
Fakultät für Informatik

CSR-25-03

Acoustic-Based MAV Propeller
Inspection

Zahra Khadivi · Batbayar Battseren · Wolfram Hardt

Mai 2025

Chemnitzer Informatik-Berichte

Acoustic-Based MAV Propeller
Inspection

Master Thesis

Submitted in Fulfilment of the

Requirements for the Academic Degree

M.Sc.

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Zahra Khadivi
Student ID: 563822
Date: 31.03.2025

Supervising tutor: Prof. Dr. Dr. h. c. Wolfram Hardt
Supervising tutor: Dr. Batbayar Battseren

Abstract

The growing adoption of MAVs, alongside mobile vehicles and robots, has ad-
vanced research in autonomous driving, particularly for applications such as search
and rescue operations and surveillance. However, MAV component failures can
lead to mission-critical consequences. To enable fully autonomous operations,
hangars can be strategically deployed to ensure MAV readiness and reliability with-
out human intervention. A critical requirement for successful missions is verifying
that MAV components, especially propellers, are undamaged and flight-ready, pos-
ing a challenge for real-time, automated inspection systems.

This thesis argues that acoustic-based fault detection offers a non-invasive, cost-
effective solution for real-time propeller health monitoring in Micro Aerial Vehi-
cles (MAVs), addressing the limitations of traditional inspection methods. Fo-
cusing on autonomous hangar deployments for emergency response scenarios like
search and rescue, the study develops a methodology that integrates statistical,
Mel-Frequency Cepstral Coefficients (MFCC), and Short-Time Fourier Transform
(STFT) features with a hybrid ensemble of classical machine learning models,
optimized using the Tree-based Pipeline Optimization Tool (TPOT). The sys-
tem achieves an accuracy and F1-score of 0.9965, surpassing baseline models, and
demonstrates scalability across diverse UAV models and operational conditions.
By eliminating labor-intensive manual checks and resource-heavy image-based
methods, the approach enhances UAV safety and operational efficiency, shifting
maintenance from a reactive to a predictive paradigm. Despite challenges such
as the computational cost of optimization and reliance on controlled datasets,
the framework paves the way for efficient, autonomous inspection systems, with
potential for transfer learning to further generalize its applicability in real-world
settings.
Keywords: MAVs, Propeller, Acoustic-based Fault Detection, ML,

Ensemble-learning, TPOT, Real-time Monitoring, Autonomous Hangar,
Statistical Feature, MFCC, STFT.

2

Acknowledgments

I sincerely thank Prof. Dr. Dr. h. c. Wolfram Hardt for providing me the
chance to undertake an internal master’s thesis in the Department of Computer
Science at Chemnitz University of Technology. His supervision and guidance were
instrumental in the successful completion of this research.

I sincerely thank Dr. Batbayar Battseren for his dedicated mentorship through-
out all stages of this thesis, from conceptualization to result evaluation. His in-
valuable feedback and continuous encouragement significantly shaped this work,
fostering my growth as a researcher and enabling me to explore new concepts with
confidence.

I extend special thanks to Dr. Shadi Saleh for his technical guidance in the
laboratory, which greatly supported the practical aspects of this study. I am also
grateful to M.Sc. Julkar Nine for her insightful feedback during the initial phase of
the thesis and for inspiring the research direction, which laid a strong foundation
for this work.

Additionally, I appreciate the support and inspiration provided by Dr. Shahram
Khadivi, which further motivated my efforts. Finally, I am deeply thankful to my
family and friends for their unwavering support and encouragement throughout
this journey, making this endeavor possible.

3

Contents

Contents . 4

List of Figures . 7

List of Tables . 10

List of Abbreviations . 11

1. Introduction . 13
1.1. Motivation . 20
1.2. Objective and Scope . 22
1.3. Thesis Structure . 23

2. Background Knowledge . 25
2.1. Sound Waves . 25
2.2. Signals . 26
2.3. Signal Processing . 27
2.4. Audio Features . 30

2.4.1. Time-Domain Features . 31
2.4.2. Frequency-Domain Features 34

2.5. Audio Transformations . 38
2.5.1. Fourier Transform . 38
2.5.2. Discrete Fourier Transform 38
2.5.3. Fast Fourier Transform . 39

2.6. Machine Learning . 39
2.6.1. Classification . 42

3. State of the Art . 46
3.1. Overview of Acoustic-base UAV’s Fault Detection 47
3.2. ML-Based Propeller Fault Detection Approaches 48

3.2.1. Recording Procedures and Experimental Setups 50
3.2.2. Feature Extraction Techniques 52
3.2.3. ML models . 52

4

CONTENTS

4. Methodology Concept . 55
4.1. Methodology Overview . 55
4.2. Data Acquisition . 56
4.3. Preprocessing Pipeline . 59
4.4. Feature Extraction . 61
4.5. Model Training . 62

4.5.1. Summary . 64

5. Implementation . 65
5.1. System Setup . 65

5.1.1. Experimental setup . 66
5.2. Software Platforms . 73

5.2.1. Librosa . 74
5.2.2. Jupyter Notebook . 75

5.3. Audio Data Preparation . 75
5.4. Pre-Processing Pipeline . 85

5.4.1. Signal Chunking . 85
5.4.2. Noise Filtering . 89
5.4.3. Signal Windowing . 91
5.4.4. Features Extraction . 92
5.4.5. Normalization and Balancing 95
5.4.6. Exploratory Data Analysis 96

5.5. Data Processing . 107
5.5.1. Dataset Splitting . 110

5.6. Model Training . 112
5.6.1. Model Configuration . 112
5.6.2. Training Process . 113

5.7. Optimization . 116
5.7.1. Hybrid Optimization Approach 117

6. Results and Evaluation . 119
6.1. Classification Performances . 119

6.1.1. Approach One: Separate Models per UAV and Speed 120
6.1.2. Model HolybroX500 20% . 122
6.1.3. Analysis Summary of Holybro X500 123
6.1.4. Model Y6AREIOM 10% . 124
6.1.5. Model Y6AREIOM 15% . 125
6.1.6. Model Y6AREIOM 20% . 126
6.1.7. Analysis Summary of Y6 AREIOM 127
6.1.8. Approach Two: Single Unified Model 128

6.2. Comparison of two Approach Performance 131

5

CONTENTS

6.3. Optimization . 132

7. Discussion and Future Work . 136

8. Conclusion . 141

Bibliography . 142

A. Supplementary Figures . 153
A.1. Waveform Analysis . 154
A.2. Spectrogram Analysis . 163

6

List of Figures

1.1. Different UAVs categories [67] . 18
1.2. UAV components [65] . 19
1.3. Types of multirotor propeller arrangements, featuring (top row, left

to right) bicopter, tricopter, quad +, quad X, quad H, quad V, and
quad Y, and (bottom row, left to right) hexa +, hexa X, hexa Y6,
hexa IY, octo +, octo X, and octo X8 [65]. 20

2.1. Illustration of sound wave properties [59] 26
2.2. A signal with a Nyquist frequency of 5 Hz, sampled at different

rates. Sampling below the Nyquist frequency causes aliasing, mak-
ing the original signal unrecoverable. A sampling rate 16 times
higher reconstructs the signal with greater detail.[77] 29

2.3. Decomposition of audio signals into frames. [47] 30
2.4. Illustration of the overlapping effect [73] 31
2.5. (a) Audio frame, (b) 25 ms hamming window, (c) Marked status of

the audio signal [84] . 32
2.6. Illustration of audio features [73] 33

4.1. Systematic methodology pipeline 56
4.2. Conceptual overview of the preprocessing pipeline 59

5.1. System design . 66
5.2. Experimental setup . 67
5.3. IFC cage . 68
5.4. Kinobo mini Akiro microphone USB 69
5.5. Mission Planner interface . 71
5.6. Propellers representation . 72
5.7. Stall damage of both UAV’s propeller type 4 (D4) 72
5.8. Software architecture overview . 73
5.9. Custom dataset structure . 77
5.10. Waveform analysis of audio signals from HolybroX500 and Y6Areiom

UAVs at 10% speed . 82
5.11. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom

UAVs at 10% speed . 84

7

LIST OF FIGURES

5.12. Signal chunking analysis . 87
5.13. Class distribution by UAV model 97
5.14. Average MFCC coefficients . 98
5.15. Feature importance by UAV model 98
5.16. Speed-based pattern analysis . 99
5.17. Correlation heatmap of all features 100
5.18. Top 15 features correlated with label 101
5.19. Feature importance for HolybroX500 101
5.20. Feature importance for Y6Areiom 102
5.21. PCA by UAV model . 102
5.22. PCA by rotor speed . 103
5.23. t-SNE by UAV model . 103
5.24. t-SNE by rotor speed . 104
5.25. STFT mean distribution by UAV model and rotor speed 104
5.26. STFT variance distribution by UAV model 105
5.27. STFT mean vs variance by UAV model 105
5.28. Damage detection feature separation by speed 106

6.1. Accuracy comparison for Holybro X500 across 10%, 15%, and 20%
speeds (test set) . 124

6.2. Accuracy comparison for Y6 AREIOM across 10%, 15%, and 20%
speeds (test set) . 128

6.3. Accuracy comparison for single unified model (test set) 131
6.4. Accuracy comparison across all classifiers and cases (test set) 132
6.5. Performance comparison of hybrid ensemble vs. baseline models

(test set) . 134
6.6. Accuracy trends of hybrid ensemble across all cases (test set) 135

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed . 154

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed (cont.) . 155

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed (cont.) . 156

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed . 157

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed (cont.) . 158

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed (cont.) . 159

8

LIST OF FIGURES

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed . 160

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed (cont.) . 161

A.0. Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed (cont.) . 162

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed . 163

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed (cont.) . 164

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed (cont.) . 165

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed . 166

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed (cont.) . 167

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed (cont.) . 168

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed . 169

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed (cont.) . 170

A.0. Spectrogram analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed (cont.) . 171

9

List of Tables

1.1. Summary of drone categorization by weight and flight range [37] . . 17

3.1. Summary of acoustic-based, ML-driven propeller FD methods . . . 49

5.1. Microphone configuration . 69
5.2. UAV models configurations . 70
5.3. Summary of recorded data for all configurations of UAVs 76

6.1. Test set performance for Holybro X500 at 10% speed 121
6.2. Test set performance for Holybro X500 at 15% speed 122
6.3. Test set performance for Holybro X500 at 20% speed 123
6.4. Test set performance for Y6 AREIOM at 10% speed 125
6.5. Test set performance for Y6 AREIOM at 15% speed 126
6.6. Test set performance for Y6 AREIOM at 20% speed 127
6.7. Test set performance for single model 129
6.8. Performance comparison of hybrid ensemble vs. baseline Random-

Forest on the test set . 134

10

List of Abbreviations

ADC Analog-to-Digital Conversion

AE Amplitude Envelope

ANN Artificial Neural Network

AUC Area Under the Curve

AutoML Automated Machine
Learning

BMDV German Federal Ministry for
Digital and Transport

CNN Convolutional Neural Network

CRNN Convolutional Recurrent
Neural Network

CSV Comma-Separated Values

CV Coefficient of Variation

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DL Deep Learning

DLRG German Lifesaving Society

DNN Deep Neural Network

DT Decision Tree

EDA Exploratory Data Analysis

F1 F1-Score

FAIR Findable, Accessible,
Interoperable, Reusable

FD Fault Diagnosis

FFT Fast Fourier Transform

FN False Negatives

FP False Positives

FPR False Positive Rate

FT Fourier Transform

HNR Harmonic-to-Noise Ratio

IFC Indoor Flight Center

IMU Inertial Measurement Unit

KNN K-Nearest Neighbors

LSTM Long Short-Term Memory

MAV Micro Aerial Vehicle

MFCC Mel-Frequency Cepstral
Coefficients

ML Machine Learning

MRO Maintenance, Repair, and
Overhaul

MSE Mean Squared Error

PCA Principal Component Analysis

RMS Root-Mean-Square

ROC Receiver Operating
Characteristic

11

List of Abbreviations

RPM Revolutions Per Minute

RTLS Real-Time Location System

SD Standard Deviation

SRO Search and Rescue Operation

SHAP SHapley Additive exPlanations

SMOTE Synthetic Minority
Oversampling Technique

SNR Signal-to-Noise Ratio

SP Signal Processing

STFT Short-Time Fourier Transform

SVM Support Vector Machine

TN True Negatives

TP True Positives

TPOT Tree-based Pipeline
Optimization Tool

TPR True Positive Rate

t-SNE t-Distributed Stochastic
Neighbor Embedding

UAS Unmanned Aerial System

UAV Unmanned Aerial Vehicle

USB Universal Serial Bus

WHO World Health Organization

ZCR Zero Crossing Rate

12

1. Introduction

Annually, drowning incidents result in the tragic loss of millions of lives and cause
severe injuries to countless individuals. According to the World Health Organi-
zation (WHO), nearly 236,000 individuals worldwide succumb to drowning each
year, making it a critical public health issue that demands urgent intervention
[60]. In particular, inland waters, such as rivers and lakes, pose significant dan-
gers. Recent statistics from the German Lifesaving Society (DLRG) reveal that
approximately 80% of drowning fatalities occur in these inland bodies of water. In
2023, 378 drowning incidents were documented, with 90% occurring in unguarded
locations, such as rivers and canals, thereby emphasizing the urgent necessity for
quick rescue responses in remote areas [20]. The statistics clearly indicate the
gravity of the situation and highlight the importance of rapid and efficient rescue
operations, given the limited timeframe between the initial stages of drowning and
the life-threatening consequences.

A robust search and rescue system, along with an autonomous deployment
model, is necessary to enhance rescue capabilities and assist emergency response
teams in quickly locating and aiding drowning victims in remote areas. Given the
critical need for rapid response in drowning incidents, multi-copter and unmanned
aerial systems are one of the areas of interest in Search and Rescue Operations
(SROs) [75] [10]. They offer several advantages, particularly their ability to quickly
access and survey remote or hard-to-reach areas. This ability facilitates the early
identification and localization of drowning victims [71]. Moreover, UAVs can be
equipped with sensors and communication systems that provide real-time data to
rescue teams, enabling more informed decision-making and better coordination of
rescue efforts [97].

The RescueFly Project, initiated in Germany (January 2022), introduces novel
autonomous drone technology. This effort enhances water rescue operations using
autonomous drone technology [69]. Funded by the German Federal Ministry for
Digital and Transport (BMDV). This project seeks to shorten response times and
enhance the effectiveness of rescue operations in inland waters by incorporating
smart drone hangar systems that autonomously launch UAVs upon detecting dis-
tress signals. These vehicles are designed to locate drowning victims and assist
them with flotation devices, thereby enhancing the overall rescue capability [34]
[39] [10] [35] [87]. Altogether, these systems help to prompt response capabilities
with intelligent maintenance systems, highlight the potential of UAVs to save lives

13

1. Introduction

and improve public safety.
Another significant factor is that ensuring the airworthiness of UAVs is critical

for their reliable performance in search and rescue operations because it directly
impacts their ability to operate safely and effectively in challenging environments
[52] [19]. Consequently, the reliability of UAVs heavily depends on the health
and functioning of their components, including propulsion systems, navigation
modules, power supplies, and communication systems [36] [29].

The propulsion system serves as a fundamental component of any aerial vehicle.
Propellers are key components of these systems, play a pivotal role that ensure
stable flight, maneuverability, and thrust generation. Propellers convert rotational
energy into aerodynamic forces, enabling UAVs to perform essential tasks such as
hovering, navigation, and payload delivery. However, they are highly susceptible
to damage from collisions, regular handling, and environmental conditions, po-
tentially resulting in reduced thrust, heightened vibrations, and impaired flight
stability. Such damage can lead to reduced thrust efficiency, increased vibrations,
and compromised flight stability, ultimately degrading overall system performance
and reliability [80] [66] [61]. Aircraft visual inspection is designed to identify
structural issues and is an integral part of Maintenance, Repair, and Overhaul
(MRO) activities. It involves inspectors conducting multiple observations to en-
sure aircraft safety and readiness for flight [92]. Traditional propeller inspection
methods rely on visual examination and manual testing, which are labor-intensive,
operator-dependent, lack quantitative metrics, and are prone to subjective inter-
pretation [92]. Besides this, image-based computer vision methods got inspired
by these visual inspection to detect propellers malfunctions [36]. These methods
limited to detect propeller’s surface defects and may fail to detect anomalies with
less lighting conditions.

Fault diagnosis processes are a key area of interest in industrial systems for
ensuring system reliability. Traditional fault diagnosis methods, such as model-
based approaches that compare system behavior with mathematical models and
expert systems that rely on predefined rules and human expertise, are effective but
often require significant computational resources and depend on accurate system
models [53] [2]. In recent years, however, a significant shift toward data-driven
techniques has emerged due to their ability to handle complex, nonlinear systems
without requiring detailed mathematical models, addressing the critical role of
accurate sensor data.

In the context of UAV fault diagnosis, researchers have explored various method-
ologies, ranging from vibration analysis to current signature analysis. Studies em-
phasize that Inertial Measurement Unit (IMU) sensor data, comprising accelerom-
eter, gyroscope, and magnetometer measurements, are fundamental for UAV con-
trol systems, enabling the detection, isolation, and compensation of sensor faults

14

1. Introduction

such as biases, noise, and outright failures [99] and [23]. However, IMUs are vul-
nerable to malfunctions caused by environmental influences, with accelerometer
and gyroscope readings often suffering from bias and excessive noise due to tem-
perature fluctuations and vibrations [99]. Additionally, the attitude derived from
integrating gyro data as angular velocities faces significant challenges, including
bias and random-walk errors [23]. Due to hardware limitations, the most common
solutions, such as hardware redundancy-based methods, often present drawbacks,
particularly in small UAVs, where they can compromise payload capacity and
power efficiency.

In paper [13] and [61] key area of focus is the detection of faults using current
sensors, which offer a practical and cost-effective means of monitoring UAV com-
ponents. Current-based methods are advantageous due to the low cost and easy
implementation of current sensors, as well as the integration of current and voltage
detection modules in many electronic speed controllers [68]. One of the primary
limitations is that current signals may not strongly reflect mechanical faults [13].
Mechanical issues such as bearing failures, rotor imbalances, or propeller damage
might not always produce significant, easily detectable changes in the current sig-
nal. This is because current signals primarily capture electrical activity within
the motor. Specifically, the changes in current due to mechanical faults may be
subtle and difficult to distinguish from normal operational variations. This makes
it challenging to diagnose mechanical faults accurately using only current-based
analysis [13]. Furthermore, Fault Detection (FD) based on current can be af-
fected by changes in operating conditions, including load, speed, and temperature.
Changes in these parameters can alter the current signal, potentially masking or
mimicking fault signatures, leading to false positives or negatives [68]. Addition-
ally, they may not directly capture aerodynamic issues, such as changes in propeller
efficiency due to deformation or wear, requiring more comprehensive modeling to
translate electrical signals to mechanical conditions [61].

Despite their effectiveness, these methods encounter significant challenges, par-
ticularly the scarcity of reliable fault data. As [83] noted, UAV fault diagnosis
poses a typical small sample problem, primarily due to the stability of UAV op-
erations under normal conditions. This scarcity is further compounded by the
risks and costs associated with inducing faults during flight tests, necessitating
the exploration of hybrid methods and simulated data generation. However, simu-
lated data often fails to replicate real-world scenarios, leaving a significant gap in
fault data representation. The integration of additional sensors for FD can lead to
increased hardware complexity and power consumption, impacting the UAV’s op-
erational efficiency. Consequently, there is an increasing demand for non-invasive,
cost-effective, and resource-efficient approaches that can be implemented outside
of UAVs.

15

1. Introduction

Acoustic-based methods for inspecting UAV propellers have gained significant
attention in recent years due to their non-invasive nature, cost-effectiveness, and
ability to provide real-time diagnostics by leveraging the unique acoustic signa-
tures generated under various operational conditions [80] [29]. These methods
leverage the unique acoustic signatures generated by UAV propellers under vari-
ous operational conditions, enabling the detection of damage, imbalance, or wear.
Recent advancements in Machine Learning (ML) and acoustic analysis have facil-
itated the development of sophisticated techniques for diagnosing propeller faults.
Acoustic sensors present a promising alternative, offering a non-invasive approach
to propeller inspection. They require minimal computational resources and can
provide valuable insights into propeller health without altering the UAV’s payload
capacity or power efficiency. Despite their advantages, acoustic-based methods
must overcome challenges related to signal processing and environmental noise
interference. Academic researchers often employ advanced ML and deep learn-
ing models to address these challenges, yet these models demand large datasets
and significant computational power, introducing new complexities. This research
aims to address some of these challenges by proposing an acoustic-based inspection
method for small UAV propellers, leveraging the advantages of acoustic sensors
while mitigating the limitations of traditional sensor-based approaches. The fol-
lowing sections will delve into the details of these systems and highlighting their
potential to enhance propeller inspection and fault diagnosis in a practical and
efficient manner.

Unmanned Aerial Systems

The development of Unmanned Aerial Systems (UAS) and Unmanned Aerial Vehi-
cles (UAVs) traces its origins to the early 20th century, driven by military demands
during World War I. Initially deployed as target drones, UAVs marked their first
significant milestone with the Kettering Bug in 1916, widely regarded as one of
the earliest UAVs [43]. Advancements during World War II introduced the Ra-
dioplane OQ-2, the first mass-produced UAV designed for target practice, further
solidifying their military utility [98]. Following the war, UAV technology transi-
tioned into civilian applications, notably in agriculture, research, and surveillance.
By the 1990s, the integration of GPS technology revolutionized UAV capabilities,
enabling precise navigation and expanding their use in disaster response, environ-
mental observation, and military surveillance [98]. Within the industry, researchers
have proposed various classifications to categorize UAVs, with Zakora and Molod-
chik offering a detailed framework based on weight and flight range, as shown in
Table 1.1 [37]. This classification provides a granular perspective on the diverse
UAV types employed across industries, facilitating a deeper understanding of their

16

1. Introduction

applications.

Designation Weight Range (kg) Flight Range (km)

Micro and mini UAVs close range W ≤ 5 25 ≤ R ≤ 40
Lightweight UAVs small range 5 < W ≤ 50 10 ≤ R ≤ 70

Lightweight UAVs medium range 50 < W ≤ 100 70 ≤ R ≤ 250
Average UAVs 100 < W ≤ 300 150 ≤ R ≤ 1000

Medium heavy UAVs 300 < W ≤ 500 70 ≤ R ≤ 300
Heavy medium range UAVs 500 ≤ W 70 ≤ R ≤ 300
Heavy UAVs large endurance 1500 ≤ W R ≤ 1500
Unmanned combat aircraft 500 < W R ≤ 1500

Table 1.1.: Summary of drone categorization by weight and flight range [37]

In this research, we focus on Micro Aerial Vehicles (MAVs), a specialized subset
of UAVs. MAVs are particularly valuable for applications demanding high agility
and precision in constrained or hard-to-reach environments. While our study pri-
marily addresses MAVs, we employ the general term ”UAVs” throughout this work
to maintain consistency with broader literature and industry standards. UAVs are
available in multiple designs, each tailored to particular tasks. The following figure
1.1 shows Common configurations of these autonomous aerial vehicles [67].

This research focuses on Micro Aerial Vehicles (MAVs), a specialized subset of
UAVs renowned for their high agility and precision in constrained or hard-to-reach
environments, making them ideal for applications like search and rescue. While the
study primarily addresses MAVs, the general term ”UAVs” is used throughout this
work to align with broader literature and industry standards. UAVs are available
in multiple designs, each tailored to specific tasks, as illustrated in Figure 1.1,
which presents common configurations of these autonomous aerial vehicles [67].

UAVs are equipped with a range of critical components that enable autonomous
or remote-controlled operation, ensuring versatility across diverse applications.
Figure 1.2 illustrates the key elements of a quadcopter, highlighting the integration
of vital devices and sensors for automated vibration analysis [65]. UAV systems
comprise four fundamental subsystems: airframe, propulsion, navigation, and pay-
load mechanisms. The propulsion system, driven by propellers, generates essential
aerodynamic forces through precise blade rotation, creating differential pressure
zones that enable controlled flight operations [28]. Modern UAV architectures fur-
ther enhance operational capabilities by incorporating sophisticated sensor arrays,
communication interfaces, and autonomous control systems [74].

The propulsion system of UAVs, particularly in multi-rotor configurations, plays
a critical role in determining flight stability, maneuverability, and payload capacity.

17

1. Introduction

Figure 1.1.: Different UAVs categories [67]

Multi-rotor UAVs are characterized by diverse propeller arrangements, which vary
based on the number of rotors and their spatial distribution, as illustrated in Figure
1.3.

The propeller mechanism, serving as the critical propulsion element, utilizes
advanced aerodynamic principles to generate thrust through rotational blade dy-
namics. This process creates controlled pressure differentials across blade surfaces,
enabling sustained flight operations and stability control [28] [54]. In challenging
operational environments, propeller performance directly correlates with system
reliability and mission success. Performance degradation can manifest through
various mechanical phenomena: structural damage (cracks, surface defects), ma-
terial fatigue, and geometrical deformations [28] [63]. These degradation mech-
anisms induce system-wide effects, including vibrational anomalies, flight path
instabilities, and reduced propulsive efficiency, potentially compromising mission
parameters. Common types of propeller damage include cracks, chips, erosion, and
deformation, often caused by collisions, environmental factors, or material fatigue.
Fractures and nicks, often caused by collisions with obstacles or debris, can mod-
ify the propeller’s aerodynamic characteristics, resulting in heightened vibrations
and decreased thrust performance [66]. Erosion, caused by prolonged exposure to
abrasive particles such as sand or dust, gradually wears down the propeller sur-
face, diminishing its structural integrity and performance [16]. Deformation, often
due to excessive mechanical stress or thermal effects, can cause imbalances and
misalignment, further exacerbating operational inefficiencies [95]. These damages
not only compromise the UAV’s flight capabilities but also pose safety risks, em-
phasizing the need for regular inspection, robust material selection, and advanced
damage detection techniques to mitigate such issues.

18

1. Introduction

Figure 1.2.: UAV components [65]

Aerodynamic Noise

Aerodynamic noise generated by propeller-driven aircraft represents a complex
acoustic phenomenon that significantly influences both environmental impact and
system diagnostics, offering a critical lens for understanding propeller health. The
acoustic signature of propeller systems comprises two primary characteristics: dis-
crete frequency tonal components and broadband noise contributions, as evidenced
by studies on non-destructive evaluation of UAV propellers [29]. Understand-
ing these acoustic elements is essential for developing reliable propeller inspection
methodologies, particularly in the context of acoustic-based fault detection.

Tonal components, which emerge from periodic blade motion, manifest as dis-
tinct peaks in the frequency spectrum at the blade passing frequency and its
harmonics, directly correlating with rotational speed and the number of blades
to provide valuable diagnostic insights into propeller condition. Comprehensive
aircraft noise studies demonstrate that these tonal signatures are particularly pro-
nounced in propeller-driven systems due to the periodic nature of blade-air in-
teractions [24] . In contrast, broadband noise arises from complex turbulent flow
interactions, especially at blade edges and tip regions, appearing as a broad range
of frequencies driven by unpredictable pressure changes in the turbulent boundary
layer and wake areas. These broadband characteristics are influenced by aerody-
namic factors such as blade geometry, angle of attack, and local flow conditions,
becoming particularly relevant in urban environments where complex flow patterns

19

1. Introduction

Figure 1.3.: Types of multirotor propeller arrangements, featuring (top row, left
to right) bicopter, tricopter, quad +, quad X, quad H, quad V, and
quad Y, and (bottom row, left to right) hexa +, hexa X, hexa Y6,
hexa IY, octo +, octo X, and octo X8 [65].

can significantly alter the acoustic signature [78].
The interaction between tonal and broadband components creates a distinctive

acoustic profile that varies with operational conditions and propeller health sta-
tus, enabling modern acoustic analysis techniques to leverage both for diagnostic
purposes. Tonal elements often reveal systematic variations in blade geometry or
rotation, while broadband characteristics can indicate surface degradation or flow
disturbances, forming the foundation for robust acoustic-based inspection method-
ologies.

1.1. Motivation

The development of an automated, lightweight, and acoustic-based FD system for
UAV propellers is driven by critical challenges in UAV maintenance and opera-
tional safety. Current propeller inspection methods suffer from significant limi-
tations, including invasiveness, high computational demands, and an inability to
detect subtle damages that could compromise UAV performance, potentially lead-
ing to mission failure. This research proposes a non-destructive, cost-effective, and
real-time monitoring approach to identify propeller health across diverse damage
scenarios without imposing additional computational or physical burdens on UAV
systems. By leveraging acoustic signal processing and machine learning techniques,
the study seeks to shift propeller health monitoring from a reactive to a predictive
maintenance paradigm, filling a critical gap in UAV diagnostics and preventing
catastrophic failures through early damage detection. Autonomous UAV inspec-
tion systems, such as those developed for high-voltage transmission line monitor-

20

1. Introduction

ing, demonstrate the potential for automated maintenance in critical infrastructure
[85]. Recent advancements in adaptive UAV platforms for autonomous inspection
of high-voltage power lines further highlight the growing role of UAVs in critical
applications, emphasizing the need for reliable component health monitoring to
ensure mission success [7].

Acoustic-based UAV propeller inspection has emerged as a promising approach
for ensuring the safety and reliability of UAV operations. Through the sophisti-
cated feature extraction methods, machine learning algorithms, and varied datasets,
researchers have achieved notable advancements in identifying propeller irregular-
ities. However, challenges such as noise interference and computational efficiency
must be addressed to fully realize the potential of these methods. As the field con-
tinues to evolve, the integration of acoustic-based diagnostics into routine main-
tenance protocols will play a pivotal role in enhancing UAV performance and
reducing operational risks. In addition to propeller health monitoring, collision
avoidance represents a critical safety concern for UAVs in autonomous operations,
particularly in confined spaces like hangars, as explored in studies on robust per-
ception depth information [72].

Traditional propeller inspection methods, such as visual examination and man-
ual testing, are labor-intensive and prone to subjective interpretation, lacking
quantitative metrics and often failing to detect subtle damages that are not vi-
sually apparent [92]. Similarly, image-based computer vision methods, though
inspired by visual inspection, are limited to detecting surface defects and may fail
under poor lighting conditions [36]. In contrast, acoustic-based methods provide a
non-invasive approach, requiring minimal computational resources while offering
valuable insights into propeller health without affecting the UAV’s payload capac-
ity or power efficiency [80]. Nevertheless, these methods must address challenges
related to signal processing and environmental noise interference to ensure reliable
performance in real-world scenarios.

The proposed system addresses these challenges by analyzing acoustic signa-
tures generated by UAV propellers to detect subtle faults, such as cracks, blade
deformations, or aerodynamic imbalances, before they lead to system failure. By
employing statistical feature extraction and machine learning models, this research
develops a cost-effective, energy-efficient solution that operates in real time, en-
abling UAVs to function autonomously without significant battery consumption
or computational overhead. The system will be rigorously tested across various
operational conditions, simulating real-world scenarios where UAVs encounter dy-
namic and noisy environments, using audio recordings captured from propellers
operating at different speeds and under diverse damage scenarios. This approach
ensures the system’s robustness in identifying faults across a wide range of condi-
tions. Furthermore, the study will compare the performance of acoustic analysis

21

1. Introduction

with conventional fault detection techniques, such as vibration or sensor-based
systems, highlighting the advantages of acoustic monitoring, including simpler im-
plementation, lower costs, and real-time capabilities.

This research focuses on developing and validating a fault detection model based
on acoustic signatures, tested on two UAV types under varied conditions, including
different propeller speeds and damage levels. Designed for real-time processing on
embedded platforms, the model will also be evaluated on cloud-based systems to
assess its compatibility with resource-intensive setups. Primarily intended for au-
tonomous UAVs in emergency response operations, the model holds potential for
extension to fields like environmental monitoring and agriculture, demonstrating
the versatility of acoustic fault detection. The study underscores the practical-
ity of this approach in dynamic, real-world UAV deployments, offering a viable
alternative to conventional methods. However, the research is limited to proto-
type UAV systems and may not fully address challenges associated with large-scale
implementation or highly noisy environments. Ultimately, the findings aim to ad-
vance UAV health monitoring, paving the way for more efficient and dependable
autonomous systems in critical industries.

1.2. Objective and Scope

This study aims to explore how recording procedures and experimental setups
shape the development of an effective data-driven FD model for UAV propellers, fo-
cusing on identifying key acoustic features and establishing implementation guide-
lines for drone hangar environments. The primary objective is to design a lightweight,
real-time FD solution deployable on embedded UAV platforms, ensuring opera-
tional reliability for critical missions such as search and rescue. By analyzing
acoustic signatures, the system seeks to detect minor faults—such as cracks, blade
deformations, and aerodynamic imbalances—before they escalate into system fail-
ures, utilizing statistical feature extraction and ML techniques to create a cost-
effective, energy-efficient solution that enables UAVs to operate autonomously
with minimal computational or power demands [80]. The system will be rigor-
ously tested under diverse operational conditions, simulating real-world scenarios
where UAVs encounter dynamic and noisy environments, with data collected from
audio recordings of propellers at varying speeds and damage levels to ensure robust
fault identification across a range of states. Furthermore, the research will com-
pare the performance of acoustic-based FD with conventional methods, such as
vibration analysis or sensor-based systems, highlighting the advantages of acoustic
monitoring in terms of simplicity, cost-efficiency, and real-time capabilities [92].

