A
- o
TECHNISCHE UNIVERSITAT

CHEMNITZ

Fakultat fir Informatik

CSR-25-01

AUTOSAR Software Component for
Atomic Straight Driving Patterns

Md. Ali Awlad - Hasan Saadi Jaber Aljzaere - Wolfram Hardt

Miarz 2025

Chemnitzer Informatik-Berichte

5

TECHNISCHE UNIVERSITAT
CHEMNITZ

AUTOSAR Software Component for Atomic
Straight Driving Patterns

Master Thesis

Submitted in Fulfilment of the
Requirements for the Academic Degree
M.Sc.

Dept. of Computer Science

Chair of Computer Engineering

Submitted by: Md. Ali Awlad
Student ID: 635459
Date: 05.12.2024

Supervising tutor: Prof. Dr. Dr. h. c. Wolfram Hardt
Hasan Saadi Jaber Aljzaere

Abstract

The main focus of this thesis is the development of an AUTOSAR Software Component
(SWC) to operate an Advanced Driver Assistance System (ADAS) demonstrator's
engine for executing atomic straight driving patterns. The AUTOSAR classic
architecture is the most commonly used in the automotive domain and consists of three
basic layers: Basic Software (BSW), Application, and Runtime Environment (RTE).
The straight driving pattern software component is developed to ensure adaptability
within this architecture. The software component is controlled at different distances
and speeds, and it receives and processes CAN bus messages to control the
demonstrator’s actuators.

The computer engineering professorship of Chemnitz University of Technology (TU
Chemnitz) offers extensive opportunities for working with AUTOSAR within its
Automotive Software Engineering (ASE) Lab, which has different ADAS
demonstrators. TUCminiCar is the latest ADAS demonstrator within these, developed
under the AUTOSAR 4.0 version. This ADAS demonstrator has used the Infineon
AURIX TC387 microcontroller, which supports AUTOSAR and CAN communication.
The thesis scope is mainly divided into two parts: analyzing AUTOSAR modules within
this demonstrator and designing and integrating the required software component to
execute the atomic straight driving pattern functionality. The thesis goal completion
depends on the successful operation of the atomic straight driving capability of the
TUCminiCar within the AUTOSAR development framework with higher accuracy.

Since the atomic straight driving pattern is the most fundamental part of ADAS, the
thesis outcome can be used as a foundation to implement additional autonomous
driving patterns within the demonstrator by simply updating or adjusting the software
component.

Keywords: Automotive Open System Architecture (AUTOSAR), Advanced Driver
Assisting System (ADAS), Atomic Straight Driving Pattern, Electronic Control
Unit (ECU), Software Component (SWC), Controller Area Network (CAN).

Acknowledgement

| would like to take this opportunity to thank all those who supported and guided me
throughout the process of completing this thesis.

I would like to express my most overwhelming gratitude to my first supervisor, the
honorable head of the department, “Professor Dr. Dr. h. c. Wolfram Hardt”, for his
enormous guidance, valuable ideas, precious time, and effort.

Secondly, | would like to extend my equal appreciation to my second supervisor, “Mr.
Hasan Saadi Jaber Aljzaere,” for his helpful suggestions and support in receiving
important ideas during the whole thesis work. His guidance, from internship to thesis
work, helped me a lot in laying the foundation for working with AUTOSAR.

Lastly, | would like to thank “Mr. Murat Sevil,” who has been working as a HiWi in the
ASE lab. His technical advice and practical assistance during implementation and
testing were most valuable.

| want to thank all of my department teachers, family, and friends for their continuous
support, understanding, and motivation. The list is too long to include here. Thanks for
all being part of this journey.

Content

ADSITACT ... 2
F o L0V =T (o =T o =T o | 3
(7o) 01 (=T o | PSP PPPP 4
S o T [7
LISt Of TADIES ... 9
List Of ADDIEVIAtIONSoooiiiiiiiiiii e 10
R [0110 To I8 Tox 1 o o FO TP PP PP PUOPPPPPPPRPPP 11
1.1 IMOTIVALION L.ttt 12
1.2 Problem Statement........coooiiiiiiiiiiieee s 14
2 Technical BaCKgrOUNGuuuuuiuiieiiiiiiiiiiiiiiiiiiiei b eeeeneeenee 15
2.1 AUTOSAR Standard OVEIVIEW..........ccceeeiiiiiiiiiiiiieeeae e et e e e 15
2.2 ADAS Demonstrator under AUTOSAR........cccuiiiiiiiieeaeiiieeee e 16
2.3 Atomic Straight Driving Core CONCEPL......coeeveeeeeeeeeeeeeeeeeeeeee e 19
2.4 Development and Testing Environment............ccccoeviiiiiiiiiiiiiiee e, 21
2.4.1 dSPACE SyStemDESK........ccoiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeee e 21
2.4.2 EB TreS0S STUAIOuuuiiiiiiiieiiiiiiiiii et 22
2.4.3 Infineon Compiler and MemTOOl..........cooviiiiiiiiiiiiiieeeeee 23
2.4.4 Debugger Hardware and Software............ccccoeeeieiiiiiiiiiiiiie e, 23
2.4.5 Tiny-CAN Hardware and Software............cccceeviieeiiiiiiiiiiiie e, 24
B S r= 1L 0) 1 1 1= o N 25
3.1 Current Trends and APProachesccoooeiiiiiiieee e 25
3.1.1 Dynamic Architectural Simulation Model of YellowCar in MATLAB/
Simulink Using AUTOSAR SYSIEIMcooviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeee 26
3.1.2 Modeling and Development of AUTOSAR Software Components......... 28
3.1.3 Design and Implementation Procedure for an Advanced Driver
Assistance System Based on an Open Source AUTOSAR........coocevvviieieviinnnnnn. 29
3.2 Comparative Analysis of Current Trends and Approaches................ccoeee... 31
3.3 Relevancy to the Thesis Topic and Gap AnalysSiscccccvviiieeeeeeeeeeeiiinnnnn. 32
3.3 1 REIBVANCY .. 32

3.3.2 GAP ANAIYSIS...ciieiiiiiiie e —————— 33
3.4 Adaptive User Interface for Automotive Demonstratorccceeveeevvvvnnnnnn. 34

3.5 Proposed Work: “AUTOSAR Software Component for Atomic Straight Driving

PAEIN .. 35
4 MENOAOIOGY ... 36
4.1 Development Model: The V-Modelccoovvriiiiiiiiiiccieeeee e, 36
4.1.1 Overview of the V-MOdel............oooviiiiiiiiiiiiiiiiiiiieeeeeeeeeee 36
4.1.2 Mapping V-Model to AUTOSAR Development...........ccooeevvvvviiiiiiinneeennn. 37
4.1.3 Benefits of USINg V-MOdEel:ooiviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeee 39
4.2 Requirement ANAlYSIS.........coooiiiiiiiiiii 39
4.2.1 Functional REQUINEMENTScoiiieiieiieiici e 40
4.2.2 Non-Functional REqUIrEMENTS:ccevviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeeeeeeeeeeee e 40
4.3 Understanding AUTOSAR CIaSSICcccceeeiiiiiiiiiiiie e 41
4.3.1 Overview of AUTOSAR LAYEIS.....coouiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeeeeeeeee e 42
4.3.1.1 ApPlICatioN [QYEFcooeeieiiiee e 42
4.3.1.2 Runtime Environment (RTE) LaYer...........uuuuiimiiiiiiiiiiiiiiiiiiiiiiiiiiinnene 43
4.3.1.3 Basic Software (BSW) LAYEruuuuuiuiimiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiineiiinennes 44
4.3.2 Software Component (SWC) Template............cooevvviiiiiieeiiiieiiiee e, 49
4.4 Understanding Controller Area Network (CAN)coovviviiiiiiiiiiiiiiiiiiiiieeeee, 51
4.4.1 Overview of the CAN ProtOCOlc.uuviiiiiiiiiiiiiiieeeeee e 51
4.4.2 Overview of CAN in TUCMINICArcoovviiiiiiiiiiiiiiiiiiiiieiieeeeeeeeeeeeeeeeeee 54
4.5 Analyze “TUCminiCar” System Configurationccccccccoviiiiiiiiiiiiiiiinnnnnn. 55
5 IMPIEMENTALION ... e e 59
5.1 SWC DeVEIOPMENT....ccoo e 59
5.1.1 Application SWC DeSIgNINGcccuuuiiiiiiiiiieeeiiiiie e e e e e e e 60
5.1.2 Interface Definitioncoooiiiiiiiiiiiiie 60
5.1.3 Logic Implementation............ooie i 62
5.1.4 SWC Internal BENAVIOTcccovviiiiiiiiiiiiiiiiieeeeeeeeeeeeeeeeee 65
5.1.5 RTE GENEratiONcceevviiiiiiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 66
5.2 Software-IN-Loop (SIL) TESHNG «.eeeurruuiiieeeeiieeiiiiie et 68
5.2.1 StraightDriveSWC ProtOotyPecoeeeeeiiiieeiiiiiee et e e 68

5.2.2 SIMUIALION SCENANIOSeeiiiieiiiiiiiiiiie et 69
5.2.3 VEOS SIMUIAtIONcooiiiiiiiiiiiiiiieeeeeeee e 70

5.3 System INTEQration............iiieie e i 71
5.3.1 Integration in TreS0S StUTIOcceviviiiiiiiiiiiiiiiiieeeeeeeeeeeeee e 72
5.3.2 System Validationccoiiiiiiiiiiiiie e 74
5.3.3 Setting Up the Test ENvironmentooviiiiiiiiiiiiieciec e 75

5.4 SYSIEIM TS ettt e et e e e e eaaans 76
ST 0t R O o T A =1 1] o 77
5.4.2 INtegration TeST....cciiiiiiiiiiiiiiiee e 79
5.4.3 ENd-to-ENd (E2E) TeSHNGccvvvuiiiiiee e 83

