU Chemnitz. The
introduction must locate the topic in its application area, describe motivation, and
define the problem at a high level, all while preparing the reader for subsequent
chapters that cover fundamentals, related work, methodology, implementation,
findings, discussion, and conclusion. The emphasis on clear context, neutral academic
tone, and structured reporting adheres to the department's chapter organization and
scientific writing guidelines, ensuring that succeeding sections can be built on a
coherent and suitably thorough foundation.

1.2 Motivation

Smart-city analytics are based on multivariate sensor streams that are noisy, partial,
heterogeneous, and subject to drift. In such cases, model-centric development implies
standardized inputs that are rarely available in practice, resulting in brittle systems and
findings that are difficult to replicate or trust [5]. The basic goal for this thesis is to
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transfer the focus of development from models to data: to make data more
trustworthy[6], interpretable, and auditable before—and alongside—modelling.
Framing motivation early and clearly is consistent with the department's
recommendations for the introduction chapter, as well as the expectation that goals be
articulated concretely and verifiably.

Operational requirements further support a data-centric strategy. Municipal and
industrial stakeholders must track how each preprocessing step impacts downstream
use, compare outcomes over time and between locations, and justify actions during
audits or handovers [7]. A cloud environment, such as SmartCityCloud, provides a
consistent location to upload datasets, examine them using EDA, apply quality metrics,
and collect artifacts—plots, tables, and machine-readable summaries—to make the
process transparent. By incorporating repeatability and proof (exports and JSON
records), the platform facilitates cooperation and long-term maintenance, addressing
common issues in evolving installations where sensors, firmware, and usage patterns
vary.

Finally, measurable outcomes are required to steer improvements and convey value.
This study uses six practical dimensions—accuracy, completeness, consistency,
traceability, timeliness, and auditability—to assess how specific operations (duplicate
handling, validity checks, imputation, labeling rules, out-of-distribution splits, and
augmentation-based stress tests) enhance data readiness [8]. Articulating such
objectives as explicit, measurable aims is consistent with the preferred motivation style
(clear purpose, evaluability, and time-bound execution within the thesis timeframe) and
creates a cohesive bridge from introduction to technique, implementation, and results.

Training
4
v — 1

ML Modeling Evaluation
-
=5 — r —> —>
=
Data Data <« - Deployment
Collection Preprocessing _I I L9,
) Hyperparameter
Ewvaluation q Tuning
-
Training

Figure 1. Model-Centric Approach [9]
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Fig 1. Model-centric approach [9].
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Figure 2. Data-Centric Approach [9]

In Fig 1 (model-centric Al), most iterative effort concentrates on the modelling loop:
training, evaluation, and hyperparameter tuning cycle repeatedly, while data
preprocessing is treated as a largely one-off step before the loop begins. This workflow
assumes the dataset is already standardized and sufficiently representative; quality
issues are addressed ad hoc, if at all, and evaluation focuses on comparing models
rather than interrogating the data that drive them. As a result, gains typically come from
architectural choices or tuning, and failure modes often trace back to silent data
problems—Ilabel noise, drift, duplicates, or gaps—that the loop is not designed to
surface.

However, in Fig 2 (data-centric Al), evaluation expands to include the data itself. The
modelling loop remains, but a parallel feedback loop targets dataset curation:
systematic EDA, labelling checks, augmentation for stress testing, and iterative
remediation of errors become first-class activities. This shifts improvement leverage
toward making signals clearer and assumptions explicit, yielding models that are
simpler to train, easier to reproduce, and more stable under deployment shifts. In
practice, the data-centric loop produces auditables—figures, tables, and machine-
readable summaries—that document how changes in data quality translate into
performance changes, enabling controlled, evidence-based progress.
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1.3 Problem Statement

SmartCityCloud aggregates heterogeneous, multi-source time series with missing
segments, duplicates, outliers, non-stationary distributions, and fragile or heuristic
labels. Conventional model-centric pipelines presume standardized inputs and regard
preprocessing as a one-time operation, which obscures the underlying causes of
downstream brittleness and makes outcomes difficult to replicate or audit. The central
problem addressed in this thesis is to make data quality the primary engineering
objective: to systematically surface, measure, and improve the credibility of diverse
sensor datasets before—and concurrently with—modelling, while maintaining a
transparent record of how each transformation affects the data.

Existing literature and tools provide useful components—profilers, cleaning utilities,
experiment trackers [10]—but they rarely provide an integrated, cloud-based workflow
that unifies exploratory data analysis, targeted quality operations (e.g., duplicate
handling, validity screening, gap detection and imputation, feature engineering), label-
quality verification, out-of-distribution checks, and augmentation-based stress testing,
all linked to machine-readable provenance. In practice, teams rely on ad hoc
scripts[11] and informal notebooks, limiting comparability across time, places, and
users and making audits time-consuming. This thesis addresses that gap by creating
a reusable data-centric pipeline within SmartCityCloud that combines interactive
visualization and exporting (PNG/PDF/CSV) with a structured JSON report containing
configurations, interim findings, and outcomes mapped to pragmatic quality metrics.

The thesis is guided by the research questions listed below.

e RQ1: How to design SmartCityCloud compute task wrapper and implement a
reusable data-centric workflow to improve the readiness of heterogeneous
smart-city time-series data through systematic EDA, quality operations, label
verification, out-of-distribution analysis, and augmentation-based stress tests,
all while producing auditable provenance?

¢ RQ2: How much do these interventions improve data quality—as assessed by
accuracy, completeness, consistency, traceability, timeliness, and auditability—
and boost stability under distribution shift when compared to baseline
preprocessing typical of model-centric practice?

1.4 Objectives and Research Goals

This thesis explores a data-centric alternative to model-first development for smart-city
analytics. The overarching goal is to make heterogeneous sensor datasets analysis
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ready, auditable, and resilient to distribution shifts by prioritizing data quality [2]. The
goals are articulated in accordance with the standards for a clear, measurable
motivation and objectives, allowing them to be evaluated within the thesis scope and
schedule.

Primary objectives of this thesis include:

First, create and implement an end-to-end workflow in SmartCityCloud that
allows users to upload datasets, conduct exploratory data analysis, perform
targeted data-quality operations (duplicate handling, validity checks, gap
detection and imputation, feature engineering, and label verification), and
visualize the results.

Second, implement robustness checks using out-of-distribution protocols (e.g.,
temporal/site-based 70/30 splits) and augmentation-based stress tests
(controlled missingness and noise). Third, establish complete traceability by
exporting artifacts (PNG/PDF plots and CSV tables) and creating a machine-
readable JSON report that includes configurations, intermediate results, and
final quality indicators for each run.

Evaluation Goals of this thesis include:

Quantify the workflow's impact on data readiness across numerous
SmartCityCloud datasets wusing six practical dimensions: correctness,
completeness, consistency, traceability, timeliness, and auditability.

Compare the results to a baseline representing model-centric preprocessing
(minimum cleaning plus direct modelling assumptions). Success will be
demonstrated by systematic gains across all dimensions, clearer and more
reliable descriptive statistics, and verifiable provenance that connects each
alteration to its measured impact.

Secondary Objectives of this thesis include:

Improving the platform's usability and maintainability by including an extensible
compute-task template, clear user advice inside the interface, and defaults that
encourage recurring analysis.
Where possible, define the runtime and scalability of essential procedures
(such as profiling and imputation) to ensure their suitability for city-scale
operations.
Expected contributions include:

0] A reusable data-centric workflow for heterogeneous smart-city

time series
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(i) A cloud-based implementation in SmartCityCloud that generates
verifiable artifacts and provenance

(i) An evaluation scheme that links concrete quality interventions to
measurable gains, thereby promoting dependable and transparent
Al development.

1.5 Scope and Limitations

This thesis focuses on improving data quality for heterogeneous smart-city time-series
within the SmartCityCloud environment. The scope covers dataset ingestion,
exploratory data analysis, and key quality operations such as duplicate handling,
validity screening, gap detection with imputation, and feature engineering. It also
includes label verification (e.g., day—night alignment), robustness checks using out-of-
distribution splits, and augmentation-based stress tests. All outcomes are documented
through exportable artifacts (PNG, PDF, CSV) and a machine-readable JSON
provenance record. Evaluation is based on six process-oriented dimensions—
accuracy, completeness, consistency, traceability, timeliness, and auditability—
making data readiness measurable and verifiable within the thesis scope. The
structure and writing style follow the department’s scientific thesis guidelines, ensuring
clarity, consistency, and alignment with the overall research framework.

The work does not aim to advance model architectures, large-scale hyperparameter
optimization [12], or state-of-the-art benchmark contests; any modeling references
serve only to contextualize data-quality effects. Topics outside the scope include
production MLOps hardening (e.g., autoscaling, CI/CD), privacy/legal compliance,
ethics reviews, and real-time latency guarantee. Limitations arise from dataset
availability and representativeness, potential imperfections in heuristic labels, the
bounded set of quality metrics (which may not capture every domain-specific notion of
“quality”), and the specific OOD and augmentation scenarios considered (primarily
temporal or site-based shifts with simple missingness/noise models) [13]. Results
should therefore be interpreted as evidence of process improvements and reproducible
provenance within SmartCityCloud, rather than as universal guarantees across all
sensor modalities or deployment contexts. These delimitations align with the thesis
requirement to define a clear, feasible scope and to maintain a neutral, structured
academic presentation.
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1.6 Thesis Structure

The rest of this thesis is organized as follows. Chapter 2 covers the theoretical and
technical foundations needed for data-centric quality engineering and SCC. Chapter
3 examines related work on exploratory data analysis, data-quality metrics, labelling
techniques, out-of-distribution analysis, and augmentation, situating the contribution
within the status of the field. Chapter 4 describes the methodology, which includes
procedures for EDA, targeted quality activities, label verification, robustness tests, and
reporting. The fifth chapter details the SmartCityCloud implementation, which includes
system components, a user interface, and data flows. Chapter 6 presents the results
and evaluations for the six quality dimensions. Chapter 7 explores the consequences,
limitations, and parallels to typical model-centric practice. Chapter 8 summarizes the
findings and outlines future research and platform extensions Fig 3.

Chapter 2
Fundamentals

l

Chapter 3
Literature Review

l

Chapter 4
Methodology

l

Chapter 5
Implementation

l

Chapter 6
Results & Evaluation

l

Chapter 7
Discussion

l

Chapter 8
Conclusion & Outlook

Figure 3. Thesis Structure Overview
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2 Fundamentals

This chapter covers the theoretical principles that underpin the research and
implementation in this thesis. It covers the fundamental concepts and principles
needed to comprehend how cloud-based infrastructures, data-centric artificial
intelligence, and data quality engineering interact in smart-city settings. The emphasis
is on explaining the fundamental background required to understand the
methodological and technical decisions detailed in subsequent chapters. The section
discusses the fundamentals of cloud computing and data management, the theoretical
foundations of data-centric Al, the key dimensions used to assess data quality, and the
data governance and reproducibility in Al-powered systems.

2.1 SmartCityCloud and the Compute Task wrapper

SmartCityCloud (SCC) is a modular platform designed for managing heterogeneous
smart-city sensor streams—traffic, forestry, air quality, parking, drones, and related
domains—supporting both real-time and batch analytics across an ingestion—storage—
compute pipeline. Its reference architecture separates concerns into four cooperating
layers: a User Interface layer for interaction and visualization; a Compute Task layer
encapsulating the core data-processing logic; a Data Streams layer that normalizes
time-series, images, and tabular values into typed streams; and a Data Storage layer
that handles input acquisition and output persistence. In a typical workflow, the
backend ingests or reads data, a compute engine on a GPU server executes the user-
defined task, and results are returned for visualization and export (schedule —
download — compute — upload). Within this ecosystem, SCC offers a template and
lab workflow to set up environments (local or Docker), bind inputs, configure options,
and surface results through an auto-generated browser Ul—providing a consistent
integration point for domain-specific analytics like the data-quality engineering carried
out in this thesis.

The SmartCity Compute Task Wrapper is the central execution framework within
SmartCityCloud that standardizes how analytical processes are defined, executed, and
visualized in a cloud environment. It manages the complete workflow—from loading
and harmonizing input data streams to configuring analytical parameters, executing
data-processing operations, and generating interpretable outputs—ensuring
modularity, scalability, and reproducibility across diverse smart-city datasets.
Abstracting low-level data handling and interface logic, it enables a seamless
integration of domain-specific analytics such as exploratory data analysis, data
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validation, feature extraction, label quality verification, and out-of-distribution stability
checks. The wrapper automatically converts analytical outputs into structured tables,
plots, and JSON reports, which can be visualized or exported directly through the
SmartCityCloud interface. This design transforms the platform into a Data Quality as a
Service (DQaaS) system, providing transparent, version-controlled, and auditable data
processing that aligns with data-centric Al principles and supports high-quality,
trustworthy predictive modeling for smart-city applications.

The SmartCityCloud Compute Task Wrapper, as shown below in Fig 4, is the key
architectural workflow that allows for modular, task-based data processing within the
SmartCityCloud ecosystem. It allows for smooth interaction between the data
ingestion, computing, and visualization levels via a standardized pipeline. Raw sensor
data—whether tabular, image-based, or time-series—is first collected in the storage
layer and then accessible via an input reader, which turns the sources into
standardized data streams. These streams are then routed to the job implementation
module, where specialized analytical reasoning is used. The task implementation
component of this thesis includes all of the code created for data quality engineering,
exploratory data analysis, validity screening, feature extraction, label quality
evaluation, and out-of-distribution generalization. After processing, the findings are
transmitted to the output reader, which returns cleaned and processed data in the form
of Python-native structures or reusable data streams. The wrapper combines
visualization components for both input and output, as well as adjustable compute
options available via a web interface, allowing users to enter parameters and evaluate
results interactively. This design makes the framework completely extensible—any
researcher or developer can incorporate their own analytical logic into the task
implementation block to perform domain-specific operations, transforming the
SmartCityCloud Compute Task Wrapper into a versatile and reusable foundation for
scalable cloud-based data analytics.
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2.2 Data Centric Artificial Intelligence

Data-centric Artificial Intelligence (Al) differs from the traditional model-centric
approach by emphasizing the systematic improvement of data quality rather than
solely focusing on algorithmic sophistication [2]. While model-centric Al optimizes
model architectures and parameters based on fixed datasets, data-centric Al
recognizes that data accuracy, completeness, and consistency are equally crucial for
overall system performance. It treats data as a first-class element, requiring iterative
refinement, curation, and validation to ensure models learn from high-quality,
representative, and well-labeled samples. This involves creating standardized and
balanced datasets, removing noise, and improving label consistency to enhance model
generalization.

Within the SmartCityCloud environment, this paradigm is implemented to increase the
reliability of heterogeneous sensor data used for urban intelligence and predictive
analytics. Instead of relying solely on model accuracy, the system prioritizes data
reliability, completeness, and consistency as prerequisites for effective Al-driven
decision-making. The approach is realized through several sub-processes: data
labeling and annotation, ensuring semantic accuracy and temporal alignment (e.g.,
day/night label quality checks); data augmentation, which enhances robustness via
interpolation and noise-based synthetic generation; feature engineering, enriching
time-series data with lag, rolling, and trend-based features; and out-of-distribution
(OOD) generalization, managing domain shifts to maintain stability under varying data
conditions. Together, these components embody the theoretical and practical
foundation of this thesis, demonstrating how SmartCityCloud operationalizes data-
centric Al to produce high-quality, context-aware datasets that enable reliable and
reproducible predictive modeling.

Model d Hyper

Selection parameter

tuning
: Evaluation ML Model L.OSS.'
Data Collection Optimizer
\ Model /

Training

Figure 5. The steps for Model Centric Approach [14]
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Fig 5 outlines the traditional model-centric loop: construct or select a network
architecture, tune hyperparameters, and repeat on algorithms while assuming the
dataset is essentially fixed [14]. This underlines how this approach has traditionally
outperformed architectures such as AlexNet, VGG, GoogLeNet, and ResNet—but also
points out its susceptibility in real-world circumstances when data contains
inconsistencies, bias, noise, and missing values [15]. In other words, when urban
sensor feeds are defective (as smart-city streams frequently are), simply refining
models cannot compensate for label noise, duplication, or gaps; data quality issues
become a performance barrier. This explains the shift that inspired your thesis: to move
away from a model-only approach and face data reliability head-on with
SmartCityCloud.

Fig 6 depicts the core processes of a data-centric pipeline—data parsing,
augmentation, representation, quality assessment, and cleaning—arranged as
systematic phases to improve data before model training. The paper [14] outlines
concrete tactics, including multi-stage hashing for duplicate removal, "confident
learning” for noisy-label detection and correction, and controlled augmentations. These
measures consistently outperform model-centric baselines (3% relative gains in their
experiments). SmartCityCloud implements the same concepts: parsing/representation
via stream readers for CSV/Excel/image inputs; quality assessment & cleaning via
missing/validity checks, duplicate handling, interpolation, and flatline detection; label
quality via day-night alignment; augmentation & feature engineering to enrich time-
series (lags, rolling statistics, diffs); and stability/OOD checks for drift-aware
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robustness, with all steps captured as exportable artifacts (HQ Thus, the figure's data-
centric workflow corresponds precisely to your SCC compute-task implementation and
supports your emphasis on engineering data quality as the fundamental lever for
reliable smart-city prediction.

2.3 Data Quality Dimensions and Evaluation Metrics

Data quality is the degree to which data is suitable for its intended analytical purpose,
as measured by criteria such as correctness, completeness, consistency, timeliness,
traceability, and auditability (as defined in standards such as ISO/IEC 25012) [16].
Operationally, accuracy reflects closeness of values to true or physically plausible
ranges; completeness measures the proportion of required values present;
consistency captures the absence of contradictions, duplicates, or implausible flatlines
across time; timeliness concerns whether timestamps are valid and appropriately
aligned with the phenomena observed; traceability denotes the ability to follow data
and transformations through the pipeline; and auditability requires These parameters
offer a rigorous, implementation-independent perspective for determining whether
sensor streams are reliable inputs to prediction models.

In this thesis implementation, each dimension is instantiated by concrete, reportable
metrics within the SmartCityCloud compute task. From Table 1, Completeness is
guantified via missing-value counts and percentages; accuracy is enforced through
range/validity screening against realistic domain thresholds; consistency is supported
by duplicate timestamp removal and flatline-run detection; timeliness is addressed
through robust timestamp parsing, ordering, and resampling checks; and
traceability/auditability are achieved by exporting machine-readable JSON provenance
alongside high-quality (HQ) datasets, capturing configuration choices, transformation
counts (e.g., invalid—NaN, imputed values), and evaluation summaries. The NiceGUI-
based Ul surfaces these metrics as tables, plots, and scalar cards, while the saved
artifacts ensure reproducibility. Together, these measures define a practical data
readiness framework: only when the dataset meets acceptable thresholds across all
dimensions can downstream predictive modeling be trusted, a principle later applied
in the Results chapter to interpret performance in terms of measurable data quality,
not model tuning alone.
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Criteria Description / Purpose Implementation in
SmartCityCloud

Completeness Measures how much of | Detect and calculate using
the required data is missing-value
available and not missing. percentages across
records and time intervals.
Accuracy Ensures that recorded Check using range/validity
values are valid and within screening for each
realistic domain numeric attribute.
thresholds.
Consistency Verifies that data remains | Handle through duplicate
uniform and logically timestamp removal and
coherent over time. flatline run detection.
Timeliness Checks whether Validate using timestamp
timestamps are valid, parsing, ordering, and
sequential, and correctly resampling steps.
aligned.
Traceability Maintains the ability to Achieved through JSON
trace data sources and provenance files capturing
transformations. dataset lineage and
applied operations.
Auditability Ensures all operations are | Export as versioned HQ
documented and datasets and JSON
reproducible. reports for reproducibility
and review.

Table 1. Data Quality Evaluation Criteria

2.4 Data Governance and Versioning

During the implementation, data governance and version control are critical for
assuring openness, reproducibility, and accountability across the SmartCityCloud-
based data quality workflow. To ensure controlled code evolution and reproducible
experimental states, a separate working branch was built in the SmartCityCloud
Compute Task Wrapper GitLab repository. PyCharm's local Python development
environment was linked directly to this branch, allowing for smooth synchronization of
implementation updates with the version-controlled repository. Each alteration to the
thesis-related modules, such as data ingestion, exploratory analysis, or quality
processes, was routinely committed and pushed to the GitLab branch, resulting in a
traceable history of all code revisions. This integration not only enforces version control
but also enables collaborative reproducibility, with each modification or enhancement
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noted, vetted, and retrievable. Furthermore, the developed interface allows users to
download the created high-quality datasets corresponding to specific features in both
CSV and Excel formats, promoting open data practices and allowing downstream
verification of processed outputs.

Beyond software versioning, the system reflects the larger principles of data
governance and provenance tracking that are essential to modern Al-powered
infrastructures. Data governance in this context ensures that every dataset
transformation, from ingestion to export, is documented with complete metadata,
configuration parameters, and quality indicators. This architecture is informed by tools
and principles similar to Apache Atlas [17] or Git-based metadata tracking, which
ensure that datasets are auditable and traceable across processing cycles. The
SmartCityCloud system puts these standards into action by automatically providing
JSON provenance files and quality reports that detail dataset lineage, transformation
stages, imputation counts, and validation results. The generated High-Quality (HQ)
datasets are versioned and accompanied by metadata artifacts, providing an
immutable audit trail for each analytical run. Collectively, these mechanisms reinforce
reproducibility and reliability—core tenets of data-centric Al—and lay the groundwork
for the implementation workflow that will be described in Chapter 4, which transforms
theoretical principles into an operational, cloud-based data quality management
system.