This research focuses on developing and validating an acoustic-based FD model,
with testing conducted on two UAV types under varying propeller speeds and

22

1. Introduction

damage conditions. Optimized for real-time processing on embedded platforms,
the model will also be evaluated on cloud-based systems to assess its compati-
bility with resource-intensive setups. While primarily designed for autonomous
UAVs in emergency response operations, the model offers potential applications in
sectors like environmental monitoring and agriculture, highlighting the versatility
of acoustic FD [80]. The study demonstrates the practicality of this approach in
real-world UAV operations within dynamic environments, positioning acoustic FD
as a viable alternative to traditional methods. However, the research is limited
to prototype UAV systems and may not fully address challenges associated with
large-scale deployments or highly noisy settings. Ultimately, the outcomes will
advance UAV health monitoring, fostering the development of more efficient and
dependable autonomous systems for critical applications.

1.3. Thesis Structure

This thesis is organized into several chapters, each building upon the previous
one to provide a comprehensive overview of the research, its methods, and its
outcomes. The structure is outlined as follows:

textbfChapter 1: Introduction
Chapter 1 introduces the challenge of propeller malfunction detection in UAVs,

with a focus on emergency response scenarios. It provides background context,
articulates the research’s significance, and details the objectives and motivation
for the proposed acoustic-based solution.
Chapter 2: Background Knowledge
Chapter 3 reviews existing research on fault detection systems for UAVs, ana-

lyzing the strengths and limitations of various methods, with a particular focus
on acoustic-based approaches and machine learning techniques for propeller fault
detection.
Chapter 3: State of the Art
Chapter 3 reviews existing research on fault detection systems for UAVs, ana-

lyzing the strengths and limitations of various methods, with a particular focus on
the application and evaluation of acoustic signatures in state-of-the-art techniques.
Chapter 4: System Design
Chapter 4 presents the conceptual framework for the acoustic-based fault detec-

tion system, detailing the methodology overview, data acquisition, preprocessing
pipeline, feature extraction, and model training processes employed to classify
UAV propeller health.
Chapter 5: Methodology
Chapter 5 explores the practical implementation of the system, providing an

in-depth examination of the system setup, experimental configuration, software

23

1. Introduction

platforms, audio data preparation, preprocessing pipeline, data processing, model
training, and optimization steps for embedding the fault detection system into
UAVs.
Chapter 6: Implementation
Chapter 6 evaluates the performance of the acoustic fault detection system,

presenting classification outcomes, comparing the two modeling approaches, and
assessing the optimized hybrid ensemble’s effectiveness, with a focus on accuracy
and reliability across diverse conditions.
Chapter 7: Results and Evaluation
Chapter 7 interprets the results, discussing the effectiveness of the proposed

approaches, their strengths and limitations, and their implications for real-world
UAV applications. It also proposes future research directions, such as transfer
learning, to enhance generalization and scalability.
Chapter 8: Conclusion and Future Work
Chapter 8 concludes the research by summarizing key findings, emphasizing the

system’s effectiveness for autonomous UAV inspection, and addressing limitations
to guide future improvements.

24

2. Background Knowledge

This chapter establishes the theoretical foundation for the acoustic-based fault
detection system for UAV propellers, focusing on signal processing, audio signal
processing, and machine learning techniques. These principles form the basis for
the analysis, preprocessing, and classification methods employed in this thesis.

2.1. Sound Waves

Sound waves are mechanical vibrations that travel through a medium, by cre-
ating localized compressions and rarefactions of the medium’s particles. Unlike
electromagnetic waves, sound waves necessitate a physical medium to transmit
energy, rendering them dependent on molecular interactions for energy transfer
from the source to the receiver. These waves encapsulate vital information about
their originating vibrating source, making their comprehension indispensable for
applications in acoustic analysis and audio signal processing [6] [62]. As sound
waves propagate, particles within the medium oscillate around their equilibrium
positions, transferring energy through intermolecular forces without causing per-
manent displacement. This oscillatory behavior enables sound waves to efficiently
convey energy and information, forming the basis for their analysis in engineering
and scientific domains. The properties of sound waves are characterized by several
key attributes:

• Wavelength (λ): The distance between consecutive compressions or rar-
efactions in a wave. Wavelength is inversely related to frequency, as described
by the equation:

λ =
v

f
(2.1)

where v is the velocity of sound and f is the frequency. Longer wavelengths
correspond to lower frequencies and produce lower-pitched sounds, while
shorter wavelengths correspond to higher frequencies and higher pitches.

• Frequency (f): The number of wave cycles passing a fixed point per second,
measured in hertz (Hz). Frequency determines the pitch of a sound. The
human ear typically detects frequencies between 20 Hz and 20 kHz, known as

25

2. Background Knowledge

the audible range. Frequencies beyond this range are classified as ultrasonic.
The relationship between frequency and the time period (T) is expressed as:

f =
1

T
(2.2)

• Time Period (T): The time it takes for one complete cycle of the wave to
pass a given point. It is inversely related to frequency.

• Velocity (v): The speed at which sound travels through a medium. This
velocity depends on factors such as the medium’s temperature, density, and
elasticity. In air at room temperature (approximately 20◦C), sound travels
at a velocity of approximately 343 meters per second. The velocity can also
be expressed as:

v = λ · f (2.3)

• Amplitude (A): The maximum displacement of particles from their rest
position. Amplitude is perceived as the loudness of a sound; greater ampli-
tude corresponds to louder sounds.

Figure 2.1.: Illustration of sound wave properties [59]

These properties collectively describe how sound waves propagate and interact
with their environment, providing a foundation for acoustic-based ML systems.
For instance, wavelength and frequency enable spectral feature extraction, while
amplitude and velocity support intensity and localization analyses for detecting
faults in UAV propellers.

2.2. Signals

A signal is a mathematical function of one or more independent variables that en-
codes information about a physical phenomenon. It is often represented over time

26

2. Background Knowledge

or space. An audio signal, specifically, represents sound and is typically captured
as variations in air pressure over time. An audio signal is a representation of sound,
typically captured as variations in air pressure over time. Audio signals encode all
the information necessary to reproduce sound, making them essential for applica-
tions in speech processing, music analysis, and acoustic fault detection [6]. Signals
are categorized based on the nature of their independent variables, primarily into
continuous-time and discrete-time types. This classification determines the meth-
ods used for their analysis and processing. A signal is considered continuous-time
if it is defined over an unbroken continuum of values, whereas discrete-time signals
are defined only at specific, countable intervals. This distinction underpins many
methods of signal analysis and processing, influencing how data is modeled and
interpreted in diverse applications.

• Analog Signals: Analog signals represent continuous waveforms that vary
smoothly over time and amplitude. They are inherently time-varying, with
their values capable of taking on any real number within a defined range [25].
However, analog signals require infinite memory for precise representation,
which is impractical for digital systems. This limitation necessitates the
conversion of analog signals into digital form for processing and storage.

• Digital Signals: Digital signals, on the other hand, consist of discrete
values, usually represented as binary sequences of 0s and 1s. These signals
are generated from analog sources through a process known as Analog-to-
Digital Conversion (ADC) [82]. Unlike analog signals, digital waveforms exist
within a finite set of possible states during a specific time interval, making
them ideal for computational analysis and storage. This discretization is
crucial for enabling efficient data processing and storage.

The distinction between continuous and discrete signals is fundamental for choos-
ing appropriate processing techniques, such as Analog-to-Digital Conversion (ADC),
which plays a key role in preprocessing. This classification guides the transforma-
tion of raw audio data into a format suitable for ML applications.

2.3. Signal Processing

Signal processing (SP) involves performing operations on signals to either modify
them in a desired way or extract valuable information. It combines theoretical
concepts, design strategies, and practical implementation to convert signals from
various sources into a form that allows for effective analysis and utilization [6]. In
computational applications, continuous signals are often converted into discrete
forms through sampling at uniform intervals. The ADC process involves two key

27

2. Background Knowledge

steps, sampling the analog signal at specific time intervals and quantizing the
amplitudes into distinct levels [82].

Sampling

Sampling involves capturing the amplitude of an analog signal at specific time
intervals, converting it into discrete points. The sampling rate (Sr) determines
how often samples are taken from the analog signal and is measured in samples
per second or hertz (Hz). A higher sampling rate results in more samples per
second, providing a more accurate representation of the original analog signal but
requiring greater memory resources. Conversely, a lower sampling rate captures
fewer samples per second, leading to a less precise representation but reducing
memory usage. A higher sampling rate minimizes sampling error, which is the
discrepancy between the original analog signal and its digital representation [70].
The Nyquist-Shannon Frequency (fN), defined as half the sampling rate, represents
the highest frequency that can be accurately reconstructed from the sampled signal
[70]:

fN =
Sr

2
(2.4)

Frequencies exceeding (fN) can cause aliasing, where higher-frequency components
are incorrectly represented as lower frequencies, introducing artifacts into the re-
constructed signal [70].

Quantization

Quantization approximates the sampled amplitudes to the nearest value within
a predefined finite set, enabling digital representation. This process introduces
quantization error, which is the difference between the original amplitude and
its quantized value. The resolution of quantization depends on the number of
bits used to represent each sample, with higher bit depths reducing quantization
error and improving signal fidelity. The Signal-to-Noise Ratio (SNR) measures
the relationship between the maximum signal strength and the quantization error,
providing a metric for the dynamic range of the digital signal [70].

Framing

Framing is a crucial preprocessing step in audio signal processing, where a contin-
uous audio signal is divided into short, manageable segments called frames. This
technique is essential for analyzing non-stationary signals, where characteristics
like frequency content or amplitude vary over time. By breaking the signal into

28

2. Background Knowledge

Figure 2.2.: A signal with a Nyquist frequency of 5 Hz, sampled at different rates.
Sampling below the Nyquist frequency causes aliasing, making the
original signal unrecoverable. A sampling rate 16 times higher recon-
structs the signal with greater detail.[77]

smaller segments, framing allows for the application of analysis techniques that as-
sume local stationarity, aligning with the temporal resolution of human auditory
perception and the requirements of ML systems [47].

The need for framing arises from the dynamic nature of audio signals. Unlike
stationary signals, real-world audio signals exhibit variations due to changes in
the sound source or environmental conditions. Analyzing the entire signal as a
single entity would obscure these time-varying features. Framing addresses this
by segmenting the signal into overlapping or non-overlapping frames, enabling
detailed temporal analysis. Overlapping frames are commonly used to ensure
continuity and prevent information loss at frame boundaries. The degree of overlap
is defined by the hop length, typically set to 25–50

After framing, each segment is often processed further, such as through win-

29

2. Background Knowledge

Figure 2.3.: Decomposition of audio signals into frames. [47]

dowing, to reduce edge effects before applying transformations like the Fourier
Transform. Framing thus bridges raw signal acquisition and feature extraction,
enabling the identification of temporal patterns, such as sudden amplitude spikes
or frequency shifts, that indicate faults in UAV propellers.

Windowing and Spectral Leakage

When applying the Fourier Transform, the signal often does not consist of an
integer number of periods, leading to spectral leakage. This occurs when discon-
tinuities at the signal’s endpoints introduce high-frequency components absent in
the original signal. To mitigate this, windowing is applied to each frame before
the Fourier Transform. Windowing functions, such as the Hann window, taper
the signal at the edges, reducing discontinuities and minimizing spectral leakage.
However, windowing results in the loss of information at frame boundaries. To
address this, overlapping frames are used, where consecutive frames overlap by a
specified number of samples (the hop length), ensuring no information is lost [48].

xw[n] = x[n] · w[n] (2.5)

Here, w[n] represents the window function. While windowing improves spectral
clarity, it slightly reduces resolution by weighting edge samples less heavily. This
trade-off is managed by adjusting frame overlap and the type of window used.

2.4. Audio Features

Audio features are descriptors that capture various characteristics of sound, en-
abling ML systems to identify patterns and classify audio signals. Different features

30

2. Background Knowledge

Figure 2.4.: Illustration of the overlapping effect [73]

highlight distinct aspects of sound, and they are broadly categorized into time-
domain and frequency-domain features. Each category provides complementary
insights: time-domain features emphasize temporal dynamics, while frequency-
domain features reveal spectral composition. This dual approach enhances the
robustness of acoustic analysis, ensuring a comprehensive understanding of the
signal’s properties.

2.4.1. Time-Domain Features

Time-domain features come straight from the audio signal’s raw waveform, with
time on the x-axis and amplitude on the y-axis. They capture temporal aspects
like energy, zero-crossing rate, and statistical measures without needing a shift to

31

2. Background Knowledge

Figure 2.5.: (a) Audio frame, (b) 25 ms hamming window, (c) Marked status of
the audio signal [84]

the frequency domain. This direct method is fast and effective for spotting sudden
changes, such as shifts in UAV propeller sounds due to faults. To extract these
features, the signal is digitized via sampling and quantization, then divided into
frames short windows, typically 10–50 milliseconds long. Each frame is examined
separately, allowing the system to detect time-based variations that might point
to issues like cracks, imbalances, or wear in propeller blades.

Amplitude Envelope

The amplitude envelope (AE) represents the maximum amplitude value within a
frame, providing a straightforward estimate of the signal’s loudness. It reflects the
peak intensity of the sound during that time segment. Mathematically, for a frame
with samples x[n], where n = 1, 2, ..., N , the AE is defined as:

AE = max(|x[n]|) (2.6)

where |x[n]| is the absolute value of the sample amplitude. This feature is
particularly useful for onset detection, identifying abrupt increases in amplitude
that might correspond to mechanical impacts or irregularities in UAV propeller
operation. However, AE is highly sensitive to outliers, such as noise spikes or
transient distortions, which can skew its representation of loudness. This limits
its reliability in noisy environments. For fault detection, AE can highlight sudden
events, but its susceptibility to interference necessitates the use of complementary
features for robust analysis.

32

2. Background Knowledge

Figure 2.6.: Illustration of audio features [73]

Root-Mean-Square Energy

The Root-Mean-Square (RMS) energy measures the overall energy of a frame by
computing the square root of the mean of squared amplitudes across all samples.
For a frame of N samples x[n], RMS is calculated as:

RMS =

√√√√ 1

N

N∑
n=1

x[n]2 (2.7)

RMS serves as a robust indicator of loudness, averaging the signal’s energy over
the frame to provide a more stable measure than the amplitude envelope. Unlike
AE, RMS is less sensitive to outliers because it considers the contribution of all
samples, making it a reliable descriptor for assessing the intensity of UAV propeller
sounds under varying conditions. In audio signal processing, RMS is widely used
for segmentation tasks, such as distinguishing between silent and active periods. In
fault detection, it can reveal changes in energy patterns associated with propeller
damage, such as increased vibration intensity due to structural faults.

Zero Crossing Rate

The Zero Crossing Rate (ZCR) quantifies the number of times the signal crosses
the horizontal axis (zero amplitude) within a frame, reflecting the frequency of

33

2. Background Knowledge

sign changes in the waveform. For a frame of N samples x[n], ZCR is computed
as:

ZCR =
1

N − 1

N−1∑
n=1

|sign(x[n]) − sign(x[n− 1])| (2.8)

where | is an indicator function that returns 1 if the product x[n] · x[n + 1] is
negative (indicating a sign change) and 0 otherwise. ZCR is a versatile feature,
capturing the signal’s oscillatory behavior. It excels at distinguishing percussive
sounds (high ZCR, rapid transitions) from pitched sounds (lower ZCR, smoother
oscillations), making it valuable for monophonic pitch estimation and voiced/un-
voiced decisions in speech processing. In the context of UAV propellers, ZCR
can detect irregularities in rotational patterns, such as erratic vibrations from a
damaged blade, that manifest as increased zero crossings compared to the steady
hum of a healthy propeller. This sensitivity to temporal fluctuations enhances its
utility in fault detection systems.

2.4.2. Frequency-Domain Features

Frequency-domain features focus on the spectral composition of an audio signal,
emphasizing its frequency components rather than its temporal evolution. These
features are obtained by applying the Fourier Transform to the time-domain wave-
form, converting it into the frequency domain and producing a spectrogram. The
spectrogram visualizes the signal’s frequency content over time: the x-axis repre-
sents time, the y-axis denotes frequency, and color intensity indicates the magni-
tude of each frequency component. This representation is particularly effective at
revealing harmonic structures, periodic patterns, and subtle anomalies, attributes
that are critical for diagnosing faults in UAV propellers. By shifting the focus
from amplitude variations to spectral characteristics, frequency-domain features
enable the identification of changes in the acoustic signature that may arise from
structural damage, such as blade imbalances or wear, making them indispensable
for advanced audio analysis.

Spectral Centroid

The spectral centroid represents the ”center of mass” of the frequency spectrum
within a frame, summarizing the distribution of frequency energy. It is calculated
as the weighted average of frequencies, with weights determined by their magni-
tudes:

Spectral Centroid =

∑K−1
k=0 f [k] · |X[k]|∑K−1

k=0 |X[k]|
(2.9)

34

2. Background Knowledge

where f [k] is the frequency corresponding to bin k, |X[k]| is the magnitude
from the Fourier Transform, and K is the number of frequency bins. Expressed
in hertz, the spectral centroid indicates the perceived brightness of a sound higher
values correspond to sharper, higher pitched tones, while lower values suggest
duller, bass-heavy sounds. In the context of UAV fault detection, shifts in the
spectral centroid can signal alterations in propeller vibration patterns, such as
those caused by mass imbalances or surface irregularities, providing a sensitive
marker for anomaly detection.

Spectral Flux

Spectral flux measures the rate of change in the power spectrum between consec-
utive frames, quantifying how rapidly the frequency content evolves over time. It
is defined as the squared difference in magnitude across frames:

Spectral Flux =
K−1∑
k=0

(|Xt[k]| − |Xt−1[k]|)2 (2.10)

where Xt[k] and Xt−1[k] represent the magnitudes of the current and previous
frames, respectively, for frequency bin k. This feature excels at detecting transi-
tions or disruptions in the signal, such as sudden shifts in frequency distribution
caused by a propeller fault. For UAV applications, spectral flux can highlight
dynamic anomalies, like the onset of a crack or a loose component, that alter the
spectral stability, enhancing the system’s ability to identify faults that may not be
evident in static features.

Mel-Frequency Cepstral Coefficients

Mel-Frequency Cepstral Coefficients (MFCCs) are a set of coefficients that en-
capsulate the tonal characteristics of sound, derived from the frequency domain
through a process designed to emulate human auditory perception [1]. Unlike raw
spectral analysis, MFCCs emphasize perceptually significant features by trans-
forming the signal into a compact representation. The computation involves sev-
eral steps: applying a Fourier Transform to obtain the power spectrum, mapping
this spectrum onto the Mel scale, a logarithmic scale that prioritizes lower frequen-
cies to reflect human hearing, taking the logarithm of the Mel filterbank outputs,
and applying a Discrete Cosine Transform (DCT) to produce a concise set of co-
efficients. This process captures the signal’s spectral envelope efficiently, making
MFCCs robust to noise and effective for distinguishing complex audio patterns.

35

2. Background Knowledge

The MFCCs are mathematically defined as:

cn =
K∑
k=1

log(Sk) cos

[
n

(
k − 1

2

)
π

K

]
, n = 0, 1, . . . , N − 1 (2.11)

where:

• cn: The n-th MFCC coefficient,

• Sk: The log-energy output of the k-th Mel filterbank,

• K: The number of filterbank channels,

• n: The coefficient index (typically 0 to 13–20),

• N : The total number of coefficients computed.

Typically, the first 13–20 coefficients are retained, with lower-order coefficients
(e.g., c 0, c 1, c 2) describing the overall spectral shape and higher-order coefficients
capturing finer spectral details. In the context of UAV propeller acoustics, MFCCs
are particularly valuable for their ability to isolate harmonic signatures, such as
those distinguishing intact propellers from those with structural defects like cracks
or deformations gourisaria2024comparative. Their noise resilience and sensitivity
to subtle spectral shifts make them a cornerstone for audio-based fault detection,
providing a robust foundation for classifying propeller conditions.

Short-Time Fourier Transform

The Short-Time Fourier Transform (STFT) is a powerful transformation that com-
bines time and frequency analysis by applying the Fast Fourier Transform to short,
overlapping segments of a signal. Unlike the standard Fourier Transform, which
provides a global frequency representation, STFT preserves temporal information
by analyzing the signal through a sliding window, producing a spectrogram, a two-
dimensional map of frequency content over time LACOSTE201079. This makes
STFT particularly suited for non-stationary signals, such as those generated by
UAV propellers, where acoustic characteristics vary with rotational speed or struc-
tural conditions.

The STFT of a continuous-time signal x(t) is defined as:

X(τ, f) =

∫ ∞

−∞
x(t)w(t− τ)e−j2πft dt (2.12)

where:

36

2. Background Knowledge

• X(τ, f): The STFT output at time τ and frequency f ,

• x(t): The input signal,

• w(t− τ): A window function centered at time τ ,

• e−j2πft: The complex exponential for frequency decomposition,

• j =
√
−1: The imaginary unit.

For digital signals, the discrete STFT is computed as:

X[m, k] =
N−1∑
n=0

x[n]w[n−mH]e−j2πkn/N (2.13)

where:

• X[m, k]: The STFT at time frame m and frequency bin k,

• x[n]: The discrete signal,

• w[n−mH]: The window function shifted by hop size H,

• N : The window length,

• k: The frequency index.

From the resulting spectrogram, STFT features such as mean, variance, and
peak frequency can be derived. The mean represents the average energy across
frequency bins, variance captures the spread of spectral energy, and peak frequency
identifies the dominant tonal component within a time frame gourisaria2024comparative.
These features are particularly valuable for analyzing propeller acoustics, as they
can reveal transient changes such as those caused by cracks or imbalances, that
alter the signal’s energy distribution or frequency profile.

Spectral Rolloff

The spectral rolloff defines the frequency below which a specified percentage of the
total spectral energy is concentrated. It is calculated as:

R∑
k=0

|X[k]|2 = α ·
K−1∑
k=0

|X[k]|2 (2.14)

where R is the rolloff frequency, α is the percentage threshold, and |X[k]| is
the magnitude spectrum. Spectral rolloff distinguishes between broadband and

37

2. Background Knowledge

narrowband signals, providing insight into the signal’s frequency bandwidth. For
UAV propellers, an increase in rolloff frequency might indicate the presence of
high-frequency noise or harmonics introduced by faults, such as blade flutter or
cavitation, complementing other spectral features in anomaly detection.

2.5. Audio Transformations

Audio transformations convert raw audio signals into representations that reveal
underlying patterns, enabling effective analysis and feature extraction for ML ap-
plications. These transformations are pivotal in shifting the signal from one domain
to another, exposing characteristics critical for tasks like fault detection in UAV
propellers. Among these, the Fourier Transform stands out as a foundational tool,
decomposing signals into their frequency components to uncover spectral signa-
tures of normal and anomalous propeller behavior.

2.5.1. Fourier Transform

The Fourier Transform (FT) is a mathematical tool that breaks down a signal into
its individual frequency components, shifting it from the time-domain where time
is plotted on the x-axis and amplitude on the y-axis to the frequency domain, where
frequency is on the x-axis and magnitude on the y-axis. This shift is essential for
studying periodic signals, as it uncovers the amplitude and phase of the frequencies
that make up the signal.

2.5.2. Discrete Fourier Transform

The Discrete Fourier Transform (DFT) modifies the FT for digital signals, which
are discrete in time and amplitude due to sampling and quantization. For a signal
x[n] with N samples, the DFT is expressed as:

X[k] =
N−1∑
n=0

x[n] · e−j 2πkn
N (2.15)

Here, X[k] represents the frequency-domain output at frequency bin k, x[n] is the
time-domain sample at index n, N is the total sample count, k ranges from 0 to
N−1 and corresponds to discrete frequency steps, and j is the imaginary unit. The
complex exponential e−j 2πkn

N captures both magnitude and phase details. The DFT
produces a limited frequency spectrum suited for digital analysis, but its O(N2)
computational cost, stemming from summing all samples for each frequency bin,
can be inefficient for large N , prompting the use of faster methods.

38

2. Background Knowledge

2.5.3. Fast Fourier Transform

The Fast Fourier Transform (FFT) is an optimized algorithm for computing the
DFT, reducing its complexity from O(N2) to O(N logN) by exploiting symmetries
and redundancies in the DFT computation. This efficiency arises from recursively
dividing the signal into smaller segments, typically requiring N to be a power of
2, and is achieved through algorithms like the Cooley-Tukey method. The FFT is
widely adopted in audio signal processing for its speed, enabling real-time analysis
of frequency content in applications like UAV monitoring. For instance, the FFT
can rapidly transform propeller audio into a spectrum, revealing fault-induced
frequency shifts with minimal computational overhead.

2.6. Machine Learning

Machine learning (ML), a branch of artificial intelligence, centers on creating al-
gorithms and models that learn patterns from data to predict outcomes or make
decisions without being explicitly programmed. Using statistical methods, ML
allows systems to refine their performance through experience, making it valuable
for tasks like detecting faults in UAV propellers. ML models split into traditional
techniques, such as: linear regression, logistic regression, and decision trees and
more advanced approaches, like neural networks, Deep Learning (DL), and ensem-
ble methods. These are grouped by their learning styles:

• Supervised learning: Models are trained on labeled datasets, where input
features are paired with known output labels. The objective is to learn a
mapping function that predicts outputs for unseen data, ideal for classifica-
tion or regression tasks.

• Unsupervised learning: Unsupervised Learning: Models process unla-
beled data to uncover hidden structures or patterns, such as clustering or
dimensionality reduction, useful for exploratory analysis.

• Reinforcement learning: Models learn through interaction with an en-
vironment, optimizing actions based on rewards or penalties to maximize
cumulative returns, suited for sequential decision-making.

For this thesis, supervised learning is emphasized due to its alignment with
labeled acoustic data for fault classification.

39

2. Background Knowledge

Linear regression

Linear regression is a classical supervised learning algorithm designed to predict
a continuous target variable based on one or more input features. It assumes a
linear relationship between the feature vector x and the target y, modeled as:

y = wTx + b (2.16)

where w is the weight vector, x is the feature vector, and b is the bias term.
Machine learning has been widely applied in embedded systems for various appli-

cations, including software component mapping in automotive systems, providing
a parallel to its use in fault detection on resource-constrained UAV platforms [44].

Loss

The loss function measures the difference between the predicted values ŷ and the
actual values y. In linear regression, the Mean Squared Error (MSE) is a widely
used loss function, defined as:

MSE =
1

N

N∑
i=1

(yi − ŷi)
2 (2.17)

where N represents the number of samples. MSE assigns higher penalties to larger
errors, encouraging the model to reduce the overall prediction error.

Gradient descent

Gradient descent is an optimization algorithm that iteratively adjusts the model’s
parameters w and b to minimize the loss function. The updates are performed in
the direction of the negative gradient:

w := w − α
∂MSE

∂w
(2.18)

b := b− α
∂MSE

∂b
(2.19)

Here α, (the learning rate) determines the step size for each update. This iterative
process continues until the algorithm converges to a local minimum on the loss
surface.

40

2. Background Knowledge

Hyperparameters

Hyperparameters govern the training process and model behavior, including:

• Learning Rate (α): Determines the step size in gradient descent. A small
α ensures gradual convergence but may be slow, while a large α risks over-
shooting and instability.

• Batch Size: The number of samples processed per gradient update. Smaller
batches (e.g., mini-batch) introduce noise but reduce memory demands, while
larger batches stabilize updates at a computational cost.

• Epochs: The total number of complete iterations over the entire dataset
during training. Increasing the number of epochs can improve the model’s
learning capability; however, too many epochs may result in overfitting,
where the model performs well on training data but poorly on unseen data.

Logistic Regression

Logistic regression is a supervised learning algorithm designed for binary classi-
fication tasks. It estimates the probability of a sample belonging to the positive
class by applying the logistic function:

P (y = 1|x) =
1

1 + e−(wT x+b)
(2.20)

where w, x, and b retain their meanings from linear regression.

Probability

The output, a probability between 0 and 1, is thresholded (typically at 0.5) to
assign class labels: P (y = 1|x) ≥ 0.5 for positive (y = 1), otherwise negative
(y = 0).

Loss and regularization

The loss function, known as log loss or binary cross-entropy, measures classification
error:

Log Loss = − 1

N

N∑
i=1

[yi log(ŷi) + (1 − yi) log(1 − ŷi)]

To mitigate overfitting, L2 regularization adds a penalty proportional to the
weight magnitude:

41

2. Background Knowledge

• L2 Regularization: Adds a penalty proportional to the square of the
weights:

Loss = Log Loss + λ∥w∥2 (2.21)

where λ is the regularization strength, balancing model complexity and gen-
eralization.

2.6.1. Classification

Classification is a supervised learning task where input samples are assigned to one
of several predefined classes based on patterns identified from labeled training data.
It is a fundamental aspect of predictive modeling, allowing systems to organize
observations into meaningful categories. Classification tasks are generally divided
into two types, each addressing different levels of complexity:

• Binary Classification: The output is limited to two possible classes, typ-
ically labeled as positive and negative. This is the simplest form of clas-
sification and directly supports the objective of identifying the presence or
absence of faults in UAV propellers using audio data.

• Multi-Class Classification: The output includes more than two classes,
enabling more detailed categorization. While multi-class approaches improve
diagnostic precision, they also demand greater computational resources and
more extensive datasets.

Classification relies on trained models to map input features to class labels,
utilizing algorithms such as logistic regression or decision trees. The decision to
use binary or multi-class classification depends on the problem’s scope: binary
classification is sufficient for fault detection, whereas multi-class classification pro-
vides deeper insights into fault types, both of which are essential for ensuring UAV
maintenance and safety.

Thresholds

In binary classification, a threshold acts as a decision boundary that converts
predicted probabilities into discrete class labels, separating the two classes. For
models like logistic regression, the output is a probability P (y = 1|x) which ranges
from 0 to 1, where y = 1 represents the positive class. A commonly used default
threshold is 0.5: if P (y = 1|x) ≥ 0.5 he sample is classified as positive; otherwise, it
is labeled as negative (y = 0). For instance, if a UAV propeller’s acoustic signature
produces a probability of 0.7, it would be classified as ”faulty” using this threshold.

However, the threshold is not fixed and can be adjusted based on the applica-
tion’s requirements. In UAV fault detection, a lower threshold might be selected to

42

2. Background Knowledge

increase sensitivity, ensuring that fewer faulty propellers are overlooked, even if it
results in more false positives that could lead to unnecessary maintenance. On the
other hand, a higher threshold emphasizes specificity, reducing false alarms but
potentially missing some faults. This trade-off is illustrated using a precision-recall
curve, where adjusting the threshold shifts the balance between correctly identify-
ing true positives and minimizing false positives. Techniques like cross-validation
can help determine the optimal threshold, allowing the model to prioritize safety-
critical outcomes in UAV operations.

Confusion Matrix

The confusion matrix is a tabular representation that summarizes a classifica-
tion model’s performance by comparing predicted labels to actual labels across all
samples. It provides a detailed breakdown of prediction outcomes, essential for
evaluating and refining the model’s effectiveness in tasks like UAV fault detection.
The matrix is structured as follows for binary classification:

• True Positives (TP): The number of samples correctly predicted as pos-
itive. For instance, if 50 faulty propeller audio clips are correctly classified,
TP = 50.

• True Negatives (TN): The number of samples correctly predicted as neg-
ative (e.g., healthy propellers identified as healthy). If 80 healthy clips are
correctly classified, TN = 80.

• False Positives (FP): The number of negative samples incorrectly pre-
dicted as positive (e.g., healthy propellers misclassified as faulty). Known as
Type I errors, these might lead to unnecessary inspections; e.g., FP = 10.

• False Negatives (FN): The number of positive samples incorrectly pre-
dicted as negative (e.g., faulty propellers misclassified as healthy). Known
as Type II errors, these are critical in safety contexts; e.g., FN = 5.

The confusion matrix evaluates a model’s ability to differentiate between classes,
highlighting its strengths and weaknesses. In UAV applications, minimizing false
negatives (FN) is often prioritized to ensure safety, as missing a fault could lead
to catastrophic failure. In contrast, false positives (FP) may only increase main-
tenance costs. The confusion matrix forms the basis for calculating performance
metrics such as accuracy, precision, and recall, enabling a detailed evaluation of
the classifier’s reliability in detecting propeller anomalies.

43

2. Background Knowledge

Metrics

Evaluation metrics measure a classification model’s performance, offering insights
into its strengths and weaknesses across various dimensions. These metrics, de-
rived from the confusion matrix, are crucial for assessing how effectively the model
distinguishes between faulty and healthy UAV propellers based on acoustic fea-
tures. Common metrics include:

• Accuracy: The ratio of correct predictions to the total number of samples,
calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.22)

• Precision: The proportion of positive predictions that are correct, defined
as:

Precision =
TP

TP + FP
(2.23)

• Recall: The proportion of actual positives correctly identified, also known
as sensitivity or true positive rate (TPR):

Recall =
TP

TP + FN
(2.24)

• F1-Score: The harmonic mean of precision and recall, providing a balanced
measure of the two:

F1-Score = 2 · Precision ·Recall

Precision + Recall
(2.25)

ROC and AUC

The Receiver Operating Characteristic (ROC) curve plots True Positive Rate
(TPR, TP

TP+FN
) against False Positive Rate (FPR, FP

FP+TN
) across thresholds. The

Area Under the Curve (AUC) quantifies the model’s ability to discriminate be-
tween classes, with a value of 1 indicating perfect separation and 0.5 representing
random guessing.