6 ReSUlts and EVAIUALION...........uuuuiiiiiiiiiiiiiiiiiiiii e 86
6.1 RESUIL ... 86
6.1.1 UNIt TESERESUIL ... 86
6.1.2 Integration TeSt RESUIt...........coooviiiiiiiiiiie 87
6.1.3 End-to-End (E2E) TeSt RESUIt......cooiieiiiieeeceee e, 91

6.2 EVAIUALION.....cooeeeeee 95
6.2.1 Performance ANAlYSISooouuuiiiiiii i 95
6.2.2 IMPIrOVEMENT ATCAS. ... i i eieiiiiiiiiiee e ettt e e e e e e 97

T CONCIUSION. L.ttt 98
4% R ©7e] s [ox [V (o] o TP PPPP PPN 98
T2 FULUIE WOTK e 99
BIDHOGIaPNY ... 100

List of Figures

Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 2.6:
Figure 2.7:
Figure 2.8:
Figure 2.9:

Figure 2.10:
Figure 2.11:
Figure 2.12:
Figure 2.13:
Figure 2.14:
Figure 2.15:
Figure 2.16:
Figure 2.17:
Figure 2.18:
Figure 2.19:

Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 4.1:
Figure 4.2:
Figure 4.3:
Figure 4.4:
Figure 4.5:
Figure 4.6:
Figure 4.7:
Figure 4.8:
Figure 4.9:
Figure 4.10
Figure 4.11
Figure 4.12

Accident Status in Percentage due to Human Error.[6]
Growth of the Global Autonomous Vehicle Market.[8]

AUTOSAR Hardware-Independent Architecture.[10]

AUTOSAR Layered Architecture. [10]
TUCminiCar Extract.

TUCminiCar DC Motor.

TUCminiCar Servo Motor.

KIT_A2G_TC387_3V3_TFT Eval Board on TUCminiCar.

TUCminiCar Sonar Sensor.

Sonar Working Method.[13]

TUCminiCar Visual Actuators.
TUCminiCar Wheel Diameter.

TUCminiCar Path Coverage for the One-Wheel Rotation.[15]

Atomic Straight Drive Pattern.
AUTOSAR Classic Toolchain.

dSPACE SystemDesk. [15]

EB Tresos Studio. [16]

TASKING Compiler.[18]
Infineon DAP miniWiggler V3.

Tiny-CAN II-XL Interface

Tiny-CAN Monitor
YellowCar Picture.[21]

Overview AUTOSAR Methodology. [2]

Open source AUTOSAR Procedure. [22]

Modules of the BlackPearl Demonstrator. [23]
V-Model Development for Atomic Straight Drive SWC.

AUTOSAR Layered Architecture.

Microcontroller Abstraction Layer. [10]
ECU Abstraction Layer's Module.

Services Layer's Module.

Overview of TUCminiCar AUTOSAR Architecture.

Graphical Representation of SWCs in AUTOSAR. [35]
SWC Port Types.

Internal Behavior Components.

: CAN Bus.[42]
: CAN (2.0A) Standard Frame Format.[43][45]

: CAN (2.0B) Extended Frame Format.[43][45]
7

12
13
15
16
17
17
17
18
18
18
19
19
20
20
21
22
22
23
23
24
24
26
28
30
35
37
42
45
46
47
48
49
50
51
51
52
54

file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289759
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289760
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289761
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289762
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289763
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289764
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289765
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289766
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289767
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289768
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289769
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289770
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289771
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289772
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289773
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289774
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289775
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289776
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289777
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289778
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289779
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289780
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289781
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289782
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289783
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289784
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289785
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289786
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289787
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289788
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289789
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289790
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289791

Figure 4.13
Figure 4.14
Figure 5.1:
Figure 5.2:
Figure 5.3:
Figure 5.4:
Figure 5.5:
Figure 5.6:
Figure 5.7:
Figure 5.8:
Figure 5.9:

Figure 5.10:
Figure 5.11:
Figure 5.12:
Figure 5.13:
Figure 5.14:
Figure 5.15:
Figure 5.16:
Figure 5.17:
Figure 5.18:
Figure 5.19:
Figure 5.20:
Figure 5.21:
Figure 5.22:
Figure 5.23:
Figure 5.24:
Figure 5.25:
Figure 5.26:
Figure 5.27:
Figure 5.28:
Figure 5.29:
Figure 5.30:

Figure 6.1:
Figure 6.2:
Figure 6.3:
Figure 6.4:
Figure 6.5:
Figure 6.6:
Figure 6.7:

: TUCminiCar CAN Stack Overview.
: TUCminiCar dSPACE Composition Overview.
Implementation Overview.

StraightDriveSWC Creation.

StraightDrive SWC Port Definition
StraightDriveSWC Interface Definition.

StraightDriveSWC CodeDescriptor.

StraightDriveSWC RTE Event and Data Access.

TUCminiCar Composition Diagram Extract.

CarEcu Mapping and Validation.

StraightDrive SWC Prototype.
Virtual ECU Building.

VEOS Simulation Test Points.

AUTOSAR Export from dSPACE.

Run Importer in EB Tresos Studio.
RTE Event Mapping.

Port Mapping in Connection Editor.

Project Generation Error Log.
Project Compilation.

Flashing Project into ECU.

TUCminiCar Connected to the Tester.
CAN Message for the Engine Status Test.

CAN Message for the Speed Test.

CAN Message for the Steering Angle.

Target Distance Input CAN Message.

CAN Message to Test Beeper.

CAN Message and Memory Read for Travel Distance Test.
CAN Message and Memory Read for Straight Drive Test.
CAN Message and Memory Read for Forward Drive Braking. -----------
CAN Message and Memory Read for Reverse Drive Braking. -----------
CAN Message for Forward Braking Obstacle Detection.
CAN Message for Forward Reverse Obstacle Detection.

Left and Right Signal Light Blinking.

Brake Light, Reverse Light, High Beam and Low Beam.

Unit Test Performance.

Integration Test Performance.

End-to-End (E2E) Test Performance.

Speed Fluctuation Analysis for 230 mm/s and 630 mm/s.

Speed Fluctuation Analysis for 1130 mm/s.

8

file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289792
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289793
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289795
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289796
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289797
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289798
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289799
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289800
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289801
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289802
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289803
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289804
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289805
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289806
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289807
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289808
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289809
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289810
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289811
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289812
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289813
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289814
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289815
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289816
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289817
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289818
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289819
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289820
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289821
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289822
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289823
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289824
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289825
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289826
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289827
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289828
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289829
file:///D:/ASE/Master%20Thesis/Atomic%20Straight%20Drive/Report/AUTOSAR%20Software%20Component%20for%20Atomic%20Straight%20Driving%20Patterns_Md.Ali_Awlad.docx%23_Toc184289830

List of Tables

Table 3.1: Comparison of Current Trends and Approaches in AUTOSAR. 32
Table 4.1: DLC Define Number of Data ByteS.[43]........cccoiiiiieiiiiiiiiiiii e 53
Table 4.2: TUCMINICar INPUt Parameter.cccoovviiiiiiiiiiiee e e 56
Table 4.3: TUCminiCar CommunicationManager Parameter.ccccceeeeeeeeeeeeeenn. 57
Table 4.4: TUCMINICar Output Parameter..........coooeeieoeiieeeeeeeeee e 57
Table 5.1: StraightDriveSWC RPort with Interface Definition.coooovvvviiiinnnnnn. 61
Table 5.2: StraightDriveSWC PPort with Interface Definition...................cccovvvvvvinnnnnn. 62
Table 5.3: SWC Simulation TeSt CaASES.uuuiiiiiieiiiiiiiiiiieee e e e e e 71
Table 5.4: CAN MeSSage FOIMAL.ccooeeieiiieeeeeeeeeeee e 75
Table 5.5: Engine UNit TESt Critera.cvvuuuuiiiiee e e 77
Table 5.6: Speed Unit TeSt Creria.ccuuuiiiiiie e e 77
Table 5.7: Steering Angle Unit TeSt Crteria.ccovvvviiuriiiieeeeeeeeeiiiee e 78
Table 5.8: CAN Message for Visual ACtUator TESE.uuviiiiiiiiiiiiiiiie e 83
Table 5.9: CAN Message for Fixed Speed, Target Distance Change........................ 84
Table 5.10: CAN Message for Fixed Speed, Atomic Section Length......................... 84
Table 5.11: CAN Message for Fixed Atomic Distance, Different Speed in Reverse. .85
Table 5.12: CAN Message for Different Speed.............cceeviiii, 85
Table 6.1: UNit TESTRESUIL. ..o 86
Table 6.2: Travel Distance Test ReSUIt. ..., 87
Table 6.3: Straight Drive TeSt RESUIL.uuveiiiieieeeeeeee e 87
Table 6.4: Braking on Target Distance Covered ResSUlt.............ccoovvvciiiiieeereeeeiiiinnnnn. 88
Table 6.5: Braking on Obstacle Detection ResUlt.cccooooviiiiiiiiiiii e, 89
Table 6.6: Auditory Actuator Test ReSUIL.cooeeeiiiiiiici e, 89
Table 6.7: Visual Actuator TeSt ReSUIL.oovvieeiiiiiici e 90
Table 6.8: Test Result for Fixed Speed, Different Target Distance.....................e...... 91
Table 6.9: Test Result for Fixed Speed, Different Atomic Section Length. 92
Table 6.10: Test Result for Fixed Atomic Distance, Different Speed in Reverse. 92
Table 6.11: Memory Read for 110 Duty Cycle Speed. ..., 93
Table 6.12: Memory Read for 150 Duty Cycle Speed.cccoovveviiiiiiiiiiiiiiiceceeii, 94
Table 6.13: Memory Read for 200 Duty Cycle Speed.cccccovveiiiiiiiiiiiiiiiiceeeei, 94