2.5 Summary

Chapter 2 established the theoretical and architectural foundations for this work by
introducing SmartCityCloud (SCC) as a modular platform that standardizes sensor-
data ingestion, processing, visualization, and output generation through its Compute
Task Wrapper. It highlighted the shift from model-centric to data-centric Al,
emphasizing that high-quality, well-structured data is essential for building reliable
predictive systems in dynamic smart-city environments. The chapter also defined key
data-quality dimensions—completeness, validity, consistency, timeliness, traceability,
and auditability—and linked them to measurable indicators such as missing-value
ratios, range checks, timestamp correctness, duplicate detection, and metadata
provenance. Finally, it underscored the role of data governance practices, including
versioning and reproducible pipelines, which ensure transparency and long-term
reliability. Together, these fundamentals form the conceptual basis for the
methodology and implementation developed in the subsequent chapters.
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3 State of the Art

This chapter surveys the state of the art to ground the thesis in current research and
to justify the design choices made later in the implementation. The subsections are
organized by current research trends; in each, the review (i) synthesizes representative
existing solutions and their technical approaches, (ii) identifies the gaps and limitations
that arise in heterogeneous smart-city time-series (e.g., missing/invalid data, label
inconsistencies, weak provenance, or distributional drift), and (iii) explains how the
thesis responds within SmartCityCloud—through a modular compute-task that
operationalizes data labeling quality, augmentation, feature engineering, data
governance/versioning, and OOD stability. For every trend, the implications for
implementation are made explicit: what must be supported in the options/Ul, what
checks and metrics are computed, what artifacts are exported (HQ datasets and JSON
provenance), and how these choices improve downstream reliability and
reproducibility. The chapter closes with a concise comparison table mapping each
trend to its leading solutions, the uncovered gaps, and the thesis’s concrete remedies,
providing a direct bridge to the methodology and implementation that follow.

3.1 Data-Centric Al and Quality Engineering

e Research Trend: Data-centric artificial intelligence shifts the supervised
learning optimization focus from model architecture to data engineering [18].
Rather than assuming a fixed dataset and focusing primarily on networks and
hyperparameters, data-centric practice prioritizes label fidelity, coverage and
balance, validity and range conformance, temporal integrity, and lineage
documentation—on the assumption that model performance gains quickly
saturate if underlying data issues persist. Canonical position pieces and
surveys[19] describe this as a disciplined toolkit for designing datasets—not
merely enlarging them, but making them more appropriate for the task via
schema standards, labeling protocols, cleaning, augmentation, and governance
mechanisms that render pipelines reproducible and auditable.

Fig 7 illustrates the increasing global research interest in data-centric Al by
showing the sharp growth of publications containing the keyword “data-centric
Al” on Google Scholar over recent years. The trend indicates that, although still
an emerging discipline, the focus on improving data quality, labeling, and
curation is rapidly gaining momentum across Al communities [20]. The figure
highlights that most progress so far has concentrated on training-data
development—cleaning, annotation, and augmentation—while comparatively
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little attention has been given to data maintenance and inference-data design,
especially within scientific and engineering domains. The author notes that this
surge in research activity has not yet been mirrored strongly in domain-specific
fields such as Earth and space sciences, implying a major opportunity for
applied research to adopt and operationalize data-centric practices. In the
context of this thesis, Figure 2 reinforces the motivation for implementing a
unified SmartCityCloud framework that embodies these evolving global efforts:
transforming theoretical advances in data-centric Al into a practical,
reproducible system for data-quality engineering and management in
heterogeneous smart-city datasets.

Number of articles on Data-centric Al

14

2018 2019 2020 2021 2022 *2023 (August)
Year

Figure 7. Recent articles published with the keyword "data-centric Al" [20]

Current research highlights several complementary strategies contributing to
Quality Engineering. Label quality assurance has become a focal point, with
methods like Confident Learning (CL) designed to identify mislabeled data and
guantify label noise, significantly enhancing model accuracy [21]. Data
augmentation techniques—such as interpolation, warping, and noise injection—
have proven effective in increasing dataset diversity and robustness against
overfitting[22]. Furthermore, feature engineering and data validation
frameworks like Deequ by Amazon enable scalable quality checks and rule-
based data profiling [23]. Collectively, these methods represent a growing global
effort to embed data quality improvement directly into the Al development
lifecycle rather than treating it as a preprocessing step [24].
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Existing Solutions: The implementation of data-centric Al principles has
gained momentum across multiple domains, leading to the development of
frameworks, tools, and algorithms specifically aimed at improving data quality
and reliability. One of the most widely recognized approaches is Confident
Learning (CL), which identifies and corrects mislabeled samples by estimating
label confidence and uncertainty [21]. This method enhances dataset integrity
and ensures that training samples accurately represent their classes, a critical
factor for improving the robustness and interpretability of Al models. Similarly,
the Data-Centric Al Initiative emphasizes systematic data curation, validation,
and documentation over endless model fine-tuning [25]. This initiative inspired
global competitions, encouraging practitioners to clean and balance datasets
for better generalization rather than modifying neural architectures.

In parallel, significant progress has been made in automated data validation and
profiling frameworks. Recently introduced Deequ, a library developed by
Amazon that performs declarative data validation using constraint-based quality
checks on large-scale datasets [23]. This tool enables data engineers to
automatically detect anomalies, validate numerical ranges, and measure data
completeness and uniqueness—principles that are now fundamental to modern
DCAI workflows. Additionally, data augmentation techniques such as
interpolation, extrapolation, and synthetic sampling can be used to enrich
datasets, thereby increasing model generalization while reducing overfitting
[22]. These augmentation approaches are particularly relevant for dynamic,
time-dependent data, like that in smart-city environments, where data collection
is continuous and heterogeneous.

Collectively, these existing solutions represent a significant step forward toward
operationalizing data-centric principles. They establish a foundation for
systematic data quality engineering, integrating labeling verification, automated
validation, augmentation, and provenance management. However, most of
these tools address isolated data-quality aspects and are not yet unified into a
cohesive, reproducible cloud-based framework. This fragmentation
underscores the need for integrated solutions—such as the SmartCityCloud
Compute Task Wrapper developed in this thesis—that combine these diverse
DCAI techniques into a single, automated, and scalable environment for
ensuring high-quality data in smart-city Al applications.
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Gaps Identified from Current Research: Despite rapid progress, three
integration gaps remain critical for heterogeneous smart-city time-series.

- Many pipelines apply single data-centric techniques in isolation—e.g.,
label cleaning with Confident Learning or Cleanlab—without coupling
them to temporal validity checks (range/physical plausibility),
duplicate/flatline screening, or feature enrichment, making it hard to
attribute gains and to certify cross-dimensional “data readiness.”
Evidence from label-error studies [21] shows meaningful accuracy gains
from data cleaning, but most implementations stop short of tying label
quality to broader validation and augmentation regimes.

- Even when validation frameworks are used, many deployments lack
embedded, machine-readable provenance that captures options,
thresholds, and transformations, limiting auditability and reproducibility
across teams and runs; this emphasizes declarative data-quality
“guardrails” (e.g., Deequ, TFDV) and automated constraint generation,
underscoring how often such guardrails are ad-hoc in practice[23].

- Cleaning and augmentation are common, but stability is rarely quantified
under diurnal/seasonal patterns, sensor drift, or site changes in
streaming contexts; recent surveys highlight that OOD generalization for
time series remains under-systematized and needs explicit evaluation
protocols in operational pipelines. Out-of-Distribution Generalization in
Time Series [26]. Together, these gaps mean that—even where
individual procedures exist—end-to-end, verified fithess-for-use is not
consistently achieved in real deployments.

How does This Thesis address the Gaps? : This thesis consolidates data-
centric practices into a single, auditable SmartCityCloud compute task that
operationalizes quality engineering for urban sensor streams. Integrated, not
isolated. The pipeline combines label verification (day—night alignment, inspired
by label-error detection’s focus on fidelity), data validation (range/validity
thresholds; duplicate-timestamp removal; flatline-run detection; missing-value
accounting), and time-series enrichment (interpolation regimes; noise-based
perturbations; lag/rolling/differencing features), aligning with evidence that
curated labels and augmented, validated data yield larger gains than further
model tinkering. Embedded provenance for auditability. Each run emits
structured artifacts—tables, plots, and a JSON provenance record of
configuration, thresholds, and transformation counts (e.g., invalid—NaN,
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3.2

Imputations)—operationalizing the “guardrails” advocated by modern DQ
tooling and enabling reproducibility and change tracking practices. Explicit
robustness checks include stability/OOD diagnostics (e.g., monthly drift
summaries over selected attributes), so data readiness is measured not only at
a snapshot but also under realistic distributional variation, reflecting current calls
to make OOD evaluation a first-class component in time-series pipelines. By
turning label quality, validation, augmentation, provenance, and OOD stability
into first-class, configurable steps within one cloud task, the thesis translates
data-centric Al from principle to a cohesive service for dependable smart-city
prediction.

Cloud-Native, Governed Data-Quality Pipelines with OOD Monitoring

Research Trend: Data Analysis and Validation converging on end-to-end,
cloud-native data-quality pipelines that automate validation and profiling as first-
class stages in ML/AIl workflows, rather than ad-hoc preprocessing. Production
frameworks such as TensorFlow Data Validation (TFDV) and TFX demonstrate
scalable, declarative checks for schema drift, anomalies, and distribution
changes embedded directly in continuous pipelines, signaling a move toward
‘data unit tests” at scale [27]. In parallel, Deequ and Great Expectations
operationalize constraint-based quality verification and human-readable quality
reports, enabling teams to specify expectations (completeness, uniqueness,
ranges) and to materialize versioned validation artifacts that can live alongside
code in CI/CD [23]. On the governance side, organizations increasingly adopt
metadata lineage and cataloging (e.g., Apache Atlas) so that datasets,
transformations, and quality checks are discoverable and auditable across
platforms—an essential prerequisite for regulated or safety-critical Al.
Complementing these quality and governance layers, MLOps tooling (e.g.,
MLflow) standardizes experiment tracking and model/data versioning to support
reproducibility across teams and time[28].

A second, tightly related strand addresses robustness under distribution shift for
streaming and time-series data. Foundational surveys on concept drift
emphasize that in live environments, the relationship between features and
targets changes, requiring continuous monitoring, adaptive evaluation windows,
and drift-aware retraining triggers [29]. Also, out-of-distribution (OOD)
generalizes for time series, highlighting protocols and metrics for assessing
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stability when operational data departs from training regimes (seasonality
changes, sensor aging, deployment to new sites) [26]. Finally, to make these
pipelines accountable, research communities reference ISO/IEC 25012 and
contemporary DQ surveys to formalize evaluation dimensions (accuracy,
completeness, consistency, timeliness, traceability, auditability) and to tie
automated checks to measurable “data readiness” scores that can be reported
and reviewed [30].
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Figure 8. Covariate Shift and Drift with In-Distribution vs. OOD Periods [26]

The Fig 8 illustrates the central challenge of Out-of-Distribution (OOD)
generalization in time-series data by showing how real-world sensor and social
data evolve through covariate shift—changes in the input distribution P (X)—and
concept drift—changes in the relationship between inputs and outputs P(Y | X).
It depicts these shifts across domains such as social media, energy, and traffic,
where variations arise from natural evolution, seasonal patterns, or abrupt
external events like server upgrades or policy changes. The blue regions
represent periods used for training (in-distribution), while the green regions mark
future periods where data distributions differ, causing model degradation if
unaccounted for. This visualization underscores that non-stationarity is an
inherent property of real-world time-series and that Al pipelines must
incorporate continuous drift detection, adaptation, and monitoring to sustain
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predictive reliability—a principle directly relevant to SmartCityCloud’s goal of
ensuring robust and auditable data quality across evolving urban data streams.

Existing Solutions: Recent advances in cloud-native data-quality frameworks
have enabled automated and scalable data validation within Al pipelines. Tools
such as TensorFlow Data Validation (TFDV) and Amazon Deequ perform large-
scale anomaly detection, schema validation, and constraint-based data profiling
directly in production environments [31]. These frameworks operationalize data-
guality checks as “data unit tests,” ensuring that completeness, consistency,
and range compliance are continuously verified. However, while they automate
many aspects of quality assurance, most remain domain-agnostic and do not
integrate downstream provenance tracking or contextual drift analysis—critical
requirements for real-time smart-city data streams.

Complementing these validation frameworks, data governance and versioning
tools such as Apache Atlas and MLflow provide metadata management, lineage
tracking, and experiment logging to maintain reproducibility across evolving
datasets and models. However, these platforms often function in isolation and
lack deep integration with quality metrics or time-series drift analysis, making it
difficult to trace how data changes impact model behaviour. Research in Out-
of-Distribution (OOD) generalization and drift detection further extends this
landscape, proposing statistical and adaptive methods to identify data
distribution changes over time [32]. Frameworks such as Evidently Al visualize
drift trends and monitor model degradation, yet most remain limited to static or
model-centric monitoring and fail to incorporate contextual temporal drifts typical
in urban sensor data streams.

At the governance and accountability level, initiatives like ISO/IEC 25012 and
open-source platforms such as Great Expectations aim to formalize measurable
guality dimensions—accuracy, completeness, consistency, timeliness,
traceability, and auditability. These frameworks highlight the need for
transparency and standardization but often lack automation or unified
provenance tracking. In contrast, this thesis integrates these fragmented
developments into the SmartCityCloud compute-task environment, combining
automated validation, JSON-based provenance recording, version-controlled
dataset exports, and OOD drift monitoring within a single, cloud-native system.
This holistic approach transforms disconnected research advances into an
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operational, reproducible, and auditable framework tailored for data-quality
engineering in smart-city time-series analytics.

Gaps Identified from Current Research: Despite significant progress in
establishing cloud-based frameworks for data quality validation, governance,
and drift detection, the majority of existing techniques are fragmented and
domain-agnostic. Tools like TensorFlow Data Validation (TFDV) and Amazon
Deequ provide robust mechanisms for anomaly detection and schema
validation, but they are primarily designed for general-purpose machine learning
pipelines and lack domain-specific adaptability for heterogeneous time-series
data, such as those found in smart-city environments [31]. These frameworks
primarily evaluate data at a single moment in time, with no consideration for
temporal dependencies or multi-modal data interactions among sensors,
environmental variables, and event-driven dynamics. Furthermore, while
MLflow and Apache Atlas help with governance and version control, they work
as separate tools, thus metadata lineage, validation metrics, and quality findings
are frequently decoupled, making end-to-end traceability problematic. As a
result, the integration of data validation, governance, and drift monitoring
remains poor, prohibiting firms from developing pipelines that are both auditable
and continually adaptable to changing data patterns.

Another critical gap lies in the limited treatment of Out-of-Distribution (OOD)
generalization and drift evaluation within current data-quality pipelines.
Highlights from the importance of identifying distributional and conceptual shifts,
yet these techniques are seldom embedded within automated quality
frameworks. Most tools focus on syntactic or statistical validation, overlooking
semantic drifts such as those arising from seasonal variations, sensor
recalibration, or environmental changes that influence real-world predictive
performance. Additionally, while frameworks like Evidently Al provide
visualization dashboards for monitoring drift, they often lack automated
provenance generation and version-linked reporting, which are essential for
reproducibility and accountability in Al-driven decision systems [33]. Finally,
standardized data-quality frameworks such as ISO/IEC 25012 define the
theoretical dimensions of data quality—accuracy, completeness, consistency,
timeliness, traceability, and auditability—but do not provide the computational
mechanisms to measure or enforce them in streaming environments.
Consequently, existing research does not yet deliver a unified, domain-aware,
and drift-resilient solution that ensures data readiness over time, leaving a
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crucial implementation gap that this thesis addresses within the SmartCityCloud
ecosystem.

e How This Thesis Addresses the Gaps: This thesis bridges the identified gaps
by developing a unified SmartCityCloud compute-task framework that
operationalizes cloud-native data-quality engineering with integrated
governance, provenance, and drift evaluation. Unlike existing fragmented
systems, the proposed solution automates the entire data-quality lifecycle—
from validation and profiling to versioning and auditability—within a single,
reproducible environment. The compute-task pipeline consolidates missing-
value detection, range and validity checks, duplication and flatline screening,
and timestamp validation while automatically generating JSON-based
provenance records that capture configurations, thresholds, and applied
transformations. Each processing run produces High-Quality (HQ) datasets in
CSV or Excel formats, ensuring transparency and reproducibility. To address
OOD and drift challenges, the system incorporates temporal drift detection and
stability monitoring, quantifying feature and distributional shifts over time to
maintain model robustness under real-world non-stationarity. By embedding
these mechanisms into a modular, scalable cloud architecture, the
SmartCityCloud platform transforms disparate research advances in validation,
governance, and OOD evaluation into a coherent, auditable, and domain-
specific data-quality pipeline for heterogeneous smart-city time-series analytics.

3.3 Summary
Research Trend Existing Solutions Gaps Identified Approach of this
Thesis
Data-Centric Al & | Systematic improvement | Often treated as ad-hoc Implements an
Quality of data over model preprocessing; limited integrated SCC
Engineering [24] tinkering; practices unification across compute-task: unified
include dataset curation, labeling, validation, validation
cleaning, balancing, and augmentation, and (missing/validity/duplic
governance embedded governance; weak audit | ates/flatlines/timelines
into the ML lifecycle. trails in practice. s), label checks,
augmentation, feature
engineering, plus
JSON provenance and
HQ dataset export.
Label Quality & Confident Label fixes are rarely Adds day-night label
Noise-Aware Learning/Cleanlab to linked to time-series alignment and
Learning [21] detect/correct mislabelled | validity (e.g., day—night | label-quality reporting
samples; noise-aware semantics) or to inside SCC; records
loss functions and downstream decisions to link label
relabelling protocols. governance; impact edits to
attribution across quality/robustness
dimensions is unclear. outcomes.
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Provides controlled

Data Jitter/noise, time warping, | Generic augmentations
Augmentation for window slicing, mixup, may distort interpolation and noise
Time Series [22] interpolation; used to physics/semantics; regimes tied to sensor
increase diversity and rarely coupled with meaning; exports
reduce overfitting. drift/stability evaluation augmentation configs
or with provenance of in JSON and evaluates
synthetic data. stability on monthly
OOD windows.
Feature Lag features, rolling Feature creation is often Implements

Engineering for
Analytics [34]

mean/std, differences,
calendar/diurnal
encodings; widely used in
classical and hybrid ML
pipelines.

decoupled from
validation & governance;
limited reporting of
feature provenance and
effect on stability.

lag/rolling/diff features
with automatic logging
(config — JSON), and
links feature sets to
stability metrics and
HQ exports.

Cloud-Native
Data-Quality
Pipelines &
Automation [23]
[31]

TFDVITFX for
schema/anomaly checks;
Deequ/Great
Expectations for
constraint-based
validation; CI/CD-style
data unit tests.

Frameworks are
domain-agnostic and
fragmented; limited
temporal semantics for
heterogeneous
smart-city streams;
integration burden is
high.

Bundles validation,
visualization, and
export in one SCC
compute-task; domain-
aware checks
(timestamps, flatlines),
and ready-to-use Ul
for non-experts.

Data
Governance,
Provenance &
Version Control
[16]

MLflow for experiment
tracking; Apache
Atlas/catalogs for lineage;
Git-based versioning for
code/models/datasets.

Metadata, validation
metrics, and datasets

often live in separate
tools, with er4t565weak
end-to-end traceability
across runs and teams.

Links PyCharm to a
dedicated GitLab
branch; emits run-level
JSON provenance
(options, thresholds,
transformations) and
versioned HQ datasets
(CSVIXLSX).

0O0D

Generalization &

Drift Detection
[32]

Statistical drift metrics
(KL/JS/MWasserstein),
windowed tests; surveys
on concept drift and
time-series OOD.

Embedded OOD checks
are rare in DQ pipelines;
little separation of ID vs
OOD windows; minimal
linkage to
governance/audit.

Adds monthly drift
summaries and
stability diagnostics;
separates ID/OOD
periods in evaluation
and logs outcomes in
provenance.

Explainable &
Auditable

Data-Readiness

Metrics [16]

ISO/IEC 25012
dimensions (accuracy,
completeness,
consistency, timeliness,
traceability, auditability);
WhyLogs/GE scorecards.

Standards specify
*what* to measure but
not *how* to automate in
streaming; few systems
bind metrics to artifacts
for audit.

Computes metrics
in-task and exports
tables/plots + JSON;
ties scores to concrete
artifacts (HQ datasets,
figures) for auditability.

Table 2. Summary
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4 Methodology

This chapter provides the methodological foundation for the thesis by giving the
systematic strategy, methodology, and experimental design used to address the
identified research problem. It transforms the conceptual insights and research gaps
identified in the literature review into a practical, operational framework for execution.
The section describes the system architecture, data acquisition processes,
preprocessing pipeline, analytical models, and evaluation strategies that allow for the
engineering and assessment of data quality in diverse smart-city time series. By
formally defining each processing stage—from data ingestion, cleaning, and
transformation to outlier detection, imputation, augmentation, and quality evaluation—
the chapter demonstrates how the proposed workflow improves on existing methods
through automation, reproducibility, and explainability. Every design decision is
supported by methodological explanations, ensuring that it meets the objectives of
accuracy, completeness, consistency, traceability, timeliness, and auditability. This
chapter serves as a bridge between the state-of-the-art analysis and the practical
realization presented in Chapter 5, ensuring that the subsequent implementation and
evaluation are based on a well-defined, transparent, and scientifically verifiable
framework.