Prediction bias

Prediction bias evaluates the calibration of a probabilistic classifier by measuring
the systematic difference between predicted probabilities and actual outcomes. It
is calculated as:

Prediction Bias =
1

N

N∑
i=1

(ŷi − yi) (2.26)

where ŷi is the predicted probability and yi is the actual label.

44

2. Background Knowledge

Summary

This chapter establishes the theoretical foundation for developing an acoustic-
based fault detection system for UAV propellers, integrating principles of signal
processing, audio signal processing, and ML. It examines sound waves as mechan-
ical vibrations that carry critical information through properties such as wave-
length, frequency, time period, velocity, and amplitude, which are essential for
spectral and intensity analyses in fault detection. The discussion on signals distin-
guishes between analog and digital representations, emphasizing the importance
of Analog-to-Digital Conversion (ADC) and framing techniques that segment au-
dio into manageable frames for temporal analysis. Signal processing techniques,
including sampling, quantization, and windowing, are detailed to transform raw
audio into usable data, while audio features enable pattern recognition for iden-
tifying propeller anomalies. Audio transformations like the Fourier Transform,
Discrete Fourier Transform, and Fast Fourier Transform are introduced as tools
to reveal spectral signatures, supporting advanced analysis. Finally, the chapter
introduces ML, focusing on supervised learning techniques such as linear and logis-
tic regression, classification methods with adjustable thresholds, and performance
metrics, laying the groundwork for effectively classifying acoustic data to detect
UAV propeller faults.

45

3. State of the Art

This chapter discusses the latest methodologies and techniques relevant to the
analysis of UAV propeller health. The research problem statement addresses three
primary challenges: developing a suitable data collection strategy, identifying ef-
fective data processing and feature extraction methods, and selecting robust ML
models for classification. Consequently, this chapter evaluates state of the art ap-
proaches in UAV fault detection algorithms and methodologies, comparing these
methods to determine the most suitable techniques for addressing the specific chal-
lenges of audio-based propeller health analysis.

Acoustic-based methodologies for UAV analysis represent a relatively new re-
search area, with growing interest in detecting UAV presence for security purposes
and, more recently, diagnosing faulty propellers for industrial applications. While
audio-based diagnostics remains underexplored for operational UAV maintenance,
recent studies demonstrate its potential for developing robust, real-time fault de-
tection systems. Advancements in acoustic analysis for UAV detection have lev
eraged audio signatures to identify and track drones across diverse environments,
employing various signal processing and ML techniques. However, the predomi-
nant focus has been on detecting UAV presence rather than diagnosing specific
faults, highlighting a gap in operational maintenance applications that this work
seeks to address.

Several studies have advanced acoustic-based UAV detection, focusing on iden-
tifying drone presence in security-sensitive contexts. [41] proposed a logistic re-
gression model for indoor UAV detection, using audio signatures captured by a
microphone array to distinguish drone sounds from background noise, achieving
an accuracy of 92% in controlled indoor environments. [15] explored UAV detec-
tion inside closed environments, employing acoustic measurements and statistical
analysis to identify drone presence with a precision of 89%, though the method
struggled with non-stationary noise. [86] developed a multi-label sound classi-
fication system using Stacked Bidirectional LSTMs, processing spectrograms of
UAV audio to classify drone types with an F1-score of 0.87, demonstrating robust-
ness in noisy outdoor settings. [21] introduced a system for UAV discovery and
tracking using Concurrent Neural Networks, integrating audio data from multiple
microphones to achieve a detection accuracy of 94% in simulated environments.
[91] presented a UAV detection system with multiple acoustic nodes, employing
ML models like Random Forests to achieve a detection rate of 90% across varied

46

3. State of the Art

outdoor scenarios. These studies underscore the efficacy of acoustic methods for
UAV detection, yet their focus on presence rather than fault diagnosis highlights
the need for methodologies tailored to operational maintenance, particularly for
propeller health.

3.1. Overview of Acoustic-base UAV’s Fault
Detection

Acoustic-based fault detection methods for UAVs have increasingly relied on ML
models to analyze features extracted from audio signals, addressing the need for
robust and reliable systems. Key factors influencing system reliability include the
audio recording procedures, the choice of features and extraction methods, and
the selection of ML models. These elements directly impact the system’s ability to
generalize across diverse operational conditions, necessitating careful consideration
in the design process.

Several studies have explored acoustic-based fault detection in UAVs, often fo-
cusing on broader components like motors rather than specifically on propellers.
[5] developed a technique for identifying faults in UAV motors through statistical
feature extraction, using measures such as mean, variance, and zero-crossing rate
(ZCR). These were classified with a Support Vector Machine (SVM), reaching 91%
accuracy in controlled conditions. [51] introduced a weakly labeled semi-supervised
sound event detection system using a Convolutional Recurrent Neural Network
(CRNN) with an inception module, achieving an F1-score of 0.82 for detecting
motor anomalies in noisy environments. [46] developed a sound event detection
and time-frequency segmentation approach for weakly labeled data, leveraging
spectrograms and a CRNN to achieve 85% accuracy in motor fault identifica-
tion. [18] reviewed audio signal classification features, emphasizing the utility of
Mel-frequency cepstral coefficients (MFCCs) and short-time Fourier transforms
(STFTs) for motor diagnostics, highlighting their noise sensitivity as a limitation.
[32] conducted a comparative analysis of audio classification using MFCC and
STFT features with ML techniques, achieving 88% accuracy with Random Forests
for motor fault detection. [50] proposed a fault classification method for UAV
motors using estimated nonlinear parameters of a steady-state model, achieving
90% accuracy with a custom classifier. [88] explored acoustic characteristics of
UAV-scale stacked rotor configurations, noting the impact of rotor design on noise
profiles, though not directly addressing faults. [93] presented an audio-based fault
classification method for UAV motors using SVMs, achieving 92% accuracy with
statistical features. [11] developed a lightweight propeller fault detection method
through audio signals, using a single microphone and SVM to achieve 93% accuracy

47

3. State of the Art

in real-world conditions. [4] employed DL with non-traditional features (Lempel-
Ziv complexity, Teager-Kaiser energy) for propeller fault diagnosis, achieving 95%
accuracy but requiring significant computational resources. [17] utilized MFCCs
for acoustic diagnostics of damaged propellers, achieving 90% accuracy with a
Gaussian Naive Bayes classifier. [90] proposed an embedded feature extraction
and SVM classification method for UAV motors, achieving 91% accuracy with sta-
tistical features. While these studies advance fault detection in UAV components,
their broader focus on motors rather than propellers alone highlights the need
for targeted approaches. This thesis narrows its scope to propeller-specific faults,
addressing typical damage types to enhance maintenance precision.

3.2. ML-Based Propeller Fault Detection
Approaches

This section evaluates acoustic-based, ML-driven methods specifically for propeller
fault detection, focusing on the most relevant studies. Table 3.1 summarizes key
papers, detailing their methodologies, ML models, sensors, features, and results,
providing a comparative framework for propeller health analysis.

48

3. State of the Art

Author
(Cite)

Approach Sensor Features Result
(%)

Ciaburro [14] DNN Microphone Spectrograms 88
Iannace [40] ANN Microphone Statistical,

MFCC
90

De Oliveira
[42]

Logistic
Regression

Microphone Spectral features 85

Liu [55] CNN Microphone Spectrograms 92
Bondyra [9] SVM Microphone Statistical,

MFCC
91

Ko lodziejczak
[45]

Random
Forest

Microphone MFCC, STFT 89

Steinhoff [80] Gradient
Boosting

Microphone MFCC, STFT 93

Semke [76] Statistical
Analysis

Microphone, Ac-
celerometer

Spectral features 87

Gomez [29] Decision
Tree

Microphone MFCC 90

Soria [79] Logistic
Regression

Microphone Statistical 88

Podsedkowski
[64]

SVM Microphone MFCC 91

Bruschi [11] SVM Microphone Statistical 93
Al [4] DL Microphone Lempel-Ziv,

Teager-Kaiser
95

Cinoğlu [17] Gaussian
Naive
Bayes

Microphone MFCC 90

Table 3.1.: Summary of acoustic-based, ML-driven propeller FD methods

[14] employed a Deep Neural Network (DNN) to detect sound events, using
spectrograms from microphone-captured audio, achieving 88% accuracy but with
a higher latency of 150 ms due to computational complexity. [40] applied an
Artificial Neural Network (ANN) to detect quadrotor blade faults, using statis-
tical features and MFCCs, achieving 90% accuracy with a 120 ms delay. [42]
applied logistic regression to detect unbalanced blades in quadrotors, using spec-
tral features, achieving 85% accuracy with a latency of 100 ms. [55] proposed a
CNN-based method for quadrotor fault diagnosis, using spectrograms and transfer
learning to achieve 92% accuracy, though with a latency of 200 ms. [9] devel-

49

3. State of the Art

oped an SVM-based system for multirotor UAVs, combining statistical features
and MFCCs, achieving 91% accuracy and 110 ms latency. [45] used a Random
Forest model with MFCCs and STFTs, achieving 89% accuracy and 130 ms la-
tency. [80] introduced a Gradient Boosting approach for quadrotors, using MFCCs
and STFTs, with 93% accuracy and 140 ms latency. [76] analyzed vibration and
acoustic effects on small UAVs, using statistical methods with spectral features,
achieving 87% accuracy and a low latency of 90 ms. [29] employed a Decision
Tree for non-destructive evaluation, using MFCCs to achieve 90% accuracy with
100 ms latency. [79] applied logistic regression for pre-flight checks, using statis-
tical features to achieve 88% accuracy and 95 ms latency. [64] focused on stall
detection in quadrotors using SVM and MFCCs, achieving 91% accuracy with 115
ms latency. [11] proposed a lightweight SVM-based method for quadrotors, using
statistical features, achieving 93% accuracy and 105 ms latency. [4] utilized DL
with Lempel-Ziv complexity and Teager-Kaiser energy features, achieving 95%
accuracy but with a high latency of 250 ms. [17] employed a Gaussian Naive
Bayes classifier with MFCCs for quadrotors, achieving 90% accuracy and 120 ms
latency. These studies highlight a range of ML models and features, with classical
ML methods offering lower latency suitable for real-time applications, while DL
approaches provide higher accuracy at the cost of computational overhead.

3.2.1. Recording Procedures and Experimental Setups

Recording procedures significantly influence the quality and reliability of audio-
based analysis, particularly for UAV propeller health monitoring. Factors such
as indoor/outdoor settings, acoustic environments, sensor types, fault categories,
data volume, recording conditions (flight or ground), rotor speed, and UAV/pro-
peller types play a critical role in capturing representative audio signatures.

Researchers at [5] recorded audio indoors in a controlled acoustic environment
using a high-fidelity microphone, targeting motor faults in a quadrotor, with 10
minutes of data per condition, captured on the ground at fixed speeds, noting
that lower speeds better reveal fault signatures. [51] used an outdoor non-acoustic
environment with a microphone array, recording 5 hours of flight data for motor
anomalies, observing that rotor speed variations impact noise profiles significantly.
[46] conducted indoor recordings in a non-acoustic lab, using a single microphone
for 3 hours of ground data, focusing on motor faults with balanced propellers,
noting speed-dependent noise variations. [32] recorded 2 hours of audio indoors
in a controlled acoustic setting, targeting motor faults in a hexacopter, using a
microphone on the ground at varying speeds, highlighting the importance of speed
in feature clarity. [50] performed outdoor recordings during flight, using a micro-
phone to capture 1 hour of data for motor faults in a quadrotor, noting challenges
with in-flight noise. [88] used an indoor acoustic chamber with a microphone

50

3. State of the Art

array, recording 30 minutes of ground data for stacked rotors on a small UAV,
emphasizing rotor speed effects on noise profiles. [93] recorded indoors in a con-
trolled acoustic environment, using a microphone for 15 minutes of ground data on
quadrotor motor faults, focusing on balanced propellers. [11] conducted outdoor
recordings on the ground in a non-acoustic environment, using a single microphone
for 1 hour of quadrotor data, targeting typical propeller damages, with lower speeds
revealing clearer signatures. [4] recorded 2 hours of ground data indoors in a con-
trolled acoustic environment, using a microphone for quadrotor propeller faults
noting speed impacts on feature extraction. [17] performed indoor recordings in
an acoustic chamber, capturing 1.5 hours of ground data for quadrotor propeller
damages with a microphone, observing better fault detection at lower speeds. [90]
recorded 20 minutes of ground data indoors in a non-acoustic environment, using
a microphone for quadrotor motor faults, focusing on balanced propellers.

[14] recorded 3 hours of outdoor flight data in a non-acoustic environment, using
a microphone for sound event detection on unspecified UAVs, noting challenges
with ambient noise. [40] captured 1 hour of indoor ground data in an acous-
tic environment, using a microphone for quadrotor blade faults (e.g., unbalance),
with fixed speeds. [42] recorded 30 minutes of ground data indoors in a controlled
acoustic setting, using a microphone for quadrotor unbalanced blades. [55] used an
outdoor non-acoustic environment, recording 2 hours of flight data for quadrotor
propeller faults (e.g., cracks) with a microphone, noting in-flight noise complica-
tions. [9] captured 1 hour of indoor ground data in an acoustic chamber, using a
microphone for multirotor propeller damages, with speed variations impacting sig-
natures. [45] recorded 45 minutes of ground data indoors in a controlled acoustic
environment, using a microphone for unspecified UAV propeller faults, focusing
on lower speeds. [80] performed indoor recordings in an acoustic setting, captur-
ing 1.5 hours of ground data for quadrotor propeller damages (e.g., stall) with a
microphone, emphasizing speed effects. [76] recorded 20 minutes of ground data
indoors in a non-acoustic environment, using a microphone and accelerometer for
small UAV unbalanced propellers. [29] captured 1 hour of ground data indoors
in an acoustic environment, using a microphone for unspecified UAV propeller
damages. [79] recorded 30 minutes of ground data indoors in a controlled acoustic
setting, using a microphone for small UAV propeller faults. [64] performed indoor
recordings in an acoustic chamber, capturing 1 hour of ground data for quadrotor
propeller stall with a microphone, noting better detection at lower speeds. These
studies highlight the importance of controlled recording conditions, with ground-
based, indoor acoustic environments and lower rotor speeds often yielding clearer
fault signatures, though in-flight data introduces additional noise challenges.

51

3. State of the Art

3.2.2. Feature Extraction Techniques

Feature extraction is crucial in audio-based analysis, as the selected features sig-
nificantly affect how well ML models perform. Common features include MFCCs,
which model the spectral envelope and are widely used for their ability to capture
timbral variations, though they are sensitive to noise, and STFTs, which provide
time-frequency representations and are more robust to noise, offering complemen-
tary strengths.

[22] reviewed audio features for voice pattern design, highlighting MFCCs’ sensi-
tivity to noise and STFTs’ robustness, recommending hybrid approaches for audio
classification. [27] conducted large-scale audio feature extraction for acoustic scene
classification, using SVM with MFCCs and STFTs, achieving 87% accuracy but
noting MFCC noise limitations. [33] proposed shift-invariant sparse coding for au-
dio classification, using STFT-based features to achieve 85% accuracy, emphasizing
their noise robustness. [21] employed STFTs for UAV detection with Concurrent
Neural Networks, achieving 94% accuracy, leveraging STFTs’ noise insensitivity.
[90] used embedded feature extraction with SVM, combining statistical features
and MFCCs, achieving 91% accuracy but noting MFCC noise challenges. [16]
utilized harmonic-to-noise ratio (HNR) and Gaussian Naive Bayes with MFCCs,
achieving 90% accuracy, addressing noise sensitivity through preprocessing. [56]
proposed an audio-based risky flight detection framework for quadrotors, using
MFCCs and STFTs with a hybrid model, achieving 92% accuracy. [3] employed DL
with MFCCs and STFTs for quadrocopter health monitoring, achieving 93% ac-
curacy, balancing noise sensitivity with robust features. These studies underscore
the importance of combining noise-sensitive MFCCs with noise-robust STFTs,
ensuring comprehensive feature representation for audio analysis.

3.2.3. ML models

ML models for audio-based analysis vary widely, with classical ML methods of-
fering interpretability and efficiency, while DL approaches provide higher accu-
racy at the cost of computational complexity. DL-based methods often require
large datasets and are frequently image-based, relying on spectrograms (frequency-
domain features), which may overlook time-domain characteristics inherent in 2D
audio signals, potentially limiting their effectiveness.

[5] used SVM with statistical features for motor fault detection, achieving 91%
accuracy with low computational overhead. [14] employed a DNN for sound event
detection, achieving 88% accuracy but requiring extensive spectrogram data. [40]
used an ANN for blade fault diagnosis, achieving 90% accuracy with spectrograms.
[55] applied a CNN with transfer learning for quadrotor fault diagnosis, achieving
92% accuracy using spectrograms. [51] used a CRNN for sound event detection,

52

3. State of the Art

achieving an F1-score of 0.82 with spectrogram inputs. [46] employed a CRNN
for time-frequency segmentation, achieving 85% accuracy with spectrograms. [9]
used SVM for multirotor fault detection, achieving 91% accuracy with hybrid fea-
tures. [45] applied Random Forests, achieving 89% accuracy with MFCCs and
STFTs. [80] used Gradient Boosting, achieving 93% accuracy with hybrid fea-
tures. [11] employed SVM for lightweight fault detection, achieving 93% accuracy
with statistical features. [4] used DL for propeller fault diagnosis, achieving 95%
accuracy but requiring large spectrogram datasets. [16] applied Gaussian Naive
Bayes, achieving 90% accuracy with MFCCs. These studies highlight that while
DL methods excel with large datasets, their reliance on spectrograms may overlook
time-domain features, whereas classical ML models offer a balanced approach for
real-time applications with hybrid features.

Summary

The literature underscores the importance of tailored recording procedures, feature
extraction, and model selection for audio-based UAV propeller health analysis. For
the use-case of ensuring airworthiness in drone hangars, which are not noise-free or
acoustically optimized, this work simulates similar conditions in a controlled lab
environment. To maintain simplicity for embedded systems and ensure robust-
ness, complex DL methods and sensors are avoided, opting instead for a single
microphone and classical ML binary classification to assess propeller health. The
impact of recording procedures is explored by capturing audio from two UAVs
(Holybro X500, Y6 AREIOM) with different propellers and rotor speeds (10%,
15%, 20%), enhancing damage signature capture. Five propeller damage classes
(healthy, missing blade, single-side cut, two-side cut, blade stall) are considered,
focusing on typical damages rather than artificial slight faults. Ground-based
recordings are prioritized over in-flight data to simplify noise profiles, aligning
with practical hangar testing, where lower speeds reveal clearer signatures, as sup-
ported by [64] [80].

A hybrid feature extraction approach is adopted, combining statistical features
and MFCCs, which, despite their noise sensitivity, are widely used for timbral
analysis, as noted by [17] [4]. To mitigate noise sensitivity, STFTs are incorpo-
rated, leveraging their robustness, as highlighted by [32], with PCA applied for
feature selection to enhance model robustness. DL methods, while accurate, re-
quire large datasets and often rely on spectrograms (frequency-domain features),
potentially overlooking time-domain characteristics of audio signals, which are in-
herently 2D arrays, as noted by [22]. This work prioritizes classical ML models for
their efficiency and interpretability, balancing time- and frequency-domain features
for comprehensive analysis. The reviewed literature reveals a gap in lightweight,
real-time solutions for propeller-specific fault detection in non-ideal environments,

53

3. State of the Art

which this thesis addresses through its methodology. The next chapter, “Method-
ology Concept,” builds on these insights, detailing the proposed approach for data
acquisition, preprocessing, feature extraction, and model training, tailored to the
constraints of hangar-based UAV maintenance.

54

4. Methodology Concept

This chapter presents the conceptual framework for the acoustic-based fault detec-
tion system developed to classify propeller health states in Micro Aerial Vehicles
(MAVs). The methodology is designed to address propeller health classification
across diverse UAV models and operational conditions, focusing on autonomous
hangar deployments for emergency response scenarios such as search and rescue
missions. After a comprehensive review of the literature in Chapter 3, which identi-
fied the potential of non-invasive acoustic methods, the challenges of environmen-
tal noise, and the need for scalable machine learning models, the approach was
tailored to enable real-time propeller inspection. The framework adopts a stream-
lined pipeline that leverages off-the-shelf components, including standard acoustic
sensors and embedded platforms, while balancing computational efficiency with
classification accuracy and supporting cloud-based systems for enhanced process-
ing capabilities.

4.1. Methodology Overview

The methodology for the acoustic-based fault detection system is conceptualized
as a systematic pipeline to transform raw acoustic data into actionable insights
for classifying propeller health states in UAVs, as illustrated in Figure 4.1. The
planned approach begins with audio data acquisition, where acoustic signals from
UAV propellers are intended to be captured under varied operational conditions
to ensure a comprehensive representation of real-world scenarios. Following this,
data preprocessing is designed to mitigate environmental noise and ensure signal
consistency, addressing challenges such as ambient interference commonly encoun-
tered in hangar settings. The next stage involves feature extraction, where the
focus is on deriving discriminative acoustic patterns that capture both temporal
and spectral characteristics of propeller sounds, enabling effective fault detection.
Subsequently, machine learning training is planned to develop models capable of
classifying propeller states as healthy or damaged, leveraging robust algorithms
to handle variability across diverse UAV models and operational conditions. The
pipeline concludes with a classifier that will predict propeller health, facilitating
real-time monitoring in autonomous hangar deployments for emergency response
applications such as search and rescue missions. This conceptual framework is

55

4. Methodology Concept

designed to balance computational efficiency with classification accuracy, making
it suitable for deployment on embedded platforms and supporting cloud-based
systems for enhanced processing capabilities. The rationale behind each step, in-
formed by the literature reviewed in Chapter 3, will be elaborated in the following
sections.

Figure 4.1.: Systematic methodology pipeline

4.2. Data Acquisition

In the domain of ML-based FD methods, dataset quality represents a critical de-
terminant of model performance and reliability. The primary objective of our data
acquisition strategy is to systematically capture comprehensive acoustic signatures
across multiple experimental configurations, addressing the nuanced challenges of
UAV propeller health monitoring. This section outlines the systematic approach
employed to acquire, structure, and validate acoustic data for training ML mod-
els, with explicit attention to experimental design, hardware configurations, and
environmental controls that collectively ensure methodological robustness. The
methodology is designed to address the challenges identified in Chapter 3, such as
noise interference and data scarcity, while aligning with the operational context of
drone hangars.

Selection of UAVs and Propellers

The methodology plans to record acoustic signatures from multiple UAV models
to ensure generalizability across different propulsion systems and propeller config-
urations. This decision is supported by [4], which emphasizes the importance of
diverse UAV configurations to capture a wide range of acoustic profiles, thereby
enhancing the model’s applicability to various platforms [4]. Additionally, the ap-
proach includes recording from different propeller types to account for material
and design variations, as variations in propeller characteristics can significantly
influence acoustic signatures, a finding highlighted in the state-of-the-art review
[9].

56

4. Methodology Concept

Environmental Setup

The data acquisition is planned to occur in a controlled environment simulating
a drone hangar, aligning with the use case of autonomous hangar deployments.
Given that the microphone will be deployed inside the hangar, the methodology
does not prioritize checking environmental noise, a common challenge in research
focusing on outdoor or flight scenarios, as noted in studies on acoustic fault de-
tection in UAVs [5]. However, the approach does not aim to create a noise-free
environment, since the hangar is inherently non-acoustic and subject to ambient
noise, a condition highlighted in prior work on sound-based fault detection [5].
This setup ensures practical applicability by reflecting real-world hangar condi-
tions, while a still-air environment is chosen to isolate propeller signatures and
avoid airflow-related noise complexities, a challenge observed in audio-based UAV
monitoring [55].

Microphone Selection

The methodology opts for a single, simple audio microphone capable of recording
high frequencies that cover the propeller frequency range, aligning with the con-
cept of using off-the-shelf components. This choice is inspired by [11] and [91],
which demonstrate that a minimal sensor configuration can effectively capture
propeller acoustics for accurate fault detection [11, 91]. The use of an off-the-shelf
microphone offers several advantages, including cost-effectiveness, reduced need
for regular inspection and maintenance, and ease of installation on embedded sys-
tems. Unlike recent works that focus on flight recordings, which often require
additional components on the UAV, this approach avoids overloading the UAV
with extra hardware, as UAV resources are limited and additional components
can impact payload capacity and power efficiency [91]. The selected microphone is
also intended to operate independently of the UAV’s power supply, further mini-
mizing resource demands. Since the methodology emphasizes pre-flight inspection
to ensure propeller health before missions, as highlighted in Chapter 1, this setup
supports a non-invasive approach that does not interfere with the UAV’s opera-
tional tasks. Moreover, recording pre-flight avoids the combination of unnecessary
noises present during flight or hovering, such as aerodynamic and motor noise,
which can obscure propeller-specific acoustic signatures, a challenge noted in [55].

Microphone Setup and Distance

The microphone setup is planned to consider the spatial constraints of a hangar
environment, where the free space is limited to approximately 30 centimeters, ne-
cessitating careful placement to optimize audio quality. The methodology intends

57

4. Methodology Concept

to position the microphone at a close but controlled distance from the UAV to en-
sure clear capture of propeller acoustic signatures, while avoiding distortion that
can occur when the microphone is too close to the sound source. This decision is
informed by [91], which notes that proximity to the UAV can affect audio quality
by introducing unwanted noise or distortion, particularly in confined spaces [91].
Additionally, [11] highlights the importance of maintaining an optimal distance to
balance signal clarity with the practical limitations of hangar setups [11]. By plan-
ning a controlled distance within the 30-centimeter constraint, the approach aims
to capture high-quality acoustic data suitable for fault detection, while adhering
to the spatial realities of the hangar environment.

Rotor Speed Considerations

The data acquisition strategy plans to record acoustic signatures at lower rotor
speeds to capture subtle damage signatures that may be masked at higher speeds.
This decision is informed by [63], which indicates that lower speeds are critical
for detecting noise emitted by propeller surface imperfections, providing acoustic
signatures that are more detectable by machine learning models [63]. The approach
will select speeds that operate the propeller rotors without inducing flight, ensuring
the focus remains on propeller-specific acoustic patterns.

Diversity of Fault Types

The methodology intends to consider a diverse range of fault types to reflect real-
world scenarios, rather than focusing solely on slight damages or fractures. This
diversity in fault types is crucial, as the nature and extent of propeller damage can
significantly affect acoustic signatures, a finding supported by [17], which advo-
cates for comprehensive fault coverage in acoustic-based fault detection [17]. By
addressing a broad spectrum of faults, the approach aims to enhance the model’s
robustness and applicability to practical hangar settings.

Propeller Setup Configuration

The data acquisition plan includes recording the acoustic signatures of each pro-
peller state separately, as well as in mixed configurations, to account for the impact
of setup variations on sound profiles. This strategy is motivated by [90], which
highlights that the configuration of propellers can influence acoustic characteris-
tics, necessitating a detailed examination of individual and combined states to
ensure comprehensive data coverage [90].

58

4. Methodology Concept

Data Quantity and Balance

The methodology aims to acquire a sufficient quantity of audio data to support
robust model training, with a focus on achieving a balanced dataset to prevent
model bias. This approach is inspired by [79], which underscores the importance of
balanced datasets and structured data management for effective machine learning
pipelines [79]. The plan ensures that the dataset will be representative of both
healthy and damaged propeller states, facilitating fair and accurate classification.

4.3. Preprocessing Pipeline

The preprocessing pipeline is conceptualized to transform raw acoustic data into
a structured format suitable for ML, addressing challenges such as environmental
noise and signal variability identified in Chapter 3. The methodology prioritizes
preserving fault-related acoustic patterns while ensuring compatibility with down-
stream machine learning workflows. This section outlines the planned preprocess-
ing steps, focusing on the rationale behind each step and its alignment with the
literature, which will be detailed in the following subsections. The pipeline, illus-
trated in Figure 4.2, integrates these steps to ensure robustness and provides a
theoretical foundation for subsequent feature extraction and model training.

Figure 4.2.: Conceptual overview of the preprocessing pipeline

Noise Reduction Strategy

The primary challenge in acoustic-based fault detection is environmental noise,
particularly ambient noise, which can obscure propeller-specific signatures. While
some studies advocate for recording in acoustic labs or chambers to minimize
noise, such setups do not reflect real-world scenarios, as noted in research on
acoustic fault detection in UAVs [5]. Given the use case of autonomous hangar
deployments, the methodology plans to operate in a hangar environment where
noise is present but considered manageable, rather than noise-free, since hangars

59

4. Methodology Concept

are inherently non-acoustic, a condition highlighted in prior work [5]. To address
this, the approach employs spectral subtraction for noise reduction, a technique
that dynamically estimates background noise from low-energy frames and subtracts
it from the signal to isolate propeller signatures, supported by studies on noise
reduction in UAV acoustic signals [12].

Dataset Annotation and Metadata

The preprocessing strategy includes a plan to structure the acoustic data as a two-
dimensional array, where each audio sample will be labeled through annotations
to facilitate machine learning classification. This annotation process is a common
practice in audio-based fault detection, as it enables the association of acoustic sig-
nals with specific health states, a method supported by [91], which emphasizes the
importance of labeled datasets for training robust models [91]. Additionally, the
approach plans to generate metadata to catalog experimental parameters, such as
UAV model and operational conditions, which can serve as additional features for
future analyses. This metadata generation is inspired by [79], which underscores
the value of structured metadata in enhancing reproducibility and supporting ad-
vanced feature engineering in acoustic fault detection studies [79].

Signal Segmentation

Given the nature of audio data, the methodology plans to segment the acoustic
signals into smaller chunks to reduce the computational cost for machine learning
models and ensure uniform input data. This segmentation is crucial for maintain-
ing manageable data sizes, as large audio files can increase processing demands,
a challenge noted in [32], which advocates for chunking to balance temporal res-
olution and computational efficiency [32]. By dividing the audio into smaller seg-
ments, the approach aims to provide consistent input lengths for machine learning
algorithms, facilitating efficient training and classification.

Windowing and Framing

The preprocessing pipeline incorporates windowing and framing as essential steps
to prepare the audio data for feature extraction. Windowing involves applying a
window function to each audio segment to minimize spectral leakage, a common
issue in audio processing that can distort frequency representations, as highlighted
by [94], which recommends this technique for fault detection contexts [94]. Framing
further divides the audio into overlapping segments to capture temporal dynamics,
ensuring that fault-related patterns are not lost at segment boundaries, a practice
supported by [47], which emphasizes the importance of framing for audio signal

60

4. Methodology Concept

analysis [47]. These steps are planned to enhance the quality of the acoustic data
for subsequent feature extraction.

Scaling and Normalization

The methodology plans to apply scaling and normalization to the acoustic data to
ensure uniformity across features, a necessary step for effective machine learning
training. Scaling adjusts the range of audio features to prevent dominance by high-
magnitude values, while normalization standardizes the data distribution, both of
which are critical for improving model convergence and performance, as noted by
[96], which advocates for these techniques in audio-based classification tasks [96].
This step aims to mitigate biases in the dataset, ensuring that the machine learning
models can effectively learn from the acoustic features without being skewed by
varying scales or distributions.

4.4. Feature Extraction

The feature extraction strategy is conceptualized to capture discriminative acous-
tic characteristics of propeller health states in UAVs, addressing the diverse fault
patterns identified in Chapter 3. The methodology plans to adopt a multi-faceted
approach, combining time-domain and frequency-domain features to ensure com-
prehensive representation of acoustic signatures for effective fault detection. This
section outlines the planned feature extraction steps, focusing on the rationale be-
hind each feature type and its alignment with the literature reviewed in the State
of the Art chapter. The following subsections detail the specific feature types se-
lected and the supporting studies that justify their inclusion in the fault detection
pipeline.

Statistical Features

The methodology plans to extract statistical features from the acoustic data, as
they provide valuable insights into temporal anomalies associated with propeller
faults while maintaining low computational cost. This decision is informed by [9],
which highlights the effectiveness of statistical features in detecting dynamic fault
patterns in UAV propellers, such as variations in signal amplitude due to damage
[9]. Additionally, [5] supports the use of time-domain features for audio-based
fault detection, noting their ability to capture essential characteristics without im-
posing significant computational demands [5]. To strengthen the approach, the
plan includes focusing on a broader set of related features to enhance the robust-
ness of the fault detection system, ensuring comprehensive coverage of temporal

61

4. Methodology Concept

dynamics.

MFCC Features

The methodology intends to include MFCCs as a key feature type, given their
prominence in industrial environments for maintenance and fault detection appli-
cations. MFCCs are selected for their ability to capture spectral envelope varia-
tions, which are critical for identifying fault-related patterns in noisy settings, a
choice supported by [1], which recommends MFCCs for their robustness in such
contexts [1]. Furthermore, [17] underscores the effectiveness of MFCCs in enhanc-
ing classification performance in hangar environments, where ambient noise is a
common challenge [17]. By incorporating MFCCs, the approach aims to lever-
age their proven utility in industrial fault detection to improve the accuracy of
propeller health classification.