List of Abbreviations

AUTOSAR Automotive Open System Architecture
ADAS Advanced Driver Assisting System
SWC Software Component

BSW Basic Software

CAN Controller Area Network

RTE Runtime Environment

ECU Electronic Control Unit

PWM Pulse-Width Modulation

Sonar Sound Navigation and Ranging
SIL Software-In-Loop

DAP Debug Access Port

DLC Data Length Code

VFB Virtual Functional Bus

MCAL Microcontroller Abstraction Layer
ICU Input Capture Unit

ADC Analogue Digital Converter

DIO Digital Input Output

GPIO General-Purpose Input Output
API Application Programming Interface
OBD On-board diagnostics

PDU Protocol Data Unit

PduR Protocol Data Unit Router

Canlf CAN Interface

RPort Required Port

PPort Provided Port

V-ECU Virtual Electronic Control Unit

RC Radio-Controlled

E2E End-to-End

IDE Identifier Extension

SRS Substitute Remote Request

CcbD Complex Device Driver

DC Direct Current

10

1 Introduction

Autonomous vehicles are showing rapid growth in the global market. An international
standard must be maintained to maintain the functionality of different ECUs and related
software within different vehicles and ensure standardized implementation across
different regions. Automotive Open System Architecture (AUTOSAR) classic is the
most widely used architecture in the automotive domain to develop and maintain
various types of vehicle software. The classic AUTOSAR architecture has three main
layers: application, runtime environment (RTE), and basic software (BSW).[1] The
application layer is hardware-independent, where the application software components
are placed to control different applications. The RTE layer interfaces this hardware-
independent application layer and hardware-dependent basic software (BSW)
layers.[1]

AUTOSAR was established in 2003 to save production and development costs and
create reusable software for different ECUs.[2] Based on this, the TU Chemnitz lab
also facilitates the latest ADAS demonstrator, “TUCminiCar,” which can be configured
and tested for different autonomous driving scenarios. The TUCminiCar is designed
and constructed based on an Infineon evaluation board KIT_A2G_TC387_3V3 TFT,
which has a tri-core microcontroller (AURIX TC387) that supports AUTOSAR. The eval
board also facilitates CAN or Ethernet communication to send or receive data from
a tester. The ASE lab of TU Chemnitz also provides simulation tools like VEOS to test
the functionality of created software components within virtual ECUSs. It is necessary to
develop and test the target software component (SWC) through a simulation process
before integrating it into the "TUCminiCar" to test the functionality of atomic straight
driving patterns. The concept of atomic driving is to divide a straight path into
the smallest sections and operate the car within these sections without any
interruption.[3] Throughout this thesis, firstly, AUTOSAR classic architecture will be
analyzed, a software component for atomic straight driving will be created, and finally,
one straight path will be broken up into the five smallest segments and tested
autonomous functionality within these segments, including the whole path segment. In
addition, one safety critical criterion, obstacle detection and action after detection, will
also be tested.

This introduction chapter will provide an in-depth overview of the following sections:

the motivation to work on the thesis topic (sub-section 1.1) and the Problem Statement
(sub-section 1.2).

11

1.1 Motivation

The number of road accidents is increasing day by day around the world. The report
in 2023, as presented by the World Health Organization (WHO), stated that more than
1 million people died from road accidents throughout different regions. It has been
declared that road safety is a critical global issue, still two people die every 1 minute.
Traffic accidents continue to be the biggest cause of death for young people aged
under 30 years. [4] Human error while driving any vehicle remains one of the main
reasons for these accidents. Technical faults like brake failure and other vehicle parts
errors are also responsible for accidents, but those are much less so than human error.
[5] The GIDAS accident database in the figure below claims that "Human error"
accounts for 93.5% of traffic accidents.[6]

Failures today Future failures

Other 1.2% h Technical
causes failures?

Environment/ 4.6% > |:>
weather

Technical ' 0_7%/

failures
Human
failures E E 93.5% l Other .Environment/
causes weather
% i 1.2% 4.6%

Figure 1.1: Accident Status in Percentage due to Human Error.[6]

With the transition from human-based driving to autonomous driving, this large
segment of errors can be mitigated, and thus, future failures due to humans can be
significantly reduced. The top three human errors that result in vehicle accidents are
Inattentiveness, Speeding, and Improper lookout.[7] These life-endangered errors can
be reduced by increasing self-driving cars, which will improve ADAS implementation.

With the advancement of the Advanced Driver Assisting System (ADAS), the
automotive industry has experienced large market share growth, which will be
significant soon. According to the “Fortune Business Insights” forecast, the
autonomous vehicle market will hit around 13,632.4 billion USD by the year 2030,
which is a 32.3% growth rate during the forecast period from 2022 to 2030. [8]

12

Autonomous Vehicle Market (in billions USD)

16000
13632.4
14000

12000

10361.6
10000
7823.4
8000
5907.4

6000 44583

, 3365.9

4000 2543.2

2000 . I

O .

2022 2023 2024 2025 2026 2027 2028 2029 2030

Market Size

Year

Figure 1.2: Growth of the Global Autonomous Vehicle Market.[8]

Considering the importance of autonomous vehicles in the automotive domain, the
Computer Engineering professorship of TU Chemnitz has been working with ADAS
demonstrators for along time to help its students, especially those in Automotive
Software Engineering, get used to the real-time environment of the automotive
domain. Yellow Car (2010), Black Pearl (2018), and TUCminiCar (2024) are the
demonstrators that operate within AUTOSAR architecture.

The atomic straight driving patterns will be implemented and tested on
the “TUCminiCar” demonstrator in this thesis. Atomic straight driving is the most
fundamental step, providing the foundation for going towards autonomous vehicles'
different complex driving patterns. This core driving capacity ensures autonomous
functionality within a car, which allows vehicle control mechanisms to be tested at
different speeds and distances. Controller Area Network (CAN) communication is
the most reliable method for sending or receiving parameters like speed or distance in
the automotive domain, which is used to send/receive data from or to the ECU and
tester. With CAN message format, atomic driving parameters, like speed and distance,
can be sent from the tester to the ADAS demonstrator “TUCminiCar” to actuate the
actuators of the car.

Maintaining the AUTOSAR development process framework for the desired software

component will ensure reusability and adaptability for future related development.
The following sub-section will describe the thesis's problem statement in detail.

13

1.2 Problem Statement

The thesis aims to create a software component that performs atomic straight drive
functionality for an ADAS demonstrator within the AUTOSAR framework. The main
challenges would be ensuring real-time performance and higher accuracy since the
functionality will be tested within a toy car. Maintaining the standard implementation
procedure within a miniature created based on a real-world environment where the
real-world vehicle components will not be present is always difficult. While AUTOSAR
standards are traditionally applied to full-scale automotive applications, transforming
these specifications into mini cars demands a detailed problem analysis that accounts
for more control, precision, and adaptability.

During the implementation of ADAS functionality in a miniaturized environment, it's
crucial to ensure that the hardware components, like sensors for detecting obstacles
(such as ultrasonic sensors) and actuators for controlling speed and steering (DC and
Servo Motor), are precisely integrated. The software component needs to be highly
responsive and adapt in real-time. Otherwise, even minor variations can significantly
impact the vehicle's ability to drive straight due to the reduced scale. In general, this
thesis aims to deal with the following particular problems:

Integration and Validation: Creating a mechanism by adapting AUTOSAR software
structures for evaluating the component's straight-driving functionality in a test
environment replicating a real-world environment.

Precision Control: Ensuring that the software component can accurately process
actuator and sensor data to make real-time adjustments that maintain straight driving
despite the limitations of mini-car hardware.

Higher Accuracy: Achieving higher accuracy for the actuator and sensor data
processing to maintain accurate straight-line driving.

The thesis combines the identified challenges by designing, implementing, and
validating an AUTOSAR software component supporting atomic straight-driving
functions. This includes integrating sensor and actuator data for real-time control and
applying mechanisms to maintain vehicle control. The next chapter will describe the
Technical Background of the thesis topic.

14

2 Technical Background

This section will describe the foundation technologies for developing, integrating, and
testing the AUTOSAR software component. The following sub-sections will briefly
cover the AUTOSAR Standard Overview (2.1), ADAS Demonstrator under AUTOSAR
(2.2), Atomic Straight Driving Core Concept (2.3), and Development and Testing
Environment (2.4).

2.1 AUTOSAR Standard Overview

AUTomotiveOpen System Architecture (AUTOSAR) is the globally standardized
automotive software architecture for manufacturers, suppliers, and developers. [9]
Several manufacturers developed this architecture to produce a uniform software
architecture that works independently with different electronic control units (ECUS).
The AUTOSAR standard avoids re-creating software for identical purposes by
separating hardware-specific layers. Depending on this idea, different companies can
develop related software for different ECUs, and these can be run together in a car;
thus, it is called hardware-independent architecture.

Customer needs
YeSterday AUTOSAR /\ Adaptive Cruise Control
Lane Departure
Warning
. . Advanced Front
Application Software Lighting System
Software -
ﬁ ﬁ standardized __
. Using standards
AUT@SAR Communication Stack

I I HW-specific OSEK
Hardware Diagnostics
Hardware CAN, FlexRay

Figure 2.1: AUTOSAR Hardware-Independent Architecture.[10]

There are two basic AUTOSAR standards in terms of software architecture: one is
classic, and the other one is adaptive. The classic AUTOSAR is used for embedded
systems with hard real-time, whereas ECUs are used for the core components of a
vehicle. The AUTOSAR classic architecture is mainly built on three software layers:
Application, Runtime Environment (RTE), and Basic Software (BSW).[10] The main
concept of the architecture is to separate the hardware-independent application
software layer from the hardware-oriented basic software (BSW) layer with the help of
the Runtime Environment (RTE) layer. [1] Due to the separation between different
components as a layered structure, it is called a layered architecture. Different
application software components (SWCs) used for different control mechanisms are
created in the application layer of the architecture. These application software

15

components (SWCs) connect with different components placed in the basic software
layer (BSW), which is hardware-dependent through the RTE layer. The BSW layer
then communicates with different hardware devices using different communication
protocols, e.g., CAN, to send or receive instructions.