4.1 Overview and Design Rationale

This section describes the overall methodological philosophy and reasoning that led to
the development of the proposed data quality framework. It teaches the fundamental
concept of using a systematic, data-centric approach to creating, analysing, and
enhancing the quality of heterogeneous smart-city time-series data. The presentation
focuses on how the literature review findings influenced methodological selections,
ensuring that the chosen methodologies addressed the specific issues of temporal
heterogeneity, missingness, and outlier behaviour in sensor environments. This
section also discusses the motivations for essential design principles such as
modularity, openness, and repeatability, which ensure that each stage of data
processing contributes demonstrably to the stated quality parameters. This section
defines the methodological framework for the following architecture, algorithms, and
experimental settings by explaining the intellectual underpinnings and reasons for the
chosen tactics.

37



4.1.1 Purpose, Scope, and Quality Objectives of the Methodology

The goal of this methodology is to create a systematic, data-centric framework for
designing, evaluating, and validating the quality of diverse time-series datasets derived
from smart-city sensor settings. The framework describes a unified process that
combines data ingestion, preprocessing, exploratory analysis, quality evaluation, and
artifact generation into a single, reproducible pipeline. Within this setting, the
methodology serves as the research's operational core, transforming conceptual
findings from previous studies into a measured, automated, and transparent workflow
that enables a quantitative assessment of data preparation.

This methodology encompasses the entire process, from raw data collection to the
creation of high-quality (HQ) datasets and evaluation dashboards. It includes a variety
of operations, such as timestamp alignment, duplication removal, validity screening,
missing-value imputation, outlier detection using z-score and rolling statistics, feature
derivation, and out-of-distribution (OOD) stability checks. Each of these processes is
parametrically customizable, allowing the system to adapt to a variety of sensor
properties and operational scenarios. This adaptability ensures that the same
methodology may be used for numerous qualities and sensor types while preserving
consistency and traceability in quality evaluation.

The technique directly addresses ten important data quality dimensions, as described
in Table 3: accuracy, completeness, consistency, traceability, timeliness, and
auditability. These dimensions collectively establish the standards for evaluating the
fitness of smart-city time-series data in relation to the research objectives. Timeliness
is verified by resampling and temporal aggregation mechanisms that track data delays
or irregular intervals; accuracy is strengthened by detecting and eliminating erroneous
or out-of-range values; completeness is ensured by identifying and imputing missing
records; consistency is maintained by enforcing duplicate-free and range-constrained
datasets; traceability is achieved through detailed JISON-based provenance reporting
and versioned output artifacts; and auditability is realized by integrating transparent,
Ul-driven workflows that enable the reproduction and export. By defining these
methodological purposes and objectives, this subsection situates the research
framework as a bridge between theoretical understanding and practical validation. It
establishes how the system operationalizes abstract data quality principles into
measurable, interpretable, and automatable components, forming the foundation upon
which the subsequent architecture, algorithms, and evaluation processes are built.
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Research Objective

Methodological
Component

Expected Outcome

Improve data accuracy

Ouitlier detection (z-
score, range screening)

Reliable and error-free
sensor values

Enhance completeness

Missing-value detection
and imputation

Continuous time-series
without gaps

Ensure consistency

Duplicate removal and
temporal resampling

Uniform and stable data
representation

Strengthen traceability

Provenance logging
(JSON metadata)

Transparent and
reproducible workflow

Maintain timeliness

Timestamp alignment
and delay monitoring

Regular and up-to-date
data streams

Support auditability

Exportable HQ reports
and Ul configuration
tracking

Verifiable and
reviewable analytical
outputs

Assure overall data

Integrated quality

Quantified assessment

generalization

screening across time
segments

quality metrics and six- of dataset readiness
dimensional evaluation
Enable OOD Stability and drift Robust performance

under data distribution
shifts

Improve feature
representation

Rolling statistics and
derived temporal
features

Enhanced interpretability
for downstream analysis

Simulate real-world
variability

Data augmentation
through noise and
missingness injection

Improved model
robustness and pipeline
validation

Table 3. Mapping of research objectives to methodological components

4.1.2 Architectural Philosophy and Methodological Justification

The proposed methodology is based on a data-centric and pipeline-oriented
architectural philosophy, with a focus on systematic data quality management as the
foundation for analytical reliability. Unlike typical model-centric techniques, which
promote prediction accuracy or algorithmic optimization, the accepted framework
prioritizes data integrity, completeness, and consistency before beginning any
modeling or evaluation process. This design perspective is consistent with current
trends in data-driven system engineering, in which the quality of input data directly
influences the validity of analytical results. The methodology uses a pipeline-first
structure to ensure that each data transformation—from ingestion to high-quality (HQ)

dataset generation—is clear, modular, and reproducible.
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The architecture is organized into well-defined stages that include data ingestion,
validation, cleaning, feature derivation, exploratory analysis, and quality evaluation, all
of which are controlled by adjustable parameters. Each stage operates independently
but cooperatively within the unified processing workflow. This modularity allows for
scalability across several smart-city sensor streams, such as temperature, humidity,
barometric pressure, and solar radiation, while preserving common data handling
standards. The pipeline is designed in a tiered structure that separates stream
management, option setup, and output creation, resulting in scalability and
maintainability. This design choice enables the system to detect timestamps, handle
duplication, rectify invalid or missing entries, and perform statistical quality checks
without requiring operator interaction, resulting in a completely traceable and self-
documenting process.

From a methodological standpoint, this data-centric design is supported by current
literature, which emphasizes that the bulk of analytical inconsistencies in Internet-of-
Things (IoT) and smart-city applications are caused by data-level shortcomings rather
than model restrictions [20]. Previous research has shown that flaws, including missing
values, outliers, and uneven sample intervals, can spread and amplify through
downstream analysis, resulting in incorrect insights and poor model generalization [24].
As a result, the emphasis on preprocessing, imputation, and quality assessment before
model training directly solves the cited limitations. The proposed methodology
incorporates rolling statistics, z-score-based outlier detection, resampling, and out-of-
distribution (OOD) drift analysis, which are empirically verified best practices for
managing temporal and statistical variability in sensor environments.

Furthermore, the formalization of quality metrics—which encompass characteristics
such as correctness, completeness, and timeliness—expands previous frameworks by
including traceability and auditability as additional dimensions required for explainable
Al and transparent data governance. This methodological emphasis on end-to-end
data quality is consistent with TU Chemnitz's academic criteria for applied computer
engineering research, which emphasize methodological rigor, reproducibility, and
measurable progress over previous art. Thus, the selected architectural philosophy not
only expands on existing research but also turns it into a realistic, automated, and
extendable solution for real-world smart-city data pipelines.
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4.1.3 Improvements and Formalization Plan

The proposed methodology significantly improves on existing data-quality assessment
methodologies for smart-city time series by combining automation, repeatability, and
provenance tracking inside a unified, user-driven framework. Traditional data-quality
solutions frequently rely on static scripts or offline analysis, which necessitate human
interaction and domain-specific configuration. In contrast, the proposed system
automates the entire processing sequence—from data ingestion and validation to high-
quality dataset production and evaluation—via a user-configurable task pipeline. This
automation lowers human bias, operational errors, and assures consistent execution
across different datasets and sensor properties.

A significant development is the inclusion of a graphical user interface (GUI) that
enables dynamic configuration of preprocessing and quality-analysis tasks. Users can
interact with numerical attributes, resampling intervals, z-score thresholds, and
imputation algorithms without changing the underlying code. These Ul-driven choices
improve accessibility and transparency, allowing non-technical stakeholders to carry
out reproducible experiments while retaining scientific rigor. The addition of
provenance metadata via JSON-based reporting sets the system apart from previous
approaches. Each execution contains critical parameters, statistical summaries, and
data-quality measurements, ensuring total traceability and accountability—essential
needs for explainable and auditable smart-city analytics.

From a scientific perspective, the methodology formalizes the entire data-quality
workflow into measurable and mathematically expressible components. Subsequent
sections of this chapter present the formal definitions for major processes, including
range-based validity screening, z-score outlier detection, rolling statistical
computation, missing-value imputation, and out-of-distribution (OOD) stability
evaluation. Each operation is defined as a function f; (D, 6;) that maps an input dataset
Dand configuration parameters 6;to a transformed dataset and quality score. This
mathematical formalization enables consistent comparison, parameter optimization,
and quantitative evaluation of the quality dimensions—accuracy, completeness,
consistency, traceability, timeliness, and auditability—defined earlier in this chapter.

Collectively, these innovations shift the approach from a human and fragmented
process to a standardized, automated, and verifiable pipeline, offering both conceptual
and operational advantages over previous literature. The chapter thus moves from
establishing these theoretical components to their organized implementation and
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assessment, serving as an analytical bridge between the research framework and the
practical system realization detailed in Chapter 5.

4.2 System Architecture & Data Ingestion

This section describes the architectural design and operational flow of the proposed
SmartCity data-quality framework, including how data is ingested, formatted, and
prepared for analytical analysis. It explains the system's functional organization,
including the interaction of core components such as the task runner, option parser,
processing modules, and output writers, which together allow for automatic and
reproducible data-quality review. The section also describes the input data streams,
which are predominantly time-series sensor datasets in CSV and Excel formats, as
well as the techniques for timestamp detection, attribute selection, and schema
validation, all of which ensure structural consistency before analysis. It also provides
variable experimental elements such as resampling frequency, z-score thresholds,
imputation procedures, and output formats, all of which define the methodology's
flexibility and adaptability. This section provides a complete overview of the system's
architecture and data-handling pipeline, laying the groundwork for transforming raw
sensor data into high-quality, verified, and analysis-ready datasets. As a result, it acts
as the methodology's operational backbone, connecting the previously stated
conceptual framework to the documented data-processing operations that follow.

4.2.1 System Context and Components

The proposed SmartCity data-quality framework works in a distributed computing
environment, connecting the SmartCityCloud data repository to the CE GPU Server,
where analytical activities are performed. The system is built on a modular and service-
oriented architecture, which separates data storage, computation, and visualization
components. The framework's central feature is a task-execution mechanism that can
be configured to automate the whole data-quality evaluation process. The main internal
components of this system are listed below:

e Task Runner — Serves as the central execution engine that orchestrates the
complete pipeline once a user initiates a task. It loads the selected dataset,
triggers the data-processing modules sequentially (validation, cleaning,
analysis, and reporting), and manages the flow of intermediate and final results.

e Option Parser — Interprets the configuration parameters received from the web
interface—such as attribute selection, resampling frequency, z-score threshold,
imputation strategy, or export format—and converts them into executable
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settings. This ensures reproducibility and parameter traceability for every
experimental run.

e Processors — Represent the functional units that perform the actual data
transformations, including timestamp normalization, duplicate elimination,
range and validity screening, missing-value imputation, rolling-statistic
computation, z-score-based outlier detection, and out-of-distribution stability
analysis. Each processor outputs both transformed data and quantitative quality
metrics.

e Writers / Exporters — Handle the generation and storage of final artifacts such
as high-quality (HQ) datasets, JSON reports, and evaluation tables. They apply
standardized file naming and versioning to maintain provenance and ensure
that data are saved only when explicitly requested by the user.

e Ul Triggers — Constitute the interactive bridge between the user and the
computational backend. Actions such as Run Task, Save Results, or View Plots
activate corresponding Python functions in the task runner, enabling real-time
visualization and control through the graphical interface.

Together, these components enable an end-to-end automated process that transforms
raw, heterogeneous sensor inputs into validated, high-quality datasets ready for
analysis or visualization.

: o Schedule & start task
SmartCityClond ~ __Z----mmmeal CE GPU Server

Data collection B

(Recording based on Timestamp) @ @ @ o Download sensor stream data Sa T','k
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Importing new datasets H

additional artificial (bogus)

timestamps are occasionally Implemenmlcn

introduced to ensure

compatibility with the existing ) send back result (JsON)
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Figure 9. Architecture Overview

Fig 9 depicts the broader system environment, as well as the SmartCity Compute
framework's overall Overview Architecture. The design has two core environments: the
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SmartCityCloud and the CE GPU Server. SmartCityCloud acts as the persistent data
repository where sensor streams are recorded based on timestamps and may include
various attributes such as speed, latitude, longitude, or environmental parameters.
When new datasets are added, additional artificial timestamps can be used to preserve
temporal compatibility with the existing storage format, ensuring synchronization and
consistent sampling for downstream processing. On the computational side, the CE
GPU Server hosts the task logic created for this thesis. Users initiate a job through the
web interface, which schedules and begins execution on the compute server. The
workflow consists of three stages:

e Scheduling and configuring the task.

e Downloading the relevant sensor streams from SmartCityCloud

e Returning the processed results—typically JSON summaries or HQ datasets—

to the platform for viewing or further evaluation.

This interaction establishes a clear line of responsibility: SmartCityCloud maintains
data gathering and persistence, while the CE GPU Server handles computation,
validation, and quality analytics. The cyclical interchange between these two levels
serves as the operational backbone of the proposed technique, ensuring that data
retrieval, processing, and reporting are seamlessly integrated, automated, and
traceable inside the TU Chemnitz SmartCity computing ecosystem.

4.2.2 Data Sources, Stream Types, and Timestamp Normalization

The datasets employed in this study are derived from several air-quality and
environmental sensor streams, constituting a broad and complex data ecosystem
within a smart-city infrastructure. These datasets include observations of air
temperature, barometric pressure, relative humidity, wind speed, and particulate
matter concentrations, all of which are timestamped and collected from scattered
monitoring sites. Multiple datasets are used to assess the framework's resilience and
flexibility, which is consistent with the proposed methodology's data-centric mindset.
This multi-dataset testing assures that the system is not specific to a single data source
or device type, but rather generalizes across different sensor conditions, sampling
rates, and data quality attributes, hence proving the pipeline's universality.

All sensor streams are collected in CSV or Excel formats, which are standard formats
used in environmental and IoT data collecting systems. Each stream typically contains
a timestamp column and one or more numeric attributes that indicate sensor readings.
In keeping with the data-centric goal, the framework does not rely on a fixed schema
and instead interprets each dataset dynamically upon intake. This allows for easy
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integration of additional data sources with different attribute names and formats,
allowing the methodology to function independently of the original data-collecting
environment. The architecture allows for simultaneous management of many qualities,
with the user picking specific numeric variables via the web interface for extensive
quality analysis. This flexibility ensures that both univariate and multivariate datasets
can be examined under identical methodological settings, further emphasizing
reproducibility and comparability across experiments.

Timestamp discovery and normalization are crucial steps in the intake process, as they
provide temporal consistency before performing analytical processes. As time
alignment is the foundation of all subsequent processes—from resampling and
imputation to outlier detection and OOD analysis—the system uses a hierarchical
detection method to automatically locate the timestamp column. During dataset
loading, the framework first looks for columns with names that match popular time-
related identifiers (such as "timestamp,” "time," "date," "datetime,” and "recorded_at").
If numerous possibilities are identified, the algorithm selects the column with the
highest proportion of successfully parsed date-time values. When explicit timestamp
columns are missing or inconsistently constructed, the system automatically creates a
temporal index based on row order or sampling intervals derived from metadata. This
multi-layered detection approach guarantees robustness against schema variations,
which is a common drawback in previous cutting-edge data-quality frameworks that
commonly presume consistent timestamp fields.

Once found, timestamps are normalized to a consistent format (ISO 8601 standard)
and transformed to a pandas DateTimelndex for more efficient temporal operations.
The normalization procedure also accounts for uneven intervals, missing time steps,
and overlapping entries, which are prevalent in sensor-based recordings due to
transmission delays or system resets. These corrected and ordered timestamps serve
as the temporal foundation for subsequent quality assessment tasks such as missing-
value analysis, resampling at predetermined granularities (hourly, daily, or monthly),
rolling statistical computation, and time-dependent outlier detection. The result is a
consistent time-series representation that retains both temporal precision and
analytical integrity across datasets.

In summary, this part lays the groundwork for the technique by describing how
disparate smart-city air-quality datasets are systematically digested, temporally
aligned, and standardized into a single analytical structure. By automating timestamp
discovery and supporting several dataset formats, the suggested technique addresses
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interoperability issues that exist in existing systems. It thereby operationalizes the
basic principles of data-centric research by emphasizing data readiness, flexibility, and
cross-source generalization, all of which are critical to maintaining the validity and
scalability of the SmartCity data-quality evaluation system.

4.2.3 End-to-End Workflow

The integrity of the data-quality analysis process is dependent on rigorous input
validation and schema conformance before execution. The suggested system is meant
to accommodate diverse datasets while maintaining a uniform logical schema to
ensure correct interpretation and replication. Every dataset that is put into the system
is first checked for minimum structural criteria, such as the availability of a timestamp
column and at least one numeric characteristic suitable for statistical analysis. The
ingestion layer automatically checks for data completeness, ensuring that timestamps
are unique, chronologically ordered, and parseable into a single DateTimelndex. Non-
numeric or categorical columns are disregarded during analysis but remain in the
metadata for traceability. To ensure analytical consistency, type casting is used to
transform numerical fields to floating-point representations, and columns with
incompatible datatypes are omitted from downstream computation. This pre-validation
stage prevents schema mistakes, enforces uniform data types, and ensures that the
following quality-assessment algorithms perform reliably.

Beyond structural validation, the system allows for a large range of experimental
configuration parameters, known as the Option Space. These options establish the
methodology's operational flexibility, allowing the same pipeline to be evaluated with a
variety of parameter settings and data conditions. Each customizable piece is an
experimental factor that can be controlled to alter data quality interpretation. The most
crucial options are:

e Resampling Frequency: Determines the temporal granularity at which the data
are aggregated—Hourly (H), Daily (D), or Monthly (M). This enables the
analysis of short-term fluctuations versus long-term trends in sensor behaviour.

e Z-Score Threshold: Sets the statistical cutoff for outlier detection. Common
values include £2.5 or £3, allowing control over sensitivity to extreme deviations.

e Duplicate Handling: Removes repeated timestamps or sensor readings,
preserving the first valid occurrence to maintain consistency.

e Imputation Method: Specifies how missing values are replaced, with available
strategies including forward fill (ffill), backward fill (bfill), or linear interpolation
based on temporal index continuity.
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e Augmentation Preview: Applies simulated perturbations (noise or artificial
missingness) to assess pipeline robustness.

These options transform the system into a parameterized experimentation framework,
supporting controlled comparisons across datasets and configurations. Each run is
automatically logged with its specific parameter set, ensuring that experiments can be
reproduced and independently verified. Once the inputs have been validated and the
experimental parameters have been determined, the framework's end-to-end workflow
is carried out in a well-defined series of steps. The process begins when the user picks
an input dataset and starts the execution via the user interface. The task runner gets
the desired file, applies the specified settings, and starts the data-processing pipeline.
This pipeline includes the following important stages:

e Input Acquisition and Validation: The dataset is parsed, schema conformity
is checked, and timestamps are standardized.

e Preprocessing and Cleaning: Duplicate entries are removed, invalid values
are replaced with NaN, and missing data are handled through the configured
imputation method.

e Feature Derivation: Rolling statistics, resampled means, and lag features are
computed to reveal temporal patterns and anomalies.

e Quality Evaluation: Z-score and range-based outlier detection, completeness
calculation, and OOD stability checks are performed.

e Result Compilation and Export: The final high-quality (HQ) dataset and its
associated JSON report are generated, summarizing all statistics, parameter
settings, and quality metrics.

This method produces tabular datasets, graphic plots (such as time series, boxplots,
and trend analyses), and machine-readable JSON reports. Each result product
contains complete provenance metadata, including processing timestamps, parameter
configurations, and evaluation summaries, allowing for traceable and auditable
documentation of each run. This automated report production also facilitates later
performance benchmarking or sensitivity analysis by maintaining a consistent format
across studies.

The tight integration of the user interface and backend processing is an important
design aspect of this workflow. The user interface triggers are directly related to
backend functions: "Run Task" starts data processing, "Show Results" shows plots
and statistical summaries, and "Save Results" saves the HQ dataset and reports to the
output folder. This combination of automation and user-driven setup improves
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productivity and transparency by reducing the need for human data handling while still
retaining total control over analytical parameters.

In essence, the combination of schema validation, parameter configurability, and
automated end-to-end execution transforms the suggested technique into an
adaptable and reproducible framework for assessing the quality of data in smart cities.
The design not only supports numerous datasets and sensor types, but it also allows
for systematic testing in a variety of scenarios, which is essential for data-driven
research. The system's design combines a conceptual approach with operational
pragmatism, ensuring that each stage—from input ingestion to artifact generation—is
both computationally robust and scientifically clear.

4.3 Formal Processing Pipeline

This section provides a formal description of the whole data-processing pipeline that
implements the methods provided in this thesis. It describes each computational stage,
including its mathematical formulation and functional significance in transforming raw,
diverse sensor data into analytically valid, high-quality datasets. The formalization
ensures that the underlying procedures—from parsing and ordering to outlier detection
and feature engineering—are not only implemented programmatically, but also
described in a reproducible, verifiable manner that adheres to scientific norms. The
pipeline is portrayed as a linear yet modular process that starts with timestamp
alignment and schema validation, then moves on to range screening, missing-value
treatment, and statistical outlier analysis.