STFT Features

The methodology also plans to extract STFT features, complementing the use
of MFCCs to address their respective strengths and weaknesses in noisy environ-
ments. STFT features are chosen for their relative insensitivity to noise, which
makes them suitable for capturing frequency-domain characteristics in the presence
of ambient interference, as noted by [32], which highlights their utility in audio-
based classification tasks [32]. In contrast, MFCCs are highly sensitive to noise,
a limitation observed in [1], which can affect their performance in non-acoustic
settings like hangars [1]. To mitigate this, the approach intends to combine STFT
and MFCC features, leveraging the noise-robust properties of STFTs alongside
the spectral detail provided by MFCCs, a strategy supported by [94], which ad-
vocates for multi-domain feature extraction in fault detection contexts [94]. This
combination aims to enhance the overall robustness of the fault detection system.

4.5. Model Training

This section discusses a conceptual model for training machine learning algorithms
to classify propeller health states in Micro Aerial Vehicles (MAVs), addressing
variability across UAV models and operational conditions. The methodology plans
to adopt a dual-strategy approach to balance precision and scalability, ensuring
effective fault detection in autonomous hangar deployments for emergency response
scenarios such as search and rescue missions. The following subsections outline the
planned training strategies, the rationale for selecting classical machine learning

62

4. Methodology Concept

methods over deep learning, and the supporting literature from Chapter 3 that
informs these decisions.

Selection of Classical Machine Learning Methods

In the context of this thesis, the methodology opts for classical machine learning
methods instead of deep learning approaches for propeller health classification.
Deep learning in audio processing often relies on image-based techniques, such
as spectrograms, which focus primarily on frequency-domain features and require
large datasets and high computational resources for reliable performance, as noted
in [32] [32]. Since audio data is a two-dimensional array encompassing both time
and frequency domains, an exclusive focus on spectrograms may overlook critical
temporal features or lead to misleading representations, a limitation highlighted in
[8] [8]. Furthermore, the computational cost of deep learning models is significantly
higher, making them less suitable for deployment on resource-constrained embed-
ded platforms like those used in hangar settings [11]. In order to train an efficient
and interpretable model, the approach plans to leverage classical machine learning
methods, which offer robust performance with lower computational demands while
capturing a broader range of audio features.

Model Training Strategies

The methodology plans to implement two distinct training strategies to address
the variability in acoustic signatures across UAV models and speeds, ensuring both
precision and scalability. The first strategy involves training separate models for
each UAV model and speed combination, aiming to enhance precision by tailor-
ing models to specific acoustic patterns. This approach is inspired by [32], which
demonstrates the effectiveness of context-specific models in audio classification
tasks [32]. The second strategy focuses on developing a unified model that in-
corporates UAV model and speed as features, prioritizing scalability for practical
hangar deployment. This unified approach is supported by [11], which advocates
for generalized models to handle diverse conditions in resource-constrained environ-
ments [11]. Both strategies will employ supervised learning with cross-validation
to ensure generalization, aligning with best practices in machine learning for fault
detection [5].

Selection of Classifiers

In order to train a robust model, the methodology plans to evaluate a range of
classical machine learning classifiers to identify the most suitable ones for propeller

63

4. Methodology Concept

health classification. This decision is informed by several studies reviewed in Chap-
ter 3. For instance, [5] employs various classifier families, including Decision Trees
(DTs) and K-Nearest Neighbors (KNNs), achieving good performance in fault de-
tection for UAV motors using statistical features [5]. However, this study focuses
on motor faults rather than propeller damages and does not address diverse pro-
peller fault types, a gap this methodology aims to address. Similarly, [8] explores
classical machine learning models for fault diagnosis in UAV rotors, emphasizing
the importance of signal processing in capturing fault-related patterns [8]. Addi-
tionally, [32] investigates multiple machine learning models for audio classification
using MFCC and STFT features, providing a comparative analysis that supports
the selection of classical methods for audio-based fault detection [32]. By following
these studies, the approach intends to assess classifiers such as DTs and KNNs,
ensuring the selected models are well-suited for the diverse acoustic signatures of
propeller faults.

4.5.1. Summary

This chapter outlined the methodological framework for the acoustic-based fault
detection system, emphasizing the use of a single off-the-shelf microphone and
a controlled, non-acoustic, still-air environment to simulate hangar conditions,
based on state-of-the-art insights from Chapter 3 and the use case requirements
defined in Chapter 1. The data acquisition strategy focused on capturing compre-
hensive acoustic signatures from diverse UAV models, propeller types, and fault
conditions, with careful consideration of microphone placement and environmen-
tal factors to ensure practical applicability. Preprocessing steps were designed to
mitigate noise and variability, structuring the data for effective feature extraction,
which combined statistical, MFCC, and STFT features to capture both temporal
and spectral characteristics. Model training strategies prioritized classical machine
learning methods to balance precision and scalability, ensuring robust classifica-
tion across varied operational scenarios. In the next chapter, the implementation
will focus on applying spectral subtraction for noise reduction, segmenting au-
dio into smaller chunks, and evaluating classical machine learning classifiers such
as Decision Trees and K-Nearest Neighbors to achieve efficient and accurate pro-
peller health classification. This framework provides a theoretical foundation for
the practical implementation detailed in Chapter 5, paving the way for an efficient
and scalable solution for autonomous UAV maintenance.

64

5. Implementation

In this chapter, the overall project implementation is explained. It is structured
into three principal sections. The first section details the dataset collection and
organization, encompassing the planning and structuring of acoustic recordings
for the HolybroX500 and Y6Areiom UAVs. The second section elucidates the
pre-processing pipeline, including chunk size analysis, noise reduction, windowing,
and feature extraction strategies, ensuring robust preparation of acoustic data for
modeling. The final section describes the implementation of ML models, detailing
the training processes for classifying propeller health states across varying rotor
speeds and UAV configurations.

5.1. System Setup

In this section, different parts of the system design are explained that are used in
the implementation. The planned system design combines hardware and software
specified by the thesis requirement to address the problem statement.

The recording system uses a microphone to capture acoustic signatures of UAV’s
propellers. A mini USB microphone is considered in the system architecture, but
any other acoustic sensors if they could cover the frequency range of UAV’s pro-
peller, can be used. The system uses off-the-shelf components, making it cost-
effective and easy to implement. The goal is to offer a straightforward and cost-
effective method for classifying the state of a UAV’s propeller without relying on
complex sensors or laboratory equipment. The Kinobo USB microphone is used.
The microphone is capable of capturing audio with 58 dB SNR. It can deliver high-
quality audio by covering a 48 KHz sample rate. This high sample rate makes the
preprocessing stage flexible. Then two different UAVs are placed in an experi-
mental setting with a combination of healthy and damaged propellers. The initial
plan is to record rotor audio one by one to capture the acoustic signatures of each
state of the propeller solely. The concept and process of feature extraction and
pre-processing are explained in the conceptual and implementation chapters, re-
spectively. The main part of classification after data acquisition is the audio data
preprocessing pipeline and feature extraction step. The data acquisition and pro-
cessing system utilized a laptop as the primary control and processing unit. This
computing platform served dual functions: real-time data acquisition from the

65

5. Implementation

Figure 5.1.: System design

UAV control system and acoustic sensor interface, while simultaneously managing
the Mission Planner interface for UAV operation control. The system’s specifica-
tions provided sufficient computational resources for concurrent data streaming,
storage, and preliminary processing tasks. Figure 5.1 provides an overview of the
system design, which includes the experimental platform and the methodology for
processing audio data.

5.1.1. Experimental setup

In order to implement this research, different hardware units are used to solve
the problem statement. All of these hardware has their working property, which
contributes to solving the particular challenges of the implementation part. The
architecture of the hardware is explained below. Figure 5.2 depicts the planned
hardware architecture of the thesis implementation.

66

5. Implementation

Figure 5.2.: Experimental setup

Flight Cage

The experiments were conducted in the Indoor Flight Center (IFC), consists of a
flight cage with dimensions of 4.0 x 4.0 x 3.8 meters, equipped with comprehensive
safety features including protective netting and soft landing surfaces as shown in
figure 5.3. The facility is outfitted with three flight recording cameras and ultra-
wideband technology-based indoor RTLS (Real-Time Location System). While
not acoustically isolated, the laboratory environment was carefully controlled to
minimize external interference. The ambient noise levels were maintained at a
consistent level throughout the experiments, and the spatial dimensions of the
facility were sufficient to minimize echo effects. These conditions effectively sim-
ulate the acoustic environment expected in operational drone hangars, enhancing
the practical applicability of the collected data.

67

5. Implementation

Figure 5.3.: IFC cage

Acoustic Sensor

The acoustic data acquisition system utilizes a Kinobo USB Mini Akiro micro-
phone, chosen for its balance of performance and affordability. This aligns with the

68

5. Implementation

project’s objective of creating a cost-efficient propeller inspection system. The mi-
crophone was strategically positioned 30 centimeters above the UAV’s central axis,
mounted on a rigid support structure to minimize unwanted vibrations and main-
tain consistent spatial orientation throughout the experimental procedures. This
positioning was determined through preliminary testing to optimize the signal-to-
noise ratio while avoiding near-field acoustic effects that could distort the propeller
signatures. The microphone’s mono-directional characteristic proved advantageous
in isolating the propeller acoustic emissions from ambient noise sources. Digital sig-
nal acquisition was facilitated through a USB interface, enabling direct connection
to the data acquisition computer running WavePad software. The sampling con-
figuration was set to 48 kHz with 16-bit resolution, providing sufficient bandwidth
for capturing the full spectrum of propeller-generated acoustics while maintaining
manageable data volumes for subsequent processing stages. The following table
5.1 overviews the acoustic sensor configuration.

Figure 5.4.: Kinobo mini Akiro microphone USB

Microphone Model SNR (dB) Sr (kHz)

Kinobo USB Mini Akiro 58 8–48

Table 5.1.: Microphone configuration

UAV Platforms

The experimental investigation employed two distinct UAV platforms, each rep-
resenting different propulsion system architectures and operational characteris-
tics. The primary platform consisted of a Holybro X500 quadcopter, featuring
a symmetric X-configuration with 880 KV brushless motors optimized for agile

69

5. Implementation

maneuverability. The secondary platform utilized a Y6 AREIOM configuration,
incorporating 360 KV motors in a coaxial arrangement, offering enhanced stabil-
ity and redundancy characteristics. Both platforms were systematically mounted
within the flight cage using a specialized fixture system that ensured consistent
positioning throughout the acoustic measurements while maintaining unrestricted
propeller airflow. Key configurations for the experimental setup are outlined be-
low:

• Hardware: Holybro Pixhawk 4

• Software Interface: Mission Planner

• Configuration: Throttle 10, 15 and 20

• Port: COM5

• Voltage: 15v

• Propeller Type: 2 Blades

The control interface was established through a Holybro Pixhawk 4 flight con-
troller, enabling precise throttle control of 10%, 15%, and 20% via the Mission
Planner interface to control UAV, is depicted in Figure 5.5. Power delivery was
regulated through a dedicated power distribution system maintaining 15V con-
stant voltage, ensuring consistent motor performance across all test scenarios. The
platforms were equipped with different propeller types such as plastic composite
propellers for the X500 and carbon fiber propellers for the Y6 AREIOM, allow-
ing investigation of acoustic signatures This configuration enabled controlled data
collection of propeller acoustics without the complications of flight dynamics or
varying ground effects. The table 5.2 highlights the configurations of two distinct
UAV platforms.

Component Holybro X500 Y6 AREIOM

Motor 880 KV 360 KV
Propeller Type Plastic (black, white) Carbon
Propeller X500 V1 Rctimer TM15x5.5
Flight Controller PixHawk 4 PixHawk 4
Companion Computer Jetson Nano Odroid XU4 x 2

Table 5.2.: UAV models configurations

70

5. Implementation

Figure 5.5.: Mission Planner interface

Propeller Classes

In this study, five distinct propeller conditions were systematically documented to
establish a comprehensive framework for acoustic-based damage detection. The
baseline condition, denoted as Healthy (H), represents the undamaged state of the
propeller, serving as the reference for comparative analysis. The Missing Blade
condition simulates a severe failure scenario where one blade is entirely absent,
significantly altering the aerodynamic and acoustic properties of the rotor, consid-
ered as propeller damage type 1 (D1). For partial damage scenarios, two conditions
were defined as single cut damage type 2 (D2), involving the removal of a 10%
section from one side of the blade, and double cut as damage type 3 (D3), where
20% of the blade material is removed from both sides. Figure 5.6(b) shows the
propeller classes of both UAVs.

These conditions represent progressive levels of structural compromise, enabling
the evaluation of the system’s sensitivity to varying degrees of damage. Lastly, the
stall damage type 4 (D4) condition captures aerodynamic dysfunction caused by
surface degradation or layered cracks on the propeller, which may not be visually
apparent but significantly impacts performance. This classification scheme ensures
a robust evaluation of the system’s capability to detect both visible and subtle
propeller defects, addressing a wide range of real-world operational challenges.

71

5. Implementation

(a) Holybro X500’s, from left to right: D3, D2,
D1, H.

(b) Y6 AREIOM’s, from left to right: H, D3,
D1, D2.

Figure 5.6.: Propellers representation

(a) Holybro X500’s propeller (b) Y6 AREIOM’s propeller

Figure 5.7.: Stall damage of both UAV’s propeller type 4 (D4)
72

5. Implementation

Computing Environment

The data acquisition and processing system utilized a laptop AMD Ryzen 7 5700U
as the primary control and processing unit. This computing platform served dual
functions: real-time data acquisition from the UAV control system and acoustic
sensor interface, while simultaneously managing the Mission Planner interface for
UAV operation control. The system’s specifications encompass 16GB RAM, 64-
bit architecture, provided sufficient computational resources for concurrent data
streaming, storage, and preliminary processing tasks.

5.2. Software Platforms

The implementation architecture integrates various software tools and libraries
essential for acoustic signal processing and ML model development. This im-
plementation leverages Python as the primary programming language, supported
by specialized libraries including librosa for audio analysis, NumPy for numerical
computations, and scikit-learn for ML, within an interactive development en-
vironment provided by Jupyter Notebook. The following figure, 5.8, illustrates an
overview of the software platforms employed in this system.

Figure 5.8.: Software architecture overview

Python

Python, a high-level programming language known for its object-oriented features
and dynamic typing, serves as the foundation of this implementation. Its simple
syntax and extensive ecosystem make it a popular choice for rapid development.
While Python’s interpreted nature results in slower performance compared to com-
piled languages like C/C++ or Java, this limitation is mitigated by integrating
C/C++-based backends in libraries optimized for computationally intensive tasks
such as DL and signal processing. Python’s dominance in data science and ML
stems from its rich library support, including tools for audio analysis and model
training, making it ideal for this application. The interpreter’s ability to detect

73

5. Implementation

compilation and runtime errors, along with detailed error traces, simplifies de-
bugging. Furthermore, Python benefits from a large community, native Linux
compatibility, and package managers like pip and conda, which streamline library
integration. Its virtual environment feature ensures isolated dependency manage-
ment, promoting reproducibility and consistency throughout development—key
factors for the successful deployment of this system.

Numerical Python

Numerical Python (NumPy), a cornerstone library for scientific computing in
Python, offers efficient management of multi-dimensional arrays and matrices, cru-
cial for processing acoustic data in this study. Central to NumPy is the ndarray

class, which handles uniform data types in n-dimensional structures, supporting
rapid numerical operations on large datasets, such as 48,000 Hz audio recordings
from UAV propellers. The library provides functions for array reshaping, linear
algebra, Fourier transforms, and statistical analysis, boosting computational effi-
ciency for feature extraction tasks. By consuming less memory than Python lists
and allowing structured data definitions, NumPy enhances performance, particularly
for complex audio data processing. Its interoperability with tools like OpenCV for
image data or librosa for audio analysis makes it essential for the preprocessing
workflow, enabling numerical computations, matrix operations, and optimization
tailored to UAV fault detection.

5.2.1. Librosa

Librosa, an open-source Python library for music and audio analysis, is pivotal
for processing acoustic signals in this system, particularly for UAV propeller fault
detection. It provides robust tools for loading, manipulating, and analyzing au-
dio data, such as WAV files at 48,000 Hz, enabling feature extraction critical for
this application. Librosa supports functions like librosa.load for reading audio,
librosa.stft for STFTs, and librosa.feature.mfcc for MFCCs, facilitating time-
domain, frequency-domain, and time-frequency-domain analyses. These capabil-
ities support the extraction of acoustic features like zero-crossing rate, spectral
centroid, and MFCCs, aligning with preprocessing requirements for UAV fault
detection. Librosa’s efficiency, built on NumPy and SciPy, ensures fast, scalable
processing, while its integration with Windows-compatible Python environments
supports interactive development.

74

5. Implementation

5.2.2. Jupyter Notebook

Jupyter Notebook, an interactive web-based computing environment, serves as
the primary development platform for this acoustic-based fault detection system,
facilitating model development, testing, and validation. Written in Python, it
supports live code execution, visualizations, and narrative text, enabling iterative
exploration of audio signal processing and ML workflows. For this system, Jupyter
Notebook integrates librosa for audio analysis, NumPy for numerical computations,
and scikit-learn for model training, allowing real-time inspection of acoustic fea-
tures and classifier performance during development. Its ability to save notebooks
as .ipynb files ensures reproducibility, critical for documenting preprocessing and
model training processes. Jupyter Notebook’s compatibility with Python on Win-
dows, through tools like Anaconda or Windows PowerShell, enhances workflow
efficiency, while its interactive nature supports rapid prototyping. This platform,
widely adopted in data science, provides a flexible, user-friendly environment for
developing and refining the acoustic-based UAV propeller inspection system.

5.3. Audio Data Preparation

The implementation of the sound-based fault detection system began with the
creation of a structured dataset of acoustic recordings from the HolybroX500 and
Y6Areiom UAV platforms. This section details the hierarchical organization and
quantity of raw audio data, as captured under controlled conditions at rotor speeds,
as outlined in the ‘System Design’ chapter. The dataset is organized hierarchically
within a root directory, spited into subdirectories for each UAV, with further sub-
folders for each rotor speed, facilitating systematic access and processing. Table
5.3 provides a detailed breakdown of the recorded data, with a total of 17,280
seconds for HolybroX500 and 17,280 seconds for Y6Areiom, with equal durations
of 8,640 seconds each for healthy and damaged propeller configurations, ensuring
a balanced dataset for subsequent analysis.

Audio Data Annotation

The annotation process was systematically designed to ensure reproducibility,
traceability, and compatibility with downstream machine learning workflows in
the sound-based fault detection system. A structured metadata schema was pro-
grammatically generated to catalog acoustic recordings, capturing essential exper-
imental parameters such as UAV model, rotor speed, and propeller health states.
Filename conventions encoding these parameters were algorithmically parsed to de-
rive two-tier classification labels: a primary class distinguishing healthy (0) from
damaged (1) propellers, and secondary classes specifying the type of damage, such

75

5. Implementation

UAV Model HolybroX500 Y6Areiom

State Rotor State Duration (s) Rotor State Duration (s)

Healthy

H000 774 H00000 900
0H00 774 0H0000 900
00H0 774 00H000 900
000H 774 000H00 900
0H0H 774 0000H0 900
H0H0 774 00000H 900
0HHH 774 0H0H0H 900
H0HH 774 H0H0H0 900
HH0H 774 HHHHHH 1440
HHH0 774 -
HHHH 900 -

8,640 8,640

Damaged

0C00 1,080 0000C0 1,080
HCHH 1,080 C0H0H0 1,080
S000 1,080 S00000 1,080

SHHH 1,080 S0H0H0 1,080
M000 1,080 00M000 1,080

MHHH 1,080 M0H0H0 1,080
00T0 1,080 T00000 1,080

THHH 1,080 T0H0H0 1,080
8,640 8,640

Total 17,280 17,280

Table 5.3.: Summary of recorded data for all configurations of UAVs

as missing blades, asymmetric cuts, and stall conditions. This hierarchical la-
beling supports both binary fault detection and granular damage characterization,
aligning with the dual objectives of real-time monitoring and diagnostic specificity.

The annotation framework addressed challenges inherent to multi-UAV, multi-
speed datasets by employing UAV-specific mappings for the Holybro X500 and
Y6 AREIOM, ensuring uniformity across heterogeneous data sources with diver-
gent propeller configurations and fault representations. Automation via Python
scripting minimized manual annotation errors and preserved scalability for future
dataset expansions. The raw audio files, recorded as WAV files, were organized
within a directory hierarchy reflecting experimental parameters, with the root
directory splitting into subdirectories for each UAV and further branching into

76

5. Implementation

speed-specific folders, as depicted in Figure 5.9. This structure mirrors the ex-
perimental design, facilitating efficient data access and processing during model
development. The resulting metadata architecture not only streamlines feature
extraction and model training but also enables comparative analyses of acoustic
signatures across operational conditions, serving as a foundational resource for
autonomous aerial system maintenance.

Datasets/

HolybroX500/

10/

15/

20/

Y6Areiom/

10/

15/

20/

Figure 5.9.: Custom dataset structure

To automate metadata extraction, a Python script was developed to traverse
the directory tree, parse filenames, and map propeller configurations to stan-
dardized labels, ensuring programmatic association with experimental contexts.
Filenames follow a strict convention: XX YY ABCD.wav for HolybroX500 and
XX YY ABCDEF.wav for Y6Areiom, where XX denotes the chronological record-
ing index, YY indicates rotor speed, and ABCD or ABCDEF encode propeller
health states. Here, ‘H’ represents healthy rotors, while ‘M’, ‘C’, ‘T’, and ‘S’
correspond to distinct damage types (missing blade, single-side cut, double-side
cut, and aerodynamic stall, respectively). The script, implemented using the os

library for directory navigation and file handling, uses os.path.join to construct
file paths and os_listdir to iterate through files in each subdirectory. The pandas
library is employed to structure and export metadata into a CSV file, leveraging
its DataFrame and to csv functions for data management and storage.

The annotation process relies on UAV-specific mappings that translate propeller
state strings into machine-readable classes, implemented as Python dictionaries to
handle the distinct configurations of the two UAVs. For HolybroX500, a four-
character propeller state code is mapped, while Y6Areiom uses a six-character

77

5. Implementation

code. These mappings, defined in the script, classify states into primary (0 for
healthy, 1 for damaged) and secondary classes (e.g., ‘H’ for healthy, ‘C’ for single-
side cut). For instance, the HolybroX500 mapping defines H0H0 as healthy (pri-
mary class 0, secondary class ‘H’), while 0C00 is mapped to a single-side cut
(primary class 1, secondary class ‘C’). Similarly, Y6Areiom’s mapping interprets
HHHHHH as fully healthy and C0H0H0 as damaged with a single-side cut. The
script’s logic, shown in listing 5.3, uses dictionary lookups with mapping.get to
handle unknown states, assigning a default of -1 for primary class and ‘Unknown’
for secondary classes, ensuring robustness against malformed filenames.

1 metadata = []

2 for uav in uavs:

3 for speed in speeds:

4 folder_path = os.path.join(base_dir , uav , speed)

5 if not os.path.exists(folder_path):

6 continue

7

8 for file in os.listdir(folder_path):

9 if file.endswith(".wav"):

10 parts = file.split("_")

11 propeller_state = parts [2]. split(".")[0]

12

13 if uav == "HolybroX500":

14 mapping = holybro_mapping

15 else:

16 mapping = y6_mapping

17

18 class_info = mapping.get(propeller_state , {’

primary ’: -1, ’secondary ’: [’Unknown ’]})

19

20 metadata.append ({

21 "file_name": file ,

22 "uav_model": uav ,

23 "rotor_speed": parts[1],

24 "propeller_state": propeller_state ,

25 "primary_class": class_info[’primary ’],

26 "secondary_classes": ",".join(class_info[’

secondary ’]),

27 "file_path": os.path.join(folder_path , file)

28 })

29

30 df = pd.DataFrame(metadata)

31 df.to_csv("..\ Datasets\metadata.csv", index=False)

The script begins by importing necessary libraries os for operating system inter-
actions and pandas for data manipulation. The os.path.join function constructs
file paths by combining the base directory, UAV model, and rotor speed, en-
suring cross-platform compatibility. The os.listdir function lists all files in

78

5. Implementation

each subdirectory, filtering for WAV files using file.endswith(".wav"). File-
names are parsed using file.split(" ") to extract rotor speed and propeller
state, with parts[2].split(".")[0] isolating the propeller state code. The
pandas.DataFrame function structures the metadata into a table, and df.to csv

exports it to a CSV file named metadata.csv in the Datasets directory, ensuring
interoperability with ML frameworks.

By leveraging pandas library the script iterates through each UAV’s sub-
directories, extracts rotor speed and propeller state from filenames, and appends
metadata to a structured CSV file. This CSV includes fields for UAV model,
rotor speed, propeller state, primary class (binary healthy/damaged indicator),
and secondary class (specific damage type). The primary class simplifies binary
fault detection, while the secondary class enables granular diagnosis of propeller
defects. Technical metadata, such as file paths, are retained to ensure traceability
to raw recordings. The choice of CSV as the metadata format was driven by its
interoperability with ML frameworks and data analysis tools. CSV files provide a
lightweight, human-readable structure that facilitates batch processing, filtering,
and integration with Python libraries like pandas. By automating metadata gener-
ation, the risk of manual labeling errors is minimized, and scalability is ensured for
future dataset expansions. The script’s logic explicitly addresses the heterogeneity
of UAV configurations, ensuring that propeller state mappings remain consistent
within each platform’s operational constraints.

This annotation framework not only preserves the experimental context but
also enables systematic exploration of acoustic signatures across UAV models and
rotor speeds. For instance, the hierarchical directory structure allows researchers
to isolate recordings by speed or damage type without manual curation, while the
CSV metadata supports feature extraction pipelines by providing direct access to
labeled data subsets. By embedding both technical and experimental parameters
into the metadata, the implementation bridges the gap between raw acoustic data
and ML workflows, laying a robust foundation for fault detection models.

Propeller State Mappings

The propeller state mappings are critical for translating complex propeller con-
figurations into machine-readable classes, ensuring accurate classification for
the sound-based fault detection system. These mappings are implemented as
Python dictionaries, tailored to the distinct architectures of the HolybroX500
and Y6Areiom UAVs. For HolybroX500, the dictionary handles four-character
propeller state codes, while Y6Areiom uses six-character codes, reflecting their re-
spective rotor setups. Each mapping assigns a primary class (0 for healthy, 1 for
damaged) and secondary classes (e.g., ‘H’ for healthy, ‘C’ for single-side cut) to
facilitate binary fault detection and detailed damage diagnosis.

79

5. Implementation

The HolybroX500 mapping, shown in listing 5.1, defines healthy states like H0H0
and damaged states like 0C00, ensuring precise categorization.

1 holybro_mapping = {

2 ’H0H0’: {’primary ’: 0, ’secondary ’: [’H’]}, ’H0HH’: {’primary ’

: 0, ’secondary ’: [’H’]},

3 ’HH0H’: {’primary ’: 0, ’secondary ’: [’H’]}, ’HHH0’: {’primary ’

: 0, ’secondary ’: [’H’]},

4 ’0HHH’: {’primary ’: 0, ’secondary ’: [’H’]}, ’000H’: {’primary ’

: 0, ’secondary ’: [’H’]},

5 ’0H0H’: {’primary ’: 0, ’secondary ’: [’H’]}, ’00H0’: {’primary ’

: 0, ’secondary ’: [’H’]},

6 ’H000’: {’primary ’: 0, ’secondary ’: [’H’]}, ’0H00’: {’primary ’

: 0, ’secondary ’: [’H’]},

7 ’HHHH’: {’primary ’: 0, ’secondary ’: [’H’]},

8

9 ’0C00’: {’primary ’: 1, ’secondary ’: [’C’]}, ’HCHH’: {’primary ’

: 1, ’secondary ’: [’C’]},

10 ’00T0’: {’primary ’: 1, ’secondary ’: [’T’]}, ’THHH’: {’primary ’

: 1, ’secondary ’: [’T’]},

11 ’M000’: {’primary ’: 1, ’secondary ’: [’M’]}, ’MHHH’: {’primary ’

: 1, ’secondary ’: [’M’]},

12 ’S000’: {’primary ’: 1, ’secondary ’: [’S’]}, ’SHHH’: {’primary ’

: 1, ’secondary ’: [’S’]}

13 }

Listing 5.1: Python dictionaries for class mappings

Similarly, the Y6Areiom mapping, shown in 5.2, interprets healthy states like
HHHHHH and damaged states like C0H0H0, accommodating its extended rotor
configuration. These dictionaries are integrated into the metadata script, accessed
via mapping.get to handle state classification, with defaults for unknown states
to maintain robustness.

1 y6_mapping = {

2 ’HHHHHH ’: {’primary ’: 0, ’secondary ’: [’H’]}, ’0H0H0H’: {’

primary ’: 0, ’secondary ’: [’H’]},

3 ’00000H’: {’primary ’: 0, ’secondary ’: [’H’]}, ’0000H0’: {’

primary ’: 0, ’secondary ’: [’H’]},

4 ’000 H00’: {’primary ’: 0, ’secondary ’: [’H’]}, ’H00000 ’: {’

primary ’: 0, ’secondary ’: [’H’]},

5 ’0H0000’: {’primary ’: 0, ’secondary ’: [’H’]}, ’00H000’: {’

primary ’: 0, ’secondary ’: [’H’]},

6 ’H0H0H0 ’: {’primary ’: 0, ’secondary ’: [’H’]},

7

8 ’0000C0’: {’primary ’: 1, ’secondary ’: [’C’]}, ’C0H0H0 ’: {’

primary ’: 1, ’secondary ’: [’C’]},

9 ’T00000 ’: {’primary ’: 1, ’secondary ’: [’T’]}, ’T0H0H0 ’: {’

primary ’: 1, ’secondary ’: [’T’]},

80

5. Implementation

10 ’00M000’: {’primary ’: 1, ’secondary ’: [’M’]}, ’M0H0H0 ’: {’

primary ’: 1, ’secondary ’: [’M’]},

11 ’S00000 ’: {’primary ’: 1, ’secondary ’: [’S’]}, ’S0H0H0 ’: {’

primary ’: 1, ’secondary ’: [’S’]}

12 }

Listing 5.2: Python dictionaries for class mappings

This dictionary-based approach ensures that propeller states are consistently
mapped, supporting automated classification and analysis across the dataset. The
mappings handle the complexity of multi-rotor systems, aggregating individual
propeller states into holistic labels for fault detection tasks, and maintaining com-
patibility with the hierarchical dataset structure.

Dataset Exploration and Visualization

The dataset exploration and visualization phase was conducted to gain a compre-
hensive understanding of the acoustic characteristics of the UAV propellers under
various conditions. This phase involved the analysis of both waveform and spec-
trogram representations of the audio data, organized systematically to compare
different UAV models, propeller states, and rotor speeds. The audio signals, rep-
resented as one-dimensional arrays of amplitude values over time, were transformed
into meaningful visual and numerical features through these analyses. The time-
domain features, such as amplitude spikes and periodicity, were complemented by
frequency-domain features, including harmonic frequencies and broadband noise
levels. This dual approach not only improved the interpretability of the dataset
but also established the groundwork for subsequent ML models, which depend on
these features for fault detection and classification.

Time-domain analysis was performed by visualizing the waveforms of the audio
signals. Each waveform depicts the amplitude of the sound signal over time, offer-
ing insights into the temporal characteristics of the propeller noise. The waveform
visualization, as depicted in figures A.0, and Appendix ?? illustrates the ampli-
tude variations of the audio signals over time for each UAV model, rotor speed,
and propeller state. The waveforms were plotted in a grid format, with rows rep-
resenting different UAV models and columns representing the five propeller states.
Each grid was further divided by rotor speeds. From the waveform visualizations,
several key observations were made. Notably, the amplitude of the audio signals
varied significantly across different rotor speeds. However, through normalization,
the waveforms were scaled to a common amplitude range, enabling a fair com-
parison across all speeds and UAV models. This normalization process ensured
that the amplitude differences due to varying rotor speeds did not obscure the
underlying acoustic patterns associated with propeller damage.

81

5. Implementation

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure 5.10.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed

To complement the time-domain analysis, frequency-domain representations of
the audio signals were generated using spectrograms. Spectrograms offer a de-
tailed representation of the frequency content of sound signals over time, with
color intensity indicating the amplitude of specific frequency components. Similar
to the waveform grids, the spectrograms were organized in a grid format, with rows
corresponding to UAV models and columns representing propeller states, further
divided by rotor speeds. The spectrogram visualizations figures A.0, and Ap-
pendix A.2 revealed distinct frequency patterns for each propeller state. Healthy

82

5. Implementation

propellers exhibited clear, evenly spaced horizontal lines, corresponding to the
harmonic frequencies generated by the rotating blades. These harmonics are a
direct result of the blade-pass frequency and its multiples, which are characteristic
of stable, undamaged propellers. In contrast, the spectrograms of damaged pro-
pellers showed significant deviations from this pattern. The spectrogram analysis
further supports the idea of categorizing audio data based on UAV model. As il-
lustrated, the frequency patterns for each UAV model at the same rotor speed are
remarkably similar, despite differences in propeller state. This similarity suggests
that the acoustic signatures of the propellers are primarily influenced by the rotor
speed, allowing for the grouping of audio data by speed for further analysis. By
normalizing the frequency content, it becomes possible to compare and contrast
the acoustic features of different UAV models under the same operating conditions,
thereby enhancing the robustness of the classification models.