Application Layer

Runtime Environment (RTE)

Microcontroller

Figure 2.2: AUTOSAR Layered Architecture. [10]

The software component that needs to be created to control the car engine for atomic
straight drive must be placed in the application layer of the system architecture.

2.2 ADAS Demonstrator under AUTOSAR

Advanced Driver Assistance Systems (ADAS) have had a huge impact on
the advancement of modern vehicles. ADAS facilitates many safety features in real-
world autonomous vehicles, like collision avoidance, adaptive cruise control, lane
change assistance, blind spot detection, and driverless driving functionality. Chemnitz
University of Technology’s computer engineering professorship has been working for
a long time to experience the real-time environment opportunity for its students to work
with different ADAS demonstrators. Apart from different AUTOSAR-based simulation
tools, the department has a well-developed infrastructure to test and validate
demonstration cars. The latest inclusion in the department is “TUCminiCar”, based on
classic AUTOSAR architecture. Different ADAS features can be tested within this
demonstrator by implementing and integrating required software components and
modules.

The "TUCminiCar" is developed using an RC racing toy car. This small car uses the
standardized AUTOSAR method and helps to test and validate features without the
high cost of a full-scale car. With the implementation of an AUTOSAR-based ECU,
different sensors from automotive industries, and a custom power supply mechanism,
it acts as a real-world vehicle. A remote control can control the car, but to test the ECU-

16

Tester communication, a CAN communication mechanism is also present within the
car ECU. The car uses a Brushed DC motor to control its speed, which is responsible
for the smooth movement of the TUCminiCar, allowing for both acceleration and

Rear
Left
Why
P SRR T
: : . i Motor : :
: & : Power i m | | : g :
[] - r il n T L L] - "
O Source ' [: "R
' : i o Servo’ ' :
- oo ; Iﬂqﬂupi tennar
) j rom
- | Right
Vheasl

Figure 2.3: TUCminiCar Extract.

deceleration. The ECU can control the motor’s output power by using pulse-width
modulation (PWM), which adjusts the car's speed. PWM signals facilitate smooth
adjustments for different speeds by varying the duration of voltage supplied to the
motor. This signal also increases energy efficiency, which is crucial for battery-
powered systems since it reduces heat generation. [11] The motor-controlling PWM
signal depends on the duty cycle provided by the ECU, which varies from 0 to 200,
where 0 to 99 duty cycle acts as reverse speed, 100 is neutral, and 101 to 200 as
forward speed control.

Figure 2.4: TUCminiCar DC Motor. Figure 2.5: TUCminiCar Servo Motor.

For steering control of the car, the demonstrator uses a servo motor to control its
steering angle. Like the DC motor, the servo motor is also controlled by PWM sent
from the ECU. The servo angle response is read by duty cycle from 0 to 200, where 0
stands for maximum right direction, 100 is neutral, and 200 is for maximum left
direction.

The demonstrator has been implemented with an AUTOSAR-supported ECU based
on the Infineon TC387 TriCore microcontroller to control the actuators of the car. The

TC387 microcontroller is part of Infineon’s AURIX family and integrated into the eval
17

board.[12] Its tri-core architecture and high processing power are necessary to analyze
data in real-time for the embedded world. This KIT is designed to support automotive

Figure 2.6: KIT_A2G_TC387_3V3_TFT Eval Board on TUCminiCar.

applications requiring high computational power. It provides up to 8 MB of flash
memory for different programs and data flash. It has a high-speed CAN transceiver to
facilitate a CAN communication interface.[12] There are two 40-pin connectors with the
input/output signals available within the board, which can be used to operate different
actuators and sensors. Using AUTOSAR classic architecture within this AURIX board,

the demonstrator has pre-configured all

the basic software components,

communication channels, and sensors to perform ADAS activity.

TUCminiCar is also integrated with different automotive sensors to facilitate ADAS

functionality. Six sonar (Sound Navigation
and Ranging) sensors are implemented
within the car to check the obstacle status
in the front, back, and sides. The sonar
sensor works based on the deflected sound
wave on the object staying within its path.

The sensor has a transceiver that sends

Figure 2.7: TUCminiCar Sonar Sensor.

sound wave beams continuously; this sound wave travels within a straight line until it
gets reflected. After it hits any object, the transceiver will detect the reflected echo of

the sound wave again. The object's distance
can then be calculated using the time
required for the sound wave to travel.[13] The
sonar sensor used in the demonstrator has a
2.5-meter detection range coverage. The
advantage of using sonar in the demonstrator
is that no matter the light condition during the

operation, it can detect whether it is bright or

18

reﬂec(ed wave

Sendm Object
Receiver

ori mal wave

dlslance r

Figure 2.8: Sonar Working Method.[13]

dark. With the straight driving functionality of a car, it is necessary to check the obstacle
status while driving to maintain a braking mechanism depending on the road condition.

Apart from the safety-critical components used inside the demonstrator, additional
visual and auditory actuators are also used. For the forward drive, two types of light
indicators are available: low and high beam. Depending on the requirement, both lights
can be activated. There are also indicator lights for reverse driving. It also provides
left—and right-side indication lights, which can be used depending on the steering

R _— T w =)
- A\ A s,
— y et % a4

Figure 2.9: TUCminiCar Visual Actuators.

angle configuration. For braking purposes, a pair of red lights are installed on the back
of the car. This car also provides a beep-controlling mechanism; this beep control can
be activated depending on the situation, like obstacle detection. All these components,
already defined within the AUTOSAR architecture’s basic software layer, can be
controlled from ECU with the developed software component for the atomic straight
driving application software component.

2.3 Atomic Straight Driving Core Concept

“Atomic” originates from the word “Atom,” defined as the smallest unit of a substance.
In computer science, it can be referred to as the smallest section of operation
performed without interruptions.[3] For the straight drive concept, atomic is the term
where the smallest section can be covered by a vehicle without interruption. The wheel
rotation coverage must be defined first to drive the “TUCminiCar” demonstrator in an
atomic driving concept. For this purpose, the
wheel circumferences must be calculated first.
After observation, it was found that each car
wheel had a diameter of approx—64mm.
According to mathematical formulation to
calculate the circumference of a circle,
circumference = pi = d, Here, d = 64 mm, and pi
has a constant value of 374. From the
calculated value, the circumference of the car
wheel is 200.96 mm, which can be floored to

) . . Figure 2.10: TUCminiCar Wheel Diameter.
200 mm. So, according to the calculation, if the

wheel rotates once, either forward or backward, the distance coverage for the car

19

should be 200 mm. To verify the result, the car was manually rotated once the cycle of
wheel rotation was completed, and the result was the same as the calculation.

Based on the wheel circumference calculation and one cycle of wheel rotation, the

smallest section Iength of atomlc stralght dr|V|ng is 200 mm of path Iength
; 3 5 ¥ P .,_ ¢0' ’WI w,«\.fﬁ" —

Figure 2.11: TUCminiCar Path Coverage for the One-Wheel Rotation.[15]

Therefore, the initial goal of the driving mechanism is to define an automated braking
mechanism needs to be defined so that the demonstrator car can stop automatically
after running one of the smallest sections of a straight drive path. This thesis aims to
test this shortest path distance by one wheel rotation, including five sections of this
small covered section with different speed values. The figure below represents the
atomic straight drive concept, where five sections of 200 mm are defined for a straight

00 0w oo oo JRE 0o i T

Figure 2.12: Atomic Straight Drive Pattern.

drive path. The total length of the path is one meter. During the straight driving
operation, the steering angle should be in the neutral position so that the steering servo
can generate a straight path driving angle for the car. The deviation tolerance is kept
due to mechanical deficiencies. Deviation tolerance should be maintained +0.5° to £3°
to acquire greater accuracy.[14] However, the angle deviation depends on the car's

20

speed and the road's type. In addition to straight driving, another safety critical
parameter, which is obstacle detection and taking necessary action after detection,
also needs to be tested.

2.4 Development and Testing Environment

Developing and testing software components within the AUTOSAR architecture
requires complex devices and software tools. The computer engineering department
of TU Chemnitz provides its own AUTOSAR toolchain for standard development
procedures in the automotive domain. The figure below illustrates the classic
AUTOSAR toolchain from TU Chemnitz. After that, some brief details for each part of
the toolchain are described.

Developement Testing

(dSPACE)
SystemDesk

|

EB
Tresos Studio

I

‘ TASKING Compiler |

o

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
‘ Infenion Memtool | I
|
|
|
|
|
|
|
1
|
|
|
|
|
|

b

Infenion miniWiggler |J
D

:-| Debugger SW ‘

Debugger HW
A

LA
Infineon AURIX™ |
Tricore TC387 |

.‘=| Tiny-CAN-USB HW ‘

_

Tiny-CAN-
Monitor SW

Figure 2.13: AUTOSAR Classic Toolchain.

2.4.1 dSPACE SystemDesk

SystemDesk from dSPACE provides a platform for creating software components
(SWC) within the AUTOSAR architecture. These can then be validated and simulated
within the platform as well. It is the ideal foundation for checking the software-in-loop
(SIL) process. [15] SystemDesk provides the facility to create virtual ECUs and testing
environments in virtual simulation (VEOS).[15] It offers several options for working with
the development process within AUTOSAR architecture. Since it has built-in
AUTOSAR facilities, the development procedure can be started from scratch or

21

modified by any developed system. It can be used for software component creations,
whether the created component is for the Auresar
basic software (BSW) layer or in the
application layer. To work with the existing

SystemDesk

»]
» ! > —
o Lt

: G
£

system file, the system description *.sdp file

is required to modify the system. After Non,AUTOS:;
necessary modification from SystemDesk, %7
the *.arxml file must be generated again to

3
P.”‘,

SvstemDesk

Figure 2.14: dSPACE SystemDesk. [15]
integrate within the system. The Department

of Computer Engineering of TU Chemnitz provides facilities for its students to access
SystemDesk tools from the Automotive Software Engineering Laboratory to work with
the AUTOSAR software components.