4.3.1 Data Parsing and Validity Formalization

The formal processing of sensor data begins with defining the notation, data structures,
and rules that establish the mathematical foundation of the proposed data-quality
framework. Let each dataset D represent a multivariate time series consisting of n
temporal observations. Each observation is indexed by a timestamp t; € T, where T =
{ty,t5,...,t,} denotes the ordered set of sampling times. The corresponding sensor
measurement at time t; is represented as x; € R, forming a sequence X =
{X¢,» Xt,» -+, X, }- Missing or invalid readings are treated as special cases within the

dataset and represented as

v = { NaN, if the value is missing or invalid,
e Vi, if the value is valid and measurable.
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Accordingly, three disjoint sets are defined:

V={xy | xpisvalid}, M={xy; | x4, =NaN}, I={xy | x4 isinvalid}
The first stage in the processing pipeline involves parsing, ordering, and duplicate
handling, which ensures the dataset's temporal consistency. Parsing converts
timestamp strings into numerical or datetime representations suitable for ordered
computation. Let the mapping p:string — datetime define this conversion such that

ti' = p(ti), vtieT.

The timestamps are then sorted in ascending order t; < t; <...< t;,, establishing the
chronological sequence required for temporal analytics. Duplicate timestamps often
arise due to sensor synchronization issues or redundant data transmission. A duplicate
predicate §(t;)is defined as:

~ (1, if Atj + tisuchthattj=ti
o) = { 0, Otherwise

All instances where §(t;) = 1 are flagged as duplicates, and the system retains only
the first occurrence, following a keep-first policy. This decision preserves temporal
continuity while preventing inflation of sample counts. The number of duplicates
removed is logged as Ny, = sum of §(t;), forming part of the provenance record. This
stage enhances consistency—one of the six quality dimensions—by ensuring that
each timestamp uniquely identifies a single, valid observation. Once the dataset is
temporally ordered and duplicates removed, the next phase applies validity screening,
which ensures that all recorded sensor values fall within realistic operational limits.
Each numeric attribute is associated with a predefined range function:

b(name) = (L,U)

where Land U denote the lower and upper acceptable bounds, respectively. For
instance, for the air temperature attribute, b(temperature) = (—40,60); for barometric
pressure, b(pressure) = (850,1100); and for relative humidity, b(humidity) = (0,100).
A validity operator ¢(x,,) determines whether a measurement falls within the defined
range:

1, if L<xti<U.
0, otherwise.

pxti) = |
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All values failing this criterion (¢ (xy,) = 0) are replaced with NaN, effectively marking
them as missing for subsequent imputation. The total number of invalid entries is stored

as Ny, = Z_(l — ¢(x¢,)), Which contributes to the accuracy metric during data-quality

evaluation. By enforcing these attribute-specific validity constraints, the framework
eliminates physically implausible sensor readings and ensures the accuracy and
reliability of downstream analyses.

Collectively, the parsing, ordering, and validity screening procedures establish the first
layer of data quality assurance in the SmartCity pipeline. Parsing and ordering
guarantee temporal integrity, while duplicate handling enforces consistency. Range-
based screening ensures attribute-level validity and corrects systematic anomalies
such as out-of-range spikes or negative physical quantities. These foundational
transformations not only reduce noise and inconsistencies but also prepare the dataset
for higher-level processes such as missing-value imputation, outlier analysis, and
rolling-feature computation. Through their mathematical formalization, these
operations transform raw sensor inputs into structured, interpretable, and quality-
verified time series, thereby forming the essential basis for the subsequent stages of
the data-quality framework.

4.3.2 Missing-Data Treatment, Outlier Detection, and Feature Engineering

An essential part of the formal data-quality pipeline is the treatment of missing values,
identification of statistical outliers, and derivation of temporal features that capture
trends, variability, and stability in sensor data. These processes transform irregular,
incomplete, and noisy raw observations into structured and analytically robust
sequences suitable for further evaluation.

Sensor-based time-series data are inherently prone to missing readings due to
transmission errors, hardware malfunctions, or latency in data recording. In the
proposed methodology, missing entries are denoted as NaN and are handled through
a configurable imputation function. Let the observed series be x. ,x;,,...,x,,, Where

some x.are missing. The general imputation operator J(x,,)is defined as:

Xti—1, for forward fill

Xtiv1 for backward fill

(X1 — xBB)
(tk+1 - t)

(
Xi = I(xs) = !
|
\

x@@ + ( >>< (t; — to), for linear interpolation
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Here, t, and t; ., represent the timestamps immediately before and after the missing
value. The method fills gaps using the chosen interpolation mode, ensuring temporal
continuity while avoiding the introduction of unrealistic fluctuations. The number of
imputed values, Nin,, is reported for each dataset as:

N_imp = XY [xB; = NaN — replaced]

After imputation, the dataset is subjected to statistical outlier detection to remove or
flag anomalous values. The framework applies the Z-score method, which
standardizes each observation relative to the mean and standard deviation of the
series. For every time point t;, the standardized score is computed as:

zB; = (xB; — uy) / ox

where p, is the sample mean and o, is the sample standard deviation.
Any observation satisfying the condition |zB;| > t is flagged as an outlier, where t is
a user-defined threshold (typically 2.5 or 3). These flagged points are marked as invalid
and treated as missing (NaN) for subsequent imputation or exclusion.
To complement Z-score detection, an Interquartile Range (IQR) method is applied to
describe the overall distributional shape. The IQR is calculated as:

IQR = Q3 — Q1

Values outside the range [Q; — 1.5 IQR, Q; + 1.5 - IQR] are considered extreme and
may indicate data drift. This dual outlier framework—combining Z-score and IQR
screening—improves accuracy and robustness, ensuring that retained values
represent physically plausible and statistically consistent measurements. Once the
dataset is cleaned of missing and extreme values, the system computes derived
temporal features that quantify evolving patterns and enhance interpretability. The
feature-engineering stage generates higher-level metrics such as rolling mean, rolling
standard deviation, first differences, and lag features. The rolling mean x; and rolling
standard deviation s, over a moving window of size w are defined as:

w-1

28 = (1/w) x Zx_

k-0
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se = (1/w) x Z(xt—k —x@)?
k-0

These features capture local trends and volatility, providing insight into the short-term
stability of sensor readings. The temporal change between consecutive readings is
computed as:

AxB = xB — x@_4

This highlights sudden deviations, often indicative of potential anomalies or system
events. To detect prolonged sensor inactivity, the framework checks for consecutive
identical values across Ktime steps. A flatline indicator F; is defined as:

Fo— {1, if X¢ = X¢_q =+ = Xe— for K = threshold
£ 0, otherwise.

Flatline detection helps identify faulty sensors that report constant values over
extended durations—an important aspect of assessing data reliability. Together, the
missing-data treatment, outlier detection, and feature-engineering stages form the core
refinement layer of the SmartCity data-quality pipeline. These operations transform
raw, noisy sensor readings into a structured, continuous, and statistically consistent
time series, ready for subsequent resampling and high-quality dataset construction. By
combining mathematical rigor with configurable parameters, the methodology ensures
that the resulting data are accurate, complete, consistent, and interpretable, satisfying
the key quality dimensions required for reliable smart-city analytics.

4.3.3 Resampling and High-Quality Dataset Construction

The concluding stage of the formal data-processing pipeline involves temporal
resampling of the cleaned sensor streams and the construction of a High-Quality (HQ)
dataset that satisfies all established data-quality dimensions. This stage ensures that
all previously validated and imputed observations are aggregated at consistent
temporal intervals and exported in a standardized structure suitable for analytical
evaluation and visualization. The outcome is a dataset that is duplicate-free, temporally
aligned, range-validated, statistically consistent, and complete—fulfilling the
fundamental criteria of accuracy, completeness, and consistency in data-quality
assessment.
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Sensor data collected in smart-city environments are often recorded at irregular or
device-specific intervals, which can hinder statistical comparison and temporal
modelling. Resampling converts such irregular sequences into uniform time grids by
aggregating values into fixed time buckets (e.g., hourly, daily, or monthly). Let the
cleaned time-series after imputation be X = {x;,x,,...,x; jwith corresponding
timestamps t;. For a chosen resampling frequency f € {H,D,M} (Hourly, Daily, or
Monthly), each period P; is defined as a set of timestamps belonging to that interval.

X PB = (1/|PB|) x Z_{t; € PB}x;

Where | P; | is the number of valid points in the interval P;. If | P; |= 0, the resampled
value is set to NaN, preserving transparency of missing intervals. The resampling
operator transforms the original series into a new time-indexed series X, =
{Xp,, Xp,,..., Xp_}, Where m depends on the total observation window and the chosen
frequency f. However, resampling introduces certain caveats: if a large proportion of
data within a window is missing, the mean may not accurately represent the period’s
true conditions. Therefore, resampling is performed only after imputation and outlier
correction to prevent distortion of underlying statistics.

Following resampling, the cleaned and temporally harmonized data are assembled into
the final High-Quality (HQ) dataset. The HQ dataset represents the definitive product
of the data-quality pipeline and serves as the foundation for evaluation and
visualization. It adheres to a strict post-processing contract ensuring that all integrity
and consistency conditions are satisfied. The formal definition of the HQ dataset Dy,

is given as:
D_HQ = {xB; € X|6(t) =0,90(xB;) =1,xB; # NaN}

where:
e 6(t;)) =0, ensures that no duplicate timestamps exist,
e ¢(x¢) =1, confirms that the value has passed validity screening,

e Xx; # NaN, guarantees the absence of unhandled missing values.

Thus, every observation in Dy, represents a verified, validated, and temporally aligned

data point. To maintain reproducibility, the system records metadata such as:
« Number of duplicates removed (Ngyy),

e Invalid values replaced (N;,,,),
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« Imputed values (N;y),

o Outliers flagged (N,,;), and

o Resampling frequency fapplied.
This metadata is stored alongside the HQ dataset in a JSON report, ensuring
transparency and auditability of every computational step. The HQ dataset
construction phase also supports strict and flexible configurations. In strict mode, only
records with complete values are retained, ensuring absolute completeness. By
ensuring consistent temporal resolution, attribute validity, and completeness, the
process transforms disparate raw sensor streams into comparable analytical units.
This not only enhances data interpretability but also ensures that subsequent
evaluation metrics—such as accuracy, completeness, and stability—are grounded in
reliable data structures. Moreover, the creation of HQ datasets for each attribute forms
the basis for comparative benchmarking across time, sensors, or configurations, a
critical aspect of data-centric experimentation emphasized in this thesis.

4.4 Experimental Setup and Procedure

This section outlines the experimental setup and execution procedures used to test the
proposed SmartCity data-quality framework. It defines the computing environment,
datasets, parameter grid, and workflow for systematically testing and benchmarking
the methodology's performance. The experimental setup is intended to ensure that all
processes—from data ingestion to quality evaluation—are carried out under controlled,
reproducible conditions, allowing for objective comparison across datasets and
parameter settings. The technical context of experimentation is established by
providing details on the hardware and software environment, the properties of the
datasets under study, and the changeable experimental parameters. The section also
explains the entire procedural flow that occurs through the system's user interface,
emphasizing how user-defined options influence data processing and quality
assessment. Finally, repeatability techniques including provenance logging, fixed
random seeds, and consistent file-naming conventions are explored to ensure that all
results are transparent and verifiable. This structured experimental design empirically
demonstrates the suggested methodology's dependability, scalability, and
generalizability.

4.4.1 Experimental Environment and Parameter Configuration

The experimental evaluation of the proposed SmartCity data-quality framework was
conducted within a controlled computing environment designed to ensure consistent
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performance, reproducibility, and scalability. All experiments were executed on a
Smart city Compute Task wrapper. This configuration provided adequate
computational resources for handling large-scale sensor datasets and performing time-
series analyses efficiently. The software environment was implemented using Python
3.10, with core dependencies including pandas (v2.1.1) for data manipulation, NumPy
(v1.26.0) for numerical operations, Matplotlib (v3.8.0) for plotting and visualization, and
SciPy (v1.11.3) for statistical computation. The interactive user interface (Ul) was
developed using the NiceGUI framework, which enables seamless interaction between
the Python backend and visualization frontend. All code modules, including data
ingestion (csv_streams.py, excel_streams.py), processing (task_impl.py, options.py,
output.py), and visualization (streamvis.py), were deployed within this environment and
orchestrated by the SmartCity Task Wrapper for automated task scheduling and
execution.

The framework was validated using multiple air-quality and environmental datasets
collected from simulated smart-city sensor networks and open-source repositories.
These datasets represent diverse sensor attributes such as air temperature (°C),
barometric pressure (hPa), relative humidity (%), wind speed (m/s), and solar radiation
(W/m2). Each dataset was structured as a time-series stream containing a timestamp
column and multiple numeric attributes, stored in CSV or Excel (.xls/.xIsx) formats. The
datasets span different time intervals, sampling rates, and data densities to
comprehensively test the adaptability of the data-centric methodology. On average,
each dataset contained approximately 28,000—-30,000 rows and covered a temporal
range of several months, with varying degrees of missingness, duplicates, and outliers.
This heterogeneity was intentionally preserved to assess the robustness of the
framework across multiple data-quality conditions and to confirm its generalization
capability to unseen sensor streams.

4.4.2 Concept Solution Description

The suggested experimental setup employs a data-centric solution flow, with each
dataset going through a predetermined series of quality-oriented activities before being
approved as a high-quality (HQ) air-quality dataset. The Air Quality Index (AQI) dataset
(Input) serves as the starting point. In practice, this dataset may originate from several
sensors or external sources, and hence may not always be in the exact structure
required by the SmartCityCloud environment. As a result, the first stage is import
preparation, which includes adding or normalizing a timestamp column to ensure that
each record is identified in time. This is critical since all subsequent operations—
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resampling, imputation, outlier detection, label checks, and OOD generalization—are
time-series operations that necessitate a proper temporal index.

Label quality check

Import o scc by Timestamping AQI
@ :ccncrimesiamo Gatanet Prepiocessed L
v. g ) —) Data Augmentations
Air quality index Smartity cloud Exploratory Data F Engi .
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E V’ mm—— Auditability ——
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The JSON file Data Evaluation High Quality
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Figure 10. Concept Solution Diagram

Following this preparation, the dataset is uploaded or linked to the SmartCityCloud
(SCC), which serves as the primary data repository. SCC is responsible for storing
various sensor streams in a consistent, time-indexed fashion. At this point, the AQI
dataset is integrated into the same context as other smart-city data, allowing for
comparison, resampling, and running the same task wrapper on other attributes. The
Fig 10 also mentions that SCC may "timestamp the AQI dataset,” — which means it
can enhance or regularize the time column if the original source has irregular or
missing timestamps, assuring system interoperability.

The subsequent key block is Exploratory Data Analysis (EDA) Fig 11. During this
stage, the implementation performs the descriptive and structural checks you
previously created: counting missing values, detecting duplicate timestamps,
displaying basic statistics, visualizing trends and boxplots, and identifying potentially
invalid ranges for attributes such as temperature, pressure, or humidity. EDA is used
not just for human inspection, but also to generate preprocessed data, which is then
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input into quality procedures. This is where you use the options set earlier in the
process (resample frequency, z-threshold, imputation method). This stage produces a
cleaned, temporarily ordered AQI series that is ready for more rigorous quality
enforcement.
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Figure 11. Exploratory Data Analysis for AQI Data

The subsequent step post the EDA is “Data Quality Operations (Ensuring high-quality
data)” Fig 12. This is the core of your thesis contribution and consists of four logical
stages:
e Label Quality Check: Ensures correctness of labels such as sensor-based
conditions (e.g., SRAD > 0), preventing analytical bias from mislabeled records.
e Data Augmentation: Introduces controlled noise or artificial missingness to test
the robustness and generalizability of the pipeline across diverse datasets.
e Feature Engineering: Generates temporal descriptors such as rolling mean,
rolling standard deviation, and first differences to capture trends in AQI data.
e OOD Generalisation: Splits the series into base and future segments and
compares their statistical profiles to detect distribution drift in sensor data.

Label Quality Check
- Detect mislabeled AQ| values
- Use Data Shapley value (shap Library)

Data Augmentation
- Generate synthetic data (e.g., time interpolation)
- Simulate sensor noise for robustness(tsaug library)

High Quality Dataset

Preprocessed Dataset

00D Generalization

- Apply data-centric techniques to fine-tune dataset

Figure 12. Data Quality Operations
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Once these operations are complete, the resulting dataset is written as a High-Quality
Dataset (AQI). The data quality operations diagram, which is important: every time the
task is run with a different option set, a separate HQ version is stored (usually with a
timestamped filename). This enables reproducibility and rollback — a key requirement
. In parallel, the pipeline evaluates the dataset against the Data Evaluation Criteria you
defined earlier (accuracy, consistency, completeness, traceability, timeliness,
auditability). These criteria are computed from the counts collected during processing
(missing replaced, outliers flagged, duplicates removed, OOD flags, etc.). Finally, the
system produces the JSON file (Output). This file is the machine-readable report
containing: the options used in the run, the quality metrics for the six dimensions, any
warnings (e.g. “high missingness in February”), and references to the HQ dataset that
was saved. This JSON is what the Ul can display in your evaluation dashboard and
what you can later include in Chapter 6 for results. In this way, the concept solution
diagram shows a closed loop: raw AQlI — SCC — analysis — quality enforcement —
HQ dataset — JSON report — fully aligned with the data-centric, reproducible
methodology defined in Chapter 4.

4.5 Assumptions, Limitations, and Summary

This section describes the underlying assumptions, methodological restrictions, and
validation metrics used in the design and evaluation of the proposed data-quality
framework. Every data-centric methodology is based on some simplifying assumptions
about sensor behavior, data distribution, and temporal stability, which are required for
formalization but may affect generalizability. The identified constraints emphasize
potential sources of uncertainty, such as heuristic parameter sets, dataset reliance,
and imputation bias, which can all have an impact on results interpretation.
Furthermore, mitigation measures and sensitivity assessments are described to
guarantee that these constraints are addressed consistently and their consequences
are minimized. The section concludes with a summary that links the methodological
framework presented in this chapter to the practical realization described in Chapter 5
and the empirical evaluation presented in Chapter 6, thereby completing the bridge
between conceptual design, system implementation, and quantitative assessment.

4.5.1 Assumptions

The proposed methodology is developed under a set of foundational assumptions that
ensure the stability and interpretability of the data-quality evaluation process. It is
assumed that the sensor metadata provided by the SmartCityCloud environment,
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including timestamps, units of measurement, and attribute labels, is accurate and
reliable, allowing for consistent parsing and identification of variables. Furthermore, the
validity bounds defined for each attribute (such as temperature, pressure, or humidity)
are considered to be approximate yet representative of realistic environmental
conditions. These bounds are derived from empirical studies and literature but may not
perfectly capture local or seasonal variations. Finally, the approach presumes
stationarity within the baseline window used for out-of-distribution (OOD) stability
checks—that is, the statistical properties of the reference data segment (mean and
variance) remain relatively constant over the observed period. This assumption
enables meaningful comparison between baseline and future windows, forming the
basis for detecting drift or instability in long-term sensor performance.

4.5.2 Limitations and Chapter Summary

While the proposed methodology provides a structured and automated framework for
smart-city data-quality assessment, several limitations and validity threats must be
acknowledged. The first limitation arises from the use of heuristic validity bounds,
which, although empirically grounded, may not universally represent all sensor
operating environments. This introduces potential bias when attributes deviate from
expected physical ranges due to local calibration differences or extreme environmental
conditions. Similarly, the Z-score-based outlier detection approach exhibits sensitivity
to the underlying data distribution; highly skewed or non-Gaussian variables may yield
false outlier flags or overlook subtle anomalies. The imputation methods (forward fill,
backward fill, and linear interpolation) also introduce bias when missing values span
large gaps or when the signal exhibits nonlinear dynamics. Moreover, the evaluation
outcomes depend partly on dataset specificity—that is, the heterogeneity and volume
of the sensor streams used for testing—which may affect the generalizability of the
reported results to other cities or sensor infrastructures.

To address these challenges, several mitigation and sensitivity measures are
incorporated into the experimental design. Parameter option sweeps are conducted to
evaluate the influence of varying thresholds, resampling frequencies, and imputation
strategies, ensuring that conclusions are not dependent on a single configuration.
Alternative statistical thresholds and adaptive methods are compared to assess the
stability of quality metrics across different parameter settings. In addition, manual spot
audits—involving direct inspection of selected datasets and their visual summaries—
are performed to verify the correctness of automated decisions, particularly in outlier
and imputation validation. Together, these measures strengthen the robustness and
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reliability of the findings. This section also concludes the methodology chapter by
establishing continuity with the subsequent parts of the thesis: Chapter 5
(Implementation) details how the defined processes and algorithms are realized in
software. In contrast, Chapter 6 (Results and Evaluation) presents the empirical
performance of the framework across diverse datasets. Collectively, these chapters
transform the conceptual and formal models introduced here into practical outcomes,
completing the transition from theoretical design to experimental validation.