83

5. Implementation

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure 5.11.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 10% speed

The dataset exploration and visualization phase has yielded significant insights
into the acoustic properties of UAV propellers under various operating conditions.
Analyses of waveforms and spectrograms reveal that the amplitude and frequency
patterns of the audio signals are strongly influenced by rotor speed and propeller
state. By organizing the audio data according to rotor speed and applying normal-
ization techniques, the acoustic features can be scaled uniformly across different

84

5. Implementation

UAV models. This method not only simplifies the comparison of acoustic signa-
tures but also ensures that the classification models are trained on a consistent
and representative dataset. The insights gained from this phase establish a solid
foundation for developing a reliable fault detection system for UAV propellers.

5.4. Pre-Processing Pipeline

The pre-processing pipeline transformed raw acoustic recordings from the Holy-
broX500 and Y6Areiom UAVs into a normalized and balanced feature set. The
pipeline was implemented in Python 3.9.18 using Jupyter Notebook, with libraries
such as os for file handling, numpy and scipy for numerical computations, librosa
for audio processing, pandas for data structuring, and sklearn for data balancing.
The following subsections detail each step of the pipeline.

The pipeline began with loading audio files from the dataset, stored as WAV
files at a sample rate of 48,000 Hz, using mono format. This step, implemented
in the Loader class, utilized the librosa.load function to read the files, main-
taining their original sample rate and format without conversion. The script 5.3
checked for clipping by verifying if the maximum absolute signal value exceeded
1.0, clipping it if necessary to prevent distortion:

1 class Loader:

2 def __init__(self , sample_rate , mono):

3 self.sample_rate = sample_rate

4 self.mono = mono

5

6 def load(self , file_path):

7 signal = librosa.load(file_path , sr=self.sample_rate , mono

=self.mono)[0]

8 if np.max(np.abs(signal)) > 1.0:

9 print(f"Warning: Clipping detected in {file_path}")

10 signal = np.clip(signal , -1.0, 1.0)

11 return signal

Listing 5.3: Audio Loading and Signal Preparation

5.4.1. Signal Chunking

The selection of an appropriate chunk size for segmenting audio signals was critical
to ensure stable and representative features for fault detection. To determine the
optimal chunk duration, a Python script, analyzed acoustic recordings from the
HolybroX500 and Y6Areiom UAVs. The script analyzed chunk sizes of 1, 2, 4,
and 8 seconds, calculating the mean of the first MFCC coefficient and the spectral
centroid mean as stability metrics, along with spectral flux to measure temporal

85

5. Implementation

variability. The librosa library was used for audio processing, and matplotlib

was employed for visualization.
The implementation, shown in listing 5.4, processed each WAV file in the

dataset, calculating feature stability via the coefficient of variation (CV) and tem-
poral variability via spectral flux. The CV is defined as the standard deviation
divided by the mean, expressed as:

CV =
σ

µ

where σ is the standard deviation and µ is the mean of the feature across chunks.
Spectral flux, measuring temporal variability, is computed as the mean onset
strength across chunks, calculated by librosa.onset.onset strength, which
quantifies changes in spectral content over time.

1 def compute_features(y, sr , frame_size =2048):

2 mfccs = librosa.feature.mfcc(y=y, sr=sr , n_mfcc =13, n_fft=

frame_size , hop_length=frame_size //2)

3 spectral_centroid = librosa.feature.spectral_centroid(y=y, sr=

sr , n_fft=frame_size , hop_length=frame_size //2)

4 return {

5 ’mfcc1_mean ’: np.mean(mfccs [0]),

6 ’spectral_centroid_mean ’: np.mean(spectral_centroid)

7 }

8

9 def analyze_chunk_size(file_path , chunk_sizes =[1.0, 2.0, 4.0,

8.0], sr =48000):

10 y, _ = librosa.load(file_path , sr=sr)

11 results = []

12

13 for duration in chunk_sizes:

14 chunk_samples = int(duration * sr)

15 chunks = [y[i:i+chunk_samples] for i in range(0, len(y),

chunk_samples) if i+chunk_samples <= len(y)]

16 features = [compute_features(chunk , sr) for chunk in

chunks]

17 df = pd.DataFrame(features)

18

19 cv = (df.std() / df.mean()).to_dict ()

20 cv[’chunk_size ’] = duration

21

22 flux = np.mean([librosa.onset.onset_strength(y=chunk , sr=

sr) for chunk in chunks])

23 cv[’spectral_flux ’] = flux

24

25 results.append(cv)

26

27 return pd.DataFrame(results)

Listing 5.4: Signal chunk analysis

86

5. Implementation

The aggregated results, visualized in figures 5.12, showed that a 4-second chunk
size minimized feature variability while maintaining temporal consistency. Figure
5.12(a) plots the mean coefficient of variation for MFCC1 mean and spectral cen-
troid mean, revealing lower variability at 4-seconds compared to smaller or larger
chunks. Figure 5.12(b) plots mean spectral flux, indicating increased stability in
temporal characteristics at 4 seconds. Based on this analysis, a 4-second chunk
duration with a 4-second stride was selected, ensuring stable feature extraction
without padding, as implemented in the preprocessing pipeline.

(a) Feature Stability vs. Chunk Size

(b) Temporal Variability vs. Chunk Size

Figure 5.12.: Signal chunking analysis

The preprocessed signal was segmented into fixed-duration chunks of 4 seconds,

87

5. Implementation

with a stride of 4 seconds, ensuring no overlapping or padding, as implemented in
the process file method of the PreprocessingPipeline class. This approach,
using numpy for array manipulation, divided each signal into non-overlapping seg-
ments to maintain temporal consistency at the original 48,000 Hz sample rate:

1 def _process_file(self , file_path , metadata):

2 signal = self.loader.load(file_path)

3 signal = self.pre_emphasize(signal)

4 signal = self.noise_reducer.reduce_noise(signal)

5 chunks = []

6 for i in range(0, len(signal) - self.chunk_samples + 1, self.

stride_samples):

7 chunk = signal[i:i + self.chunk_samples]

8 if len(chunk) == self.chunk_samples: # Only include full

4s chunks

9 chunks.append(chunk)

Listing 5.5: Signal Chunkingg

This decision, supported by paper [58] ensures optimal temporal and spectral
representation for UAV motor sound analysis.

Framing and Hop Length

Framing and hop length are integral to the preprocessing pipeline, enabling the
segmentation of audio signals into manageable units for spectral analysis while
optimizing computational efficiency. Framing divides the signal into overlapping
segments to capture local temporal variations, while hop length defines the inter-
val between frames, influencing feature resolution and processing overhead. Based
on the use-case requirements and insights from dataset exploration, the audio sig-
nal, sampled at 48,000 Hz, is segmented into 4-second chunks (192,000 samples),
with each chunk further framed into 2,048-sample segments and a hop length of
1,024 samples, as implemented in the PreprocessingPipeline class. The fram-
ing process, executed over librosa.util.frame within the NoiseReducer and
FeatureExtractor classes, applies a frame size of 2,048 samples (approximately
42.7 ms), facilitating detailed spectral analysis of propeller acoustics. A hop length
of 1,024 samples (21.3 ms), representing a 50% overlap, was selected to enhance
temporal resolution while minimizing redundancy, as validated by stability and
variability metrics from prior analyses as shown in figures 5.12 (a) and (b). This
configuration ensures the capture of transient acoustic features indicative of pro-
peller faults, balancing computational feasibility with diagnostic accuracy, as sup-
ported by [58].

The implementation, illustrated in 5.6, integrates these parameters into the
pipeline:

88

5. Implementation

1 class NoiseReducer:

2 def __init__(self , frame_size , hop_length):

3 self.frame_size = frame_size

4 self.hop_length = hop_length

5

6 def reduce_noise(self , signal):

7 frames = librosa.util.frame(signal , frame_length=self.

frame_size , hop_length=self.hop_length)

8 energies = np.sum(frames **2, axis =0)

9 # ... (remaining code)

10

11 class FeatureExtractor:

12 def __init__(self , sample_rate , frame_size , hop_length , n_mfcc

):

13 self.sample_rate = sample_rate

14 self.frame_size = frame_size

15 self.hop_length = hop_length

16 self.n_mfcc = n_mfcc

17

18 def extract_stft_features(self , signal):

19 stft = librosa.stft(signal , n_fft=self.frame_size ,

hop_length=self.hop_length)

20 magnitude = np.abs(stft)

21 # ... (remaining code)

Listing 5.6: Framing and Hop Length Determination

This setup, informed by the chunk size stability analysis and temporal variabil-
ity assessment, ensures robust feature extraction for downstream ML tasks, with
implementation details aligned with the system’s operational context.

5.4.2. Noise Filtering

Noise reduction was essential to isolate propeller acoustic signatures for fault de-
tection, as environmental noise in UAV recordings is often unpredictable. As ex-
plained in the “Methodology Concept” chapter, the chosen method avoided cutting
off specific frequency ranges to preserve the full acoustic signature of propellers,
crucial for distinguishing healthy and damaged states. The NoiseReducer class
implemented a spectral subtraction approach, estimating a noise profile from the
10th percentile of frame energies and subtracting it from the signal’s STFT, using
a frame size of 2,048 samples and hop length of 1,024 samples to maintain temporal
resolution.

The implementation, detailed in listing 5.7, leverages librosa.stft and
librosa.istft to transform the signal into the frequency domain and reconstruct
it, preserving the original 48,000 Hz sampling rate. The noise profile is derived by
averaging frames with energies below the 10th percentile threshold, ensuring ro-

89

5. Implementation

bust estimation in noisy semi-hangar conditions. The cleaned magnitude spectrum
is computed as:

cleaned mag = max(mag signal − mag noise, 0.01 · mag signal), (5.1)

where mag signal is the STFT magnitude, mag noise is the mean noise magni-
tude, and the 0.01 factor prevents over-subtraction, aligning with principles from
[57]. This method balances noise reduction with signal integrity, supporting fault
detection accuracy.

To enhance robustness across varying noise levels, the pipeline integrates hybrid
feature extraction, combining MFCCs which are sensitive to noise and STFT fea-
tures are resilient due to their time-frequency representation. This approach, im-
plemented in the FeatureExtractor class, leverages the complementary strengths
of both feature sets, as validated by subsequent analyses, ensuring reliable fault
classification in diverse operational contexts.

1 class NoiseReducer:

2 def init(self , frame_size , hop_length):

3 self.frame_size = frame_size # 2048 samples

4 self.hop_length = hop_length # 1024 samples

5

6 def reduce_noise(self , signal):

7 frames = librosa.util.frame(signal , frame_length=self.frame_size ,

hop_length=self.hop_length)

8 energies = np.sum(frames **2, axis =0)

9 noise_threshold = np.percentile(energies , 10)

10 noise_profile = np.mean(frames[:, energies <= noise_threshold],

axis =1)

11 stft_signal = librosa.stft(signal , n_fft=self.frame_size ,

hop_length=self.hop_length)

12 stft_noise = librosa.stft(noise_profile , n_fft=self.frame_size ,

hop_length=self.hop_length)

13 mag_signal = np.abs(stft_signal)

14 mag_noise = np.mean(np.abs(stft_noise), axis=1, keepdims=True)

15 cleaned_mag = np.maximum(mag_signal - mag_noise , 0.01 * mag_signal

)

16 return librosa.istft(cleaned_mag * np.exp(1j * np.angle(

stft_signal)), hop_length=self.hop_length)

Listing 5.7: Noise Filtering Implementation

This technique, grounded in spectral subtraction, provides a theoretical foun-
dation for effective noise mitigation, with practical implementation details aligned
with the system’s operational requirements.

90

5. Implementation

5.4.3. Signal Windowing

Signal windowing is utilized to reduce spectral leakage and avoid distortion during
the analysis of audio chunks, ensuring precise feature extraction for fault detection.
As part of the preprocessing pipeline, the Hanning window is applied within the
process file method to smooth the edges of the signal, minimizing artifacts in

the frequency domain that could interfere with the detection of propeller acoustic
signatures. The Hanning window function is defined as:

w(n) = 0.5

(
1 − cos

(
2πn

N − 1

))
, 0 ≤ n ≤ N (5.2)

w(n) = 0.5

(
1 − cos

(
2πn

N − 1

))
, 0 ≤ n ≤ N (5.3)

where n is the sample index and N is the window length. This formulation has
been validated by [8] and [55] for improving spectral stability in audio processing
tasks.

The implementation, outlined in listing 5.8, uses np.hanning to apply the win-
dow to each 4-second chunk, determined by self.chunk samples. This step fol-
lows noise reduction and pre-emphasis, ensuring that transient features essential
for identifying propeller faults are retained while keeping computational costs low.
The windowed signal is then passed to the feature extractor.extract method,
with metadata added to facilitate further analysis.

1 def _process_file(self , file_path , metadata):

2 signal = self.loader.load(file_path)

3 signal = self.pre_emphasize(signal)

4 signal = self.noise_reducer.reduce_noise(signal)

5 chunks = []

6 for i in range(0, len(signal) - self.chunk_samples + 1, self.

stride_samples):

7 chunk = signal[i:i + self.chunk_samples]

8 if len(chunk) == self.chunk_samples:

9 windowed = chunk * np.hanning(len(chunk))

10 features = self.feature_extractor.extract(windowed)

11 features.update ({** metadata , ’chunk_id ’: idx , ’duration_sec ’: len(

chunk) / self.sample_rate })

12 chunks.append(features)

13 return chunks

Listing 5.8: Signal Windowing Implementation

This technique, helped in established audio processing principles, provides a
robust foundation for feature extraction, with implementation details tailored to
the system’s operational context.

91

5. Implementation

5.4.4. Features Extraction

Feature extraction transforms windowed audio chunks into discriminative repre-
sentations for fault detection, leveraging the FeatureExtractor class to capture
statistical, STFT, and MFCC characteristics. This process operates at the orig-
inal 48,000 Hz sample rate, utilizing a frame size of 2,048 samples and a hop
length of 1,024 samples to ensure temporal resolution and a 50% overlap, consis-
tent with the prior framing and windowing strategies. The approach, informed
by the need to identify propeller fault signatures in noisy hangar environments,
integrates numpy and scipy.stats for statistical computations, building on the
preprocessing pipeline’s robustness. Detailed formulations and citations for each
feature type are provided in the following subsections, aligning with the system’s
operational requirements.

Statistical Features

Statistical features were derived to analyze the temporal dynamics of windowed
audio chunks, offering valuable insights into amplitude variations and signal behav-
ior essential for detecting propeller faults. The FeatureExtractor class calculates
these features including mean, standard deviation (SD), skewness, kurtosis, root
mean square (RMS), zero crossing rate (ZCR), and crest factor, using numpy and
scipy.stats, as detailed in listing 5.9. This selection of metrics, guided by the
need to identify subtle fault-related anomalies in noisy hangar environments, builds
on established methods validated by [5].

The mean (mu) measures the signal’s central tendency:

µ =
1

N

N∑
i=1

xi (5.4)

where xi is the signal sample, and N is the number of samples. Standard
deviation (sigma) quantifies dispersion:

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (5.5)

Skewness assesses asymmetry in the amplitude distribution:

Skewness =
1
N

∑N
i=1(xi − µ)3

σ3
(5.6)

while kurtosis evaluates the peakedness relative to a Gaussian distribution:

Kurtosis =
1
N

∑N
i=1(xi − µ)4

σ4
− 3 (5.7)

92

5. Implementation

RMS captures the signal’s energy:

RMS =

√√√√ 1

N

N∑
i=1

x2
i (5.8)

ZCR, approximated via librosa.feature.zero crossing rate, measures the
rate of sign changes, reflecting signal oscillation, and crest factor indicates the
peak-to-average ratio:

Crest Factor =
max(|xi|)

RMS
(5.9)

[
The implementation, shown in listing 5.9, ensures numerical stability (e.g.,

avoiding division by zero in crest factor) and leverages efficient library functions
for computation.

1 def extract_statistical_features(self , signal):

2 return {

3 ’mean’: np.mean(signal),

4 ’std’: np.std(signal),

5 ’skewness ’: stats.skew(signal),

6 ’kurtosis ’: stats.kurtosis(signal),

7 ’rms’: np.sqrt(np.mean(signal2)),

8 ’zcr’: librosa.feature.zero_crossing_rate(signal)[0]. mean(),

9 ’crest_factor ’: np.max(np.abs(signal)) / np.sqrt(np.mean(signal2))

if np.mean(signal **2) != 0 else 0

10 }

Listing 5.9: Statistical Features Extraction

These features, grounded in temporal analysis principles, provide a robust foun-
dation for detecting fault induced anomalies, such as increased skewness from
blade damage or elevated ZCR from aerodynamic stall, aligning with the system’s
diagnostic objectives.

MFCC Features

MFCCs were extracted to capture the spectral shape of propeller acous-
tics, providing frequency-domain features robust to noise in hangar environ-
ments. The extraction process, implemented in the FeatureExtractor class using
librosa.feature.mfcc, follows a sequence of steps: pre-emphasis, signal framing,
windowing, power spectrum computation, Mel filter bank application, logarithmic
compression, and DCT, as validated by [1]. The implementation, shown in List-
ing 5.10, leverages the established framing parameters of 2,048 samples and a hop
length of 1,024 samples, ensuring a 50% overlap for temporal resolution, consistent
with prior preprocessing steps.

93

5. Implementation

1 def extract_mfcc_features(self , signal):

2 mfccs = librosa.feature.mfcc(y=signal , sr=self.sample_rate ,

n_mfcc=self.n_mfcc , n_fft=self.frame_size , hop_length=self.

hop_length)

3 return {f’mfcc_{i}_mean’: np.mean(mfccs[i]) for i in range(

self.n_mfcc)} | {f’mfcc_{i}_var’: np.var(mfccs[i]) for i in

range(self.n_mfcc)}

Listing 5.10: MFCC Features Extractor

Pre-emphasis, applied at an earlier stage in the pipeline, amplifies high-frequency
components to enhance spectral clarity. Framing and windowing employ the Han-
ning window, as described earlier, to reduce spectral leakage. The power spectrum
is calculated using the STFT, converting the signal into the frequency domain.
Frequencies are subsequently mapped to the Mel scale using the following formula:

Mel(f) = 2595 log10

(
1 +

f

700

)
(5.10)

where f is the frequency in Hz. A Mel filter bank with M = 13 filters processes
the spectrum, and the log-energies of the filter outputs Sm are compressed via
DCT to yield cepstral coefficients:

ck =
M∑

m=1

log(Sm) cos

(
πk

(
m− 1

2

)
/M

)
(5.11)

where k is the coefficient index. For each of the 13 MFCCs, mean and variance
are computed, resulting in 26 features per chunk, capturing both central tenden-
cies and variability in spectral characteristics. This approach, informed by the
need to encode timbral variations for fault detection, ensures robustness in noisy
environments, aligning with the system’s diagnostic objectives.

STFT Features

STFT features were extracted to complement MFCCs, providing time-frequency
characteristics that enhance robustness against noise in propeller acoustic analysis,
as supported by [32]. The FeatureExtractor class employs librosa.stft with a
frame size of 2,048 samples and a hop length of 1,024 samples, consistent with prior
preprocessing steps to compute these features at the original 48,000 Hz sample
rate. The implementation, detailed in listing 5.11, derives mean, variance, and
peak frequency to capture spectral energy and dominant frequency components.

1 def extract_stft_features(self , signal):

2 stft = librosa.stft(signal , n_fft=self.frame_size , hop_length=self

.hop_length)

3 magnitude = np.abs(stft)

94

5. Implementation

4 return {

5 ’stft_mean ’: np.mean(magnitude),

6 ’stft_var ’: np.var(magnitude),

7 ’stft_peak_freq ’: librosa.feature.spectral_centroid(y=signal , sr=

self.sample_rate , n_fft=self.frame_size , hop_length=self.

hop_length)[0]. mean()

8 }

Listing 5.11: STFT Features Extraction

The STFT is mathematically defined as:

X(f, τ) =
N−1∑
t=0

x(t + τ)w(t)e−j2πft/N (5.12)

where x(t) is the signal, w(t) is the Hanning window, N is the frame size (2,048
samples), f is the frequency, and τ is the time frame index. The magnitude spec-
trum is used to compute mean and variance, quantifying overall spectral energy
and its variability. The peak frequency, approximated by the spectral centroid via
librosa.feature.spectral centroid, is given by:

SpectralCentroid =

∑K−1
k=0 fkS(k)∑K−1
k=0 S(k)

(5.13)

where fk is the frequency bin and S(k) is the magnitude spectrum at bin k.
This metric identifies dominant frequencies, enhancing fault detection sensitivity.
These features, validated by [86] and [32], provide a robust representation of time-
frequency dynamics, aligning with the system’s need to detect subtle propeller
anomalies in noisy conditions.

5.4.5. Normalization and Balancing

Normalization and balancing were applied to standardize and equalize the ex-
tracted features, enhancing model performance in classifying propeller health
states. Features, derived from frames of 2,048 samples with a hop length
of 1,024 samples, were normalized using Z-score normalization within the
ZScoreNormaliser class, transforming data to a zero mean and unit variance
to mitigate scale disparities across the 48,000 Hz sample rate. The implementa-
tion, shown in listing 5.12, ensures numerical stability by handling zero standard
deviation cases, as recommended by [38].

1 class ZScoreNormaliser:

2 def normalise(self , array):

3 return (array - np.mean(array)) / np.std(array) if np.std(array)

!= 0 else array

Listing 5.12: Z-Score Normalization

95

5. Implementation

To address class imbalance between healthy and damaged propeller
states initially reported as 4,400 healthy and 4,263 damaged samples the
PreprocessingPipeline class employs sklearn.utils.resample to balance the
dataset. The strategy, detailed in listing 5.13, upsamples the minority class
(healthy) with replacement or downsamples the majority class (damaged) without
replacement, targeting equal representation. This approach, validated by [31], en-
sures equitable class distribution, resulting in a balanced dataset of 8,663 samples,
as confirmed by the output log, while preserving the original 48,000 Hz sample
rate.

1 from sklearn.utils import resample

2

3 if healthy_count < not_healthy_count:

4 minority = resample(df[df[’primary_class ’] == 0], replace=True ,

n_samples=not_healthy_count , random_state =42)

5 balanced_df = pd.concat ([df[df[’primary_class ’] == 1], minority])

6 else:

7 target_size = healthy_count

8 majority = df[df[’primary_class ’] == 1]. sample(n=min(

not_healthy_count , target_size), random_state =42, replace=False

)

9 balanced_df = pd.concat ([df[df[’primary_class ’] == 0], majority])

10

11 balanced_df = balanced_df[columns_order]. rename(columns ={’

primary_class ’: ’label ’})

12 feature_cols = [col for col in balanced_df.columns if col not in [

’file_name ’, ’uav_model ’, ’rotor_speed ’, ’propeller_state ’, ’

chunk_id ’, ’duration_sec ’, ’label ’]]

13 balanced_df[feature_cols] = balanced_df[feature_cols]. apply(lambda

x: self.normaliser.normalise(x))

Listing 5.13: Dataset Balancing

This two-step approach of normalization and balancing ensures a consistent and
representative dataset, enhancing the robustness and generalizability of the ML
models used for fault detection.

5.4.6. Exploratory Data Analysis

Exploratory data analysis (EDA) investigated the structure, patterns, and rela-
tionships within the pre-processed dataset from normalized features.csv, em-
ploying visualizations, statistical summaries, and feature importance assessments
to inform subsequent modeling for fault detection. This analysis, implemented in
Python scripts using pandas, numpy, matplotlib, seaborn, and plotly, processed
the dataset to identify discriminative features, assess UAV-specific and speed-
dependent variations, and guide feature selection, leveraging the outcomes of the

96

5. Implementation

pre-processing pipeline.

Features Analysis

The extracted features were analyzed to assess their stability and variability, pro-
viding insights into their suitability for fault detection. The chunk size analysis,
detailed in Section 6.2.1, generated two key visualizations respectively.

The analysis of feature importance and distributional patterns in the dataset
provides critical insights into the relationships between audio features and statis-
tical measures like RMS and ZCR and propeller states. This investigation aims
to identify the most discriminative features for classifying propeller states and to
assess the influence of UAV model and rotor speed on feature behavior, thereby
guiding the development of a robust classification model. Figure 5.13, presents a
histogram of healthy (label 0) and damaged (label 1) states for HolybroX500 and
Y6Areiom, confirming balanced representation post-preprocessing. This visualiza-
tion, indicates equitable class distribution, supporting robust model training.

Figure 5.13.: Class distribution by UAV model

Figure 5.14, displays the mean values of MFCC coefficients (0–12), revealing
higher values for lower coefficients, reflecting dominant spectral energy in lower
frequencies, critical for distinguishing propeller states.

The analysis of feature importance, visualized in figure 5.15, utilized mutual
information to quantify dependencies between features and the label. For the
Holybro X500, features such as the variance of the STFT, the mean of the 5th
MFCC, and the variance of the 12th MFCC demonstrated high mutual informa-
tion scores, highlighting their significant correlation with propeller states. For

97

5. Implementation

Figure 5.14.: Average MFCC coefficients

Y6Areiom, stft mean, mfcc 3 var, and rms were prominent, suggesting model-
specific acoustic characteristics, as noted in the OCR content. These differences
underscore the need for UAV-specific modeling strategies to enhance classification
performance.

Figure 5.15.: Feature importance by UAV model

Speed-based pattern analysis, shown in figure 5.16, examines mfcc 5 mean dis-

98

5. Implementation

tributions and STFT patterns at 10%, 15%, and 20% rotor speeds, as detailed in
the OCR content “Speed-based Pattern Analysis for Y6Areiom” and “Speed-based
Pattern Analysis for HolybroX500.” At 10% speed, mfcc 5 mean shows clear sep-
aration between healthy and damaged states, with minimal overlap, while STFT
patterns exhibit distinct clusters. At 15% speed, overlap increases, reducing sep-
arability, but at 20% speed, separation improves, though less distinct than at
10%. This rotor speed sensitivity, aligned with “MFCC-5 Distribution at 15%
Speed,” “MFCC-5 Distribution at 20% Speed,” “STFT Patterns at 15% Speed,”
and “STFT Patterns at 20% Speed,” suggests incorporating rotor speed as a
feature or developing speed-specific models to enhance accuracy, acknowledging
dynamic acoustic characteristics.

Figure 5.16.: Speed-based pattern analysis

Correlation analysis, visualized in figure 5.17, explores feature relationships us-
ing Pearson correlation, as noted in the OCR content. Features such as stft var,
mfcc 5 mean, and mfcc 12 var show strong positive correlations with the target,
while zcr and mfcc 0 mean exhibit weak or negative correlations, supporting pri-
oritization of highly correlated features for modeling.

99

5. Implementation

Figure 5.17.: Correlation heatmap of all features

Figure 5.18, ranks features by absolute correlation with the target, identifying
stft var, mfcc 5 mean, mfcc 12 var, rms, and stft mean as most correlated,
as noted in the OCR content. These features should be prioritized for training,
excluding low correlation features like zcr to reduce dimensionality and improve
efficiency.

100

5. Implementation

Figure 5.18.: Top 15 features correlated with label

UAV-specific feature importance, shown in figures 5.19 and 5.20 respectively,
confirms stft var, mfcc 5 mean, and mfcc 12 var as critical for HolybroX500,
and stft mean, mfcc 3 var, and rms for Y6Areiom, reinforcing UAV-specific mod-
eling, as noted in the OCR content.

Figure 5.19.: Feature importance for HolybroX500

101

5. Implementation

Figure 5.20.: Feature importance for Y6Areiom

Dimensionality reduction via PCA and t-SNE, visualized in figures 5.21 and 5.22
and figures 5.23 and 5.24, respectively, reveals clustering patterns. PCA shows
partial separation between HolybroX500 and Y6Areiom, and rotor speeds 10%,
15%, and 20%, with some overlap, indicating class separability. t-SNE, as noted
in the OCR content, exhibits tighter clusters, with clearer UAV model separation
and moderate speed differentiation, enhancing pattern visibility for fault detection.

Figure 5.21.: PCA by UAV model

102

5. Implementation

Figure 5.22.: PCA by rotor speed

Figure 5.23.: t-SNE by UAV model

103

5. Implementation

Figure 5.24.: t-SNE by rotor speed

STFT distributions, shown in figures 5.26 and 5.27, highlight model-specific vari-
ations. HolybroX500 exhibits higher stft mean and greater stft var variability
than Y6Areiom, as noted in the OCR content “HolybroX500” and “Y6Areiom”.
Figure 5.25, plots stft mean against stft var, revealing clustering for Holy-
broX500 and tighter patterns for Y6Areiom, indicating acoustic signature differ-
ences.

Figure 5.25.: STFT mean distribution by UAV model and rotor speed

104

5. Implementation

Figure 5.26.: STFT variance distribution by UAV model

Figure 5.27.: STFT mean vs variance by UAV model

Damage detection confidence, visualized in figure 5.28, plots the absolute dif-
ference in mfcc 5 mean and stft var means between healthy and damaged states
across speeds, as noted in the OCR content “Damage Detection Feature Separation
by Speed At 10% speed, mfcc 5 mean separation is highest (approximately 0.3),
decreasing at 15% and 20%, while stft var shows consistent but lower separation,
indicating 10% speed’s optimal discriminative power.

105

5. Implementation

Figure 5.28.: Damage detection feature separation by speed

Feature Selection

Feature selection refined the dataset by identifying a compact subset of features
maximizing discriminative power for classifying propeller states while minimiz-
ing redundancy and noise, optimizing model performance and computational effi-
ciency. This process, informed by correlation analysis, mutual information scores,
and domain knowledge from EDA, utilized the corr function in pandas and mutual
information from sklearn.feature selection, as implemented in the provided
code.

The selection began with correlation analysis, identifying multicollinearity
among features. Features such as rms and std showed near perfect correla-
tions (|r| > 0.7), indicating redundancy, while stft mean and stft var exhib-
ited strong inter-dependencies with other statistical measures. To mitigate re-
dundancy, one feature from each highly correlated pair was retained, prioritizing
those with weaker associations to the target to preserve discriminative power, as
validated in figure 5.17. Features with low absolute correlations with the target
such as zcr, mfcc 0 mean, and skewness were excluded, confirmed by their negli-
gible mutual information scores and visualization outputs. The final feature sub-
set, determined by ranking features based on absolute Pearson correlation coeffi-
cients and mutual information with the label, included mfcc 0 mean, mfcc 1 mean,
mfcc 2 mean, mfcc 5 mean, mfcc 11 mean, stft mean, stft var, mfcc 2 var, and
mfcc 7 var, with uav and speed as additional contextual features. This sub-
set, validated against domain expertise, balanced discriminative power with inter-
pretability, aligning with acoustic properties of UAV rotor systems. For instance,

106

5. Implementation

the prominence of MFCC means and variances reflected their sensitivity to fre-
quency distortions indicative of propeller damage, while STFT features captured
spectral variability critical for state differentiation.

Dimensionality reduction techniques, such as Principal Component Analysis
(PCA), were considered but prioritized interpretability over reduction, retaining
the selected features for their direct relevance to classification. The resulting sub-
set, processed in “corr analysis” ensured robust classification performance while
accommodating UAV-specific and speed-dependent acoustic variations, as visual-
ized in figures 5.15, and5.18.

5.5. Data Processing

The data processing phase prepared the pre-processed and normalized dataset
from normalized features.csv for ML model training, ensuring reproducibility,
consistency, and optimal feature utilization for fault detection. This section details
the strategies for setting random seeds, splitting the dataset, normalizing features,
and handling class imbalance, leveraging Python libraries such as numpy, pandas,
sklearn, random, and imblearn to maintain comparability across experiments.

Initial Preparation

The data processing began with loading the pre-processed dataset from
normalized features.csv, which contains acoustic features extracted. The
dataset was read into a pandas DataFrame, leveraging its efficient data handling
capabilities. Initial preparation involved verifying the rotor speed distribution and
reordering columns to prioritize predictive features, ensuring a structured input for
subsequent steps. The rotor speed distribution, critical for assessing speed-specific
patterns, was checked to confirm balanced representation across the three speeds.
Console output verified this:

Unique rotor_speed values: [10 15 20]

Rotor_speed value counts:

rotor_speed

15 2888

20 2888

10 2887

Name: count, dtype: int64

This near-equal distribution (approximately 2888 samples per speed, with a
slight variation at 10%) supports unbiased training across operational conditions.
Non-predictive columns such as file name, propeller state, chunk id, and

107

5. Implementation

duration sec were dropped to focus on relevant features, while uav model was
converted into a binary uav column (0 for Y6 AREIOM, 1 for Holybro X500) using
a simple transformation:

1 import pandas as pd

2 import numpy as np

3

4 dataset = pd.read_csv("normalized_features.csv")

5 dataset[’uav’] = (dataset[’uav_model ’] == ’HolybroX500 ’).astype(

int)

6 cols = [’uav’, ’rotor_speed ’] + [col for col in dataset.columns if

col not in [’uav’, ’rotor_speed ’]]

7 dataset = dataset[cols].drop(columns =[’file_name ’, ’

propeller_state ’, ’chunk_id ’, ’duration_sec ’, ’uav_model ’])

Listing 5.14: Dataset loading and column reordering

This step streamlined the dataset, retaining only essential features and metadata
for modeling, with a total of 8663 samples post-balancing as noted in Section 6.2.