2.4.2 EB Tresos Studio
Elektrobit (EB) tresos studio is the classic AUTOSAR development tooling. EB Tresos
studio is fully compatible with the AUTOSAR EB tresos Studio
workflow and can be integrated into existing

Microcontroller
platforms

toolchains.[16] It provides graphical interfaces
to configure different AUTOSAR modules for -
the AUTOSAR stack, whether the BSW or e “estresos”
microcontroller abstraction layer (MCAL). It
also generates an RTE connection to provide
connectivity facilities from the BSW layer to Figure 2.15: EB Tresos Studio. [16]

the application layer’s software components.

It offers an extensive predefined library of configuration modules by which developers

AutoCore

can configure them in a quick timeline. It provides different module configuration
support for the system, from different applications to communication to safety-related
modules of AUTOSAR architecture. The EB Tresos studio works in many automotive
applications for different manufacturers. It can manage simple systems with a single
ECU and more complex systems that utilize multiple ECUs for various ADAS
functionalities and autonomous driving. The tool offers configurations for automotive
diagnostics, security, and communication protocols, making it suitable for safety-critical
automotive applications. The (.arxml) file generated from SystemDesk needs to be
imported into Tresos Studio, and then the project must be generated after verification
to compile it. Automotive Software Engineering students of TU Chemnitz also have
access to this software tool in the lab.

22

2.4.3 Infineon Compiler and MemTool

The “TASKING” compiler from Infineon is
mostly used by developers worldwide in the
automotive domain. High-performance tools
are required for safety-critical embedded
systems, especially in applications that
require strict industry standards and TASKING.,

c°mp||er LAPACK
reliability. TASKING compilers support Qualificaton Kit - (EaRulhasoivliupimal] Performance

toolset for safety-critical Libraries
applications

various microcontroller architectures,
including the Infineon AURIX™ TriCore
microcontroller TC387 used in the ADAS
demonstrator TUCminiCar.[17] TASKING is
known for its excellent code optimization
skills, allowing it to create effective code that
uses less memory and power, and these are
essential requirements in embedded systems. It offers runtime libraries and safety-
critical compilers to meet industry safety standards for automotive functional safety
(1ISO 26262).[18] TASKING compilers support AUTOSAR for automotive applications,
providing developers with the necessary tools to develop, configure, and test
applications in frameworks that comply with AUTOSAR. The program generated by EB
Tresos Studio needs to be compiled to generate a *.hex file.

Figure 2.16: TASKING Compiler.[18]

Like the TASKING compiler, Infineon MemTool is application software for flashing data
developed by Infineon Technologies. This tool enables users to program, erase, and
manage memory in Infineon microcontrollers. The MemTool offers a graphical user
interface to erase memory, flash the generated *.hex file from the compiler, and verify
it with this tool.

2.4.4 Debugger Hardware and Software

The Infineon DAP miniWiggler is a debugging
interface for Infineon microcontrollers. It is used
for flashing software, reading memory, and
accessing memory locations. It converts from the
PC/USB to an Infineon Microcontroller device's
debug interface (10-pin DAP).[19] This hardware
is required to connect and flash the *.hex file from
the mem tool software to the ECU. It is like providing a bridge between the
microcontroller and a tester (computer), supporting communication protocols like DAP
(Device Access Port), which are essential for debugging and memory access. For the

Figure 2.17: Infineon DAP miniWiggler V3.

23

software side, the AURIX™ command-line debugger tool can be used as a debugger
software. This is an open-source software that operates to access read memory
location data.

2.4.5 Tiny-CAN Hardware and Software
Tiny CAN is a USB-to-CAN interface device that connects a tester (PC) to a CAN
(Controller Area Network) bus system. It allows developers to test dlfferent data by
communicating with the ECU from their [‘ B LR
computer. It is very useful for establishing
reliable tester-ECU communication in the
automotive domain. It provides a real-time data i
transfer facility with a transfer rate of up to 1
MBit/s, and the data log can be saved for later
analysis. Tiny-CAN complies with the
1ISO11898-2 standard, which is a standardized
CAN technology. [20]

Figure 2.18: Tiny-CAN II-XL Interface

The Tiny CAN Monitor is a graphical application software tool with Tiny CAN hardware
interfaces. It enables the monitoring, analysis, and debugging of CAN (Controller Area
Network) messages. The graphical interface supports different operating systems. This

Bt

\\\\\

Figure 2.19: Tiny-CAN Monitor

allows the data filter to be defined as having specific CAN ID data. By defining the data
length code (DLC), it is also possible to send data byte by byte. Different data
parameters, like speed, distance, steering angle, etc., can be sent to the TUCminicar
from the tester to test the straight drive functionality.

24

3 State of the Art

The complexity and additionality of vehicle features are growing fast, leading to a need
for scalable, reusable software that works across different hardware. This has
increased the development of automotive software components within a defined
standard. AUTOSAR, first introduced in 2003, stands at the core of this evolution as
an initiative toward standardization in software architecture for the automotive domain.
With the advancement of driverless vehicle technology, it becomes more necessary to
implement different software components that will assist the vehicles in fulfilling ADAS
functionality within the AUTOSAR framework. The thesis will try to find answers to the
following work scopes:

e Analyze AUTOSAR within an ADAS Demonstrator
e Develop SWC to Maintain Atomic Straight Drive within AUTOSAR
e Test ADAS functionality

So, reviewing and gathering scientific knowledge from the current development
processes within these work scopes is necessary. The following review will assess the
“State of the Art” in developing an AUTOSAR SWC for ADAS functionality. It will
provide an overview of AUTOSAR's role within automotive systems, including the tools
and methodologies for development and simulation and how seamless integration
among classic AUTOSAR software components is achieved. The state-of-the-art
chapter is divided into five subsections: “Current Trends and Approaches (3.1)",
“Comparative Analysis (3.2)”, and “Relevance to the Thesis and Gap Analysis (3.3)”;
these three sub-chapters will have some valuable insight into ongoing AUTOSAR
related works, the next one “Adaptive User Interface for Automotive Demonstrator
(3.4)” will have some discussion over non AUTOSAR development process and finally
based on all gathered knowledge the last part “Proposed Work (3.5)” to have a clear
observation step by step.

3.1 Current Trends and Approaches

This section emphasizes the following three significant related papers, dividing them
into three sub-sections to provide information on recent advances in AUTOSAR-based
systems and their applications.

First, "Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink

Using AUTOSAR System"[21] provides an overview of a MATLAB/Simulink-based

simulation framework for integrating AUTOSAR and non-AUTOSAR ECUs. This
25

demonstrates the flexibility of modular simulation tools in iterative automotive software
development.

The second one, "Modeling and Development of AUTOSAR Software Components,”
[2] presents the development of reusable and resource-efficient software components,
considering the layered AUTOSAR architecture, VFB, and RTE for real-time
communication.

Finally, "Design and Implementation Procedure for an Advanced Driver Assistance
System Based on an Open Source AUTOSAR" [22] describes the use of open-source
tools in implementing ADAS. It outlines how to realize AUTOSAR-compliant
communication and sensor integration.

In addition, another paper, "Adaptive User Interface for Automotive Demonstrator, "
from a non-AUTOSAR implementation, was also reviewed. [23] Since it was based on
the TUC demonstrator’s simulation, which uses CAN-Bus, it can provide some reliable
data regarding this. This paper will be analyzed separately in the (3.4) chapter since it
is not fully AUTOSAR-based rather than using non-AUTOSAR.

3.1.1 Dynamic Architectural Simulation Model of YellowCar in MATLAB/
Simulink Using AUTOSAR System
The YellowCar demonstrator at the “Chemnitz University of Technology” is an
innovative research and educational tool from the computer engineering professorship
for advanced automotive technologies. It is the first demonstrator built for the
Automotive Software Engineering lab based on AUTOSAR 2.1 architecture.[24] The
YellowCar has been designed and integrated with different features, including 3
AUTOSAR-based ECUs, the CAN bus for communication purposes between ECU-

Figure 3.1: YellowCar Picture.[21]

26

tester, and ultrasonic sensors for obstacle detection. These features enabled the car
to create a simulated scenario similar to real-world applications like parking assistance
and autonomous driving. Based on this setup, the paper "Dynamic Architectural
Simulation Model of YellowCar in MATLAB/Simulink Using AUTOSAR System"[21]
elaborates on how principles of AUTOSAR integrate with MATLAB/ Simulink for the
simulation and testing of YellowCar. The key findings which have been illustrated in
the thesis are as follows:

e The Purpose of Simulation

There have been concerns over the requirement for simulation in the automotive
research area to check compatibility for different SWCs within real-world scenarios.
For real-world implementation, it is necessary to validate systems and functionalities
testing without having a real-world hardware setup. YellowCar is an adaptable,
scalable platform for modeling autonomous and semi-autonomous systems.

e Integration within AUTOSAR

The AUTOSAR framework defines a modular, scalable, and hardware-independent
software architecture. This standardization allows developers to implement Software
Components (SWCs) and simulate their system behavior dynamically.

e MATLAB/Simulink Modeling

In this paper, MATLAB/Simulink is used as the main simulation environment, where
the architectural models of the YellowCar are developed. The environment supports
Model-in-the-Loop (MIL) Simulation of AUTOSAR and non-AUTOSAR components. It
demonstrates the simulation of components such as ECUs, sensors, actuators, CAN,
RTE, and Virtual Functional Bus (VFB).

e Advantages of Simulation

Accuracy: The simulations replicate real-world behavior of simple and complex driving
patterns, such as straight driving or avoiding obstacles.