4.6 Summary

Overall, Chapter 4 presented the methodological framework that operationalizes the
thesis’'s data-centric quality engineering approach by defining a systematic,
reproducible, and transparent workflow for preparing heterogeneous smart-city time-
series data. The chapter outlined the conceptual rationale for the methodology,
explaining how design choices were informed by challenges identified in the
literature—namely, temporal heterogeneity, missingness, outlier behavior, and label
fragility. It then detailed the end-to-end system architecture, covering data ingestion,
stream typing, timestamp normalization, and the overall workflow required to transform
raw sensor datasets into analysis-ready inputs. The formal processing pipeline was
introduced, defining each operation—validity screening, missing-data treatment, Z-
score outlier detection, rolling statistics, feature engineering, resampling, and HQ
dataset construction—as structured, parametrizable procedures that ensure consistent
and explainable transformations across datasets. The chapter further described the
experimental setup, including parameter configurations, concept-solution logic, and
the generation of artifacts such as HQ datasets and JSON provenance reports that
support auditability and reproducibility. Finally, the assumptions and limitations
underlying the methodology were acknowledged, along with mitigation measures such
as parameter sweeps, sensitivity analyses, and manual spot audits, thereby
positioning the methodology as a scientifically grounded bridge between the
foundational concepts and the implementation and evaluation presented in Chapters
5and 6
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5 Implementation

This chapter describes the practical application of the concepts, data pipelines, and
design principles introduced in earlier chapters. Building on the methodological
foundation presented in Chapter 4, the implementation transforms the suggested data-
centric pipeline into a fully functioning system within the SmartCityCloud (SCC)
environment. While previous sections highlighted the limitations of existing model-
centric approaches and the importance of high-quality, traceable sensor data, this
chapter shows how those theoretical foundations are realized through code, modular
architecture, and automated data-quality evaluation mechanisms. The implementation
details include SmartCity Compute Task Wrapper configuration, environment setup,
integration of local development with SCC's cloud infrastructure, and the
implementation of each functional component—from data ingestion and exploratory
analysis to validation and high-quality (HQ) dataset generation. This section bridges
methodological design and execution, providing a comprehensive view of how the
proposed system addresses the missingness, inconsistency, and traceability
challenges identified in the state-of-the-art review, thereby establishing a reproducible
foundation for the Results and Evaluation chapter.

5.1 SmartCityCloud Context and Data Sources

This section describes the technology and data foundations for the proposed
implementation. It describes the SmartCityCloud (SCC) platform, which serves as the
underlying cloud infrastructure for large-scale management, processing, and analysis
of various sensor data streams. The debate focuses on how environmental and urban
sensors generate data, notably air-quality information, which is then stored and
transmitted in common forms such as CSV. This section also describes the structure
and semantics of the Air Quality Index (AQI) dataset used in this thesis, including its
properties, temporal characteristics, and data-generation workflow inside the SCC
ecosystem. By creating this backdrop, the section gives the necessary understanding
of the platform architecture and sensor data flow, on which the future compute-task
implementation is based.

5.1.1 SmartCityCloud Platform and Sensor Data Generation

The SmartCityCloud (SCC) is a modular, cloud-based platform for managing,
processing, and evaluating sensor data from a variety of smart city domains. It offers
an integrated platform that enables real-time and batch analytics, allowing for scalable
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data management in urban applications including traffic monitoring, forest inspection,
environmental evaluation, parking management, and drone-based surveillance. The
platform's architecture is layered, with layers for data intake, processing, storage, and
visualization that work together to ensure that data streams from diverse sources are
processed equally. As described in Chapter 4, compute tasks are deployed using the
SCC's Compute Task Wrapper, which encapsulates the execution environment and
allows users to add custom Al or data-quality modules without affecting the underlying
infrastructure. This modularity enhances interoperability and facilitates the rapid
prototyping of analytical solutions for various urban scenarios.

The creation of sensor data is critical to this architecture. Sensors located across the
city continuously record environmental data such as air temperature, humidity, wind
speed, sun radiation, barometric pressure, and rainfall. These measurements are sent
to the cloud in organized tabular format—typically as comma-separated values (CSV)
files or live data streams—with each record labelled with a timestamp and, in some
circumstances, a geographical identifier. The CSV format is a lightweight and
consistent way to describe heterogeneous sensor outputs, ensuring interoperability
with both local compute environments and SCC ingestion interfaces. Each dataset
follows a consistent schema: a timestamp column indicating the measurement time,
followed by attribute columns representing sensor readings with associated physical
units (e.g., °C for air temperature, % for humidity, m/s for wind speed). The SCC
ingestion layer validates the structural integrity of these files, detects missing or
duplicated entries, and stores them in cloud-based repositories for subsequent
analysis.

The dataset employed in this thesis, the Air Quality Index (AQI), is an example of such
data production. It collects continuous air-quality readings from scattered sensors and
uses important environmental indicators to assess atmospheric conditions. This
dataset, stored in CSV format, serves as the experimental foundation for testing the
data-quality measures and analytical methods described later in this chapter. The
SmartCityCloud platform and its standardized sensor data pipelines create a solid
foundation for executing compute activities and verifying data-centric Al approaches
that aim to improve data reliability, traceability, and overall quality in smart-city
ecosystems.
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5.1.2 AQI Dataset: Structure & CSV Layout

The Air Quality Index (AQI) dataset is the key data source for assessing the proposed
data-quality methodology in the SmartCityCloud environment. It is a time-series sensor
dataset compiled by many environmental monitoring devices spread throughout the
urban network. Each record refers to an instantaneous measurement taken at a
specified timestamp, representing atmospheric and meteorological variables that
together characterize local air quality conditions. The dataset is saved in structured
comma-separated values (CSV) format, making it simple to import, preprocess, and
validate within the SmartCity Compute Task Wrapper.

The dataset used in this thesis comprises approximately 28,448 rows and a fixed set
of sensor-based attributes. Table 4 summarizes the main columns, their physical
meanings, and measurement units.

Attribute Description Unit Typical Range
CollectedDateAt Timestamp of data collection — ISO 8601
(synchronized to sensor clock) datetime
AirTemperature Ambient air temperature °C —20to 50
measured near the surface
Humidity Relative humidity in the % 0 to 100
atmosphere
WindSpeed Instantaneous wind speed m/s 0 to 60
WindDirection Direction of wind flow ° 0 to 360
measured clockwise from north
SRAD Solar radiation intensity W/mz 0 to 1200
BarometricPressure Atmospheric pressure at hPa 870 to 1080
ground level
Rain Daily rainfall accumulation mm/day 0 to 500
Flag (optional) Quality indicator for flagged or — 0=valid, 1=
missing records flagged

Table 4. AQI Dataset Attributes

Each attribute represents a continuous numeric stream sampled at regular intervals.
In the provided dataset, the sampling cadence corresponds approximately to 10-
minute intervals, enabling both fine-grained temporal analysis and monthly
aggregation for detecting long-term trends. The dataset includes occasional missing
values, duplicates, and anomalous readings, which are intentionally retained to
evaluate the system’s ability to perform data cleaning, outlier detection, and imputation.
The presence of these real-world irregularities ensures that the proposed data-centric
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guality evaluation methods—such as z-score—based outlier identification, rolling mean
smoothing, and resampled aggregations—can be rigorously validated.

A typical CSV layout of the dataset is shown below in Table 5 (values redacted for
privacy and readability):

Collected | AirTemp | Humidi | WindS | WindDir | SRAD | Barometric | Ra
DateAt erature ty peed ection Pressure in
2023-01- | 6.171400 | 46.320 | 1.7506 | 111.540 | 19.868 | 1019.44350 | O
01 796 71397 7247 56612 3
00:00:00

2023-01- | 4.714289 | 49.228 | 3.1623 | 357.936 0 1018.40230 | O
01 308 60209 | 89981 1896 8
00:30:00

2023-01- | 6.226648 | 48.232 | 4.5433 | 137.914 | 25.907 | 1017.60483 | O
01 054 69796 | 12422 5006 54152 8
01:00:00

2023-01- | 6.615140 | 49.449 | 6.2368 | 136.310 | 60.921 | 1018.58129 | O
01 918 152 40863 372 19426 7
01:30:00

2023-01- | 7.717235 | 56.430 | 1.9327 | 322.869 0 1017.69595 | O
01 023 89952 5409 064 9
02:00:00

Table 5. Sample records from AQI Datasets

This structured format ensures seamless integration with the SmartCityCloud ingestion
module, where each column is automatically detected as a separate data stream and
analyzed within the Exploratory Data Analysis (EDA) and Data Quality modules
implemented in this work. The AQI dataset thus provides a representative and
challenging basis for testing the robustness of the proposed cloud-based, data-centric
guality assurance framework.

5.1.3 Data Ingestion into SmartCityCloud

The data ingestion pipeline describes how sensor data files are introduced, registered,
and prepared for analysis in the SmartCityCloud (SCC) environment. This method
serves as the first step in the cloud's data pipeline, ensuring that incoming datasets
are standardized, version-controlled, and easily accessible for compute-task
execution. The pipeline starts with data collection from field-deployed sensors, which
send raw readings in the form of CSV or Excel files with timestamped environmental
measurements such air temperature, humidity, wind factors, and sun radiation. These
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files are then loaded into the SCC platform via a regulated ingestion interface, which
validates the structure and information before further processing.

In this implementation, the data ingestion process is integrated into a user-friendly
graphical interface (Ul) that enables direct uploading of CSV or Excel files through the
SmartCityCloud Compute Task platform Fig 13. Upon upload, the system automatically
identifies the file type and processes it using the corresponding data reader module—
CsvStreamReader for comma-separated files or ExcelStreamReader for
spreadsheets. Each dataset is internally decomposed into multiple data streams, with
each stream representing a single sensor attribute such as air temperature, humidity,
or solar radiation. The ingestion layer further performs automated timestamp detection
and data-type assignment to maintain consistency. All datasets follow a structured
naming format (e.g., AQI/AirTemperature) and include version tracking to ensure
reproducibility and auditability across evaluations. This streamlined workflow forms a
crucial bridge between raw sensor inputs and SmartCityCloud’s computational
environment, enabling a seamless transition from data acquisition to standardized
analytical processing within the Compute Task Wrapper.

Sensor Data Generation

(CSV / Excel)

User Upload via Ul

(Upload CSV / Excel)

Data Readers

(CSV / Excel Stream Readers)

Compute Task Wrapper
(Auto Timestamp & Stream

Mapping)

Standardized Data Streams

(Ready for EDA + Quality Tasks)

Figure 13. Data Ingestion Workflow
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5.2 SmartCity Compute Task Wrapper

This section introduces the SmartCity Compute Task Wrapper, the main execution
framework that enables the modular and flexible implementation of analytical activities
on the SmartCityCloud platform. The wrapper serves as an abstraction layer between
raw sensor data and computational logic, allowing researchers and developers to
incorporate new data-centric or Al-driven workflows without affecting the cloud
architecture. It standardizes critical processes, including data loading, validation,
transformation, and result export, ensuring interoperability and reproducibility across
several smart-city applications. As part of this thesis, the Compute Task Wrapper was
improved and expanded to allow data-quality operations, Exploratory Data Analysis
(EDA), and high-quality (HQ) dataset production. This contribution not only improves
the system’s scalability and maintainability but also demonstrates how a unified
compute framework can facilitate Al task execution on heterogeneous urban datasets,
bridging the gap between theoretical design and practical deployment within
SmartCityCloud.

5.2.1 Role as a Common Execution Platform

The SmartCity Compute Task Wrapper acts as a unified execution platform that
simplifies and standardizes the integration of analytical tasks within the
SmartCityCloud (SCC) ecosystem. As sensor data in smart-city environments
originates from heterogeneous sources with varying formats and sampling rates, direct
algorithm implementation becomes complex and inconsistent. The wrapper resolves
this by offering a standardized interface that abstracts low-level data handling, enabling
developers to focus on analytical logic. Its modular structure converts key operations—
such as input discovery, stream parsing, option setup, task execution, and output
generation—into reusable components, supporting plug-and-play development of new
modules like data-quality analysis or anomaly detection without altering the core
infrastructure. By managing task lifecycles and enforcing a consistent input—output
structure, the framework ensures interoperability and reproducibility across datasets
and projects. Overall, it forms the foundation of the SCC analytical layer, enabling
scalable, maintainable, and reliable deployment of Al-driven and data-centric
applications in smart-city contexts.

5.2.2 Wrapper Architecture and Extensibility Model
The SmartCity Compute Task Wrapper is the foundational architectural component

that integrates data ingestion, processing, visualization, and output generation in the
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SmartCityCloud (SCC) framework. It captures the technological difficulty of managing
heterogeneous smart-city sensor data through a layered and extensible framework. As
depicted in Fig 14, the architecture is made up of four interconnected layers: the User
Interface Layer, the Compute Task Layer, the Data Stream Layer, and the Data
Storage Layer. These layers constitute a standardized execution pipeline that allows

users

to run analytical or Al-based operations with little configuration work while

ensuring reproducibility, maintainability, and interoperability across datasets and
projects.

9,
O
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| SmartCity Compute Task Wrapper Data stream Layer Storage Layer
Input Data

------------------------------------ -+ DataStreams

User Interface layer 1/ &= L
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Compute Task layer
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Web Interface

Task Implementation
(Task Options + Logic) Input Reader

E Qutput Reader

Python Code
(Provided)

Output Data

Data Streams O

Output Data Visualization

Figure 14. SCC Compute Task Wrapper Architecture

User Interface Layer - The User Interface Layer represents the topmost
abstraction through which users interact with the SmartCityCloud platform. It is
implemented using the NiceGUI framework in the show_ui.py module, which
automatically generates a responsive web interface. This interface allows users
to log in, upload input datasets (in CSV or Excel format), configure task
parameters, and visualize the results of the computation. The Ul communicates
directly with the Compute Task Wrapper through the AutoTaskRunnerUI class,
dynamically loading available tasks and their configurable options.

When a user uploads a dataset, the interface immediately triggers the ingestion
process and displays input-data previews and configuration panels. After
execution, the results—such as statistical summaries, visual plots, or high-
quality (HQ) dataset exports—are rendered back in the Ul as part of the
visualization dashboard Fig 15. This design ensures that even non-technical
users can interact with the analytical pipeline without needing to modify the
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codebase, establishing an accessible yet controlled environment for urban data
analysis.

!
P ‘ SmartCityCloud Compute Task Executor Signed in as: adm LOGOUT

SmartCityCloud « EDA + Data Quality

Upload Data File ~
pload a CSV or Excel file to use for EDA and Data Quality anz

AQR_Data.xlsx v

2.3MB/ 100.00%

Data Summary -~
Quick Overview

File: AQR_Data.xlsx (2.3 MB)

Rows: 28,448 | Columns: 8

Column types: 7 numeric, 1 date/time, 0 text/ather

Overall missing data: 0.9% of all cells

Figure 15. Smartcity Cloud User Interface

b) Compute Task Layer - The Compute Task Layer is the computational
backbone of the SmartCity Compute Task Wrapper. It manages the entire job
lifecycle in four standardized stages: discover, options, process, and write,
ensuring a consistent and reproducible workflow across all analytical modules.
During the discover phase, the wrapper automatically analyzes accessible
datasets in the inputs/ directory and recognizes them as data streams for
analysis. The options stage then exposes changeable parameters defined in
task_impl.py's get default_options() method, allowing for dynamic task
customization prior to execution. In the process phase, the core analytical logic
executes operations such as missing-value detection, z-score—based outlier
identification, rolling mean smoothing, or feature generation, depending on the
task type. Finally, the write phase serializes the processed results through
standardized stream writers, ensuring consistent formatting for visualization and
storage. This lifecycle enforces a strict input—output contract that allows tasks
to operate independently while maintaining interoperability with other
SmartCityCloud components.
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Compute Task Options

Select Attributes for EDA & Data Quality

SELECT ALL| | CLEAR ALL
AQR_Data/AirTemperature ] AQR_Data/Humidity [_] AQR_Data/WindSpeed [_] AQR_Data/WindDirection ] AQR_Data/SRAD

: AQR_Data/BarometricPressure :\ AQR_Data/Rain

RUN TASK

Figure 16. Compute Task Options Samples

The graphical interface for configuring task parameters—illustrated in Fig 16 is
automatically generated by the system using the Compute Task Options
framework. Each task option defined in the code (e.g., numeric sliders,
dropdown selections, or Boolean toggles) is dynamically translated into an
interactive widget within the user interface. This design provides an intuitive
bridge between the user and the underlying Python implementation, enabling
users to control algorithmic parameters such as detection sensitivity, threshold
levels, or choice of anomaly detection method without modifying the source
code. The figure demonstrates a typical configuration panel, where options for
selecting the numeric stream attributes that need to be analysed with respect to
the timestamp attribute. Such modular option handling not only enhances
flexibility and usability but also ensures that the same computational logic can
be applied to varied datasets or use cases with minimal configuration. This
adaptability exemplifies the extensibility of the Compute Task Layer and its role
in enabling user-driven experimentation and reproducible Al workflows within
the SmartCityCloud environment.

Data Stream Layer - The Data Stream Layer acts as the intermediary between
computation and storage, transforming raw datasets into structured, streamable
objects. It handles data flow, type inference, and conversion across multiple file
formats. The implementation utilizes specialized stream classes such as
CsvStreamReader, ExcelStreamReader, and ImageStreamReader, each
responsible for parsing a specific data type and converting it into unified
DataStream objects.

Once ingested, each attribute in the dataset (e.g., AirTemperature, Humidity,
SRAD) is treated as an independent data stream. The StreamReader and
StreamWriter interfaces define how these streams are read and written,
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supporting both real-time and batch modes. This abstraction enables low-
latency data access and pipeline flexibility, ensuring that analytical modules can
handle continuous or discrete inputs without additional transformation. The layer
thus provides an essential bridge between physical data representation and the
logical processing model used by compute tasks.

d) Data Storage Layer - The Data Storage Layer manages persistent input and
output datasets within the SCC system. It stores raw data files, processed
results, and high-quality (HQ) outputs produced after cleaning, imputation, and
augmentation. The storage layer ensures that each dataset is versioned and
traceable, allowing experiments to be reproduced consistently. Input datasets
are typically placed in the /inputs folder, while output artifacts—such as
processed CSV/Excel files, JSON reports, or visualizations—are written
automatically to the /outputs directory through the wrapper’s stream writers.

In the current local implementation, the layer relies on filesystem storage but
maintains a structure that can be easily extended to cloud databases or
distributed storage systems. Each stored file retains a metadata signature
containing dataset name, timestamp, and attribute identifiers, enabling efficient
retrieval during subsequent analysis or evaluation.

The interaction among the four layers of the SmartCity Compute Task Wrapper follows
a top-down execution flow that ensures smooth data movement from ingestion to
visualization. The User Interface Layer initiates the workflow when a user uploads a
dataset and selects a task. The Compute Task Layer then retrieves configuration
options and executes the analytical logic, while the Data Stream Layer manages data
flow between input readers, processors, and output writers to maintain consistency
and synchronization. Finally, the Data Storage Layer saves the processed outputs,
which are sent back to the interface for visualization and interpretation. This
standardized lifecycle—discover — configure — process — visualize — store—
ensures uniformity, reproducibility, and reliability across all analytical tasks within
SmartCityCloud.

A key contribution of this thesis is the extension of the wrapper to support data-quality-
centric compute tasks, enabling advanced operations such as missing-value detection,
outlier analysis, imputation, and high-quality dataset generation. These enhancements
adhere to the same base interfaces (TaskRunner, DataStream, and
ComputeTaskOption), ensuring seamless compatibility with existing components. The
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architecture remains fully extensible, allowing future integration of Al-driven models
like predictive air-quality forecasting or anomaly detection without structural changes.
This modular, plug-and-play design establishes the Compute Task Wrapper as a
scalable and reusable analytical framework for both experimental research and large-
scale smart-city applications.

5.3 Local Environment Setup

This section describes the complete setup process required to replicate and execute
the developed SmartCityCloud (SCC) Compute Task Wrapper in a local computing
environment. Establishing a consistent and reproducible setup is essential for ensuring
that the implementation can be deployed seamlessly across different systems and
development platforms. The section outlines the step-by-step procedure for cloning the
project repository from GitLab, installing required dependencies and toolchains, and
configuring the working environment using Python and Conda. It also covers the
procedures for connecting the local workspace to the GitLab remote repository to
facilitate version control, collaborative development, and continuous integration.
Finally, reproducibility practices—such as environment pinning, version locking, and
consistent seed initialization—are discussed to guarantee that all experiments and
executions can be reliably reproduced under identical conditions.

5.3.1 Cloning from GitLab and Repository Layout

The implementation of the SmartCityCloud (SCC) Compute Task Wrapper began by
cloning the official template repository from the TU Chemnitz GitLab server into a
dedicated working directory on the local machine. A separate folder named
SmartCityCloud-template was created to maintain an isolated environment for
development and experimentation. Using Git, the repository was cloned from the
university’s remote instance via the following command executed in the terminal

# Clone repository from TU Chemnitz GitLab
git clone https://gitlab.hrz.tu-chemnitz.de/smartcitycloud/smartcitycloud-
template.git

This operation downloaded the entire SCC Compute Task Wrapper source code,
including all submodules and configuration files. After cloning, a Python 3.11 Conda
environment was created and activated to ensure a clean and reproducible
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workspace for running the project. The environment was set up using the following
commands:

conda create --name SmartCityCloud python=3.11

conda activate SmartCityCloud

The cloned repository followed a well-defined folder structure designed for modular
development and task execution. A simplified overview of the repository layout is
shown below:

SmartCityCloud/

|

F—— app/ - Core application codebase

| F— show_ui.py - Launches the SmartCityCloud user interface

| F—— task_impl.py - User-defined compute task implementation

| — auto_ui/ - Auto-generated UI components and visualization

| F—— compute/ -» Core compute engine, task runner, and options

| — streams/ -» Data stream handling modules (CSV, Excel, Image)
| L storage/ - File readers/writers for input and output streams
|

F—— inputs/ > Folder for user-uploaded datasets (CSV/Excel)

F—— outputs/ - Folder for processed results and exported reports
F—— requirements.txt - List of dependencies for environment setup

L— README.md -» Documentation and usage instructions

Once the repository was cloned and dependencies were installed, a sample “Hello
World” program was executed to verify successful setup and connectivity. The
task_impl.py file was modified to print a simple message within the Ul framework,
confirming that the Compute Task Wrapper, the NiceGUI interface, and the local
environment were functioning correctly. The test output displayed “Hello,
SmartCityCloud!” in the browser interface, indicating that the cloning and configuration
were completed successfully and the local SCC environment was fully operational for
further implementation work.