Random Seed

To guarantee reproducibility and consistent outcomes across experiments, random
seeds were established for all stochastic processes, such as data shuffling and model
initialization. This strategy reduces variability, facilitating reliable debugging and
equitable comparisons between models—a practice essential for scientific valida-
tion. The implementation set the seed to 42 across both the numpy and Python’s
random modules:

1 import numpy as np

2 import random

3

4 np.random.seed (42)

Listing 5.15: Random seed configuration

This configuration, applied at the script’s outset, synchronized random opera-
tions, ensuring that data splits and subsequent model training iterations produced
identical outcomes each time the code was executed, as reflected in consistent
console outputs across runs.

Feature Normalization

Feature normalization was applied to standardize the dataset, ensuring effective
model training by addressing scale differences among features. The rotor speed

column, initially containing discrete values (10, 15, 20), was normalized using
StandardScaler from sklearn.preprocessing. This transformation adjusted

108

5. Implementation

the data to have a mean of zero and a variance of one, improving its compatibility
with ML algorithms that are sensitive to feature magnitudes. The process is
outlined below:

1 from sklearn.preprocessing import StandardScaler

2

3 scaler = StandardScaler ()

4 dataset[’speed’] = scaler.fit_transform(dataset [[’rotor_speed ’]])

Listing 5.16: Rotor speed normalization

Post-normalization statistics confirmed the transformation:

Scaled speed stats - Mean: 1.4886702821246472e-16

Std: 1.0000577217236186

The near-zero mean and unit standard deviation indicate successful standard-
ization, preserving the relative relationships among rotor speeds while aligning
with statistical modeling requirements. Other features, pre-normalized via z-score
in Section 6.2, were retained as-is, ensuring consistency across the dataset.

Feature Selection Adjustment

To optimize the feature set and mitigate multicollinearity, a correlation anal-
ysis was performed on the initial input features: mfcc 0 mean, mfcc 1 mean,
mfcc 2 mean, mfcc 5 mean, mfcc 11 mean, stft mean, stft var, mfcc 2 var, and
mfcc 7 var. Using pandas correlation matrix and a threshold of |r| > 0.7, highly
correlated pairs were identified, and one feature from each pair was dropped:

1 input_features = [

2 ’mfcc_0_mean ’, ’mfcc_1_mean ’, ’mfcc_2_mean ’, ’mfcc_5_mean ’, ’

mfcc_11_mean ’,

3 ’stft_mean ’, ’stft_var ’, ’mfcc_2_var ’, ’mfcc_7_var ’

4]

5 corr_matrix = dataset[input_features].corr()

6 upper = corr_matrix.where(np.triu(np.ones(corr_matrix.shape), k=1)

.astype(bool))

7 to_drop = [column for column in upper.columns if any(upper[column]

> 0.7)]

8 input_features = [f for f in input_features if f not in to_drop]

9 print(f"Dropped highly correlated features: {to_drop}")

Listing 5.17: Feature correlation adjustment

Console output confirmed the removal of stft mean and stft var due to high
correlation, refining the feature set to:

Retained Input Features:

109

5. Implementation

mfcc_0_mean

mfcc_1_mean

mfcc_2_mean

mfcc_5_mean

mfcc_11_mean

mfcc_2_var

mfcc_7_var

uav

speed

This adjustment, informed by prior feature analysis in Section 6.2, reduced
redundancy while preserving discriminative power for propeller state classification.

5.5.1. Dataset Splitting

The dataset was divided into training, validation, and test sets to facilitate model
development and evaluation. Two approaches were employed: creating separate
models for each UAV and speed combination, and developing a single unified
model. Both methods utilized stratified splitting through train test split from
sklearn.model selection to ensure balanced representation of healthy and dam-
aged classes across all subsets.

First Approach

In the first approach, which involved training separate models for each UAV and
speed combination, the dataset was partitioned into six subsets based on UAV
model and rotor speed. After filtering, the uav and speed columns were removed
to focus solely on acoustic features, as illustrated in Listing 5.18.

1 holybro_10_df = dataset [(dataset[’uav’] == 1) & (dataset[’

rotor_speed ’] == 10)].drop(columns =[’uav’, ’speed ’])

2 holybro_15_df = dataset [(dataset[’uav’] == 1) & (dataset[’

rotor_speed ’] == 15)].drop(columns =[’uav’, ’speed ’])

3 holybro_20_df = dataset [(dataset[’uav’] == 1) & (dataset[’

rotor_speed ’] == 20)].drop(columns =[’uav’, ’speed ’])

4 y6_10_df = dataset [(dataset[’uav’] == 0) & (dataset[’rotor_speed ’]

== 10)].drop(columns =[’uav’, ’speed’])

5 y6_15_df = dataset [(dataset[’uav’] == 0) & (dataset[’rotor_speed ’]

== 15)].drop(columns =[’uav’, ’speed’])

6 y6_20_df = dataset [(dataset[’uav’] == 0) & (dataset[’rotor_speed ’]

== 20)].drop(columns =[’uav’, ’speed’])

Listing 5.18: Filtering subsets for separate models

110

5. Implementation

Each subset was split into training, validation, and test sets using a stratified
approach, allocating 80% for training, 10% for validation, and 10% for testing, as
implemented in listing 5.19.

1 def split_data(df , target=’label’, include_features=None):

2 X = df[include_features + [target]]. drop(columns =[target])

3 y = df[target]

4 X_train_val , X_test , y_train_val , y_test = train_test_split(X, y,

test_size =0.1, random_state =42, stratify=y)

5 X_train , X_val , y_train , y_val = train_test_split(X_train_val ,

y_train_val , test_size =0.111 , random_state =42, stratify=

y_train_val)

6 return X_train , X_val , X_test , y_train , y_val , y_test

Listing 5.19: Stratified splitting function

The splits were applied to each subset, with results validated in console output:

HolybroX500_10%: Train=1167, Val=146, Test=146

HolybroX500_15%: Train=1166, Val=146, Test=146

HolybroX500_20%: Train=1166, Val=146, Test=146

Y6Areiom_10%: Train=1142, Val=143, Test=143

Y6Areiom_15%: Train=1144, Val=143, Test=143

Y6Areiom_20%: Train=1144, Val=143, Test=143

This approach, leveraging the distinct acoustic patterns identified in Section 6.4,
ensures tailored modeling for each UAV-speed combination, enhancing precision
at the cost of increased computational complexity.

Second Approach

The second approach trained a single unified model, retaining uav and speed as
features to capture their contextual influence, as shown in listing 5.20.

1 single_df = dataset.copy()

2 X_train , X_val , X_test , y_train , y_val , y_test = split_data(

single_df , include_features=input_features + [’uav’, ’speed’])

Listing 5.20: Single model dataset splitting

The split, maintaining the same 80-10-10 ratio, was validated in console output:

Train=6930, Val=866, Test=867

Stratification preserved class balance across the 8,663-sample dataset, aligning
with findings from [31]. This unified approach prioritizes scalability and simplicity,
integrating UAV and speed variations into a single model framework, suitable for
hangar deployment.

111

5. Implementation

5.6. Model Training

This section describes the process of training ML models to classify propeller
health states (healthy vs. damaged) using the processed dataset from Section 6.5.
Two strategies were employed: the first involved training separate models for each
combination of UAV model and rotor speed, while the second involved training
a single unified model that included uav and speed as additional features. Both
approaches utilized a range of classifiers implemented in a Python environment,
leveraging sklearn for modeling and imblearn to address class imbalance. The
focus here is on model configuration, training, and optimization, with performance
evaluation discussed in the following chapter, as suggested by [31].

5.6.1. Model Configuration

A diverse set of classifiers was configured to evaluate performance across algo-
rithms, balancing complexity and overfitting prevention. The configurations, de-
fined in the processing pipeline script, are detailed below, leveraging small code
snippets for clarity. The classifier dictionary was initialized as shown in listing 5.21,
using sklearn implementations with tailored parameters.

1 from sklearn.tree import DecisionTreeClassifier

2 from sklearn.neighbors import KNeighborsClassifier

3 from sklearn.svm import SVC

4 from sklearn.linear_model import LogisticRegression

5 from sklearn.naive_bayes import GaussianNB

6 from sklearn.ensemble import RandomForestClassifier

7

8 classifiers = {

9 ’DT_Gini ’: DecisionTreeClassifier(criterion=’gini’, max_depth

=10, random_state =42),

10 ’DT_Entropy ’: DecisionTreeClassifier(criterion=’entropy ’,

max_depth =10, random_state =42),

11 ’DT_MaxDepth5 ’: DecisionTreeClassifier(max_depth=5,

random_state =42),

12 ’DT_MaxDepth10 ’: DecisionTreeClassifier(max_depth =10,

random_state =42),

13 ’KNN_3’: KNeighborsClassifier(n_neighbors =3),

14 ’KNN_5’: KNeighborsClassifier(n_neighbors =5),

15 ’KNN_7’: KNeighborsClassifier(n_neighbors =7),

16 ’SVM_Linear ’: SVC(kernel=’linear ’, C=1.0, probability=True ,

random_state =42),

17 ’SVM_RBF ’: SVC(kernel=’rbf’, C=1.0, probability=True ,

random_state =42),

18 ’SVM_Poly ’: SVC(kernel=’poly’, C=1.0, probability=True ,

random_state =42),

112

5. Implementation

19 ’LogReg ’: LogisticRegression(penalty=’l2’, C=1.0, random_state

=42, max_iter =1000) ,

20 ’LogReg_L2 ’: LogisticRegression(penalty=’l2’, C=1.0, solver=’

liblinear ’, random_state =42),

21 ’NaiveBayes ’: GaussianNB (),

22 ’RandomForest ’: RandomForestClassifier(n_estimators =100,

max_depth =10, random_state =42)

23 }

Listing 5.21: Classifier configuration

Decision Trees: Variants included DT Gini and DT Entropy (max depth 10),
DT MaxDepth5 (max depth 5), and DT MaxDepth10 (max depth 10), using Gini
and entropy criteria to control tree growth and overfitting, with random state=42

for reproducibility.
K-Nearest Neighbors (KNN): Configured with n neighbors set to 3, 5, and 7

(KNN 3, KNN 5, KNN 7), balancing locality and smoothing without explicit regular-
ization. Support Vector Machines (SVM): Included SVM Linear (linear kernel),
SVM RBF (radial basis function kernel), and SVM Poly (polynomial kernel), all with
C=1.0 for regularization and probability=True for probabilistic outputs, fixed
by random state=42.

Logistic Regression: Variants LogReg (default solver, max iter=1000) and
LogReg L2 (liblinear solver) used L2 regularization with C=1.0, ensuring conver-
gence and stability. Näıve Bayes: NaiveBayes employed a Gaussian assumption,
leveraging simplicity without regularization.

Random Forest: Configured with 100 estimators and a max depth of 10
(RandomForest), limiting complexity while maintaining ensemble robustness, with
random state=42.

Näıve Bayes: NaiveBayes used a Gaussian assumption for simplicity.
These settings were chosen to span a range of model complexities and learning

paradigms, ensuring a thorough exploration of fault detection performance.

5.6.2. Training Process

Training was implemented via the evaluate model function, which handled model
fitting, cross-validation, and class imbalance correction. The process was executed
on a standard system, completing within 10-15 minutes per approach due to the
dataset’s size (8̃663 samples post-processing).

The training process was implemented via the evaluate model function, which
managed model fitting, cross-validation, and class imbalance correction for the
dataset of 8,663 samples from Section 6.2. Executed on a standard system (Python
3.9.18 in a Jupyter Notebook), training completed within 10–15 minutes per ap-
proach, leveraging libraries such as sklearn and imblearn, as shown in listing

113

5. Implementation

5.22.

1 import numpy as np

2 import pandas as pd

3 from sklearn.model_selection import cross_val_score

4 from imblearn.over_sampling import SMOTE

Listing 5.22: Library Imports

Approach One: Separate Models per UAV and Speed

Approach one trained separate models for six subsets HolybroX500 and Y6Areiom
at 10%, 15%, 20% rotor speeds as defined in Section 6.5. The process incorporated
5-fold cross-validation, selective SMOTE application, and model fitting, as detailed
below.

The evaluate model function, shown in 5.23, handled training for each subset.

1 def evaluate_model(X_train , X_val , X_test , y_train , y_val , y_test ,

model_name , classifiers , dataset_name):

2 results = {}

3 for name , clf in classifiers.items():

4 if dataset_name.startswith(’HolybroX500 ’) and len(np.unique(

y_train)) > 1:

5 smote = SMOTE(random_state =42)

6 X_train_res , y_train_res = smote.fit_resample(X_train , y_train)

7 else:

8 X_train_res , y_train_res = X_train , y_train

9 cv_scores = cross_val_score(clf , X_train_res , y_train_res , cv=5,

scoring=’f1_macro ’)

10 print(f"{dataset_name} - {name} Cross -validation F1: {cv_scores.

mean():.3f} ({cv_scores.std():.3f})")

11 clf.fit(X_train_res , y_train_res)

12 results[name] = {’fitted_model ’: clf}

13 return results

Listing 5.23: Training function for approach one

• Cross-Validation: Each classifier underwent 5-fold cross-validation us-
ing cross val score with scoring=’f1 macro’, assessing generalization
through mean and standard deviation of F1-scores. Outputs like Holy-
broX500 10% - DT Gini Cross-validation F1: 0.952 (±0.006) confirmed ro-
bust performance.

• Class Imbalance Handling: SMOTE (random state=42) was applied se-
lectively to HolybroX500 subsets to address minor imbalances, resampling
training data only when necessary, while Y6Areiom subsets used the original
data due to prior balancing in Section 6.2.

114

5. Implementation

• Model Fitting: Classifiers were fitted using clf.fit on resampled (or
original) training data (approximately 1,166–1,167 samples for HolybroX500,
1,142–1,144 for Y6Areiom), with fitted models stored in a results dictionary.

The training loop iterated over each subset, as shown in listing 5.24.

1 separate_splits = {}

2 for df , name , features in datasets:

3 separate_splits[name] = split_data(df , include_features=features)

4 for name , (X_train , X_val , X_test , y_train , y_val , y_test) in

separate_splits.items ():

5 globals ()[f’results_{name.replace ("%", "_")}’] = evaluate_model(

6 X_train , X_val , X_test , y_train , y_val , y_test , name , classifiers ,

name

7)

Listing 5.24: Training loop for approach one

This approach provided granularity for UAV-speed-specific modeling, aligning
with the distinct acoustic patterns identified in Section 6.4.

Approach Two: Single Unified Model

Approach two trained a single model on the unified dataset from Section 6.5,
retaining uav and speed as features to capture their influence, as shown in Listing
5.25.

1 single_df = dataset.copy()

2 X_train , X_val , X_test , y_train , y_val , y_test = split_data(

3 single_df , include_features=input_features + [’uav’, ’speed’]

4)

5 results_single = evaluate_model(X_train , X_val , X_test , y_train ,

y_val , y_test ,

6 "Single", classifiers , "Single_Model")

Listing 5.25: Training for approach two

• Cross-Validation: Identical to Approach 1, 5-fold cross-validation
yielded outputs like Single Model - DT Gini Cross-validation F1:

0.948 (±0.008), ensuring generalization across the 6,930-sample training
set.

• Class Imbalance Handling: No SMOTE was applied, as prior balancing
(Section 6.2) ensured near-equal representation (4,331 samples per class).

• Model Fitting: Classifiers were fitted on the full training set, leveraging the
larger data volume for robustness, with results stored in results single.

115

5. Implementation

This approach enhanced scalability across UAVs and speeds, completing within
the same timeframe as approach one due to optimized configurations, as supported
by [31].

5.7. Optimization

This section outlines the optimization strategies applied to enhance the models
trained in Section 6.4. A hybrid approach combining Ensemble Learning and
the Tree-based Pipeline Optimization Tool (TPOT) was implemented to address
limitations in simpler models and improve robustness across UAV models and
rotor speeds. Leveraging the preprocessed dataset from Section 6.3, this approach
achieved a hybrid ensemble with an accuracy and F1-score of 0.984 on the test
set, surpassing the baseline RandomForest accuracy of 0.971 for the single model
(Chapter 7, Table 7.X), as validated by [26].

Ensemble Learning

Ensemble Learning combines multiple models to enhance predictive performance
by minimizing bias and variance, making it particularly effective for complex acous-
tic datasets. A soft voting classifier was implemented, which averages the predicted
probabilities from individual models to determine the final class. This is mathe-
matically defined as:

P (y|x) =
1

M

M∑
m=1

Pm(y|x) (5.14)

where P (y|x) represents the probability for class y from model m, and M is the
number of models. The class with the highest aggregated probability is selected,
a method supported by [26].

The implementation utilized VotingClassifier from sklearn.ensemble, con-
figured with voting=’soft’ and equal weights [1, 1, 1], as demonstrated in
Listing 5.26.

1 from sklearn.ensemble import VotingClassifier

2

3 ensemble = VotingClassifier(

4 estimators =[(’pipeline1 ’, pipeline1), (’pipeline2 ’, pipeline2), (’

pipeline3 ’, pipeline3)],

5 voting=’soft’,

6 weights =[1, 1, 1]

7)

Listing 5.26: Soft voting ensemble setup

116

5. Implementation

Equal weights were initially assigned, with potential for tuning to prioritize
higher-performing models, mitigating weaknesses like overfitting in simpler classi-
fiers like Näıve Bayes.

Tree-based Pipeline Optimization Tool

The Tree-based Pipeline Optimization Tool (TPOT) automates the design of ML
pipelines using genetic programming. It optimizes preprocessing steps, model se-
lection, and hyperparameters across multiple generations. TPOT evolves a popula-
tion of pipelines, evaluating their performance through cross-validation, as outlined
by [58]. The fitness function used for evaluation is:

Fitness(P) = Metric(P,Dtrain, Dvalid) (5.15)

where P is the pipeline, and Dtrain, Dvalid are training and validation subsets. This
process continues for a specified number of generations, balancing exploration and
exploitation to find optimal pipelines.

1 from tpot import TPOTClassifier

2

3 tpot = TPOTClassifier(

4 generations =5,

5 population_size =20,

6 cv=5,

7 scoring=’f1_macro ’,

8 random_state =42,

9 verbosity=2,

10 n_jobs=-1

11)

Listing 5.27: TPOT configuration

This setup, utilizing all CPU cores (n jobs=-1), ensured efficient optimization
for the dataset’s complexity, aligning with best practices in AutoML [49].

5.7.1. Hybrid Optimization Approach

The hybrid approach integrated TPOT and Ensemble Learning to enhance robust-
ness, using the dataset from 9 refined features of MFCCs, variances, UAV model,
normalized rotor speed split into 80% training and 20% test sets with stratifica-
tion. Three TPOT-optimized pipelines were generated, each targeting a metric
(F1-score, accuracy, ROC-AUC), as shown in listing 5.28.

1 tpot_f1 = TPOTClassifier(scoring=’f1_macro ’, generations =5,

population_size =20, cv=5, random_state =42)

2 tpot_f1.fit(X_train , y_train)

Listing 5.28: TPOT pipeline optimization

117

5. Implementation

Each pipeline included preprocessing and a classifier, with parameters like
criterion=’entropy’, max features=0.35, as shown in Listing 5.29.

1 from sklearn.pipeline import Pipeline

2 from sklearn.preprocessing import PolynomialFeatures

3 from sklearn.ensemble import ExtraTreesClassifier

4

5 pipeline = Pipeline ([

6 (’poly’, PolynomialFeatures(include_bias=False)),

7 (’extratrees ’, ExtraTreesClassifier(

8 criterion=’entropy ’, max_features =0.35, min_samples_split =9,

9 min_samples_leaf =6, random_state =42

10))

11])

Listing 5.29: Optimized pipeline example

These pipelines were combined into a soft voting ensemble, trained, and saved
using joblib, as shown in Listing 5.30.

1 from sklearn.ensemble import VotingClassifier

2 from joblib import dump

3

4 ensemble = VotingClassifier(

5 estimators =[

6 (’f1_pipeline ’, tpot_f1.best_pipeline_),

7 (’acc_pipeline ’, tpot_acc.best_pipeline_),

8 (’auc_pipeline ’, tpot_auc.best_pipeline_)

9],

10 voting=’soft’,

11 weights =[1, 1, 1]

12)

13 ensemble.fit(X_train , y_train)

14 dump(ensemble , ’optimized_models/hybrid_ensemble.joblib ’)

Listing 5.30: Hybrid ensemble implementation

Executed in Python 3.9.18 (Jupyter Notebook), the implementation used numpy,
pandas, sklearn, tpot, and joblib, achieving an accuracy and F1-score of 0.984,
surpassing the baseline RandomForest (0.971).

118

6. Results and Evaluation

This chapter presents the evaluation of ML models trained to classify propeller
health states for the Holybro X500 and Y6 AREIOM UAVs. Using a dataset of
8,663 samples, two modeling approaches of approach one (separate models per
UAV and speed) and approach two (a single unified model), are assessed, along-
side an optimized hybrid ensemble. Performance is evaluated on test sets using
accuracy, F1-score, and ROC-AUC metrics, as defined in Chapter 2, with results
presented through tables and figures. These metrics provide insights into model
efficacy across varying UAV models and rotor speeds, highlighting their potential
for real-time fault detection in autonomous hangar deployments.

6.1. Classification Performances

This section evaluates the test set performance of classifiers across two distinct
modeling approaches, utilizing an 8,663-sample dataset divided into training,
validation, and test sets as described in Chapter 5. The performance met-
rics—accuracy, F1-score, and ROC-AUC—are calculated following the definitions
in Chapter 2, assessing each model’s capability to differentiate propeller health
states under varying UAV models and rotor speeds. To ensure a comprehensive
analysis, we selected 14 diverse classifiers, ranging from simple algorithms like
Näıve Bayes to complex ensemble methods like RandomForest. This selection was
informed by prior studies demonstrating the efficacy of such classifiers for acoustic-
based fault detection and audio classification tasks. Specifically, researchers at [5]
employed statistical feature extraction with Support Vector Machines (SVM) and
K-Nearest Neighbors (KNN) to detect UAV motor faults, highlighting their suit-
ability for sound-based diagnostics. [32] conducted a comparative analysis of au-
dio classification using MFCC and STFT features, testing multiple ML techniques
including Decision Trees and Logistic Regression, which guided our inclusion of
these models. Additionally, [89] utilized SVM variants for propeller recognition
via underwater acoustic signals, reinforcing the relevance of SVM kernels for our
dataset. By training these 14 classifiers, we aimed to identify the most effective
models for our specific acoustic dataset, balancing complexity, robustness, and
real-time applicability.

119

6. Results and Evaluation

6.1.1. Approach One: Separate Models per UAV and Speed

Approach One involved training individual models for each combination of UAV
model (Holybro X500 and Y6 AREIOM) and rotor speed (10%, 15%, 20%), result-
ing in six distinct test sets. The Holybro X500 subsets each comprised approxi-
mately 146 samples, while the Y6 AREIOM subsets contained around 143 samples.
The purpose of this approach was to capture the unique acoustic signatures as-
sociated with each UAV-speed pair, recognizing that propeller sound profiles may
vary significantly due to differences in UAV design and operational conditions.
We expected that tailoring models to specific configurations would enhance clas-
sification precision by accounting for these variations, potentially outperforming a
generalized model in scenarios where speed or UAV-specific traits strongly influ-
ence acoustic patterns. This granular approach aligns with our goal of developing a
robust fault detection system capable of adapting to diverse operational contexts,
such as those encountered in autonomous hangar deployments.

Model HolybroX500 10%

For the Holybro X500 operating at 10% rotor speed, the performance results are
detailed in Table 6.1. The KNN models with 3, 5, and 7 neighbors achieved the
highest accuracy and F1-score of 0.990, reflecting near-perfect differentiation of
propeller states. This exceptional performance suggests that KNN effectively lever-
ages the localized structure of acoustic features at this low speed. RandomForest
and SVM with an RBF kernel followed closely, each scoring 0.980 across all metrics,
indicating strong generalization and robustness to the dataset’s complexity. De-
cision Tree variants (DT Gini, DT Entropy, DT MaxDepth5, DT MaxDepth10)
and Logistic Regression models (LogReg, LogReg L2) ranged from 0.950 to 0.960,
demonstrating reliable but less precise classification compared to KNN and Ran-
domForest. Näıve Bayes, however, trailed significantly at 0.810 for all metrics,
likely due to its simplistic assumptions struggling with the intricate acoustic fea-
ture set at this speed.

120

6. Results and Evaluation

Model Accuracy F1-Score ROC-AUC

DT Gini 0.950 0.950 0.950
DT Entropy 0.960 0.960 0.960
DT MaxDepth5 0.950 0.950 0.950
DT MaxDepth10 0.950 0.950 0.950
KNN 3 0.990 0.990 -
KNN 5 0.990 0.990 -
KNN 7 0.990 0.990 -
SVM Linear 0.970 0.970 0.970
SVM RBF 0.980 0.980 0.980
SVM Poly 0.960 0.960 0.960
LogReg 0.950 0.950 0.950
LogReg L2 0.950 0.950 0.950
NaiveBayes 0.810 0.810 0.810
RandomForest 0.980 0.980 0.980

Table 6.1.: Test set performance for Holybro X500 at 10% speed

Model HolybroX500 15%

At 15% speed for the Holybro X500, Table 6.2 reveals that KNN 5, KNN 7,
and RandomForest maintained top performance with an accuracy and F1-score
of 0.990, underscoring their adaptability to this intermediate speed. DT Entropy
and DT MaxDepth5 scored 0.970, reflecting solid but slightly lower efficacy. In
contrast, SVM Linear dropped to 0.840 across all metrics, suggesting sensitivity
to changes in the acoustic profile at this speed, possibly due to its linear decision
boundary struggling with increased feature complexity. Näıve Bayes further de-
clined to an accuracy of 0.750, with an F1-score of 0.730 and ROC-AUC of 0.740,
highlighting its persistent difficulty in modeling the nuanced sound patterns as
speed increases.

121

6. Results and Evaluation

Model Accuracy F1-Score ROC-AUC

DT Gini 0.950 0.950 0.950
DT Entropy 0.970 0.970 0.970
DT MaxDepth5 0.970 0.970 0.970
DT MaxDepth10 0.950 0.950 0.950
KNN 3 0.970 0.970 -
KNN 5 0.990 0.990 -
KNN 7 0.990 0.990 -
SVM Linear 0.840 0.840 0.840
SVM RBF 0.950 0.950 0.950
SVM Poly 0.920 0.920 0.920
LogReg 0.810 0.810 0.810
LogReg L2 0.810 0.810 0.810
NaiveBayes 0.750 0.730 0.740
RandomForest 0.990 0.990 0.990

Table 6.2.: Test set performance for Holybro X500 at 15% speed

6.1.2. Model HolybroX500 20%

For the Holybro X500 at 20% speed, Table 6.3 indicates that DT Gini,
DT MaxDepth10, KNN 3, and RandomForest achieved an outstanding 0.990
across accuracy, F1-score, and ROC-AUC (where applicable), showcasing excep-
tional performance at this higher speed. DT Entropy, KNN 5, and SVM variants
ranged from 0.950 to 0.980, maintaining robust classification capabilities. Näıve
Bayes recorded the lowest performance at 0.700 accuracy, with an F1-score of
0.690 and ROC-AUC of 0.690, reinforcing its inadequacy for capturing the intri-
cate acoustic variations at elevated speeds.

122

6. Results and Evaluation

Model Accuracy F1-Score ROC-AUC

DT Gini 0.990 0.990 0.990
DT Entropy 0.980 0.980 0.980
DT MaxDepth5 0.970 0.970 0.970
DT MaxDepth10 0.990 0.990 0.990
KNN 3 0.990 0.990 -
KNN 5 0.980 0.980 -
KNN 7 0.970 0.970 -
SVM Linear 0.900 0.900 0.900
SVM RBF 0.950 0.950 0.950
SVM Poly 0.950 0.950 0.950
LogReg 0.880 0.880 0.880
LogReg L2 0.870 0.870 0.870
NaiveBayes 0.700 0.690 0.690
RandomForest 0.990 0.990 0.990

Table 6.3.: Test set performance for Holybro X500 at 20% speed

6.1.3. Analysis Summary of Holybro X500

Across the three speed settings for the Holybro X500, KNN models (particularly
KNN 3, KNN 5, and KNN 7) and RandomForest consistently delivered superior
performance, achieving accuracy and F1-scores of 0.990 at 10% and 15% speeds,
and maintaining high marks (0.970–0.990) at 20% speed. This suggests that these
models excel at capturing the localized and ensemble patterns within the acoustic
data, making them highly suitable for this UAV model. Decision Tree variants
also performed well, with DT Gini and DT MaxDepth10 reaching 0.990 at 20%
speed, indicating that deeper tree structures may better adapt to the increased
complexity of higher-speed sound profiles. In contrast, Näıve Bayes consistently
underperformed, with scores dropping from 0.810 at 10% to 0.700 at 20%, likely
due to its inability to model the non-linear relationships in the feature set as speed
increases.

The effect of rotor speed on performance reveals notable trends. At 10% speed,
the low operational intensity likely produces distinct, stable acoustic signatures,
enabling KNN and RandomForest to achieve near-perfect classification (0.990).
As speed rises to 15%, the increased acoustic complexity slightly reduces perfor-
mance for some models (e.g., SVM Linear drops to 0.840), but KNN and Random-
Forest maintain their edge, suggesting robustness to moderate changes. At 20%
speed, the higher rotational energy amplifies sound variations, benefiting models
like DT Gini and DT MaxDepth10 (0.990), which can handle intricate decision

123

6. Results and Evaluation

boundaries, while simpler models like Näıve Bayes falter. RandomForest’s consis-
tent 0.990 across all speeds underscores its versatility, likely due to its ensemble
approach mitigating overfitting and capturing diverse patterns effectively.

These findings indicate that RandomForest and KNN variants excel for the
Holybro X500, particularly in scenarios demanding high precision across varying
speeds. RandomForest stands out for its consistent performance, making it a
strong candidate for autonomous hangar deployment where UAVs operate at mul-
tiple speeds. KNN delivers comparable precision, especially at lower speeds (10%
and 15%), where acoustic patterns are more localized, though its computational
demands may pose challenges for real-time use compared to RandomForest. To
visualize this trend, Figure 6.1 illustrates the accuracy comparison across all classi-
fiers and speeds for the Holybro X500, reinforcing the dominance of RandomForest
and KNN.

Figure 6.1.: Accuracy comparison for Holybro X500 across 10%, 15%, and 20%
speeds (test set)

6.1.4. Model Y6AREIOM 10%

For the Y6 AREIOM at 10% rotor speed, performance results are detailed in Table
6.4. Decision Tree variants (DT Gini, DT Entropy, DT MaxDepth10) and KNN
models (KNN 3, KNN 5) achieved an accuracy, F1-score, and ROC-AUC (where
applicable) of 0.980, indicating strong classification of propeller states at this low
speed. DT MaxDepth5 and KNN 7 followed closely with 0.970 across all metrics,
while RandomForest also scored 0.970, reflecting reliable performance. SVM mod-
els ranged from 0.950 (SVM Linear) to 0.960 (SVM RBF and SVM Poly), and

124

6. Results and Evaluation

Logistic Regression models (LogReg, LogReg L2) matched SVM Linear at 0.950.
Näıve Bayes recorded a lower performance at 0.850 across all metrics, suggest-
ing moderate difficulty in capturing the acoustic feature complexity at this speed
compared to higher-performing models.

Model Accuracy F1-Score ROC-AUC

DT Gini 0.980 0.980 0.980
DT Entropy 0.980 0.980 0.980
DT MaxDepth5 0.970 0.970 0.970
DT MaxDepth10 0.980 0.980 0.980
KNN 3 0.980 0.980 -
KNN 5 0.980 0.980 -
KNN 7 0.970 0.970 -
SVM Linear 0.950 0.950 0.950
SVM RBF 0.960 0.960 0.960
SVM Poly 0.960 0.960 0.960
LogReg 0.950 0.950 0.950
LogReg L2 0.950 0.950 0.950
NaiveBayes 0.850 0.850 0.850
RandomForest 0.970 0.970 0.970

Table 6.4.: Test set performance for Y6 AREIOM at 10% speed

6.1.5. Model Y6AREIOM 15%

At 15% speed for Y6 AREIOM, table 6.5 highlights DT Gini, DT MaxDepth5,
DT MaxDepth10, and RandomForest achieving perfect scores of 1.000 across ac-
curacy, F1-score, and ROC-AUC, demonstrating flawless classification of pro-
peller states. This exceptional performance suggests that these models effectively
capture the acoustic signatures at this intermediate speed. DT Entropy, KNN
variants (KNN 3, KNN 5, KNN 7), and SVM models (SVM Linear, SVM RBF,
SVM Poly) scored 0.990, indicating near-perfect results, while Logistic Regression
models (LogReg, LogReg L2) reached 0.980. Näıve Bayes improved to 0.960 across
all metrics, reflecting strong performance but still trailing the top models, likely
due to its simpler assumptions.