Cost-Effectiveness: Saves the need for frequent hardware upgrades since a
simulation-based validation can be done.

Scalability: Supports integration of additional ECUs, sensors, or software modules
without re-designing the system.

Standardization: Adapted to the AUTOSAR framework ensures portability and
interoperability across different platforms and vehicles.

Flexibility: Allows hybrid testing of AUTOSAR and non-AUTOSAR components.

27

e Disadvantages of Simulation

Simulation Limitations: Some real-world components may not fit well since it is a
simulation environment.

Cost of Tools: While cost-effective in the long run, tools like MATLAB/Simulink with
AUTOSAR support can have high licensing fees.

3.1.2 Modeling and Development of AUTOSAR Software Components

The paper "Modeling and Development of AUTOSAR Software Components"[2]
systematically discusses the systematic methodology for designing, configuring, and
implementing AUTOSAR software components. The implementation starts with
defining system inputs, known as the System Configuration Input, which includes
selecting software components and hardware and establishing architectural
definitions. AUTOSAR facilitates this with architectural templates for validating initial
designs.

Next, the Configuration Description maps software components to Electronic Control
Units (ECUs) while arranging network topologies and bus mappings. The following

System Configure
Configuration System < .
Input ; = S
Systam / y
System Extract
Configuration ECU- N
Description Specific —=
:System Information £ ,
ECU Configure
Extract ECU < , . by
o —_— V4 | .exe
System y
Configuration EcU Ganerate Ecu
System Configuration Executable Executable

Description

Figure 3.2: Overview AUTOSAR Methodology. [2]

steps extract and refine specific ECU information, generating an ECU Configuration
Description. This description includes configurations for Basic Software (BSW), task
scheduling, and the assignment of runnable entities. Finally, this will result in the
compilation and linking of code into an executable. After having a thorough analysis of
the paper, the following key points have been identified:

e Purpose

This paper tries to provide a structured way of developing AUTOSAR software
components, which considers the overall development process, from modeling to
source code generation. This shall ease and standardize the development of
automotive application software in a context where the increased complexity of the
software and hardware dependencies causes challenges.

28

e Integration of AUTOSAR Software Components

AUTOSAR has systematic component integration, which is made by defining system
configurations, defining interface types, mapping software components to ECUs, and
configuring BSW. The use of standardized templates and tools facilitates smooth
integration, ensuring modular and reusable components.

e Software Component Template
Software Component Template describes the main aspects of AUTOSAR component
development:

Internal Behavior: Describes the internal behavior of a Software Component that is
composed of Runnable Entities and their responses to RTE events.

Runnable Entities are the smallest, schedulable units of code written in a programming
language, such as C, and triggered by RTE events or BSW schedulers.

Runnable Entities: Code units that can be scheduled, developed in C, and triggered by
Run Time Environment (RTE) or Basic Software (BSW) schedulers.

RTE Events: Events that perform runnable, including timing, mode switches, etc.

Contract Phase: RTE-specific APIs are generated from component descriptions to
ensure the software's independence from the communication implementations.

Deliverable: Final products include SWC-type descriptions, internal behavior details,
and implementations for system generation.

3.1.3 Design and Implementation Procedure for an Advanced Driver Assistance
System Based on an Open Source AUTOSAR

The paper "Design and Implementation Procedure for Advanced Driver Assistance
System Based on an Open Source AUTOSAR" [22] describes the integration and
development procedure for advanced driver-assistance systems based on an open-
source AUTOSAR platform. Open-source tools can be used to design a low-cost,
flexible platform for ADAS implementation, bringing down the development cost while
keeping up with the AUTOSAR standard. This paper uses the real-time obstacle
avoidance experiment to prove this method's capability, mainly in vehicle safety and

29

reliability improvement. Based on the paper review, the following key points have been
discovered:

Work Product

STEP 1.
.swcd

—

.sysd Activity
SWC description,

|
System description ECU E:(tract

STEP 3. STEP 5.

arkml — {2l i — elf
e Generation | RTE Header, Code, Build
Configuration BSW Header, Code
| STEP 4.
arxm| — c.h — — e

System Configuration STEP 2. RTE contract files SWC Runnable swc Header, Code

Input Implementation

Figure 3.3: Open source AUTOSAR Procedure. [22]

e Purpose

The paper demonstrates how open-source AUTOSAR frameworks might be used to
design and implement ADAS. Hence, it provides a systematic way of developing
safety-critical automotive features like collision warning systems. This study uses open
AUTOSAR, which would reduce dependence on proprietary solutions and make it
much more cost-efficient. It also shows the possibility of integrating AUTOSAR-
compliant, modular, and scalable software components that ensure interoperability and
portability to different hardware and software configurations.

e Open Source AUTOSAR

It focuses on Open AUTOSAR, an alternative open-source to expensive commercial
software systems. The research highlights that Open AUTOSAR can standardize
software development while still retaining the possibility of developers creating
reusable and modular software components. Open-source AUTOSAR also provides
interoperability features necessary for manufacturers and developers working with
different vehicle platforms and ECUs. The paper tries to demonstrate how the
availability of open-source frameworks empowers small developers to adopt industry-
standard technologies, improving innovation within automotive software development.

e ADAS Collision Warning

This paper presents a collision warning system as an example of how Advanced Driver
Assistance Systems (ADAS) work within the AUTOSAR framework. This warning
system processes data from different sensors and predicts possible collisions. It relies
on Runnable Entities, the smallest schedulable code units in AUTOSAR. These entities

30

are activated by Runtime Environment events initiated by sensor inputs. The paper
points out that the system is designed for low latency and high reliability at the center
of real-time decision-making within collision warning systems. This implementation
also demonstrates the scalability of open-source AUTOSAR in integrating more ADAS
functionalities in complex situations.

e CAN Communication

This paper also provides information about integrating the CAN (Controller Area
Network) communication protocols in the ADAS framework. CAN communication is
very useful and widely used for real-time data exchange between different ECUs in the
system. AUTOSAR simplifies this by providing predefined standardized templates for
CAN message formats, allowing the ADAS system to respond promptly to various
driving conditions. Reliability makes CAN communication the number one choice for
safety-critical applications such as collision avoidance, as it allows the system to
operate under various conditions without failure.

3.2 Comparative Analysis of Current Trends and Approaches

The three papers that have been studied contribute to AUTOSAR-based system
development from clearly different yet interrelated perspectives. Each highlights
modularity, standardization, and flexibility within automotive software. The first
addresses dynamic architectural modeling with MATLAB/Simulink; the second outlines
concepts and methodologies for AUTOSAR; the other one targets advanced driver-
assistance systems (ADAS), especially collision warning, through open-source
frameworks. Here’'s a comparative table based on the three papers in terms of working
with the thesis topic “AUTOSAR Software Component for Atomic Straight Driving
Pattern”:

31

Table 3.1: Comparison of Current Trends and Approaches in AUTOSAR.

Dynamic Architectural

Design and

systems

RESERIC Simulation Model of Modeling and ITEEEEEe
. Procedure for an
YellowCar in Development of Advanced Driver
MATLAB/Simulink AUTOSAR Software :
Aspect . Assistance System
Using AUTOSAR Components Based
System ased on an Open
Source AUTOSAR
. . Standardize the
Simulate automotive Develop ADAS
. development of . . .
components in functionalities using an
o AUTOSAR software
Purpose MATLAB/Simulink to . open-source AUTOSAR
, components, focusing)
validate AUTOSAR) framework, addressing the
) i on modularity and . :
integration. o collision warning method.
reusability.
Uses AUTOSAR for Adheres to AUTOSAR | Employs AUTOSAR-based
Common modularity and principles for layered methods for real-time
Features standardized architecture and communication and system
development. reusability. efficiency.
Simulation of AUTOSAR AUTOSAR Software Implementation of ADAS
Knowledge Components (SWC) pleme
Acquired components) feature in ECU
creation process
High complexity and
. _ _ _) Lacks the robustness and
Limited to simulation; resource-intensive due support of proprietary
imitati requires further work for to detailed
Limitations g i i AUTOSAR tools for
real-world deployment. configurations and) .
commercial scalability.
template management.
Due to the open-source
Worked with simulation) P
.) No practical AUTOSAR platform used,
Main only, no concrete idea to o) .
Undisclosed i applications have been | no proper information to
deploy in real-world i i
Area demonstrated. migrate to the classic

AUTOSAR

3.3 Relevancy to the Thesis Topic and Gap Analysis

The presented research papers provide all the necessary knowledge for a foundational
and practical understanding of developing an AUTOSAR software component that

realizes the atomic straight driving pattern. The following section shows the relevance
and gap in the deployment of the software component for atomic straight driving.

3.3.1 Relevancy
The findings from the papers put together projects on modularity, simulation, and

resource-efficient design in the development of AUTOSAR software components.

Structured development and reusability of software components ensure the efficient

handling of straight-driving tasks with consistency in communication and interaction

32

across system components. Relevancy information for each of the paper analyses is
provided below.

Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink
Using AUTOSAR System|[21]: This paper is directly relevant since it presents how
AUTOSAR can integrate with simulation tools, like MATLAB/Simulink, to provide
insights into architectural modeling and validation. The methods used for the simulation
of vehicle dynamics can be instructive for modeling and testing atomic straight driving
patterns in a controlled environment.

Modeling and Development of AUTOSAR Software Components[2]:

This paper provides a detailed explanation of the AUTOSAR methodology, which
emphasizes modular development of software components. The software logic
necessary for handling straight-driving tasks efficiently with reduced resource
allocation is developed by focusing on strong reusability and well-structured
communication via the Runtime Environment (RTE).

Design and Implementation Procedure for an Advanced Driver Assistance
System Based on Open Source AUTOSAR[22]: Although this paper is not directly
relevant due to the use of open-source AUTOSAR platforms, ideas are still gathered
for reducing development costs and experimenting with different driving patterns. The
methodology of integrating sensors and visual actuators into AUTOSAR-based
systems is also helpful in detecting and maintaining ADAS functionality.