5.3.2 Dependency Installation and Environment Configuration

The development and execution of the SmartCityCloud (SCC) Compute Task Wrapper

required a consistent software toolchain capable of supporting asynchronous web

frameworks, data-stream processing, and user-interface rendering. To ensure
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reproducibility and cross-platform compatibility, a dedicated Conda environment was
configured using Python 3.11, serving as the foundation for all compute and
visualization tasks. This environment guarantees that the same dependency versions
are preserved throughout testing, deployment, and evaluation stages. These libraries
support the compute framework, user interface, and visualization modules. The
dependencies can be grouped as follows:

e Data Processing and Analytics: pandas, numpy, scipy, and pytz for time-
series manipulation, numerical operations, and statistical computations.

e Visualization and Plotting: matplotlib, contourpy, and fonttools to generate
plots and data-quality dashboards.

e User Interface and Frontend Rendering: nicegui (v2.10.1), jinja2, and
markdown2 for automatic Ul generation, input selection, and display of outputs
via web interface.

e Backend Services and Communication: fastapi, uvicorn, starlette, and httpx
for REST-based service communication and local hosting.

e File and Stream Handling: openpyxl and aiofiles for handling Excel and
asynchronous file 1/0.

e Configuration and Environment Management: python-dotenv for secure
loading of environment variables and system-level parameters.

e Utility and OS Integration: colorama, winshell, and ifaddr for Windows shell
automation, shortcut creation, and network interface resolution.

The dependency installation was carried out using the following procedure within the
Conda environment:

# Step 1: Create and activate Conda environment
conda create --name SmartCityCloud python=3.11
conda activate SmartCityCloud

# Step 2: Navigate to the application directory
cd app

# Step 3: Install dependencies from requirements.txt
pip install -r requirements.txt

# Step 4: Verify installation and dependency integrity
python -m pip check
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The above setup ensures that all libraries—particularly NiceGUI, Matplotlib, and
FastAPl—are configured to support interactive visualization, real-time user input, and
smooth Ul execution. Once installed, the environment can be replicated on any
machine using the same requirements.txt file, guaranteeing portability and
reproducibility of results. To further standardize execution, a configuration file (.env)
was created in the project’s root directory. This file defines environment variables that
manage user authentication, port configuration, and runtime behaviour. The main
parameters are listed below in Table 6. These variables are loaded dynamically
through the function _load_users_from_env() in show_ui.py, ensuring secure user
access and flexible runtime configuration.

Variable Purpose
APP_USERNAME / Default credentials for Ul login
APP PASSWORD
APP_USERS Optional JSON structure for multi-user
access
APP_PORT Defines port for hosting the NiceGUI server
(default: 8080)
APP_LOG_LEVEL Sets verbosity for console logging
(INFO/DEBUG)

Table 6. Application Configuration Variables

Upon execution, the system initializes the NiceGUI server and launches a local web
instance at http://localhost:8080, displaying the SmartCityCloud login page. After
authentication, users can upload datasets, configure options, and execute compute
tasks. The environment setup also supports log management and automatic shortcut
generation (via WinShell) for ease of access.

To maintain long-term reproducibility, version control was integrated using Git. The
following best practices were adopted:
« All dependencies are version-pinned in requirements.txt.
o Commits are regularly synchronized with the TU Chemnitz GitLab repository.
e The Conda environment can be exported using conda env export >
environment.yml for archival.
« Random seeds and configuration options are fixed within task modules to
ensure consistent evaluation results.
This configuration process establishes a portable and deterministic software
foundation for executing SmartCityCloud compute tasks locally. It ensures that all
system components—from data ingestion to Ul rendering—operate in a synchronized
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and reproducible environment, enabling robust experimentation and future scalability
to cloud-based deployments.

5.4 Codebase Walk-through

This section provides a detailed overview of the codebase developed and integrated
as part of the SmartCityCloud (SCC) Compute Task Wrapper implementation. It
explains the functional responsibilities and interactions among the core modules that
collectively enable data ingestion, compute-task execution, visualization, and output
management. The discussion covers the major components of the system, including
the application entry and authentication layer, the auto-generated user interface, the
compute layer, and the data streams and storage modules. Each subsection describes
the internal logic, data flow, and role of individual Python scripts such as show_ui.py,
auto_ui.py, task_impl.py, and the modular packages under compute, streams, and
storage. Together, these modules establish the operational backbone of the SCC
platform, ensuring modularity, extensibility, and reproducibility in executing Al-driven
and data-quality tasks on smart-city sensor data.

5.4.1 Application Entry and Authentication

show_ui.py serves as the application entry point, launching the SmartCityCloud (SCC)
Ul and enforcing authentication before any compute task can run. At startup, it loads
credentials from environment variables (preferably a JSON map via APP_USERS,
otherwise APP_USERNAME/APP_PASSWORD), supports hashed secrets, and
verifies logins with constant-time comparison to reduce timing-attack risk.
Authentication is tracked per client session, so the root route decides at request time
whether to render the login form or the main application. The login view provides
username/password inputs Fig 17, Enter-to-submit handling, feedback toasts on
failure, and a logout action that clears the session and returns users to the login page.

SmartCityCloud * Secure Login

Username

admin

Figure 17 SCC Login Page
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After a successful login, the script wires the compute stack into the interface. It
constructs a TaskRunner around a DelegateComputeTask that references this thesis’s
task hooks (TASK_TITLE, get_default_options(), process()), then uses the Auto Ul
builder to materialize the full configuration and results interface from the option
schema—covering input selection, parameter widgets, execution controls, and
output/visualization panes—without manual routing. Inputs are discovered on demand
(not pre-loaded), which ensures reproducible execution given the same .env, options,
and files. The entry module also sets window aesthetics and can create a desktop
shortcut for convenience, before launching the app as a native NiceGUI window on the
configured port.

5.4.2 Ul layer for Tasks

a. Purpose and role in the system: The Auto Task Runner Ul encapsulated in
auto_ui.py provides a declarative, reusable user interface for executing
SmartCityCloud compute tasks without hand-coding web forms or plots for
each task. It connects the Ul to the core execution wrapper (TaskRunner) and
renders: (i) an upload/ingestion panel, (ii) task options auto-derived from
ComputeTaskOptions, (iii) result visualizations, and (iv) export/evaluation
utilities. This design adheres to the guideline’s recommendation to document
implementation steps and testing artifacts in a reproducible, structured manner
(Implementation — Documentation of the Implementation).

b. Architecture & key components: auto_ui.py builds on NiceGUI and the
wrapper API:

Runner binding: accepts a TaskRunner instance; all Ul actions
delegate to  runner.discover_inputs(), runner.execute(), and
runner.write_outputs() where applicable.

Option rendering: uses OptionVisualizationUl to transform
ComputeTaskOption definitions (e.g., ChoiceOption,
InputStreamMultiChoiceOption) into widgets automatically.

Stream visualization: uses StreamVisualizationUl to produce time-
series and summary plots with automatic down-/re-sampling and
readable date ticks.

Results model: stores task outputs in self.outputs and renders grouped
“‘Summary/Quality/Plots/Evaluation” expansions; utilities convert
DataStream to native values where needed.

76



C.

A minimal sketch of the control flow:

User uploads file - discover_inputs(upload_dir)
-» update options (on_inputs_changed)
User clicks "Run Task" - execute(options) - outputs
-»> render summary/quality/plots
- optional: save HQ datasets / evaluation

Input acquisition & upload workflow: The Ul exposes a file upload that
accepts CSV/Excel and persists it to a temporary folder. After saving, it re-
discovers input streams using the registered readers (CSV/Excel), refreshes
option widgets (so the attribute multi-select reflects the new columns), and
builds a “Quick Overview” with rows/columns, type buckets, and per-column
missingness/min/max. This gives a layperson-friendly yet audit-ready snapshot
before computation. The summary logic detects numeric, datetime, and text
columns, computes overall and per-column missingness, and shows min/max
for numeric fields—supporting data-quality awareness before running the task.
def _ on_upload data(self, e):

# persist upload - discover_inputs(upload_dir, get stream_readers())

self.runner.discover_inputs(self.upload _dir, get_stream readers())

self.stream vis.set inputs(self.runner.inputs)

changed = self._ update_options()

if changed: self._ build option_group(self.options)

self. render_data_summary(target_path)

Fig 18 illustrates the automated data ingestion and initial validation workflow
generated by the AutoTaskRunnerUI. Once the user uploads a dataset (here:
AQI_Data.xlsx), the system immediately analyzes the file and produces a
structured “Quick Overview” summarizing key metadata, including file size, row
and column counts, detected data types, and overall missing-data proportion.
Below this summary, the interface provides a detailed per-column breakdown
showing the inferred type (numeric or datetime), the percentage of missing
values, example entries, and the minimum—maximum ranges. This automatic
inspection step enables users to verify dataset integrity, understand variable
characteristics, and ensure suitability for downstream Exploratory Data Analysis
(EDA) and Data Quality operations without requiring any manual preprocessing.
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[ SmartCityCloud: Exploratory Data Analysis (EDA) + Data Quality Measures

« 2.3MB/100.00%
AQI_Data.xlsx v
2.3MB / 100.00%

Once uploaded, the file will be automatically used for Select Attributes, EDA, and Data Quality operations.

Data Summary

Quick Overview

File: AQI_Data.xlsx (2.3 MB)

Rows: 28,448 | Columns: 8

Column types: 7 numeric, 1 date/time, 0 text/other

Overall missing data: 0.9% of all cells

Tip: numeric columns show min/max; text columns show an example value; date/time columns can be used for time-series plots.

Column Details

Column Type Missing % Example Min Max

CollectedDateAt  datetime 0.0 2023-01-01 00:00:00
AirTemperature  numeric 2.9 6.171400795538421 -17.49 60
Humidity  numeric 3.0 49.22860208798109 0 150
WindSpeed  numeric 1.0 1.7506713973839 0.000432 80
WindDirection  numeric 0.0 111.5407246834344 0.0009136 720
SRAD  numeric 0.0 19.86856612044931 0 1600
BarometricPressure  numeric 0.0 1019.443503129732 850 1023
Rain  numeric 0.0 0.0 10 1891

Figure 18. Auto Task Runner Ul

Auto-rendered options & execution flow: Options are not hard-coded in the
Ul; they’re derived from the task’s default options and rendered via
OptionVisualizationUl. When inputs change, on_inputs_changed in each
option (notably InputStreamMultiChoiceOption) repopulates choices to list only
valid numeric attributes. The “Run Task” button collects widget values and calls
runner.execute. Relevant snippets:

def _ build option_group(self, options: dict[str, ComputeTaskOption]):
with ui.expansion("Compute Task Options", value=True):
for name, option in options.items():
self.option_vis.visualize(name, option)
ui.separator()

self.ui_start btn = ui.button("Run Task", on_click=self.process)
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def process(self):

run_options = {k: v.value for k, v in self.options.items()}
self.outputs = self.runner.execute(run_options)

self. build output_group() # renders summary/quality/plots

By pushing option semantics into ComputeTaskOption classes (ChoiceOption,
InputStreamMultiChoiceOption), the Ul layer remains generic and reusable
across tasks.

Compute Task Options

Select Attributes for EDA and Data Quality

Compute Task Options

Select Attributes for EDA & Data Quality

SELECT ALL| |CLEARALL
AQI_Data/AirTemperature ] AQI_Data/Humidity AQl_Data/WindSpeed "] AQI_Data/WindDirection [C] AQl_Data/SRAD
AQI_Data/BarometricPressure (] AQl_Data/Rain

RUN TASK

Figure 19. Attribute Selection Interface

Fig 19 shows the automatically generated attribute-selection interface of the
AutoTaskRunnerUl. After the dataset is uploaded, the system lists all available
sensor attributes as checkboxes, supported by “Select All,” “Clear All,” and a
search field for quick filtering. The interface also displays the number of selected
attributes and suggests starting with a small subset for initial analysis. Once the
user chooses the required variables, clicking Run Task triggers the EDA and
Data Quality workflow. This component highlights the system’s focus on
usability, configurability, and efficient task execution without manual coding.

e. Results rendering & visualization: After execution, the Ul builds multiple
expansions:

e Summary cards/tables: compact statistics (count, mean, std,
min/median/max) per attribute. Values are extracted from DataStream or
nested dicts and formatted for readability.

e Quality sections: per-attribute panels for Missing/Validity/Outliers,
including warning thresholds and explanatory notes, which is useful for
documenting testing and validation steps as required in the guideline.
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e Plots: time-series plots automatically re-sampled (5min—monthly
depending on span), auto-formatted date ticks, and gentle rolling means
for readability. (Underlying helpers live in StreamVisualizationUI.)

for each selected attribute:
align with detected datetime stream (if lengths match)
rule = choose resample rule(dt span)
y = resample(mean) then downsample uniformly to MAX_POINTS_TS
plot y vs time with ConciseDateFormatter; add rolling mean

f. Export & evaluation utilities: The Ul implements a one-click export that
preferentially writes High-Quality (HQ) tables and a promoted JSON report
(with key metrics elevated to top-level keys such as rows_total, missing_total,
outliers_z_percent), and it selects Excel if an engine is available, else
CSV/JSON. This balances reproducibility (dataset snapshots) and auditability
(JSON metrics), matching the guideline’s emphasis on documenting
implementation artifacts and testing/validation outputs. Example:

def save outputs(self):
# find artifacts in outputs (hqg_rows, json_report)
# write HighQuality <dataset> TS.xlsx (or CSV fallback)
# write HighQuality <dataset> TS.json with promoted report

An evaluation tab also accepts a JSON report (from a prior run or external tool)
and computes readiness and data-quality scores (Completeness, Validity,
Consistency, Stability/Drift, Outliers). The Ul explains how scores were derived
(e.g., “Missing values handled: x/y”), which is valuable for the Testing and
Validation subsection of the Implementation chapter.

5.4.3 Compute Layer

The Compute Layer forms the operational core of the SmartCityCloud framework and
defines how analytical tasks are structured, configured, and executed. Its foundation
is the ComputeTask abstraction in tasks.py, which specifies the required lifecycle
functions: title, get_default_options(), and process(). Each concrete task conforms to
this interface, ensuring that all implementations behave consistently regardless of their
internal logic. The system uses DelegateComputeTask to bridge user-implemented
functions (such as this thesis’s EDA and data-quality pipeline) with the unified

execution engine. The TaskRunner orchestrates the full workflow by discovering input
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streams using registered StreamReader classes, validating names and data types, and
passing the loaded streams to the selected compute task. During execution, the runner
invokes the task’s process() method and then automatically converts primitive results
(scalars, lists, numeric arrays) into standardized DataStream objects so downstream
components—including the Ul and storage subsystems—can treat outputs uniformly.
The runner also provides safe write-back functionality through write_outputs(),
matching result streams with appropriate writers (e.g., CSV, Excel, or image data
streams). This creates a strict contract ensuring that every task moves through a
consistent, reproducible cycle: discover — configure — process — materialize outputs.

Task configuration shown in Table 7 relies on the flexible option framework defined in
options.py. Core option types such as NumberOption and ChoiceOption allow numeric
ranges, dropdowns, and custom selections, while stream-aware options
(InputStreamChoiceOption, InputStreamMultiChoiceOption) dynamically adapt to
dataset attributes during input discovery. For example, InputStreamMultiChoiceOption
automatically filters available columns to include only numeric streams (INT/FLOAT),
ensuring that algorithms such as outlier detection or interpolation are only applied to
valid attributes. The output.py module complements this by providing the
StreamOutputHelper, which creates writable streams for images and leaves extension
points for user-defined export formats. The thesis-specific task_impl.py builds on this
compute infrastructure to implement a complete data-quality pipeline: missing-value
detection, z-score outlier filtering, rolling statistics, interpolation strategies, and
generation of high-quality (HQ) datasets. Options defined in get default_options()
(e.g., selected attributes, resampling frequency, z-thresholds, interpolation mode)
control the behavior of these algorithms, while the structured outputs—summary
statistics, cleaned streams, and promoted JSON quality reports—flow back through
TaskRunner for Ul rendering and file export. Together, the Compute Layer establishes
a modular, extensible, and reproducible execution backend that transforms user
configuration into concrete analytical results.

Option Default Purpose
stream_numeric_multi (none) Select numeric attributes for
EDA & quality checks
resample_freq M Aggregation frequency (H/D/M)
zscore_threshold 3.0 Outlier detection threshold
clean_invalid yes Remove unrealistic values
drop_duplicate_timestamps yes Ensure unique timestamps
interpolate_method none Missing value handling
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rolling_window 15 Rolling statistics window
augment none Diagnostic augmentation
ood_split 70/30 Baseline vs OOD split

export_format both Export result format

Table 7. Compute Task Options

5.4.4 Streams and Storage

The Streams subsystem provides the unified data abstraction used throughout the
SmartCityCloud Compute Task Wrapper. At its core is the DataStream base class,
which encapsulates sensor values along with an associated StreamDataType that
describes the semantic type of the stream (e.g., INT, FLOAT, STRING, DATETIME,
IMAGE_SEQUENCE). All concrete stream types inherit from this abstraction and
expose consistent interfaces for retrieving values, counting elements, and expressing
whether the stream is writable. The standard in-memory types include
InMemoryDataStream for homogeneous numeric/text series, NumpyDataStream for
NumPy-backed arrays with automatic dtype inference, and ScalarStream for single-
value outputs, such as summary metrics or quality scores. The image subsystem
extends the same abstraction: LocalFilesimageDataStream represents lazily loaded
images, while WritablelmageDataStream provides a structured mechanism for writing
generated visual outputs to disk, ensuring that even non-tabular results conform to the
same stream interface used throughout the wrapper. These classes collectively ensure
that all inputs and outputs—whether numeric time series, scalar indicators, or image
sequences—can be processed, visualized, and exported through a common API
without special-case handling.

The Storage subsystem complements the streams by providing format-specific readers
and writers that convert physical files into typed DataStream objects. As shown in
Table 8, CSV, Excel, and image directories are handled by their respective readers
(CsvStreamReader, ExcelStreamReader, and ImageStreamReader), each
responsible for parsing the raw file, inferring attribute types, and returning a dictionary
of stream name — stream object. During input discovery, the TaskRunner iterates
through all files in the given folder, queries each available reader via
supports_source(), and loads the corresponding streams using read_source() .
Naming conventions ensure that each column becomes an addressable stream (e.g.,
"AQI/AirTemperature™), enabling the auto-Ul and compute logic to treat them
consistently. Output writing follows a similar model, where the runner matches each
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result stream with appropriate stream writers; image outputs use
WritablelImageDataStream, while tabular results are exported through CSV/Excel
writers depending on availability. This structured mapping—from file — stream
abstraction — output writer—forms a stable, extensible foundation enabling all
modules in the SmartCityCloud framework to interoperate seamlessly with diverse data
formats while maintaining reproducibility and a clear separation between data
representation and computation.

Source Stream Type Usage
CSv InMemoryDataStream AQI ingestion; numeric &
datetime columns.
Excel InMemoryDataStream Alternate ingestion & HQ
table export.
Images ImageDataStream Supported for
sequences; not used
here.
Generated plots WritablelImageDataStream Stores PNG/SVG
artifacts.
Numpy arrays NumpyDataStream Internal numeric data for
calculations.
Scalar outputs ScalarStream Single metrics like

counts or percentages.

Table 8. Mapping of I/O file formats

5.5 Implementation Steps

After the user selects the AQI dataset and clicks Run Task, the compute task
processes all selected numeric attributes and organizes the outputs within three major
interface blocks: the Quality section, the Plots section, and the Data Quality section.
This structure reflects the complete analytical workflow implemented in task_impl.py
and orchestrated by auto_ui.py. The system’s behaviour is therefore best understood
by following the sequence in which the interface presents results, as each section
corresponds to a specific stage of computation within the EDA and data-quality
pipeline. Once all analyses are completed, the user may export the high-quality dataset
and the JSON-based diagnostic report. The following subsections describe these
interface blocks in detail and explain how they map to the underlying code paths.
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5.5.1 Quality Section

Immediately after the task execution completes, the interface expands the Quality
section, which contains a set of essential diagnostic metrics for each selected attribute.
These metrics serve as the first level of verification and correspond to the
completeness, validity, and consistency checks defined in Chapter 4. The missing-data
component quantifies both the total number and percentage of missing values and
identifies the number of months during which missing entries occur. This behaviour is
implemented by grouping the raw values at a monthly level and computing
missingness statistics before any cleaning or interpolation is applied Fig 20. A
summary of these values appears directly in the interface, and a bar-chart visualization
highlights the temporal distribution of missing data across months.

Metric Value

Rows (total) 28448
Missing (count) 818
Missing (%) 2.88%
Months w/ missing 18

Figure 20. Monthly missing percentage chart

The validity-bound analysis evaluates whether sensor readings fall within the plausible
physical limits corresponding to the attribute. Using the _guess_validity bounds()
method, the system automatically infers appropriate lower and upper bounds based
on the attribute name (for example, air temperature, humidity, wind speed, and solar
radiation). Values outside these limits are classified as invalid, and a representative
preview of such entries is provided to the user alongside a numerical count and
percentage Fig 21. This enables early detection of malfunctioning sensor periods or
data-entry errors.