125

6. Results and Evaluation

Model Accuracy F1-Score ROC-AUC

DT Gini 1.000 1.000 1.000
DT Entropy 0.990 0.990 0.990
DT MaxDepth5 1.000 1.000 1.000
DT MaxDepth10 1.000 1.000 1.000
KNN 3 0.990 0.990 -
KNN 5 0.990 0.990 -
KNN 7 0.990 0.990 -
SVM Linear 0.990 0.990 0.990
SVM RBF 0.990 0.990 0.990
SVM Poly 0.990 0.990 0.990
LogReg 0.980 0.980 0.980
LogReg L2 0.980 0.980 0.980
NaiveBayes 0.960 0.960 0.960
RandomForest 1.000 1.000 1.000

Table 6.5.: Test set performance for Y6 AREIOM at 15% speed

6.1.6. Model Y6AREIOM 20%

For Y6 AREIOM at 20% speed, table 6.6 shows DT Entropy and Random-
Forest attaining perfect scores of 1.000 across accuracy, F1-score, and ROC-
AUC, reflecting outstanding classification at this higher speed. DT Gini,
DT MaxDepth5, DT MaxDepth10, KNN variants (KNN 3, KNN 5, KNN 7), and
SVM Poly achieved 0.990 across all metrics, maintaining near-perfect performance.
SVM Linear, SVM RBF, Logistic Regression models (LogReg, LogReg L2), and
Näıve Bayes each scored 0.960, indicating high but not optimal performance, pos-
sibly due to challenges in modeling the amplified acoustic variations at this speed.

126

6. Results and Evaluation

Model Accuracy F1-Score ROC-AUC

DT Gini 0.990 0.990 0.990
DT Entropy 1.000 1.000 1.000
DT MaxDepth5 0.990 0.990 0.990
DT MaxDepth10 0.990 0.990 0.990
KNN 3 0.990 0.990 -
KNN 5 0.990 0.990 -
KNN 7 0.990 0.990 -
SVM Linear 0.960 0.960 0.960
SVM RBF 0.960 0.960 0.960
SVM Poly 0.990 0.990 0.990
LogReg 0.960 0.960 0.960
LogReg L2 0.960 0.960 0.960
NaiveBayes 0.960 0.960 0.960
RandomForest 1.000 1.000 1.000

Table 6.6.: Test set performance for Y6 AREIOM at 20% speed

6.1.7. Analysis Summary of Y6 AREIOM

Across the three speed settings for the Y6 AREIOM, RandomForest and certain
Decision Tree variants (DT Gini, DT Entropy, DT MaxDepth5, DT MaxDepth10)
consistently delivered top-tier performance. RandomForest achieved 1.000 at 15%
and 20% speeds and 0.970 at 10% speed, while DT variants reached 1.000 at
15% (DT Gini, DT MaxDepth5, DT MaxDepth10) and 20% (DT Entropy), with
0.980–0.990 at 10% and 20% speeds otherwise. KNN models (KNN 3, KNN 5,
KNN 7) also performed strongly, scoring 0.980 at 10% and 0.990 at 15% and 20%
speeds, highlighting their effectiveness in capturing localized acoustic patterns.
Näıve Bayes showed improvement over the Holybro X500, rising from 0.850 at 10%
to 0.960 at 15% and 20% speeds, though it remained below the leading models,
likely due to its limited capacity to handle complex feature interactions.

The impact of rotor speed on performance reveals distinct trends for the Y6
AREIOM. At 10% speed, the acoustic signatures appear well-defined, enabling
DT variants and KNN to achieve 0.980, though RandomForest’s slightly lower
0.970 suggests minor variability in ensemble generalization at this low speed. At
15% speed, the intermediate operational intensity produces highly distinguishable
sound patterns, resulting in perfect 1.000 scores for RandomForest and several
DT models, indicating an optimal condition for classification. At 20% speed,
the increased rotational energy sustains this high performance, with RandomFor-
est and DT Entropy reaching 1.000, while KNN and other DT variants maintain

127

6. Results and Evaluation

0.990, suggesting robust adaptability to amplified acoustic complexity. Models
like SVM Linear and Logistic Regression, however, plateau at 0.960 at 20% speed,
possibly reflecting limitations in capturing the full range of sound variations.

These results suggest that RandomForest and Decision Tree variants excel for
the Y6 AREIOM, particularly at higher speeds (15% and 20%), where they achieve
flawless classification. RandomForest’s consistent high performance across all
speeds makes it a versatile choice for deployment in varied operational contexts,
such as autonomous hangars. KNN models also perform reliably, especially at 15%
and 20% speeds, though their computational demands may limit real-time applica-
bility compared to RandomForest. To illustrate these trends, Figure 6.2 presents
the accuracy comparison across all classifiers and speeds for the Y6 AREIOM,
visually confirming the dominance of RandomForest and DT variants.

Figure 6.2.: Accuracy comparison for Y6 AREIOM across 10%, 15%, and 20%
speeds (test set)

6.1.8. Approach Two: Single Unified Model

Approach Two involved training a single unified model across all UAV models
and rotor speeds, incorporating uav and speed as additional features within the
dataset. This approach was evaluated on a test set of 867 samples, as detailed
in Table 6.7. The purpose of this strategy was to develop a scalable, general-
ized model capable of classifying propeller health states across diverse UAV-speed
combinations without requiring separate models for each configuration. The expec-
tation was that a unified model would simplify implementation and maintenance

128

6. Results and Evaluation

in practical settings, such as autonomous hangar deployments, while still achiev-
ing robust performance by leveraging the broader dataset and contextual features.
This approach aimed to balance efficiency and adaptability, potentially at the cost
of some precision compared to the tailored models of Approach One.

The performance results for the single unified model are presented in Table 6.7.
KNN 3 achieved the highest accuracy and F1-score at 0.979, closely followed by
KNN 5 at 0.977 and RandomForest at 0.971, with RandomForest also recording
a near-perfect ROC-AUC of 0.998. These outcomes suggest that KNN and Ran-
domForest effectively handle the expanded feature set, including uav and speed, to
distinguish propeller states with high precision. Decision Tree variants ranged from
0.858 (DT MaxDepth5) to 0.943 (DT Gini and DT MaxDepth10), with DT Gini
and DT MaxDepth10 also showing strong ROC-AUC scores of 0.984. SVM RBF
scored 0.937 and SVM Poly 0.925, reflecting reliable but lower performance com-
pared to KNN and RandomForest. SVM Linear, Logistic Regression models (Lo-
gReg, LogReg L2), and Näıve Bayes performed notably lower, at 0.775, 0.765, and
0.719 respectively, indicating challenges in modeling the broader, more heteroge-
neous feature set that includes uav and speed variations.

Model Accuracy F1-Score ROC-AUC

DT Gini 0.943 0.943 0.984
DT Entropy 0.937 0.936 0.981
DT MaxDepth5 0.858 0.857 0.931
DT MaxDepth10 0.943 0.943 0.984
KNN 3 0.979 0.979 -
KNN 5 0.977 0.977 -
KNN 7 0.975 0.975 -
SVM Linear 0.775 0.775 0.849
SVM RBF 0.937 0.937 0.984
SVM Poly 0.925 0.925 0.980
LogReg 0.765 0.765 0.850
LogReg L2 0.765 0.765 0.851
NaiveBayes 0.719 0.718 0.813
RandomForest 0.971 0.971 0.998

Table 6.7.: Test set performance for single model

The results of Approach Two reveal that KNN variants (KNN 3, KNN 5, KNN 7)
and RandomForest emerged as the top performers, with KNN 3 achieving the high-
est accuracy and F1-score of 0.979, followed by KNN 5 at 0.977 and RandomFor-
est at 0.971. RandomForest’s near-perfect ROC-AUC of 0.998 further underscores

129

6. Results and Evaluation

its ability to distinguish propeller states effectively across the combined dataset.
These models demonstrate strong generalization, likely due to KNN’s capacity
to leverage localized patterns and RandomForest’s ensemble approach mitigating
overfitting across diverse UAV-speed conditions. Decision Tree variants showed a
wider performance range, with DT Gini and DT MaxDepth10 reaching 0.943, sup-
ported by high ROC-AUC scores (0.984), while DT MaxDepth5 lagged at 0.858,
suggesting that shallower trees struggle with the increased complexity of the uni-
fied feature set. SVM RBF (0.937) and SVM Poly (0.925) maintained solid per-
formance, but SVM Linear dropped to 0.775, indicating its linear boundary is less
suited to the heterogeneous data. Logistic Regression models (0.765) and Näıve
Bayes (0.719) exhibited the lowest scores, likely reflecting their limitations in cap-
turing the non-linear relationships and variability introduced by combining uav

and speed features.
Compared to Approach One, the single unified model generally achieves lower

peak performance (e.g., 0.979 vs. 1.000 for Y6 AREIOM at 15% speed), which
aligns with the expectation that a generalized approach might sacrifice some pre-
cision for scalability. However, the high scores of KNN and RandomForest suggest
that this trade-off is minimal for these models, as they adapt well to the broader
dataset. The inclusion of uav and speed as features appears to benefit models
capable of handling complex interactions, while simpler models like Näıve Bayes
and Logistic Regression struggle, possibly due to increased noise or feature inter-
dependence. This indicates that the unified model’s effectiveness depends heavily
on the classifier’s ability to process a diverse, multi-dimensional feature space.

These findings highlight that KNN and RandomForest are the most reliable
choices for the single unified model, offering high accuracy and robustness across
varied conditions. RandomForest, with its strong ROC-AUC and consistent per-
formance, stands out as particularly suitable for practical deployment where a
single model must accommodate multiple UAVs and speeds, balancing efficiency
and precision. KNN performs comparably but may face computational challenges
in real-time applications due to its instance-based nature. To visualize these out-
comes, Figure 6.3 presents the accuracy comparison across all classifiers for the
single unified model, reinforcing the dominance of KNN and RandomForest.

130

6. Results and Evaluation

Figure 6.3.: Accuracy comparison for single unified model (test set)

6.2. Comparison of two Approach Performance

Visualization of the results provides a comprehensive understanding of model per-
formance across the two approaches, highlighting the strengths and weaknesses of
each classifier under different conditions. This section compares Approach One
(Separate Models per UAV and Speed) and Approach Two (Single Unified Model)
by examining accuracy, precision, F1-score, and recall metrics across all classifiers
and test cases. Line plots are used to depict these metrics for each UAV-speed
combination in Approach One (Holybro X500 and Y6 AREIOM at 10%, 15%, and
20% speeds) and the Single Model in Approach Two, offering a detailed comparison
across all classifiers.

Figure 6.4 illustrates the accuracy comparison across all classifiers and test cases,
covering both approaches. For Approach One, the plot shows that several classifiers
achieve near-perfect or perfect accuracy in specific scenarios. For instance, KNN
models (KNN 3, KNN 5, KNN 7) and RandomForest consistently reach 0.990 for
Holybro X500 at 10% and 15% speeds, while Y6 AREIOM at 15% and 20% speeds
sees multiple models (e.g., DT Gini, DT MaxDepth5, DT MaxDepth10, Random-
Forest) achieving 1.000. In contrast, Approach Two’s Single Model yields slightly
lower peak performance, with KNN 3 at 0.979 and RandomForest at 0.971, reflect-
ing the trade-off of generalization across diverse conditions. Näıve Bayes exhibits
the most significant variability, dropping to 0.700 for Holybro X500 at 20% speed
in Approach One and 0.719 in the Single Model, underscoring its challenges with
complex acoustic features.

131

6. Results and Evaluation

Figure 6.4.: Accuracy comparison across all classifiers and cases (test set)

Comparing the two approaches, Approach One demonstrates superior peak per-
formance, particularly for Y6 AREIOM at 15% and 20% speeds, where multiple
classifiers achieve perfect scores. This aligns with the expectation that tailored
models can better capture specific acoustic signatures, leading to higher preci-
sion, recall, and F1-scores in optimal conditions. However, Approach Two’s Single
Model offers competitive performance, with KNN and RandomForest maintaining
high scores (0.971–0.979) across all metrics, making it a practical choice for scenar-
ios requiring a single, scalable model. The trade-off is evident in simpler models
like Näıve Bayes and Logistic Regression, which perform worse in the Single Model
due to the increased complexity of the unified feature set. These visualizations
and metrics collectively highlight that while Approach One excels in precision for
specific UAV-speed pairs, Approach Two provides a robust, generalized solution
suitable for broader deployment, particularly with high-performing classifiers like
RandomForest.

6.3. Optimization

This subsection evaluates an optimized approach for the acoustic-based fault de-
tection system, as implemented in Section 5.7, combining Ensemble Learning and
the Tree-based Pipeline Optimization Tool (TPOT) to enhance classification per-
formance for propeller health states across the Holybro X500 and Y6 AREIOM
UAVs. The primary purpose of this optimization was to address limitations identi-
fied in earlier approaches, particularly in handling the full set of acoustic features

132

6. Results and Evaluation

effectively. As discussed in the state-of-the-art review (Chapter 3), MFCC and
STFT features are critical for acoustic-based fault detection due to their ability to
capture temporal and spectral characteristics of sound signals. However, during
the training process in Section 5.5, the PCA approach revealed that highly cor-
related features, such as stft mean and stft var, were often dropped to reduce
dimensionality, leaving only a subset of these important features. This reduction
risked losing valuable information embedded in the correlated features. To over-
come this, the optimization aimed to develop a method that could utilize the entire
feature set—including speed, statistical features, STFT features, and MFCC, while
automatically identifying the best pipeline for classification, balancing robustness
and computational efficiency.

The optimization process began by loading the preprocessed dataset from Sec-
tion 5.3, which contained 8,663 samples with a class distribution of 4,400 healthy
(label 0) and 4,263 damaged (label 1) propellers, as shown in the console output.
The dataset included metadata and 37 feature columns, encompassing uav model

rotor speed, statistical features, STFT features, and MFCC coefficients. The ro-
tor speed feature was standardized and renamed to speed using a StandardScaler,
ensuring consistent scaling across the dataset. The updated feature set, totaling
37 features, was then split into an 80% training set (6,930 samples) and a 20%
test set (1,733 samples), maintaining stratification to preserve class balance.

TPOT was employed to automate the pipeline optimization, running for two
generations with a population size of five, as specified in the implementation
(Section 5.7). The console output indicates that TPOT identified an optimal
pipeline after the second generation, achieving a perfect internal cross-validation
score of 1.0. The best pipeline was an ExtraTreesClassifier with parameters
bootstrap=False , criterion=entropy , max features=0.6 , min samples leaf=7

, min samples split=3 , and n estimators=100 . This pipeline was combined
with a predefined ExtraTreesClassifier (with n estimators=50 , max depth=8 ,
min samples split=10) into a hybrid ensemble using soft voting, where the final
prediction is determined by averaging the predicted probabilities from both mod-
els, as described in Section 5.7. The soft-voting mechanism was chosen to leverage
the strengths of both pipelines, enhancing robustness by reducing variance and
improving generalization across diverse UAV-speed conditions.

The hybrid ensemble’s performance was evaluated on the test set, achieving an
accuracy of 0.9965, an F1-score of 0.9965, and a ROC-AUC of 1.0000, as reported
in the console output. On the training set, the ensemble recorded near-perfect
scores of 0.9999 for accuracy and F1-score, and 1.0000 for ROC-AUC, indicating
excellent fit without significant overfitting, given the high test set performance.
These results are summarized in Table 6.8, which compares the hybrid ensemble
against the baseline RandomForest model from Approach 2 (Single Model), previ-

133

6. Results and Evaluation

ously reported at 0.971 for accuracy and F1-score, and 0.998 for ROC-AUC. The
hybrid ensemble significantly outperforms this baseline, demonstrating a 2.56%
improvement in accuracy and F1-score, and achieving a perfect ROC-AUC, un-
derscoring its superior discriminative power.

Model Hybrid Ensemble RandomForest (Baseline, Single Model)

Accuracy 0.9965 0.971
F1-Score 0.9965 0.971
ROC-AUC 1.0000 0.998

Table 6.8.: Performance comparison of hybrid ensemble vs. baseline RandomFor-
est on the test set

as shown in Figure 6.5, presents bar plots comparing its accuracy, F1-score,
and ROC-AUC against the baseline RandomForest model. The hybrid ensemble
consistently achieves higher scores across all metrics, confirming its effectiveness in
enhancing classification performance. Figure 6.6 further illustrates the ensemble’s
accuracy trends across all test cases (Holybro X500 and Y6 AREIOM at 10%,
15%, and 20% speeds, and the Single Model), revealing a stable accuracy of 0.984
across all conditions, surpassing the baseline RandomForest’s peak performance in
Approach 1 (0.990 for several cases) and the Single Model’s 0.971.

Figure 6.5.: Performance comparison of hybrid ensemble vs. baseline models (test
set)

134

6. Results and Evaluation

Figure 6.6.: Accuracy trends of hybrid ensemble across all cases (test set)

The hybrid ensemble’s ability to utilize the full feature set, including all MFCC
and STFT features, without the need for dimensionality reduction via PCA, ad-
dresses the limitations of earlier approaches. By automating pipeline selection
with TPOT and combining it with ensemble learning, the optimization ensures
that the model captures the intricate relationships within the acoustic data, lead-
ing to improved robustness and accuracy. Additionally, the implementation saved
the trained model and speed scaler for future use, as noted in the console output,
facilitating deployment in real-world scenarios. The features used in training, listed
in the console, confirm that all 37 features were retained, aligning with the goal of
maximizing information retention. This approach not only enhances performance
but also sets a foundation for further improvements, such as exploring additional
feature engineering or extending the TPOT optimization with more generations to
potentially refine the pipeline further, as discussed in the implementation details
(Section 5.7).

These results and visualizations, generated using standard plotting libraries,
highlight the hybrid ensemble’s superior fault detection capabilities across diverse
acoustic signatures of the Holybro X500 and Y6 AREIOM UAVs at varying rotor
speeds. The optimized model’s high performance positions it as a viable solu-
tion for practical UAV inspection scenarios, particularly in autonomous hangar
deployments where reliability and scalability are critical.

135

7. Discussion and Future Work

This chapter interprets the findings from Chapter 7, evaluating the effectiveness
of the ML approaches for acoustic-based fault detection in UAV propellers. The
analysis builds on the preprocessing pipeline (Section 5.3), model training (Section
5.5), optimization techniques (Section 5.7), and performance metrics, drawing on
seminal works in acoustic classification and fault detection. The discussion com-
pares the two primary approaches, namely Approach One (Separate Models per
UAV and Speed) and Approach Two (Single Unified Model), alongside the op-
timized hybrid ensemble, assessing their strengths, limitations, and implications
for practical deployment. The future work section proposes enhancements to im-
prove generalization, robustness, and scalability, addressing current challenges and
aligning with state-of-the-art advancements.

The evaluation of the two modeling approaches demonstrated robust classifi-
cation performance for propeller health states across the Holybro X500 and Y6
AREIOM UAVs. Approach One, which trained separate models for each UAV-
speed combination, leveraged the distinct acoustic signatures identified in Section
5.5, achieving exceptional results on test sets of 143 to 146 samples. For instance,
Y6 AREIOM at 15% and 20% speeds recorded perfect accuracy and F1-scores
of 1.000 with models such as DT Gini, DT MaxDepth5, DT MaxDepth10, and
RandomForest (Tables 6.5, 6.6). Holybro X500 also performed strongly, with
KNN models (KNN 3, KNN 5, KNN 7) and RandomForest consistently scoring
between 0.970 and 0.990 across all speeds (tables 6.1 to 6.3). These results align
with findings by [96], which highlight the robustness of audio features like MFCC
and STFT in capturing distinct sound patterns, particularly when models are tai-
lored to specific conditions. However, simpler models like Näıve Bayes struggled,
with accuracies dropping to 0.700 for Holybro X500 at 20% speed and ranging
from 0.810 to 0.960 across other cases, underscoring its limitations in handling the
complex, non-linear relationships within acoustic features at higher speeds.

Single Model

Approach Two utilized a single unified model with uav and speed as additional
features, evaluated on a larger test set of 867 samples. It achieved a maximum
accuracy of 0.979 with KNN 3, followed by KNN 5 at 0.977 and RandomForest
at 0.971, with RandomForest also recording a near-perfect ROC-AUC of 0.998

136

7. Discussion and Future Work

(Table 6.7). The inclusion of uav and speed features enabled better generalization
across diverse conditions, though simpler models like Näıve Bayes (0.719) and
Logistic Regression (0.765) underperformed, consistent with [38], which notes the
challenges of simpler models in high-dimensional, heterogeneous feature spaces.
Compared to Approach One, the Single Model sacrificed some peak precision (for
example, 0.979 compared to 1.000 for Y6 AREIOM at 15% speed) but offered
greater scalability by requiring only one model, reducing training and maintenance
overhead for practical deployment.

Optimized Model

The hybrid ensemble, developed in Section 5.7 using TPOT optimization and en-
semble learning, marked a significant improvement, achieving an accuracy and
F1-score of 0.9965 and a perfect ROC-AUC of 1.0000 on the test set (table 6.8).
This performance surpassed the baseline RandomForest in Approach Two (0.971
accuracy) and matched or exceeded the best results from Approach One, such
as Y6 AREIOM at 15% and 20% speeds (1.000 accuracy). The hybrid ensem-
ble’s success, as visualized in Figures 6.5 and 6.6, reflects the efficacy of com-
bining TPOT-optimized pipelines (for example, ExtraTreesClassifier with specific
hyperparameters) with soft voting, as supported by [26]. Soft voting allowed the
ensemble to average probability predictions from multiple pipelines, mitigating
weaknesses in simpler models like Näıve Bayes and Logistic Regression, which
struggled in both approaches. The ensemble’s consistent accuracy of 0.984 across
all test cases (Holybro X500 and Y6 AREIOM at 10%, 15%, and 20% speeds)
highlights its robustness, making it a strong candidate for real-world applications
like autonomous hangar inspections.

Optimized Model

The hybrid ensemble, developed in Section 5.7 using TPOT optimization and en-
semble learning, marked a significant improvement, achieving an accuracy and
F1-score of 0.9965 and a perfect ROC-AUC of 1.0000 on the test set (table 6.8).
This performance surpassed the baseline RandomForest in Approach Two (0.971
accuracy) and matched or exceeded the best results from Approach One, such
as Y6 AREIOM at 15% and 20% speeds (1.000 accuracy). The hybrid ensem-
ble’s success, as visualized in Figures 6.5 and 6.6, reflects the efficacy of com-
bining TPOT-optimized pipelines (for example, ExtraTreesClassifier with specific
hyperparameters) with soft voting, as supported by [26]. Soft voting allowed the
ensemble to average probability predictions from multiple pipelines, mitigating
weaknesses in simpler models like Näıve Bayes and Logistic Regression, which
struggled in both approaches. The ensemble’s consistent accuracy of 0.984 across

137

7. Discussion and Future Work

all test cases (Holybro X500 and Y6 AREIOM at 10%, 15%, and 20% speeds)
highlights its robustness, making it a strong candidate for real-world applications
like autonomous hangar inspections.

A key factor in the hybrid ensemble’s success was its ability to utilize the full fea-
ture set without dimensionality reduction, addressing a limitation of the PCA ap-
proach in Section 5.5. As noted in the state-of-the-art review (Chapter 3), MFCC
and STFT features are critical for acoustic fault detection, capturing temporal and
spectral characteristics of propeller sounds. However, PCA often dropped highly
correlated features (such as stft mean, stft var) to reduce dimensionality, retain-
ing only a subset like stft peak freq and select MFCC coefficients. The hybrid
ensemble retained all 37 features, including speed, statistical features, STFT fea-
tures, and all MFCC coefficients, ensuring that no valuable information was lost,
as confirmed by the feature list in the optimization output (Section 5.7). This
comprehensive feature utilization, combined with TPOT’s automated pipeline se-
lection, enabled the ensemble to capture intricate patterns in the acoustic data,
leading to superior performance.

Performance variations across rotor speeds provided additional insights. For
Holybro X500, SVM Linear’s accuracy dropped to 0.840 at 15% speed, and Näıve
Bayes fell to 0.700 at 20% speed, indicating sensitivity to acoustic changes at higher
speeds, as discussed in Section 5.5. In contrast, Y6 AREIOM’s perfect scores at
15% and 20% speeds suggest greater model-specific stability, possibly due to its
carbon propellers producing more consistent acoustic signatures compared to the
plastic propellers of Holybro X500 (Table 5.2). These findings prompt further
investigation into feature engineering tailored to specific UAV models and speeds.
The balanced 8,663-sample dataset (Section 5.3), with 4,400 healthy and 4,263
damaged samples, ensured reliable metrics, though minor imbalances in Holybro
X500 subsets were mitigated using SMOTE (Section 5.5). Additionally, KNN’s
missing ROC-AUC values in Approach One (due to its lack of probability outputs)
highlight a limitation in metric consistency, suggesting the need for alternative
evaluation methods in future work. The results align with relevant studies, such
as [1] on MFCC-based fault detection and [86] on multi-feature audio analysis,
reinforcing the approach’s validity within the current research landscape.

Despite the hybrid ensemble’s strong performance, TPOT’s computational cost,
running for two generations with a population size of five, poses challenges for
real-time applications, as noted in Section 5.7. The optimization process, while ef-
fective, required significant computational resources, which may limit scalability in
resource-constrained environments like edge devices. Additionally, the ensemble’s
near-perfect training scores (0.9999 accuracy) suggest a potential for overfitting,
though the high test set performance (0.9965 accuracy) indicates good general-
ization. These trade-offs highlight the need for further optimization to balance

138

7. Discussion and Future Work

performance and computational efficiency, particularly for deployment in opera-
tional settings.

Future Work

Given the model’s strong performance, future work aims to enhance generaliza-
tion and practical deployment by focusing on the application of transfer learning
to adapt the acoustic-based fault detection system to new UAV models. This di-
rection builds on the hybrid ensemble’s robust performance across Holybro X500
and Y6 AREIOM, addressing the challenge of scalability to diverse platforms while
leveraging the current dataset and model architecture.

The primary goal of incorporating transfer learning is to adapt the hybrid ensem-
ble to new UAV models by utilizing pre-trained features from the existing dataset,
which includes 8,663 samples of Holybro X500 and Y6 AREIOM at different ro-
tor speeds (Section 5.3). The dataset’s comprehensive feature set, provides a rich
foundation for transfer learning. A practical approach could involve using the hy-
brid ensemble as a base model, freezing its lower layers to preserve learned acoustic
patterns, and fine-tuning the top layers on a smaller dataset from new UAV mod-
els, such as MAVs with different motor configurations (for example, 500 KV to
1000 KV) or propeller types (for example, composite materials). This method, as
explored by [81], reduces the need for extensive labeled data and training time,
making the system scalable for broader applications.

To implement this, a two-stage transfer learning pipeline could be adopted. In
the first stage, the hybrid ensemble, trained on the current dataset, would serve
as the pre-trained model, with its ExtraTreesClassifier components (Section 5.7)
retaining learned feature representations. A feature importance analysis, using
techniques like SHAP (SHapley Additive exPlanations) values, could identify the
most discriminative features (for example, stft peak freq, mfcc 0 mean) for pro-
peller health classification, ensuring that the most relevant acoustic patterns are
preserved during transfer. In the second stage, a new dataset of approximately 500
to 1,000 samples from diverse UAVs could be collected, using the same recording
setup as in Section 5.2 (for example, a 48 kHz sampling rate), and labeled for
healthy and damaged propellers. The top layers of the hybrid ensemble would
then be fine-tuned on this smaller dataset, adjusting the model to the new UAVs’
acoustic profiles while leveraging the pre-trained weights to accelerate convergence.
This fine-tuning process could be optimized using a small learning rate (for exam-
ple, 0.001) and early stopping to prevent overfitting, ensuring the model adapts
effectively without losing generalization.

Practical challenges in this approach include the potential acoustic variability
across UAV models, which may differ in motor noise, propeller material, and op-
erational environments. To address this, the new dataset should include diverse

139

7. Discussion and Future Work

conditions, such as varying rotor speeds (for example, 5% to 25%) and environ-
mental noise (for example, wind at 5 m/s), to ensure robustness. Additionally, a
domain adaptation technique, such as adversarial training, could be explored to
align the feature distributions between the source (Holybro X500, Y6 AREIOM)
and target UAVs, as suggested by [30]. This would mitigate domain shift issues,
ensuring the model performs well on unseen UAVs. The transfer learning approach
could be validated through field trials in a hangar setting, testing the fine-tuned
model on new UAVs and comparing its accuracy, F1-score, and ROC-AUC against
the original hybrid ensemble’s performance. Statistical tests, such as paired t-tests,
could quantify the significance of performance improvements, aiming for an accu-
racy above 0.95 on the new models.

Furthermore, the transfer learning framework could be extended to a continual
learning setup, allowing the model to incrementally adapt to new UAV models over
time without retraining from scratch. This would involve maintaining a memory
buffer of representative samples from the original dataset and using techniques like
experience replay to prevent catastrophic forgetting, as discussed by [30]. Such an
approach would ensure the system remains adaptable in operational environments,
where new UAV models may be introduced periodically. By focusing on transfer
learning, this future work aims to transition the fault detection system to a scal-
able, practical solution, capable of supporting a wide range of UAVs in autonomous
hangar deployments while maintaining high performance.

140

8. Conclusion

This thesis tackled the challenge of real-time propeller FD in MAVs, proposing
an acoustic-based system to ensure mission-critical reliability without human in-
tervention. The system, integrating statistical, MFCC, and STFT features with
a TPOT optimized hybrid ensemble, achieved a 0.9965 accuracy, outperforming
baselines by 2.56% and introduced a non-invasive, scalable solution that shifts
MAV maintenance from reactive to predictive. By enhancing safety and efficiency
in emergency response operations, such as those exemplified by the RescueFly
project, this approach not only strengthens MAV reliability but also sets a prece-
dent for autonomous diagnostics across aerospace applications.

While the computational demands of TPOT optimization and reliance on con-
trolled data pose challenges for edge deployment and noisy environments, these
limitations highlight opportunities for further refinement. Future efforts could
employ transfer learning to adapt the model to new MAVs using minimal data,
alongside lightweight optimization for edge devices and field tests in noisy settings
to ensure real-world robustness. This framework redefines MAV maintenance as
a predictive, autonomous science, laying the groundwork for safer skies in critical
missions worldwide.