3.3.2 Gap Analysis

While these papers offer a strong basis for understanding AUTOSAR software
components and their applications, specific gaps related to the thesis topic can be
identified:

Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink
Using AUTOSAR System[21]:

Influence: Research highlights the dynamic simulation of AUTOSAR systems, which is
relevant for testing software components (SWC) of atomic driving patterns in
simulation.

Gap: Emphasizes architectural modeling but does not apply it to specific driving
scenarios such as atomic straight driving.

33

Modeling and Development of AUTOSAR Software Components[2]:

Influence: Research focuses on comprehensive coverage of AUTOSAR
methodologies, software templates, and RTE communication, which are essential to
designing atomic driving patterns within AUTOSAR architecture.

Gap: It does not address specific driving tasks or patterns and only provides generic
guidelines for software component development.

Design and Implementation Procedure for an Advanced Driver Assistance
System Based on Open Source AUTOSAR[22]:

Influence: Research demonstrates practical applications of AUTOSAR in ADAS, real-
world integration of sensors, and control mechanisms.

Gap: This research is mainly focused on the ADAS and collision avoidance
functionality with the open-source AUTOSAR platform and does not provide any idea
regarding the deployment strategies of an atomic driving pattern.

To summarize, the above analysis of research papers proves their relevance in
understanding the AUTOSAR software components in automotive systems. However,
they missed the atomic driving pattern focus using AUTOSAR, which creates an
opportunity to bridge the gap in this thesis. In the next section, another paper’s review
is conducted, which is non-AUTOSAR-based and thus analyzed separately in a
separate sub-chapter (3.4).

3.4 Adaptive User Interface for Automotive Demonstrator

The main goal of the research work “Adaptive User Interface for Automotive
Demonstrator’[23] was to make an adaptive system where users can interact with the
Application Programming Interface (API) instead of going through source code. The
Adaptive User Interface (AUI) enhances the functionality of platforms like the
BlackPearl demonstrator at TU Chemnitz by enabling dynamic interactions, such as
touch, voice commands, and remote access. This paper provides valuable ideas on
ongoing research works with the ADAS demonstrator in TU Chemnitz. In this research
work, CAN-Bus is used as a crucial part of the communication network within the
demonstrator BlackPearl. This is a system to provide valid data interchange in real-
time between the interfacing units. It provides a way for the CE-Box and the different
Raspberry Pi boards to exchange important information concerning sensor and
actuator data. CAN-Bus communication supports scalability, which makes it easy for
different hardware servers to join the network easily. It ensures minimal latency and

34

high performance, even with various input components like cameras, streaming
dashboards, and remote commands.

Sensors Camera
)
Sensor / CAN Image.z
Actor e — PFOCESSIing
10-Unit unit(s)
ECU(s)
Actors
Display

Figure 3.4: Modules of the BlackPearl Demonstrator. [23]

Specific rules for reading or writing CAN-Bus messages ensure their reliability. This
research explains how the CAN bus is integrated among different sensors within a
demonstrator. Since CAN communication will be used in the thesis topic, “AUTOSAR
Software Component for Atomic Straight Driving Patterns,” the idea of the CAN
message format within the existing research will provide a better understanding of this.

3.5 Proposed Work: “AUTOSAR Software Component for Atomic Straight
Driving Pattern

This thesis work aims to design an AUTOSAR-compliant software component that
realizes the atomic straight driving pattern—a core fundamental building block used in
more complex navigation tasks. The dSPACE simulation tool will model the atomic
straight driving pattern through incremental movements and interaction simulations. It
will then be integrated into the vehicle's ECU to comply with hardware competency
validation. It has an obstacle-detection feature for testing ADAS functionalities,
ensuring a vehicle can operate safely and efficiently. All this ensures compatibility on
AUTOSAR platforms and the ability to perform in real-world scenarios.

35

4 Methodology

This chapter provides ideas about developing an AUTOSAR software component for
the atomic straight driving pattern. It starts with a detailed analysis of the software's
requirements to understand the functionality. Then, it describes the implementation of
the AUTOSAR Classic to the ADAS demonstrator, showing its importance to the
overall system architecture.

This chapter also covers the CAN protocol, developed to communicate from tester to
ECU. It also looks at the configuration processes of key development tools such as
dSPACE SystemDesk and EB Tresos to understand how to deploy SWC for atomic
straight driving. Finally, it provides the development model information for developing
software components within AUTOSAR Classic. These are some of the basic building
blocks of the software component, which must be accomplished with complete
functionality within the system for its integration to be accomplished. This chapter is
divided into five basic sub-sections: Development Model: The V-Model (4.1),
Requirement Analysis (4.2), Understanding AUTOSAR Classic and Modules (4.3),
Understanding Controller Area Network (CAN) (4.4), and Analyze “TUCminiCar”
System Configuration (4.5) which will be reviewed in details in the following sections.

4.1 Development Model: The V-Model

The V-Model development process is the most widely used embedded software
development, especially when the AUTOSAR framework is involved. It can be
described as a software development methodology highlighting sequential, structured
approaches to software development. It extends the waterfall model by linking each
phase in the development from requirements through design to implementation,
correspondingly with unit testing, integration testing, and system testing.[25] Each
phase of this model represents ongoing validation and verification to ensure quality
and traceability. In other words, it is especially suitable for safety-critical systems.

4.1.1 Overview of the V-Model

The V-Model is known as the Verification and Validation Model.[26] This software
development framework focuses on a structured and traceable approach toward
designing, implementing, and testing systems. Its defining characteristic is its "V"
shape, where the left-hand side of the "V" represents requirement analysis and
designing of high and low-level systems while the right-hand side is used for different
integration and testing purposes. With every development phase, there is also a testing
phase to cross-check. The steps of a model can be planned according to software

36

development requirements. This V-Model is very much applicable to the thesis
"AUTOSAR Software Component for Atomic Straight Driving Patterns," as this model
IS used in bringing the entire process of developing atomic straight driving pattern
functionality properly and giving it extensive testing in combination with other system
components like CAN communication and ADAS features.

4.1.2 Mapping V-Model to AUTOSAR Development

In AUTOSAR development, the V-model supports traceability, modular design, and
validation throughout the entire software life cycle. Mapping the V-model phases into
AUTOSAR development improves the quality and productivity of automotive software.
Since the thesis is based on implementing SWC within the AUTOSAR framework, a V-
model is necessary to maintain the work process in a standard manner. Below is the
designed V-model for this research project’s development life cycle.

Atomic Straight Requirement Acceptance Validate Straight
Drrive Analysis Test Drriving
System Architecture High-Level Integration RTE, .SWCS

- Interaction, CAN
(Analyze) Design Test Bus Comm

SWC Design,
Logic
Implementation

Low—ljevel Unit Test Compnnent Test,
Design Logic Test

Implementation

StraightDriveSWC

Time

Figure 4.1: V-Model Development for Atomic Straight Drive SWC.

The left side of the V will unveil all the requirements and design procedures. The right
side represents all testing and acceptance, with implementation placed in between.
The below steps have been illustrated in the developed model:

Requirement Analysis: The V-Model begins with the Requirement Analysis step in
AUTOSAR development. This involves defining the functional and non-functional

37

requirements of the atomic straight driving pattern. The methodology chapter will
discuss this level of explanation in detail.

High-Level Design: This level defines the overall system, including architecture and
communication methodology. It requires a System Architecture Overview since the
TUCminiCar is already within classic AUTOSAR architecture, which needs to be
reviewed for further development within this demonstrator. Understanding AUTOSAR
classic and CAN will also be discussed in detail within this methodology chapter.

Low-Level Design: The leftmost lower step in the V-Model is the Low-level design.
This step focuses on SWC Design and Obstacle Detection logic design. Since SWC
will be developed during the implementation phase, the existing design in dSPACE
SystemDesk for the TUCminiCar and module configuration in EB Tresos studio need
to be analyzed first in this step. This analysis will be done within the methodology
chapter.

Implementation: This phase works as a bridge for the left side of the model with the
right side where testing is placed. In terms of the thesis project, this is the coding of
the StraightDriveSWC that will meet the functional and non-functional requirements
defined before. Development of the StraightDriveSWC logic in AUTOSAR using
dSPACE SystemDesk, importing configuration from dSPACE to EB Tresos Studio,
obstacle detection logic, and handling of CAN messages for the system should be
defined. A separate chapter is placed after the methodology for the Implementation
process.

Unit Test: The rightmost side of the model starts with the Unit test. In this phase, the
developed SWC will be tested within the simulation environment (SIL) by creating a
virtual ECU in dSPACE and also in the hardware. Different logic developed within the
SWC will be tested at this phase.

Integration Test: In this phase, the developed SWC and codes will be integrated into
EB Tresos Studio. RTE generation will be verified so that different SWCs' interactions
can be tested. After that, hardware setup and CAN communication will be ensured.

Acceptance Test: This final step validates the Atomic Straight Driving. Acceptance
tests will be performed by operating a complete system test in the TUCminiCar, where
StraightDriveSWC runs to perform various ECU functionalities. Scenarios include
straight driving under different conditions, facing obstacles during driving, and
sending/responding to CAN messages.

38

4.1.3 Benefits of Using V-Model:

The V-Model has many benefits for the development life cycles, which make it a
suitable model for developing and validating the AUTOSAR Software Component for
Atomic Straight Driving Patterns. The main advantages are listed below:

Traceable and structured: The V-Model is a structured development process in which
all phases are separated. Every design-related task on the model's left side has a
corresponding testing phase on the right side, ensuring traceability of the requirements
from start to finish.

Early Detection: Aligning the development stages with specific test activities helps to
detect errors early during requirements verification and design validation, which
reduces the cost and complexity.

Modularity and Reusability: This model supports modular design and complies with
AUTOSAR's principles of reusability software components. This approach makes
development easier and supports scalability for future projects for the SWC
development.