Metric Value

Lower bound =20
Upper bound 50
Invalid (count) 14
Invalid (%) 0.05%

Figure 21. Validity Bound Summary with Invalid Samples
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Outlier detection is performed using the Z-score method. The standard deviation and
mean of the cleaned values are computed, and readings whose absolute Z-score
exceeds the user-defined threshold (with 3.0 as the default) are identified. The
interface reports the number and proportion of detected outliers and displays a time-
series plot that overlays outlier points on top of the smoothed mean curve Fig 22. This
visualization allows the user to distinguish isolated anomalies from more persistent
deviations in sensor behaviour.

Metric Value

Z threshold 3
Outliers (count) 15
Outliers (%) 0.05%

Figure 22. Z-score outlier plot with anomaly readings

The system also inspects the dataset for duplicate timestamps. Duplicate records
frequently occur when sensors transmit multiple signals within the same time interval
Fig 23. If the user has enabled duplicate removal, the system retains only the first entry
for each timestamp and reports the number of removed records. Together, these four
components—missing values, validity bounds, Z-score outliers, and duplicate
timestamps—form a comprehensive first-stage quality assessment that validates the
structural integrity of the AQI dataset.

Metric Value
Duplicate rows 598
Duplicate (%) 2.10%

Figure 23. Duplicate timestamp detection

5.5.2 Plots Section

The Plots section provides the user with a comprehensive set of visualization tools
aimed at facilitating exploratory data analysis. These visual outputs are generated
directly from the dictionary returned by process() and rendered by AutoTaskRunnerUI
through Matplotlib. The system applies adaptive downsampling to ensure
responsiveness even for datasets containing several hundred thousand rows.
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For datasets with multiple numeric attributes, a correlation matrix is produced to reveal
pairwise linear relationships across variables. This matrix is displayed as a heatmap
where stronger positive or negative correlations appear as more pronounced color
intensities Fig 24. The histogram view complements this by illustrating the distribution
of sensor values and providing insight into skewness, heavy tails, or multimodal
patterns that may affect downstream modelling tasks.
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Figure 24. Correlation Matrix

The interface also includes an “Invalid Samples vs Time” visualization, which overlays
invalid readings on the complete time series Fig 25. This graph assists in identifying
periods of sensor drift, physical anomalies, or calibration issues. The “Missing by
Month” graph, produced earlier in the Quality section, is also accessible here as a
standalone plot to facilitate visual comparison with other indicators.

Temporal dynamics are further explored through the resampled mean plot, which
computes average values over user-defined or automatically determined intervals
(hourly, daily, weekly, or monthly). This provides a smoothed representation of long-
term behaviour. The raw time-series plot presents the full-resolution values with

adaptive downsampling and serves as the reference point for analysis
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Invalid Samples vs Time (AQI|_Data/AirTemperature)

60 1 LX) ® °® ® ° ® ® °
50 . %
g
2 404
o
ﬂJ
(=1
E 301 —— resampled mean
) .
= = points
% +30 band
£ 201
DI
=}
< 10
0 <
—10 T T T T T T T
2023 P yud oct 2024 PR o

Time

Notes & significance

+* Shows invalid samples as points vs time.

* Useful to spot bad sensor periods and check if cleaning fixed them.

Figure 25. Invalid samples plotted over raw time series
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Figure 26. Trend and seasonability decomposition graph
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A more sophisticated visualization is the Trend and Seasonality graph Fig 26. This plot
decomposes the daily-aggregated series into a long-term trend component and a
seasonal component based on monthly averages. It helps verify whether the sensor
exhibits expected environmental rhythms, such as diurnal or seasonal variations. the
IQR boxplot is also included within this section, providing two complementary
perspectives on the distributional behaviour of the data Fig 27. The IQR plot
emphasizes relative spread, median shifts, and potential skewness.

Boxplot of AQI_Data/AirTemperature (IQR method)
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Figure 27. IQR-based boxplot graph
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5.5.3 Data Quality Section

The Data Quality section provides deeper diagnostic information generated after all
cleaning, interpolation, and transformation operations have been completed. This
section, therefore, reflects the “high-quality” (HQ) portion of the dataset, which serves
as the basis for downstream machine-learning and predictive-modelling tasks.

The first subsection in this group is the Overview, which summarizes the configuration
and results of the complete data processing workflow Fig 28. It reports whether
duplicate removal, invalid-value handling, and interpolation were enabled; the number
of values replaced by NaN; the number of imputations performed; the count of detected
flatine segments; and the final number of rows retained in the HQ dataset. This
overview consolidates all earlier operations and provides a concise description of the
transformed dataset.

Metric Value

Clean invalid 1

Drop duplicate timestamps 1
Interpolate ffill

Rolling window 15
Duplicates removed 299
Invalid — NaN 14
Imputed 827

Flatline runs =10 28
HQ rows 28149

Baseline mean 20.945
Baseline std 8.512

Lower 30 -4.59

Upper 30 46.481

Flagged months 2

Figure 28. Overview of Data Quality Operations performed

The Label Quality subsection evaluates differences in sensor behaviour between
daytime and nighttime readings Fig 29. Using the timestamp hour, the system
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determines which periods correspond to daylight. It computes separate means for day
and night values, the difference between them, and the relative balance of
observations. These metrics are complemented by visualizations such as bar charts
comparing day and night averages, boxplots for distributional differences, and an
overlay plot showing the temporal alignment of both groups. The presence of a strong
and physiologically plausible day—night contrast reinforces the reliability of the dataset.

Metric Value

Mean (day) 25.7
Mean (night) 21.679
N day 20583

N night 7047

Figure 29. Label-quality results

The Day vs Night Mean plot Fig 30 compares the average sensor values observed
during daytime and nighttime and is used to assess the label quality of the dataset. A
clear difference between day (25.8) and night (21.8) values, with a AMean of 4.02
(18.55%), indicates that the sensor responds realistically to natural diurnal patterns,
confirming that the timestamps, label assignments, and cleaned HQ values follow
expected environmental behaviour. This contrast is a strong indicator of high-quality,
physically plausible data, and helps verify that preprocessing has preserved
meaningful temporal structure essential for reliable analysis and downstream

modelling.
AMean (Day - Night): 4.02 (18.55%)

Day vs Night Mean
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Figure 30. Label-quality Day/Night Graph
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The OOD Generalization (Drift Detection) subsection investigates temporal stability
using a baseline period (for example, 70% of the time span) and comparing later
months against the computed baseline statistics. The interface displays the baseline
mean and standard deviation and shades the +30 stability band. Monthly mean values
are plotted against this band, and any months falling outside the acceptable range are
flagged as potential drift events. A rolling 30-day mean plot offers a more fine-grained
view of long-term behaviour and helps confirm whether the dataset remains stable for
predictive modelling.

Metric Value

Baseline mean 20.945
Baseline std 8.512
Lower 30 -4.59

Upper 30 46.481
Flagged months 2

Figure 31. Monthly mean stability analysis within the OOD generalization module

The OOD generalization in Fig 31 summarizes the long-term stability of the air
temperature sensor by comparing later months of data against a baseline period. The
baseline mean (20.945) and standard deviation (8.512) define an expected operating
range, with the 30 bounds spanning approximately —4.59 to 46.48 degrees. Values
or monthly averages falling outside this interval indicate potential drift or abnormal
behaviour. In this case, two months were flagged, meaning their monthly mean
temperatures deviated beyond the established 3o stability band. This indicates mild
temporal drift in the sensor’s behaviour and highlights periods that may require closer
inspection or exclusion when constructing a high-quality dataset.

The Monthly Stability vs Baseline plot Fig 32 illustrates how the monthly mean air-
temperature values evolve relative to a baseline statistical range. The dashed line
represents the baseline mean computed from the first 70% of the dataset, while the
shaded green band denotes the expected +30 stability interval. Monthly averages that
fall within this band indicate normal and stable sensor behaviour, whereas values
outside the band suggest potential drift or abnormal environmental conditions. In this
example, most months remain within the acceptable range, but a few later months rise
sharply above the upper 3o threshold, confirming the drift flags observed in the OOD
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summary. This visualization, therefore, helps assess long-term consistency and
identify periods where sensor reliability may be reduced.
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Figure 32. Monthly mean stability graph vs baseline attribute using OOD

The final part of this section presents the Feature Engineering output. The HQ dataset
is enriched with additional columns, including lagl, lag2, diffl, rolling mean (window
15), and rolling standard deviation. Summary statistics for these features illustrate their
variability and suitability for machine-learning tasks. If data augmentation was enabled
by the user, a preview of augmented rows (e.g., noise injection or synthetic
missingness) is shown as well.

Feature Mean Std Min Max

lag1 24.485 11.404 -17.49 49

lag2 24.484 11.404 -17.49 49

diff1 0.001 1.984 -33.457 31.138
roll_mean_15 24.48 11.117 5.659 49
roll_std_15 2.345 1.214 0 12.614

Figure 33. Sample data for HQ Feature Engineered Attributes

The Fig 33 summarizes the engineered features derived from the cleaned air-
temperature series, which enhance the dataset’s suitability for downstream modelling.
The lagl and lag2 features represent the previous one-step and two-step values,
capturing short-term temporal dependence, while diff1 measures the first-order change
between consecutive observations, highlighting local fluctuations. The roll_mean_15
and roll_std_15 features compute 15-point rolling averages and standard deviations,
providing smoothed trend information and local variability estimates. Together, these
features encode temporal continuity, short-term dynamics, and stability patterns, which
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significantly improve the predictive power of machine-learning models and contribute
to a more informative, high-quality dataset.

The scatter plot Fig 34 compares the lag1 feature (the previous time step’s
temperature) with the current air-temperature value, illustrating the short-term temporal
dependence in the cleaned dataset. The strong diagonal cluster indicates that
consecutive temperature readings are highly correlated, reflecting natural continuity in
atmospheric conditions. Points close to the diagonal represent stable transitions, while
more scattered points highlight sudden changes or brief anomalies. This strong lag
relationship confirms that the dataset captures realistic temporal dynamics, making
lag-based features valuable for forecasting models and contributing to a more robust,

high-quality dataset.
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Figure 34. Lagl vs Value Graph

The autocorrelation plot Fig 35 shows how strongly the air-temperature readings are
correlated with their own past values across different time lags. The high positive
correlation at small lags indicates strong short-term persistence, meaning consecutive
temperature measurements change gradually rather than abruptly. As the lag
increases, the autocorrelation decreases and becomes negative, reflecting the natural
temperature cycle where warmer and cooler periods alternate over time. The
oscillating pattern suggests a repeating seasonal or daily trend in the data, while
correlations eventually decay toward zero, indicating diminishing influence of distant
past values. This behaviour confirms the presence of meaningful temporal structure—
an essential property for forecasting models and a key indicator of high-quality time-
series data.
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Figure 35. Auto Correlation Graph

This distribution comparison plot Fig 36 illustrates how different augmentation
strategies—Gaussian noise addition, random missingness injection, and a combined
mode—affect the air-temperature attribute relative to the original high-quality (HQ)
data. The augmented distributions closely follow the shape of the HQ histogram,
indicating that the transformations preserve the underlying statistical structure while
introducing controlled variability. Noise injection mimics natural sensor fluctuations,
missingness simulates real-world data gaps, and the combined mode prepares models
to handle both simultaneously. By exposing downstream algorithms to realistic
perturbations, these augmented datasets improve model robustness, reduce
overfitting to ideal conditions, and ultimately contribute to a more reliable and high-
quality learning pipeline.

Fig. 37 presents a row-level comparison between the original high-quality (HQ) air
temperature values and the augmented versions generated through controlled
perturbations. The Noise (o = 5% of std) column shows values where small Gaussian
noise has been added to mimic natural sensor variability, while the Missingness (10%)
column replaces a random 10% of entries with missing values to simulate realistic data
gaps. The final Noise + Missingness column combines both effects, producing a more
challenging dataset for robust model training. Together, these augmented samples
preserve the underlying temporal patterns of the HQ data while introducing realistic
imperfections, thereby improving model generalization and ensuring that downstream
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analytics are resilient to noise and missing data conditions commonly encountered in

real-world sensor environments.

Timestamp
2023-01-01 00:00:00
2023-01-01 00:30:00
2023-01-01 01:00:00
2023-01-0101:30:00

2023-01-01 02:00:00

5.5.4 Exporting High-Quality Data and Reports
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Figure 36. Data Augmentation Distribution Comparison
HQ Noise (0=5% of std) Missingness (10%)
6.171400795538421 5.992600816073605 6.171400795538421
4.71428930796487 4.6182264849175745 4.71428930796487
6.226648053914632 6.822107924968684 6.226648053914632

6.615140917604386

7.7172350233452

6.27706100221879

7.876873251958222

6.615140917604386

7.7172350233452

Figure 37. Data Augmentation HQ Table

Noise + Missingness

5.419732277077021
6.2993203494546615
6.613522751762628

7.399192214267021

After reviewing all analyses, the user can export the resulting datasets and diagnostic
reports by clicking the “Save Results” button. The system supports JSON and Excel
formats. All files follow a standardized naming convention that includes sanitized
attribute names and timestamps to ensure reproducibility. The exported Excel file
typically contains separate sheets for the high-quality dataset, the augmentation
preview (if available), and the data-quality report. The JSON output includes a
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structured summary of all quality indicators, stability metrics, and feature-engineering
details. These exported artifacts ensure that the full data-processing pipeline can be
reproduced or integrated into subsequent modelling workflows.

Saved: C:\Users\Vismay Gunda\OneDrive\Desktop\Master thesis\Implementation\smartcitycloud-
template\app\outputs\HighQuality_dataset_20251113_212542 json C:\Users\Vismay Gunda\OneDrive\Desktop\Master
thesis\Implementation\smartcitycloud-template\app\outputs\HighQuality_AQI_Data_AirTemperature_20251113_212542.xIsx C:\Users\Vismay

Gunda\OneDrive\Desktop\Master thesis\Implementation\smartcitycloud-
template\app\outputs\HighQuality_AQI_Data_AirTemperature_20251113_212542 json

Figure 38. Save Results Confirmation message

The confirmation message Fig 38 indicates that the system has completed the export
stage by saving both the JSON report and the high-quality (HQ) dataset to the
designated output directory, consistent with the SmartCityCloud workflow shown in the
overview architecture. This illustrates how processed results are returned from the CE
GPU server back to the SmartCityCloud environment. This notification verifies that the
implementation has written all required artifacts—such as the HQ dataset in
CSVI/XLSX format and the structured JSON quality report—into the correct local output
folder. This ensures reproducibility, proper integration with downstream components,
and reliable storage of final results exactly where the framework expects them to be.

The exported JSON file contains two main parts: the cleaned high-quality time series
and descriptive metadata. At the top level it stores the dataset name and export
timestamp, followed by the field hg_rows, which is a list of records representing the
final HQ dataset for the selected attribute. Each record includes the timestamp and the
cleaned sensor value, together with all engineered features that were generated during
the pipeline, such as one-step and two-step lags (lagl, lag2), rolling mean and rolling
standard deviation over the chosen window (roll_mean_15, roll_std _15), and the first
difference (diff1). The schema of these rows is mirrored in the hq_columns entry, which
lists the exact column names of the exported HQ table.

The second part is the report object, which translates the full data-quality process into
a compact, machine-readable summary. It records global statistics such as the total
number of rows, missing values, values converted to NaN because they violated
validity bounds, removed duplicates, and the number of imputed points and flatline
runs. It further captures outlier diagnostics (z-score count and percentage), stability
and out-of-distribution information (for example the number of flagged months out of
all months and the monthly means relative to a baseline band), as well as other
counters used by the evaluation dashboard. Altogether, this JSON file therefore
encodes both the refined HQ data series and all key quality indicators, so that
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SmartCityCloud or any external tool can reconstruct what was done to the data and
assess its quality without rerunning the pipeline.

5.6 Summary

Overall, Chapter 5 translated the methodological framework into a fully functional,
cloud-based implementation within the SmartCityCloud environment, demonstrating
how the proposed data-centric pipeline operates in practice. The chapter first
described the SCC ecosystem, its sensor data sources, and the structure of the AQI
dataset used for evaluation, establishing the operational context in which the compute
task is executed. It then detailed the architecture and extensibility of the SmartCity
Compute Task Wrapper, which standardizes execution by managing input discovery,
parameter configuration, processing logic, visualization, and output persistence across
heterogeneous datasets. The implementation further included the setup of the local
development environment, repository structure, and dependency configuration,
enabling reproducible execution and consistent integration with SCC’s cloud interface.
A comprehensive walkthrough of the codebase clarified how the Ul layer, compute
layer, data streams, and storage components interact to support automated EDA,
validity checks, outlier detection, feature engineering, and high-quality (HQ) dataset
generation. The chapter concluded with a detailed explanation of the implemented
guality, plots, and data-quality modules—including label verification, OOD stability
analysis, augmentation, and export mechanisms—alongside utilities for producing
structured artifacts such as HQ CSV/XLSX files and machine-readable JSON
provenance reports. Collectively, the implementation chapter demonstrated how the
conceptual workflow defined in Chapter 4 is operationalized in software, providing a
robust, auditable, and user-friendly system for executing data-centric quality
engineering at scale within SmartCityCloud.
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6 Results and Evaluation

After completing the Exploratory Data Analysis and Data Quality operations, the
system automatically compiles all relevant metrics, cleaning actions, statistical
summaries, and high-quality data records into a structured JSON file. This file is stored
in the output directory of the GPU server and transmitted back to the SCC platform as
defined in the system architecture. The JSON artifact serves as the basis for the
evaluation stage, where the user uploads it into the evaluation interface to compute
the final quality metrics. The following sections describe the backend evaluation
workflow, the computation of six quantitative data-quality criteria, and the resulting
dashboard visualisations.

Output 2: Evaluation (from JSON)

,» Upload JSON file

W 7.3MB/100.00%

HighQuality_AQI_Data_AirTemperature
_20251115_142308.json v
7.3MB / 100.00%

DISPLAY EVALUATION CRITERIA

Figure 39. JSON upload Interface for Evaluation

Fig 39 allows the user to upload the JSON file generated during the EDA and Data
Quality processing stage for further evaluation. Once the JSON file is successfully
uploaded, as shown by the confirmation and file details displayed in the panel, the
system prepares the file for backend parsing and metric extraction. By clicking the
“Display Evaluation Criteria” button, the user initiates the evaluation workflow, which
reads the JSON content, validates its structure, and computes the six data-quality
metrics that will be visualized in the evaluation dashboard.

6.1 Backend Processing of Evaluation Inputs:

This section describes the internal workflow responsible for processing the evaluation
inputs once a user uploads the generated JSON file to the evaluation interface. The
backend implementation, primarily contained within the auto_ui.py module, parses the
uploaded JSON, validates its structure, and extracts the metadata and quality-related
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statistics produced during the EDA and Data Quality stages. The evaluation
component then normalizes these values, prepares them for metric computation, and
initializes the required internal data structures for subsequent scoring. The following
subsections detail how the system loads the JSON file, maps its contents to evaluation
variables, and performs the preliminary checks necessary for generating the final data-
guality assessment.

6.1.1 Loading and Processing the JSON File in the Evaluation Module

The evaluation stage begins when the user uploads the JSON artifact generated during
the EDA and Data Quality pipeline. This upload triggers the on_upload_json() routine
within auto_ui.py, which is responsible for reading and validating the contents of the
file. The module first decodes the raw byte stream, converts it into a UTF-8 JSON
string, and parses it into a Python dictionary structure. During this stage, the system
verifies that the file contains the expected fields such as hqg_rows, report, and other
metadata describing missing values, invalid readings, outliers, feature engineering
results, and OOD drift statistics. If the JISON does not conform to the expected schema,
the routine raises a controlled error and prompts the user to provide a valid evaluation
file. This ensures that only complete and structurally correct artifacts are used for
subsequent metric computation.

Once the JSON data has been successfully parsed, the internal evaluation workflow
begins by extracting relevant metrics and converting them into normalized numerical
forms. This process is executed inside the compute_evaluation_scores() function in
auto_ui.py, which reads values such as missing-value counts, invalid-to-NaN
conversions, outlier statistics, duplication indicators, and stability measures from the
JSON. The function also determines the total number of rows available for evaluation
and applies several helper routines to convert raw textual or numeric inputs into
floating-point values suitable for scoring. The module then initializes the internal
evaluation state, storing the extracted values and preparing them for metric
computation. At this stage, the backend has fully transformed the uploaded JSON file
into a structured and validated data model that can be used to compute the six
guantitative criteria presented in the evaluation dashboard.

6.1.2 Parsing and Validating JSON Evaluation Inputs

After loading the JSON file, the evaluation module proceeds with parsing and
extracting all relevant metrics required for computing the data-quality criteria. This is
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primarily handled by the compute_evaluation_scores() routine in auto_ui.py, which
accesses key fields such as hqg_rows, report, and attribute-level statistics generated
during the data quality pipeline. The function systematically retrieves numerical
indicators—missing-value counts, invalid-to-NaN conversions, duplication counts,
imputation totals, outlier ratios, and OOD drift metrics—while converting these values
into a unified floating-point representation. Several helper functions, such as
_to_float_or_none() and internal ratio calculations, ensure that heterogeneous data
types from the JSON are normalized into a consistent format suitable for quantitative
scoring. This normalization step is essential for enabling uniform computation across
different sensor attributes and datasets.