141

Bibliography

[1] Abdul, Z.K., Al-Talabani, A.K.: Mel frequency cepstral coefficient and its
applications: A review. IEEE Access 10, 122136–122158 (2022)

[2] Abid, A., Khan, M.T., Iqbal, J.: A review on fault detection and diagnosis
techniques: basics and beyond. Artificial Intelligence Review 54(5), 3639–3664
(2021)

[3] Ahmed, A., Rahman, S.R., Chowdhury, N.M., Rahman, M.J., Uddin, M.F.,
Khan, M.T.R.: Ai-driven quadrocopter propeller acoustic health monitoring
based on deep learning. In: 2024 8th International Conference on Electronics,
Communication and Aerospace Technology (ICECA). pp. 1313–1318. IEEE
(2024)

[4] Al-Haddad, L.A., Giernacki, W., Basem, A., Khan, Z.H., Jaber, A.A., Al-
Haddad, S.A.: Uav propeller fault diagnosis using deep learning of non-
traditional χ2-selected taguchi method-tested lempel–ziv complexity and
teager–kaiser energy features. Scientific Reports 14(1), 18599 (2024)

[5] Altinors, A., Yol, F., Yaman, O.: A sound based method for fault detec-
tion with statistical feature extraction in uav motors. Applied Acoustics 183,
108325 (2021)

[6] Ansari, R., Valbonesi, L.: 1 - signals and systems. In: CHEN, W.K.
(ed.) The Electrical Engineering Handbook, pp. 813–837. Academic Press,
Burlington (2005), https://www.sciencedirect.com/science/article/

pii/B978012170960050061X

[7] Battseren, B., Tudevdagva, U., Hardt, W., Bilegt, D.: Development of an
adaptive mav platform for autonomous inspection of high voltage power lines.
In: NEIS 2023; Conference on Sustainable Energy Supply and Energy Storage
Systems. pp. 186–191. VDE (2023)

[8] Bondyra, A., Gasior, P., Gardecki, S., Kasiński, A.: Fault diagnosis and
condition monitoring of uav rotor using signal processing. In: 2017 Signal
processing: algorithms, Architectures, Arrangements, and applications (SPA).
pp. 233–238. IEEE (2017)

142

https://www.sciencedirect.com/science/article/pii/B978012170960050061X
https://www.sciencedirect.com/science/article/pii/B978012170960050061X

BIBLIOGRAPHY

[9] Bondyra, A., Ko lodziejczak, M., Kulikowski, R., Giernacki, W.: An acoustic
fault detection and isolation system for multirotor uav. Energies 15(11), 3955
(2022)

[10] Braßel, H., Zeh, T., Fricke, H., Eltner, A.: Optimal uav hangar locations for
emergency services considering restricted areas. Drones 7(3), 203 (2023)

[11] Bruschi, V., Cecchi, S., Ciattaglia, G., Iadarola, G., Peruzzi, G., Pozzebon, A.,
Spinsante, S.: Lightweight uav propeller fault detection through audio signals
measurements. In: 2024 IEEE International Instrumentation and Measure-
ment Technology Conference (I2MTC). pp. 1–6. IEEE (2024)

[12] Cao, D., Chen, Z., Gao, X.: Research on noise reduction algorithm based
on combination of lms filter and spectral subtraction. Journal of Information
Processing Systems 15(4), 748–764 (2019)

[13] Chen, G., Li, S., He, Q., Zhou, P., Zhang, Q., Yang, G., Lv, D.: Fault
diagnosis of drone motors driven by current signal data with few samples.
Measurement Science and Technology 35(8), 086202 (2024)

[14] Ciaburro, G., Iannace, G.: Improving smart cities safety using sound events
detection based on deep neural network algorithms. In: Informatics. vol. 7,
p. 23. MDPI (2020)

[15] Ciaburro, G., Iannace, G., Trematerra, A.: Research for the presence of un-
manned aerial vehicle inside closed environments with acoustic measurements.
Buildings 10(5), 96 (2020)

[16] Cinoğlu, B.: Acoustic-based diagnostics for uav propeller damage using hnr
and gaussian naive bayes. Aircraft Engineering and Aerospace Technology
96(7), 972–982 (2024)

[17] Cinoglu, B., Durak, U., Karakoc, T.H.: Utilizing mel-frequency cepstral co-
efficients for acoustic diagnostics of damaged uav propellers. International
Journal of Aviation Science and Technology 5(02), 79–89 (2024)

[18] Darji, M.C.: Audio signal processing: A review of audio signal classification
features. International Journal of Scientific Research in Computer Science,
Engineering and Information Technology 2(3), 227–230 (2017)

[19] Denney, E., Pai, G.: Argument-based airworthiness assurance of small uas.
In: 2015 IEEE/AIAA 34th Digital Avionics Systems Conference (DASC). pp.
5E4–1. IEEE (2015)

143

BIBLIOGRAPHY

[20] Deutsche Lebens-Rettungs-Gesellschaft: Dlrg statistik 2023: Min-
destens 378 menschen in deutschland ertrunken. Tech. rep., Deutsche
Lebens-Rettungs-Gesellschaft, Hannover, Germany (Feb 2024), https:

//www.dlrg.de/informieren/die-dlrg/presse/statistik-ertrinken/

2023/presseinfo/, [Online; accessed 23-February-2024]

[21] Dumitrescu, C., Minea, M., Costea, I.M., Cosmin Chiva, I., Semenescu, A.:
Development of an acoustic system for uav detection. Sensors 20(17), 4870
(2020)

[22] Duong, N.Q., Duong, H.T.: A review of audio features and statistical models
exploited for voice pattern design. arXiv preprint arXiv:1502.06811 (2015)

[23] D’Amato, E., Nardi, V.A., Notaro, I., Scordamaglia, V.: A particle filter-
ing approach for fault detection and isolation of uav imu sensors: Design,
implementation and sensitivity analysis. Sensors 21(9), 3066 (2021)

[24] Filippone, A.: Aircraft noise prediction. Progress in Aerospace Sciences 68,
27–63 (2014)

[25] Frenzel, L.E.: Chapter 2 - electronic concepts: More interesting than
you think: Some basic stuff you really need to know. In: Frenzel, L.E.
(ed.) Electronics Explained (Second Edition), pp. 15–40. Newnes, second
edition edn. (2018), https://www.sciencedirect.com/science/article/

pii/B9780128116418000023

[26] Ganaie, M.A., Hu, M., Malik, A.K., Tanveer, M., Suganthan, P.N.: Ensemble
deep learning: A review. Engineering Applications of Artificial Intelligence
115, 105151 (2022)

[27] Geiger, J.T., Schuller, B., Rigoll, G.: Large-scale audio feature extraction and
svm for acoustic scene classification. In: 2013 IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics. pp. 1–4. IEEE (2013)

[28] Ghalamchi, B., Jia, Z., Mueller, M.W.: Real-time vibration-based propeller
fault diagnosis for multicopters. IEEE/ASME Transactions on Mechatronics
25(1), 395–405 (2019)

[29] Gomez, M.S., Koschlik, A.K., Arts, E., Raddatz, F.: Non-destructive evalu-
ation of the condition of a uav’s propellers by means of acoustics. In: NDE
4.0, Predictive Maintenance, and Communication and Energy Systems in a
Globally Networked World. vol. 12049, pp. 22–30. SPIE (2022)

144

https://www.dlrg.de/informieren/die-dlrg/presse/statistik-ertrinken/2023/presseinfo/
https://www.dlrg.de/informieren/die-dlrg/presse/statistik-ertrinken/2023/presseinfo/
https://www.dlrg.de/informieren/die-dlrg/presse/statistik-ertrinken/2023/presseinfo/
https://www.sciencedirect.com/science/article/pii/B9780128116418000023
https://www.sciencedirect.com/science/article/pii/B9780128116418000023

BIBLIOGRAPHY

[30] Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep learning, vol. 1.
MIT press Cambridge (2016)

[31] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair,
S., Courville, A., Bengio, Y.: Generative adversarial nets. Advances in neural
information processing systems 27 (2014)

[32] Gourisaria, M.K., Agrawal, R., Sahni, M., Singh, P.K.: Comparative analysis
of audio classification with mfcc and stft features using machine learning
techniques. Discover Internet of Things 4(1), 1 (2024)

[33] Grosse, R., Raina, R., Kwong, H., Ng, A.Y.: Shift-invariance sparse coding
for audio classification. arXiv preprint arXiv:1206.5241 (2012)

[34] Harradi, R., Heller, A., Hardt, W.: Decentralized uav hangar: A study for wa-
ter rescue missions. In: 2024 International Symposium on Computer Science
and Educational Technology (ISCSET). pp. 1–4. IEEE (2024)

[35] Harradi, R., Heller, A., Roth, J., Hardt, W.: Mavlink uav hangar commu-
nication based on a cloud architecture. In: 2024 International Symposium
ELMAR. pp. 301–305. IEEE (2024)

[36] Harras, M.S., Saleh, S., Battseren, B., Hardt, W.: Vision-based propeller
damage inspection using machine learning. Embedded Selforganising Systems
10(7), 43–47 (2023)

[37] Hassanalian, M., Abdelkefi, A.: Classifications, applications, and design chal-
lenges of drones: A review. Progress in Aerospace sciences 91, 99–131 (2017)

[38] Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning:
Data Mining, Inference, and Prediction. Springer, New York, NY, 2nd edn.
(2009)

[39] Heller, A., Harradi, R., Hardt, W.: Hangar system for unmanned aerial vehicle
autonomous missions. In: 2024 International Symposium ELMAR. pp. 291–
294. IEEE (2024)

[40] Iannace, G., Ciaburro, G., Trematerra, A.: Fault diagnosis for uav blades
using artificial neural network. Robotics 8(3), 59 (2019)

[41] Iannace, G., Ciaburro, G., Trematerra, A.: Acoustical unmanned aerial ve-
hicle detection in indoor scenarios using logistic regression model. Building
Acoustics 28(1), 77–96 (2021)

145

BIBLIOGRAPHY

[42] de Jesus Rangel-Magdaleno, J., Ureña-Ureña, J., Hernández, A., Perez-Rubio,
C.: Detection of unbalanced blade on uav by means of audio signal. In: 2018
IEEE International Autumn Meeting on Power, Electronics and Computing
(ROPEC). pp. 1–5. IEEE (2018)

[43] Keane, J.F., Carr, S.S.: A brief history of early unmanned aircraft. Johns
Hopkins APL Technical Digest 32(3), 558–571 (2013)

[44] Khan, O., Shahini, G., Hardt, W.: Analysis of machine learning approach for
the model in swc mapping in automotive systems. Embedded Selforganising
Systems 7(1), 16–19 (2020)

[45] Ko lodziejczak, M., Puchalski, R., Bondyra, A., Sladic, S., Giernacki, W.:
Toward lightweight acoustic fault detection and identification of uav rotors.
In: 2023 International Conference on Unmanned Aircraft Systems (ICUAS).
pp. 990–997. IEEE (2023)

[46] Kong, Q., Xu, Y., Sobieraj, I., Wang, W., Plumbley, M.D.: Sound event detec-
tion and time–frequency segmentation from weakly labelled data. IEEE/ACM
Transactions on Audio, Speech, and Language Processing 27(4), 777–787
(2019)

[47] Krishnamurthi, R., Gopinathan, D., Kumar, A.: Using wavelet transforma-
tion for acoustic signal processing in heavy vehicle detection and classification.
In: Autonomous and Connected Heavy Vehicle Technology, pp. 199–209. El-
sevier (2022)

[48] Lacoste, R.: Chapter 6 - the fast fourier transform from a to z. In: La-
coste, R. (ed.) Robert Lacoste’s The Darker Side, pp. 79–92. Newnes,
Boston (2010), https://www.sciencedirect.com/science/article/pii/

B978185617762700006X

[49] Le, T.T., Fu, W., Moore, J.H.: Scaling tree-based automated machine learn-
ing to biomedical big data with a feature set selector. Bioinformatics 36(1),
250–256 (2020)

[50] Lee, J.y., Lee, W.t., Ko, S.h., Oh, H.s.: Fault classification and diagnosis of
uav motor based on estimated nonlinear parameter of steady-state model. Int.
J. Mech. Eng. Robot. Res 10(1), 22–31 (2020)

[51] Lim, W., Suh, S., Jeong, Y.: Weakly labeled semi-supervised sound event
detection using crnn with inception module. In: DCASE. pp. 74–77 (2018)

146

https://www.sciencedirect.com/science/article/pii/B978185617762700006X
https://www.sciencedirect.com/science/article/pii/B978185617762700006X

BIBLIOGRAPHY

[52] Liu, J., Lin, Q., Liu, G., Liu, D., Liu, J.: Airworthiness technology: The key
for the development and application of civilian unmanned aircraft systems.
In: International Conference on Autonomous Unmanned Systems. pp. 80–90.
Springer (2023)

[53] Liu, M., Li, L., Yan, F.: Methods of fault diagnosis and prediction. In: Intel-
ligent Predictive Maintenance, pp. 47–95. Springer (2024)

[54] Liu, R.l., Zhang, Z.j., Jiao, Y.f., Yang, C.h., Zhang, W.j.: Study on flight
performance of propeller-driven uav. International Journal of Aerospace En-
gineering 2019(1), 6282451 (2019)

[55] Liu, W., Chen, Z., Zheng, M.: An audio-based fault diagnosis method for
quadrotors using convolutional neural network and transfer learning. In: 2020
American Control Conference (ACC). pp. 1367–1372. IEEE (2020)

[56] Liu, W., Liu, C., Sajedi, S., Su, H., Liang, X., Zheng, M.: An audio-
based risky flight detection framework for quadrotors. IET Cyber-Systems
and Robotics 6(1), e12105 (2024)

[57] Loizou, P.C.: Speech enhancement: theory and practice. CRC press (2007)

[58] McFee, B., Raffel, C., Liang, D., Ellis, D.P., McVicar, M., Battenberg, E.,
Nieto, O.: librosa: Audio and music signal analysis in python. SciPy 2015,
18–24 (2015)

[59] OpenCourseWare, M.: Students in class at mit. https://www.flickr.

com/photos/mitopencourseware/3042950125/in/photostream/ (Novem-
ber 2008), accessed: 2025-03-04

[60] Organization, W.H.: Hidden depths: the global investment case for drowning
prevention. World Health Organization (2023)

[61] Palanisamy, R.P., Kulkarni, C.S., Corbetta, M., Banerjee, P.: Fault detec-
tion and performance monitoring of propellers in electric uav. In: 2022 IEEE
Aerospace Conference (AERO). pp. 1–6. IEEE (2022)

[62] Parker, M.: Chapter 3 - sampling, aliasing, and quantization. In: Parker,
M. (ed.) Digital Signal Processing 101 (Second Edition), pp. 21–30. Newnes,
second edition edn. (2017), https://www.sciencedirect.com/science/

article/pii/B9780128114537000032

[63] Pechan, T., Sescu, A.: Experimental study of noise emitted by propeller’s
surface imperfections. Applied Acoustics 92, 12–17 (2015)

147

https://www.flickr.com/photos/mitopencourseware/3042950125/in/photostream/
https://www.flickr.com/photos/mitopencourseware/3042950125/in/photostream/
https://www.sciencedirect.com/science/article/pii/B9780128114537000032
https://www.sciencedirect.com/science/article/pii/B9780128114537000032

BIBLIOGRAPHY

[64] Podsdkowski, M., Konopiński, R., Lipian, M.: Acoustic stall detection of
variable pitch propeller for unmanned aerial vehicles. Journal of Intelligent &
Robotic Systems 109(3), 70 (2023)

[65] Poorghasem, S., Bao, Y.: Review of robot-based automated measurement of
vibration for civil engineering structures. Measurement 207, 112382 (2023)

[66] Pose, C., Giribet, J., Torre, G.: Propeller damage detection, classification and
estimation in multirotor vehicles. arXiv preprint arXiv:2410.05447 (2024)

[67] Puchalski, R., Giernacki, W.: Uav fault detection methods, state-of-the-art.
Drones 6(11), 330 (2022)

[68] Ray, D.K., Roy, T., Chattopadhyay, S.: Skewness scanning for diagnosis of a
small inter-turn fault in quadcopter’s motor based on motor current signature
analysis. IEEE Sensors Journal 21(5), 6952–6961 (2020)

[69] RescueFly: Projektbeschreibung. https://rescuefly.org/

projektbeschreibung/ (2024), [Online; accessed 31-October-2024]

[70] ResearchGate: Sampling of audio signal. https://www.researchgate.net/
figure/Sampling-of-audio-signal_fig3_266488076 (2014), accessed:
2025-03-04

[71] Restas, A.: Drone applications for supporting disaster management. World
Journal of Engineering and Technology 3(3), 316–321 (2015)

[72] Saleh, S., Manoharan, S., Nine, J., Hardt, W.: Towards robust perception
depth information for collision avoidance. In: 2020 IEEE Congreso Bienal de
Argentina (ARGENCON). pp. 1–4. IEEE (2020)

[73] Sanket Doshi: Audio signal. https://medium.com/towards-data-science/
extract-features-of-music-75a3f9bc265d, accessed: 2018-12-30

[74] Sarhan, A., Qin, S.: Autonomous intelligent flight control of fixed-wing uav
based on adaptive neuro-fuzzy inference system. International Journal of Re-
search in Engineering and Technology 5(9), 92–100 (2016)

[75] Seguin, C., Blaquière, G., Loundou, A., Michelet, P., Markarian, T.: Un-
manned aerial vehicles (drones) to prevent drowning. Resuscitation 127, 63–67
(2018)

[76] Semke, W.H., Zahui, D.K., Schwalb, J.: The vibration and acoustic effects
of prop design and unbalance on small unmanned aircraft. In: Sensors and

148

https://rescuefly.org/projektbeschreibung/
https://rescuefly.org/projektbeschreibung/
https://www.researchgate.net/figure/Sampling-of-audio-signal_fig3_266488076
https://www.researchgate.net/figure/Sampling-of-audio-signal_fig3_266488076
https://medium.com/towards-data-science/extract-features-of-music-75a3f9bc265d
https://medium.com/towards-data-science/extract-features-of-music-75a3f9bc265d

BIBLIOGRAPHY

Instrumentation, Aircraft/Aerospace, Energy Harvesting & Dynamic Envi-
ronments Testing, Volume 7: Proceedings of the 38th IMAC, A Conference
and Exposition on Structural Dynamics 2020. pp. 9–16. Springer (2021)

[77] Skiadopoulos, A., Stergiou, N.: Chapter 5 - power spectrum and filtering.
In: Stergiou, N. (ed.) Biomechanics and Gait Analysis, pp. 99–148. Aca-
demic Press (2020), https://www.sciencedirect.com/science/article/

pii/B9780128133729000051

[78] Škvorc, P., Kozmar, H.: Wind energy harnessing on tall buildings in urban
environments. Renewable and Sustainable Energy Reviews 152, 111662 (2021)

[79] Soria Gomez, M., Koschlik, A.K., Arts, E., Raddatz, F., Wende, G.: Acoustic
non-destructive testing of uas´ s propellers during predeparture and post-
flight checks. In: Proceedings of the 13th European Conference on Non-
Destructive Testing 2023 (2023)

[80] Steinhoff, L., Koschlik, A.K., Arts, E., Soria-Gomez, M., Raddatz, F., Kunz,
V.D.: Development of an acoustic fault diagnosis system for uav propeller
blades. CEAS Aeronautical Journal 15(4), 881–893 (2024)

[81] Tan, C., Sun, F., Kong, T., Zhang, W., Yang, C., Liu, C.: A survey on
deep transfer learning. In: Artificial Neural Networks and Machine Learning–
ICANN 2018: 27th International Conference on Artificial Neural Networks,
Rhodes, Greece, October 4-7, 2018, Proceedings, Part III 27. pp. 270–279.
Springer (2018)

[82] Tan, L., Jiang, J.: Chapter 1 - introduction to digital signal processing. In:
Tan, L., Jiang, J. (eds.) Digital Signal Processing (Third Edition), pp. 1–12.
Academic Press, third edition edn. (2019), https://www.sciencedirect.

com/science/article/pii/B9780128150719000014

[83] Tong, J., Zhang, W., Liao, F., Li, C., Zhang, Y.: Machine learning for uav
propeller fault detection based on a hybrid data generation model. arXiv
preprint arXiv:2302.01556 (2023)

[84] Toylan, H., Türkeş, E., Çağlarer, E.: Real-time control of mobile robot using
hmm-based speech recognition system. Anadolu University Journal of Science
and Technology A-Applied Sciences and Engineering 18(5), 897–907 (2017)

[85] Tudevdagva, U., Battseren, B., Hardt, W., Blokzyl, S., Lippmann, M.: Un-
manned aerial vehicle-based fully automated inspection system for high volt-
age transmission line. In: Proceedings on the 12th International Forum on
Strategic Technology IEEE conference, IFOST 2017. pp. 300–305 (2017)

149

https://www.sciencedirect.com/science/article/pii/B9780128133729000051
https://www.sciencedirect.com/science/article/pii/B9780128133729000051
https://www.sciencedirect.com/science/article/pii/B9780128150719000014
https://www.sciencedirect.com/science/article/pii/B9780128150719000014

BIBLIOGRAPHY

[86] Utebayeva, D., Almagambetov, A., Alduraibi, M., Temirgaliyev, Y., Ilip-
bayeva, L., Marxuly, S.: Multi-label uav sound classification using stacked
bidirectional lstm. In: 2020 fourth IEEE international conference on robotic
computing (IRC). pp. 453–458. IEEE (2020)

[87] Von Beesten, J., et al.: Rescuefly-einsatz von dezentral station-ierten drohnen
(“unmanned aircraft systems. UAS) zur Unterstützung bei der Wasserrettung
in schwer zugänglichen und weitflächigen Gebieten,” Brandenburgisches In-
stitut für Gesellschaft und Sicherheit gGmbH, Potsdam, Germany, Rep. 11
(2024)

[88] Whiteside, S., Zawodny, N., Fei, X., Pettingill, N.A., Patterson, M.D., Roth-
haar, P.: An exploration of the performance and acoustic characteristics of
uav-scale stacked rotor configurations. In: AIAA Scitech 2019 Forum. p. 1071
(2019)

[89] Yaman, O., Tuncer, T., Tasar, B.: Des-pat: A novel des pattern-based pro-
peller recognition method using underwater acoustical sounds. Applied Acous-
tics 175, 107859 (2021)

[90] Yaman, O., Yol, F., Altinors, A.: A fault detection method based on embed-
ded feature extraction and svm classification for uav motors. Microprocessors
and Microsystems 94, 104683 (2022)

[91] Yang, B., Matson, E.T., Smith, A.H., Dietz, J.E., Gallagher, J.C.: Uav de-
tection system with multiple acoustic nodes using machine learning models.
In: 2019 Third IEEE international conference on robotic computing (IRC).
pp. 493–498. IEEE (2019)

[92] Yasuda, Y.D., Cappabianco, F.A., Martins, L.E.G., Gripp, J.A.: Aircraft
visual inspection: A systematic literature review. Computers in Industry 141,
103695 (2022)

[93] Yol, F., Altınors, A., Yaman, O.: A sound based method for fault classification
with support vector machines in uav motors. International Journal of Data
Science and Applications 4(1), 5–10 (2021)

[94] Yong, L.Z., Nugroho, H.: Acoustic anomaly detection of mechanical failure:
Time-distributed cnn-rnn deep learning models. In: Control, Instrumentation
and Mechatronics: Theory and Practice, pp. 662–672. Springer (2022)

[95] Zhang, B., Song, Z., Zhao, F., Liu, C.: Overview of propulsion systems for
unmanned aerial vehicles. Energies 15(2), 455 (2022)

150

BIBLIOGRAPHY

[96] Zhang, Q.Y., Hu, W.J., Qiao, S.B., Huang, Y.B., et al.: Speech perceptual
hashing authentication algorithm based on spectral subtraction and energy
to entropy ratio. Int. J. Netw. Secur. 19(5), 752–760 (2017)

[97] Zhao, H., Yang, W., Zhu, H.: Unmanned aerial vehicles rescue system design
and traffic model planning. Applied Sciences 11(21), 10481 (2021)

[98] Zhu, Q., Zhou, R., Zhang, J.: Connectivity maintenance based on multiple
relay uavs selection scheme in cooperative surveillance. Applied Sciences 7(1),
8 (2016)

[99] Zuo, L., Yao, L., Kang, Y.: Uio based sensor fault diagnosis and compensa-
tion for quadrotor uav. In: 2020 Chinese Control And Decision Conference
(CCDC). pp. 4052–4057. IEEE (2020)

References of Computer Engineering’s Professorship

[7] Battseren, B., Tudevdagva, U., Hardt, W., & Bilegt, D. (2024). Development
of an Adaptive MAV Platform for Autonomous Inspection of High Voltage
Power Lines. In NEIS - Conf. Sustain. Energy Supply Energy Storage Syst.

[34] Harradi, R., Heller, A., & Hardt, W. (2024). Decentralized UAV hangar:
A study for water rescue missions. In 2024 International Symposium on
Computer Science and Educational Technology (ISCSET) (pp. 1–4). IEEE.

[35] Harradi, R., Heller, A., Roth, J., & Hardt, W. (2024). MAVLink UAV
hangar communication based on a cloud architecture. In 2024 International
Symposium ELMAR (pp. 301–305). IEEE.

[36] Harras, M. S., Saleh, S., Battseren, B., & Hardt, W. (2023). Vision-based
Propeller Damage Inspection Using Machine Learning. Embedded Selforgan-
ising Systems, 10(7), 43–47.

[39] Heller, A., Harradi, R., & Hardt, W. (2024). Hangar system for unmanned
aerial vehicle autonomous missions. In 2024 International Symposium EL-
MAR (pp. 291–294). IEEE.

[44] Khan, O., Shahini, G., & Hardt, W. (2020). Analysis of Machine Learning
Approach for the model in SWC Mapping in Automotive Systems. Embedded
Selforganising Systems, 7(1), 16–19.

[72] Saleh, S., Manoharan, S., Nine, J., & Hardt, W. (2020). Towards robust
perception depth information for collision avoidance. In 2020 IEEE Congreso
Bienal de Argentina (ARGENCON) (pp. 1–4). IEEE.

151

BIBLIOGRAPHY

[85] Tudevdagva, U., Battseren, B., Hardt, W., Blokzyl, S., & Lippmann, M.
(2017). UAV Based Fully Automated Inspection System for High Voltage
Transmission Lines. In 12th International Forum on Strategic Technology
(IFOST), Ulsan, Korea, May 2017.

152

153

A. Supplementary Figures

A. Supplementary Figures

A.1. Waveform Analysis

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed

154

A. Supplementary Figures

(e) HolybroX500 - C (f) Y6Areiom - C

(g) HolybroX500 - S (h) Y6Areiom - S

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed (cont.)

155

A. Supplementary Figures

(i) HolybroX500 - T (j) Y6Areiom - T

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 10% speed (cont.)

156

A. Supplementary Figures

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed

157

A. Supplementary Figures

(e) HolybroX500 - C (f) Y6Areiom - C

(g) HolybroX500 - S (h) Y6Areiom - S

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed (cont.)

158

A. Supplementary Figures

(i) HolybroX500 - T (j) Y6Areiom - T

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 15% speed (cont.)

159

A. Supplementary Figures

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed

160

A. Supplementary Figures

(e) HolybroX500 - C (f) Y6Areiom - C

(g) HolybroX500 - S (h) Y6Areiom - S

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed (cont.)

161

A. Supplementary Figures

(i) HolybroX500 - T (j) Y6Areiom - T

Figure A.0.: Waveform analysis of audio signals from HolybroX500 and Y6Areiom
UAVs at 20% speed (cont.)

162

A. Supplementary Figures

A.2. Spectrogram Analysis

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 10% speed

163

A. Supplementary Figures

(e) HolybroX500 - C (f) Y6Areiom - C

(g) HolybroX500 - S (h) Y6Areiom - S

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 10% speed (cont.)

164

A. Supplementary Figures

(i) HolybroX500 - T (j) Y6Areiom - T

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 10% speed (cont.)

165

A. Supplementary Figures

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 15% speed

166

A. Supplementary Figures

(e) HolybroX500 - C (f) Y6Areiom - C

(g) HolybroX500 - S (h) Y6Areiom - S

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 15% speed (cont.)

167

A. Supplementary Figures

(i) HolybroX500 - T (j) Y6Areiom - T

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 15% speed (cont.)

168

A. Supplementary Figures

(a) HolybroX500 - H (b) Y6Areiom - H

(c) HolybroX500 - M (d) Y6Areiom - M

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 20% speed

169

A. Supplementary Figures

(e) HolybroX500 - C (f) Y6Areiom - C

(g) HolybroX500 - S (h) Y6Areiom - S

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 20% speed (cont.)

170

A. Supplementary Figures

(i) HolybroX500 - T (j) Y6Areiom - T

Figure A.0.: Spectrogram analysis of audio signals from HolybroX500 and
Y6Areiom UAVs at 20% speed (cont.)

171

This report - except logo Chemnitz University of Technology - is licensed under a Creative
Commons Attribution 4.0 International License, which permits use, sharing, adaptation, dis
tribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The images or other third party material in this report are
included in the report’s Creative Commons license, unless indicated otherwise in a credit
line to the material. If material is not included in the report’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

Chemnitzer Informatik-Berichte
In der Reihe der Chemnitzer Informatik-Berichte sind folgende Berichte erschienen:

CSR-21-01 Marco Stephan, Batbayar Battseren, Wolfram Hardt, UAV Flight using
a Monocular Camera, März 2021, Chemnitz

CSR-21-02 Hasan Aljzaere, Owes Khan, Wolfram Hardt, Adaptive User Interface
for Automotive Demonstrator, Juli 2021, Chemnitz

CSR-21-03 Chibundu Ogbonnia, René Bergelt, Wolfram Hardt, Embedded System
Optimization of Radar Post-processing in an ARM CPU Core, Dezem
ber 2021, Chemnitz

CSR-21-04 Julius Lochbaum, René Bergelt, Wolfram Hardt, Entwicklung und Be
wertung von Algorithmen zur Umfeldmodellierung mithilfe von Radar
sensoren im Automotive Umfeld, Dezember 2021, Chemnitz

CSR-22-01 Henrik Zant, Reda Harradi, Wolfram Hardt, Expert System-based Em
bedded Software Module and Ruleset for Adaptive Flight Missions,
September 2022, Chemnitz

CSR-23-01 Stephan Lede, René Schmidt, Wolfram Hardt, Analyse des Ressourcen
verbrauchs von Deep Learning Methoden zur Einschlagslokalisierung
auf eingebetteten Systemen, Januar 2023, Chemnitz

CSR-23-02 André Böhle, René Schmidt, Wolfram Hardt, Schnittstelle zur Daten
akquise von Daten des Lernmanagementsystems unter Berücksichti
gung bestehender Datenschutzrichtlinien, Januar 2023, Chemnitz

CSR-23-03 Falk Zaumseil, Sabrina, Bräuer, Thomas L. Milani, Guido Brunnett,
Gender Dissimilarities in Body Gait Kinematics at Different Speeds,
März 2023, Chemnitz

CSR-23-04 Tom Uhlmann, Sabrina Bräuer, Falk Zaumseil, Guido Brunnett, A
Novel Inexpensive Camera-based Photoelectric Barrier System for Ac
curate Flying Sprint Time Measurement, März 2023, Chemnitz

CSR-23-05 Samer Salamah, Guido Brunnett, Sabrina Bräuer, Tom Uhlmann, Oli
ver Rehren, Katharina Jahn, Thomas L. Milani, Güunter Daniel Rey,
NaturalWalk: An Anatomy-based Synthesizer for Human Walking Mo
tions, März 2023, Chemnitz

CSR-24-01 Seyhmus Akaslan, Ariane Heller, Wolfram Hardt, Hardware-Supported
Test Environment Analysis for CAN Message Communication, Juni
2024, Chemnitz

Chemnitzer Informatik-Berichte

CSR-24-02 S. M. Rizwanur Rahman, Wolfram Hardt, Image Classification for
Drone Propeller Inspection using Deep Learning, August 2024, Chem
nitz

CSR-24-03 Sebastian Pettke, Wolfram Hardt, Ariane Heller, Comparison of maxi
mum weight clique algorithms, August 2024, Chemnitz

CSR-24-04 Md Shoriful Islam, Ummay Ubaida Shegupta, Wolfram Hardt, Design
and Development of a Predictive Learning Analytics System, August
2024, Chemnitz

CSR-24-05 Sopuluchukwu Divine Obi, Ummay Ubaida Shegupta, Wolfram
Hardt, Development of a Frontend for Agents in a Virtual Tutoring
System, August 2024, Chemnitz

CSR-24-06 Saddaf Afrin Khan, Ummay Ubaida Shegupta, Wolfram Hardt, De
sign and Development of a Diagnostic Learning Analytics System,
August 2024, Chemnitz

CSR-24-07 Túlio Gomes Pereira, Wolfram Hardt, Ariane Heller, Development of
a Material Classification Model for Multispectral LiDAR Data, Au
gust 2024, Chemnitz

CSR-24-08 Sumanth Anugandula, Ummay Ubaida Shegupta, Wolfram Hardt, De
sign and Development of a Virtual Agent for Interactive Learning
Scenarios, September 2024, Chemnitz

CSR-25-01 Md. Ali Awlad, Hasan Saadi Jaber Aljzaere, Wolfram Hardt, AUTO
SAR Software Component for Atomic Straight Driving Patterns, März
2025, Chemnitz

CSR-25-02 Billava Vasantha Monisha, Hasan Saadi Jaber Aljzaere, Wolfram
Hardt, Automotive Software Component for QT Based Car Status Vi
sualization, März 2025, Chemnitz

CSR-25-03 Zahra Khadivi, Batbayar Battseren, Wolfram Hardt, Acoustic-Based
MAV Propeller Inspection, Mai 2025, Chemnitz

Chemnitzer Informatik-Berichte
ISSN 0947-5125

Herausgeber: Fakultät für Informatik, TU Chemnitz
Straße der Nationen 62, D-09111 Chemnitz

	Contents
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Objective and Scope
	1.3 Thesis Structure

	2 Background Knowledge
	2.1 Sound Waves
	2.2 Signals
	2.3 Signal Processing
	2.4 Audio Features
	2.4.1 Time-Domain Features
	2.4.2 Frequency-Domain Features

	2.5 Audio Transformations
	2.5.1 Fourier Transform
	2.5.2 Discrete Fourier Transform
	2.5.3 Fast Fourier Transform

	2.6 Machine Learning
	2.6.1 Classification

	3 State of the Art
	3.1 Overview of Acoustic-base UAV's Fault Detection
	3.2 ML-Based Propeller Fault Detection Approaches
	3.2.1 Recording Procedures and Experimental Setups
	3.2.2 Feature Extraction Techniques
	3.2.3 ML models

	4 Methodology Concept
	4.1 Methodology Overview
	4.2 Data Acquisition
	4.3 Preprocessing Pipeline
	4.4 Feature Extraction
	4.5 Model Training
	4.5.1 Summary

	5 Implementation
	5.1 System Setup
	5.1.1 Experimental setup

	5.2 Software Platforms
	5.2.1 Librosa
	5.2.2 Jupyter Notebook

	5.3 Audio Data Preparation
	5.4 Pre-Processing Pipeline
	5.4.1 Signal Chunking
	5.4.2 Noise Filtering
	5.4.3 Signal Windowing
	5.4.4 Features Extraction
	5.4.5 Normalization and Balancing
	5.4.6 Exploratory Data Analysis

	5.5 Data Processing
	5.5.1 Dataset Splitting

	5.6 Model Training
	5.6.1 Model Configuration
	5.6.2 Training Process

	5.7 Optimization
	5.7.1 Hybrid Optimization Approach

	6 Results and Evaluation
	6.1 Classification Performances
	6.1.1 Approach One: Separate Models per UAV and Speed
	6.1.2 Model HolybroX500_20%
	6.1.3 Analysis Summary of Holybro X500
	6.1.4 Model Y6AREIOM_10%
	6.1.5 Model Y6AREIOM_15%
	6.1.6 Model Y6AREIOM_20%
	6.1.7 Analysis Summary of Y6 AREIOM
	6.1.8 Approach Two: Single Unified Model

	6.2 Comparison of two Approach Performance
	6.3 Optimization

	7 Discussion and Future Work
	8 Conclusion
	Bibliography
	A Supplementary Figures
	A.1 Waveform Analysis
	A.2 Spectrogram Analysis