In parallel, the module performs validation checks to ensure that the uploaded JSON
artifact is structurally complete and semantically consistent. The system verifies that
mandatory keys are present, that numerical fields contain valid values, and that the
number of rows reported matches the size of the high-quality dataset. If anomalies are
detected—for example, malformed fields, missing metrics, or type inconsistencies—
the evaluation module gracefully terminates the computation and notifies the user
through Ul-level warnings. These precondition checks prevent invalid or corrupted files
from influencing the final data-quality scores and ensure that the evaluation is
performed only on standardized, correctly formatted artifacts.

6.2 Automated Computation of Evaluation Metrics

This section details the automated computation of the six data-quality metrics that form
the core of the evaluation framework. Once the JSON artifact has been parsed and
validated, the evaluation backend, implemented within the
compute_evaluation_scores() function, derives quantitative scores that reflect the
cleanliness, reliability, and readiness of the processed dataset. Each metric captures
a distinct dimension of data quality, including completeness, validity, internal
consistency, temporal stability, robustness to outliers, and the degree of feature
enrichment achieved through preprocessing. The system transforms raw statistical
indicators into normalized percentage scores, enabling a unified comparison across
attributes and datasets. The following subsections explain the rationale, computation
method, and evaluation significance of each metric, as well as the underlying logic
applied by the evaluation module to aggregate and standardize the results.
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6.2.1 Completeness Metric

The completeness metric quantifies the proportion of valid, non-missing observations
in the dataset after preprocessing. In the context of sensor-driven SmartCityCloud
data, completeness refers to the extent to which the original dataset remains usable
for downstream analytical tasks, such as prediction or anomaly detection. Missing
values arise due to sensor outages, transmission delays, or corruption during
collection. The evaluation module measures completeness by comparing the total
number of missing entries against the total number of observations represented in the
JSON atrtifact. A higher completeness score indicates that the dataset provides a more
reliable and uninterrupted representation of the underlying environmental process.
Formally, completeness is defined as:

M
Completeness = 1 — m

where M denotes the number of missing values and N denotes the total number of
rows in the dataset. This normalized ratio is later scaled to a percentage for
presentation in the evaluation dashboard. The backend evaluation logic for
completeness is implemented in the compute_evaluation_scores() function located in
auto_ui.py. The function extracts the missing_total value from the "report" section of
the uploaded JSON file and determines the dataset size using the rows_total field.
Helper routines such as _to_float_or_none() ensure that missing and total counts are
converted into valid numerical values before computation. The metric is then calculated
using an internal helper get ratio() that safeguards against division by zero and
normalizes the result. The completeness score is subsequently transformed into a
percentage and included in the evaluation results shown in the dashboard. This metric
plays a critical role in assessing overall data integrity, as datasets with substantial
missingness can bias model training, degrade predictive performance, and undermine
the stability of real-time analytics within the SCC environment.

6.2.2 Validity Metric

The validity metric measures the proportion of sensor readings that fall within
acceptable physical or domain-specific thresholds. In environmental datasets such as
air temperature, humidity, or solar radiation, each attribute has a known realistic
operational range. Values that lie outside these bounds typically indicate sensor
malfunction, calibration drift, extreme noise, or data corruption. The validity metric
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guantifies how many such unrealistic or impossible readings were detected and
corrected during the preprocessing stage. Formally, the metric is expressed as:

1
Validity =1 — N
where [ denotes the count of invalid values (i.e., values replaced with NaN due to
failing the domain-range check) and N denotes the total number of observations. A
higher validity score, therefore, reflects a dataset whose measurements adhere closely
to physical reality, making it more suitable for accurate inference and predictive
modeling. The backend computation of this metric occurs within the
compute_evaluation_scores() function in auto_ui.py. During preprocessing, the task
implementation records the number of invalid values converted into NaN under the
field "invalid_to_nan" within the exported JSON report. The evaluation module
retrieves this value, normalizes it against rows_total, and computes the final validity
score using the same get_ratio() helper that protects against incorrect division and
ensures consistent numerical formatting. Threshold ranges for detecting invalid values
originate from the domain definitions in task_impl.py, where attributes such as air
temperature or barometric pressure are assigned realistic minimum and maximum
limits. The validity metric is essential because datasets containing a high proportion of
invalid readings can distort statistical distributions, impair model generalization, and
lead to unreliable predictions within SmartCityCloud applications.

6.2.3 Consistency Metric

The consistency metric evaluates the internal coherence of the dataset by measuring
the extent to which redundant, contradictory, or structurally inconsistent entries have
been removed during preprocessing. In sensor-driven datasets, inconsistencies
commonly appear as duplicate timestamps, repeated measurements, or extended
flatline sequences where the sensor reports the same value for an unrealistically long
period. Such anomalies indicate data-logging errors, transmission glitches, or sensor
stagnation. The consistency score aggregates the impact of these detected
inconsistencies by considering both duplicate removals and flatline runs.
Mathematically, the metric can be described as:

D
Consistency = (1 N + a.F)

where D is the number of duplicate rows removed, N is the total number of
observations, F is the number of detected flatline runs exceeding the defined length
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threshold, and «a is a penalty factor used to scale the influence of flatline sequences.
The resulting value is bounded to the interval [0,1]to ensure interpretability as a quality
score. The backend implementation of the consistency metric is handled in the
compute_evaluation_scores() function within auto_ui.py. During the data-quality
processing stage, the task implementation records key indicators such as
"duplicates_removed" and "flatline_runs_ge10" inside the JSON report. The evaluation
module extracts these values and computes the penalties using helper functions like
get_ratio() and predefined scaling factors for flatline detection (e.g., a flatline penalty
limited to a maximum of 0.15). The final normalized consistency score is then
converted into a percentage for display on the evaluation dashboard. This metric is
crucial for SCC analytics because inconsistent datasets can lead to misleading trends,
inflated correlations, and erroneous model behavior, particularly in real-time
forecasting or anomaly detection scenarios where temporal reliability is essential.

6.2.4 Stability (OOD Drift) Metric

The stability metric evaluates how consistently the dataset behaves over time by
detecting potential distributional drift, also referred to as Out-of-Distribution (OOD) drift.
In sensor-based environments such as SmartCityCloud, stability is essential because
environmental and physical measurements should follow predictable temporal
patterns. Large deviations from these patterns may indicate sensor degradation,
calibration failure, seasonal distortion, or erroneous data capture. To quantify stability,
the dataset is first divided into a baseline window and a test window according to the
selected OOD split (e.g., 70/30 or 60/40). The mean and standard deviation of the
baseline window establish an expected operating range, defined using a three-sigma
interval. Stability is then expressed as

M
Stability = 1 — _Jlag

total

where My, denotes the number of months whose mean values fall outside the baseline

three-sigma range, and My, represents the total number of months evaluated. A high
stability score indicates that the dataset maintains a statistically coherent distribution
across time, without unexpected shifts that could impair model generalization. The
computation of this metric is implemented in the evaluation backend within the
compute_evaluation_scores() function of auto_ui.py. During preprocessing, the task
implementation in task _impl.py computes monthly means for each attribute and
identifies months with statistical drift based on baseline variance; these values are
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stored in the JSON fields "flagged_months" and "months_total". When the JSON is
uploaded, the evaluation module extracts these values, applies normalization using
helper routines such as _to_float_or_none(), and ensures stability is bounded within
the range [0,1].The stabilized score is then converted into a percentage for inclusion
in the evaluation dashboard. The stability metric is particularly important in
SmartCityCloud applications because distributional drift can degrade the performance
of predictive models, introduce bias, and reduce the reliability of long-term analytics,
especially in dynamic environments where temporal consistency is critical.

6.2.5 Robustness Metric

The outlier metric assesses the robustness of the dataset by quantifying the proportion
of extreme or anomalous values detected during preprocessing. Outliers in
environmental sensor datasets may arise from abrupt sensor spikes, electrical noise,
temporary hardware faults, or measurement corruption. These abnormal values can
significantly distort statistical properties, bias model training, and negatively impact
anomaly detection or forecasting systems. To evaluate robustness, the system relies
on Z-score—based outlier detection performed for each attribute during the data-quality
phase. Any value whose standardized distance from the mean exceeds the selected
threshold (e.g., |z| > 3.0) is considered an outlier. Formally, the robustness score is

defined as

0
Robust =1—-—
obustness N

where 0 denotes the number of detected outliers and N represents the total number
of valid observations. A higher robustness score indicates that the dataset is relatively
free from extreme deviations and is therefore more suitable for stable predictive
modeling. The backend evaluation logic for this metric resides in the
compute_evaluation_scores() function in auto_ui.py, which reads the fields
"outliers_z_count" and, when available, "outliers_z_percent" from the JSON report.
These values originate from the preprocessing steps in task_impl.py, where Z-score
thresholds are applied to each attribute and the count of flagged points is recorded.
The evaluation module normalizes the outlier count against the total number of
observations using internal helper functions such as get_ratio(), ensuring numerical
accuracy and safe division. If the preprocessing stage has already provided a
percentage, the module wuses it directly after type normalization via
_to_float_or_none(). The resulting robustness score is converted into a percentage
and shown in the evaluation dashboard. This metric is essential for SmartCityCloud

data quality, as datasets with a high proportion of outliers can mislead analytical
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pipelines, reduce model generalization, and compromise real-time decision-making
processes.

6.2.6 Readiness Metric

The readiness metric evaluates the degree to which the dataset has been enriched
through preprocessing, with a focus on the availability of engineered features and
imputed values that enhance its suitability for downstream machine-learning tasks. In
data-centric Al workflows, enriched datasets—those containing lag features, rolling
statistics, and differenced values—enable predictive models to capture temporal
dependencies, seasonality patterns, and short-term variability more efficiently. The
readiness metric incorporates both the presence of these engineered features and the
successful execution of imputation strategies when missing values are detected.
Formally, the readiness score can be approximated as

Readiness = min( 1, 0.6 + 0.3. +1+ E)

max

where F denotes the number of engineered features detected in the high-quality
dataset, F,,,x = 5 is the maximum number of expected enrichment features (lagl, lag2,
diffl, roll_mean_15, roll_std 15), Irepresents an imputation bonus applied when
missing values are successfully filled, and E is a small constant bonus for exporting
results. This formulation ensures that readiness remains within the range [0,1],
providing a normalized indicator of how prepared the dataset is for modeling. On the
implementation side, the readiness metric is computed within the
compute_evaluation_scores() function in auto_ui.py. The module first inspects the
"hg_rows" section of the uploaded JSON file and identifies the presence of engineered
columns generated in task_impl.py, such aslagl, lag2, roll_mean_15, roll_std_15, and
diff1. It then evaluates whether imputation occurred by examining fields like "imputed"
and checks if data export options were triggered to ensure full pipeline completion.
These components are combined according to predefined weighting rules to produce
the final readiness score, which is subsequently converted into a percentage for
display in the evaluation dashboard. As a metric, readiness is essential because it
reflects not only data cleanliness but also the extent to which the dataset has been
structurally enhanced to support accurate forecasting, anomaly detection, and other
analytic operations within the SmartCityCloud environment.
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6.3 Evaluation Dashboard and Visualization Output

The evaluation dashboard provides a consolidated visual summary of the six data-
quality metrics computed from the uploaded JSON artifact Fig 40. Once the user
selects the Display Evaluation Criteria option, the backend function
compute_evaluation_scores() in auto_ui.py processes the extracted metrics and
renders both numeric cards and a bar-chart summary. The user interface presents
each metric as an individual score card—Completeness, Validity, Consistency,
Stability (Drift), Outliers (Robustness), and Readiness (Enrichment)—along with short
descriptive notes summarizing the underlying statistics. Beneath these cards, the
system generates a bar-chart visualization that offers a comparative view of all six
guality scores, providing an immediate high-level assessment of the dataset's reliability
and suitability for further analytics.

Evaluation Dashboard (6 Criteria)

Completeness Validity Consistency

97% 100% 85%

Missing values handled: 818/28448 Invalid readings replaced: 14 Duplicates removed: 299, flatline runs=10: 28,

Stability (Drift) Outliers (Robustness) Readiness (Enrichment)

90% 100% 100%

Flagged drift months: 2/20. Outlier rate ~ 0.05% Features present: 5; imputed=1; exported=Yes

Figure 40. Evaluation Dashboard Displaying Data Quality Criteria

From the implementation perspective, each score card is constructed through the
evaluation module’s Ul-rendering routines, where the numerical results are formatted,
color-coded, and presented using NiceGUI components. The bar chart is generated
using Matplotlib within the __ render_evaluation_dashboard() function, where the six
percentage values are plotted on a unified scale to highlight variations across different
guality dimensions Fig 41. By structuring the dashboard in this manner, the system
ensures that both granular and aggregate perspectives of data quality are available to
the user, supporting rapid and informed inspection of preprocessing outcomes. The
evaluation dashboard provides meaningful insights into the overall health and
readiness of the processed Air Temperature attribute from the AQI dataset. For
example, the Completeness score of 97% reflects that only 818 of the 28,448
observations were missing and subsequently handled, indicating a highly intact
dataset.
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Figure 41. Bar Chart Summarizing the Six Computed Data-Quality Metrics

The Validity score of 100% confirms that all values fall within the expected physical
thresholds after cleaning, while the Outlier Robustness score of 100% indicates an
extremely low prevalence of anomalous readings (approximately 0.05%). Although the
Consistency score is slightly lower at 85%—reflecting the removal of 299 duplicate
timestamps and detection of 28 flatline runs—this still represents a well-behaved signal
with minimal structural issues. The Stability score of 90% demonstrates only mild
temporal drift, with 2 of 20 evaluated months exceeding the baseline three-sigma
range, suggesting that the dataset retains good temporal reliability. Finally, the
Readiness score of 100%, supported by the presence of all five engineered features
and successful imputation, shows that the dataset has been fully enriched for
downstream modeling.

Collectively, these results demonstrate that the processed AQI Air Temperature
dataset achieves high performance across all major data-quality dimensions. The
near-perfect scores in validity, robustness, and readiness, combined with strong
completeness and stability, provide compelling evidence that the dataset is of high
analytical quality. The dashboard, therefore, serves not only as a visualization tool but
also as a validation mechanism that confirms the effectiveness of the implemented
data-quality pipeline and the readiness of the resulting dataset for reliable predictive
modeling within the SmartCityCloud ecosystem.
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6.4 Summary

Overall, Chapter 6 presented the empirical results of the proposed data-quality
framework by demonstrating how the SmartCityCloud evaluation module processes
the machine-generated JSON reports and computes quantitative scores across the six
defined data-quality dimensions. The chapter first explained how evaluation inputs are
loaded, parsed, and validated within the system, ensuring that each JSON file is
internally consistent and contains the required provenance and statistical fields. It then
detailed the automated computation of completeness, validity, consistency, stability
(OOD drift), robustness (outliers), and readiness (feature enrichment) metrics, each
derived from interpretable counts such as missing values, invalid readings, duplicate
timestamps, flagged drift months, Z-score outliers, and the presence of engineered
features. These metrics provide a structured, evidence-based assessment of data
quality and directly reflect the improvements introduced during preprocessing,
cleaning, imputation, and augmentation. The chapter also showcased the evaluation
dashboard, which visualizes intermediate and final metrics through time-series plots,
anomaly markers, summary tables, and quality distributions, enabling interpretable and
audit-friendly inspection of sensor behaviour and pipeline decisions. Together, the
results confirm that the data-centric workflow produces higher-quality, more stable, and
better-documented datasets, thereby validating the methodological design introduced
in Chapter 4 and demonstrating its effectiveness across heterogeneous smart-city
time-series.
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7 Discussion

The results obtained from the implemented SmartCityCloud data-quality pipeline
demonstrate that a data-centric approach provides significant improvements in the
integrity, stability, and analytical readiness of heterogeneous smart-city sensor
streams. The findings indicate that the systematic workflow—comprising EDA, validity
screening, missing-value treatment, outlier detection, feature enrichment, label-quality
verification, and OOD stability analysis—successfully addresses the core challenges
of temporal heterogeneity, irregular sampling, range violations, and drift identified in
the problem statement.

Quantitatively, the evaluation dashboard shows that high completeness, perfect
validity, strong robustness to outliers, and well-preserved temporal structure enable
the Air Temperature attribute to function as a dependable and analysis-ready signal.
These outcomes validate earlier methodological assumptions that structured
preprocessing, rather than model-centric adjustments, is the dominant determinant of
downstream analytical reliability. Drift analysis further shows that most months fall
within expected three-sigma stability bounds, with only mild deviations detected,
confirming that the sensor maintains long-term coherence suitable for predictive
modelling and anomaly detection tasks. The presence of strong diurnal patterns in the
label-quality module, with clear day—night separation, offers additional evidence that
the pipeline preserves physically meaningful structure and enhances interpretability.

When compared with the literatures on data-centric Al, the SCC implementation not
only integrates multiple established techniques—such as validity constraints,
augmented stress testing, rolling-window statistics, and provenance capture—but also
unifies them into a cloud-native workflow that produces reproducible HQ datasets and
machine-readable JSON diagnostics, something only partially addressed in existing
tools such as TFDV, Deequ, or Confident Learning. The combined interpretation of
these outcomes demonstrates that SmartCityCloud’s extensible compute-task
wrapper effectively operationalizes data-centric principles by improving accuracy,
completeness, consistency, traceability, timeliness, and auditability while producing
transparent, verifiable artifacts that align with TU Chemnitz’s expectations for scientific
rigor. Overall, the discussion confirms that the implemented system not only improves
data quality in a measurable and reproducible manner but also offers a scalable and
generalizable foundation for future smart-city analytics, where dependable, well-
curated data are essential for stable model performance and long-term operational
trustworthiness.
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8 Conclusion

8.1 Summary of Findings:

This thesis investigated the problem of ensuring high-quality, analysis-ready sensor
data within the SmartCityCloud (SCC) platform, addressing the persistent challenges
of missingness, invalid measurements, temporal inconsistencies, outliers, and
distributional drift that commonly affect real-world environmental datasets such as the
Air Quality Index (AQI) stream. Motivated by the limitations of model-centric
optimization in the presence of noisy or unstable data, the thesis adopted a data-centric
methodology that integrates exploratory data analysis, multi-stage data-quality
operations, feature enrichment, label-quality verification, and OOD stability evaluation
into an automated cloud-based compute-task pipeline. The implemented solution
successfully transformed raw AQI sensor readings into a validated, enriched, and drift-
assessed high-quality dataset, supported by machine-readable JSON diagnostics and
user-facing visual dashboards. Through automated validity checks, missing-value
imputation, duplicate-timestamp removal, outlier detection using Z-score thresholds,
feature engineering (lags, rolling statistics, derivatives), and month-level OOD drift
detection, the system consistently produced standardized, reproducible artifacts
demonstrating strong completeness, validity, robust outlier handling, and stable long-
term behaviour through £3o drift analysis. Across evaluation results, the system met
or exceeded the predefined criteria, ensuring consistency, reliability, and
interpretability, thereby directly addressing the research question concerning how
data-centric pipelines can enhance data quality in smart-city environments. The work’s
primary contributions include:

» the design of a modular compute-task architecture that integrates seamlessly
with SCC’s input discovery and stream-handling framework;

» the development of a comprehensive data-quality workflow that outputs high-
guality datasets, enriched features, and audit-ready JSON reports;

» The introduction of a consolidated evaluation dashboard that quantifies quality
across six criteria.

» empirical evidence that data-centric preprocessing substantially improves the
analytical readiness and robustness of environmental sensor streams.

By achieving these outcomes, the thesis successfully fulfilled its objectives and
demonstrated that reliable data quality can be operationalized as a cloud service within
SmartCityCloud.
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8.2 Future Scope:

Although the developed data-quality pipeline provides a strong foundation for
processing smart-city sensor streams, several opportunities remain for future
improvement and expansion. First, the current implementation focuses on univariate
attribute-level processing, and future work could extend the system toward multivariate
fusion, enabling cross-sensor consistency checks and joint anomaly detection for
correlated parameters such as temperature, humidity, and particulate matter.
Moreover, the OOD generalization framework could be enhanced through advanced
drift-detection techniques—such as Kolmogorov—Smirnov tests [35], population
stability indices, or neural drift estimators [36]—to capture better subtle seasonal or
behavioural shifts in multimodal sensor environments. Another promising direction
involves integrating adaptive feature engineering, where features are dynamically
selected based on domain conditions or learning-based relevance scoring, improving
downstream modeling performance. From a system perspective, converting the
pipeline into a fully continuous data-quality service would enable real-time monitoring,
automated alerts, and progressive dataset versioning across large-scale IoT
deployments. Improvements could also include automated hyperparameter selection
for thresholds, imputation strategies, and anomaly boundaries, using optimization or
reinforcement learning to adapt to changing sensor behaviours.

Furthermore, research could explore the integration of synthetic data generation or
calibrated augmentation strategies to improve data diversity for machine-learning tasks
in scenarios with sparse, noisy, or seasonally varying signals. Finally, applying this
pipeline to other SmartCityCloud datasets—such as traffic, mobility, or energy
streams—would validate its generality and reveal cross-domain use cases, supporting
broader smart-city applications in forecasting, anomaly detection, resource
optimization, and environmental reliability analysis. Collectively, these avenues
demonstrate that the proposed solution is not only functional for the current AQI
application but also serves as a flexible, extensible framework capable of supporting
future advancements in data-centric Al within large-scale urban computing systems.
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