Safety and Reliability: The structured testing phases of the V-Model are very
important for safety-critical systems such as automotive software development. For
this project, the integration and acceptance test conducted in the model for AUTOSAR
SWC for atomic straight drive ensures that the required driving functionality works
correctly within the system.

Adaptability for Embedded Systems: V-Model, focusing on verification and
validation, is especially helpful for embedded systems where software and hardware
integration are crucial. This project makes the StraightDriveSWC easily interact with
other components, like CAN communication or ADAS functions. Following the V-Model
allows a systematic and reliable development process, which ensures operational
efficiency, safety, and compliance with automotive standards.

4.2 Requirement Analysis

Requirement analysis is the primary task for any software development process. In this
project, it this analysis focuses on understanding and documenting the functional and
non-functional requirements of the AUTOSAR software component for atomic straight
driving. Atomic straight driving is a small but fundamental driving operation that forms
a basis for broader vehicle control, such as the consistent straight driving capability,
representing one of the ADAS functionalities. Requirement analysis demands two

39

major analyses: Functional Analysis and Non-Functional Analysis,[27] described in the
subsections below.

4.2.1 Functional Requirements

Functional requirements can be defined as essential requirements of developed
systems.[27] A project implementation cannot succeed without fulfilling these
requirements, so these are the minimum requirements of a system that must be
accomplished. For the thesis topic, atomic straight drive patterns, functional
requirements can be defined as below:

Atomic Straight Driving: This requirement is the core of the thesis project. The
developed software component (SWC) should control the car's actuators to maintain
the atomic straight driving at different speeds and distances.

Obstacle Detection: The SWC should implement obstacle detection logic so that it
can read data from detection sensors and process it to control the car after detecting
an obstacle.

CAN Communication: The SWC should have a mechanism to ensure CAN
communication. It should ensure the tester-ECU communication, taking input from the
CAN message and sending it to the corresponding components to operate accordingly.

Runtime Environment (RTE) Integration: The developed SWC must be integrated
with the AUTOSAR runtime environment (RTE) to handle the triggered events within
AUTOSAR and provide output to corresponding components for further processing.

Testability and Modularity: The system should support simulation-based testing
(SIL) and modular updates to advance future extensions of ADAS features.

4.2.2 Non-Functional Requirements:

Non-functional requirement analysis is the minimum requirements that the project
needs to achieve.[27] It can be described as a developed project's performance and
guality standards. For the thesis topic, non-functional requirements can be defined as
below:

Performance: Since it is a safety-critical system, it must show low latency. The
response should be real-time for parameters like acceleration, braking, obstacle
detection, and all other input-output responses handled by this SWC.

40

Scalability: The developed SWC must support future extensions for applying more
complex ADAS features. This scalable system should be aligned with the AUTOSAR
framework.

Reliability: Since the advanced driver assistance system deals with safety-critical
operations, the developed system must be reliable to its users. The system should
have a backup mechanism that can be activated if the primary method fails.

Resource Optimization: Embedded systems always require optimized resources.
This will avoid overloading the ECU based on priority uses. Resource optimization
needs to be ensured for the thesis project.

Compliance: Although the project is based on a miniature real-world application, it
should still comply with AUTOSAR safety standards, like ISO 26262 functional safety.
Which will provide the benefit of adhering to real-world industry requirements.

This analysis ensures that the SWC for the atomic straight driving pattern will be robust
and reliable by implementing and complying with functional and non-functional
requirements. This will not only meet the project's needs but also those of the industry
guidelines. These requirements will also guide the subsequent design, implementation,
and testing phases.

4.3 Understanding AUTOSAR Classic

The Technical Background chapter already discusses an overview of the AUTOSAR
standard. Since the application software component (SWC) needs to be maintained in
the AUTOSAR classic framework, it is necessary to analyze the AUTOSAR classic
layer by layer to understand its functionality. The AUTOSAR architecture is mainly built
on three software layers: Application, Runtime Environment (RTE), and Basic Software
(BSW). The basic software layer can be divided into four layers: Services Layer, ECU
Abstraction, Microcontroller Abstraction Layer (MCAL), and Complex Drivers. [10]
Different layers serve different purposes. Implementing application software
components within an AUTOSAR architecture, built in a demonstrator, must be
analyzed first. This will provide a clear idea of how to incorporate it according to
requirements. Since the TUCminiCar already provides AUTOSAR Basic Software
(BSW) modules integrated within ECU, they must be analyzed for application software
component deployment. In the following sub-section, an overview of different layers
will be discussed in terms of project requirements.

41

StraightDrive SWC

Services Layer

ECU Abstraction Layer

Complex Drivers

Microcontroller Abstraction Layer

Microcontroller

Figure 4.2: AUTOSAR Layered Architecture.

4.3.1 Overview of AUTOSAR Layers

This subchapter analyzes some details about the AUTOSAR layers. It starts with the
topmost layer of the architecture, the application, then the runtime environment (RTE),
and finally, the basic software layer (BSW).

4.3.1.1 Application layer

The application layer is the topmost layer in the AUTOSAR architecture.[10] It is where
the application software component “StraightDriveSWC” for an atomic straight drive for
the thesis project should be implemented. Since it will have the SWC, which will
implement different control logic, it is the most critical part of the project. Some key
features and components belong to the application layer discussed below:

Application Software Components: These are the components that are the building
blocks of the application layer. There will be ports for communicating to or from these
software components. These ports can use either sender-receiver or client-server
interfaces. These ports will control different actuators, such as sensors and motors.
These software components will implement the control logic to control those actuators.
There will be a runnable within this software component, which will define the
component's behavior. It can be triggered by different events, like time triggering, one
of which will be used to trigger the “StraightDriveSWC.”

Platform Independence: SWCs in the application layer of the AUTOSAR architecture

are platform-independent. That means the application logic implemented within these
SWCs is hardware-independent and should work in another hardware platform.

42

Integration with RTE: The runtime environment (RTE) provides communication
services for the SWCs implemented in the application layer. Successful integration will
facilitate the application layer's communication with lower-layer modules, like in the
basic software (BSW) layer.

Functional Logic: The application layer deals with functional logic deployment and
maintenance. For the thesis topic, functional logic must be implemented to control
actuators to maintain atomic straight drive and sensor data control to comply with
ADAS functionality.

Extensibility for Future Features: The SWCs in the application layer are designed
the way these should be applicable to be extensible. If any safety feature is added to
the application layer, the currently developed SWC should welcome be connected with
the future one.

For the thesis topic, the SWC for the atomic straight drive can be implemented easily
within the AUTOSAR framework by adapting to the characteristics of the application
layer. In the next sub-section, the RTE layer of AUTOSAR will be discussed.

4.3.1.2 Runtime Environment (RTE) Layer

The RTE layer is the core of AUTOSAR architecture. It is designed to communicate
between the hardware-independent layer, “Application,” and the hardware-dependent
layer, “Basic Software.”[28] So, the main task of the RTE layer is to make the
application layer independent from the specific ECU configuration in the lower layers.
This characteristic of RTE allows it to provide the required communication and
infrastructure services needed for system operations. Some main features of the RTE
layer are provided below:

SWC Communication: RTE provides a real-time communication ability for the
developed SWC within the architecture. As for the thesis, it ensures real-time
communication between the atomic straight driving software component placed in the
application layer and other system components, like the actuator, CAN communication,
and ADAS sensors. There are two types of RTE communication modes: explicit and
implicit.[29] For example, information from motor speed and obstacle detectors is
directed through the RTE for proper response management.

43

Scheduling SWC: This part is major for scheduling tasks or events. Task scheduling
can be done within RTE based on priority.[28] Task scheduling confirms that the
operations are synchronized. For atomic straight driving, it is necessary to arrange the
task scheduling based on the critical level.

Mapping Flexibility: The RTE ensures that SWCs are deployable to any ECU within
the system defined during the configuration process and dynamically manages the
communication approaches to maintain system integrity. This dynamic RTE facility
ensures mapping flexibility.

Integration with Basic Software: The RTE controls the interaction between the
application-level logic and the BSW level, ensuring that straight-driving functionality
utilizes essential services like actuator control and communication protocols.

System Validation: During the software in loop test (SIL) or integration time, RTE
confirms to validate the software component's compatibility with the system.

Overall, the Runtime Environment (RTE) is an important part of the AUTOSAR
framework, connecting application-level software and hardware-specific details. The
RTE will ensure that the atomic straight driving pattern SWC can be easily integrated
within the system, communicate effectively with other components, and operate in a
safety-critical automotive domain for the thesis.

4.3.1.3 Basic Software (BSW) Layer

The Basic Software (BSW) layer is the foundation of AUTOSAR architecture, which
works closely with the hardware. This layer contains multiple sub-layers: the
Microcontroller Abstraction Layer (MCAL), the ECU Abstraction Layer, Complex
Drivers, and Services Layers. [10] This layer's software components (SWC) have
already been designed and integrated into the TUCminiCar. In this section, an analysis
will be conducted to get a clear idea of how basic software components function so
that the application software component can work with this layer's components. In this
sub-chapter, sub-sections from the BSW layer will be discussed in detail.

e Microcontroller Abstraction Layer (MCAL)

MCAL is the lowest sub-layer in the BSW layer.[10] This layer directly communicates
with the related hardware within the microcontroller through the driver software
available in MCAL. The MCAL consists of the following module groups, which are
present in the picture mentioned below. Depending on the requirements, the blue-

44

marked groups are analyzed as installed within the TUC demonstrator TUCminiCar.
Inside MCAL, four basic modules are

Microcontroller Drivers Memory Drivers Communication Drivers 1/O Drivers
5 g 3 2 m o
o z m g = - o 2 = = >
E N I I R
ilgl i |2 BB gl gl2laflz| g AE (0
] ;‘; g 3 <

T i — —— o —————————
@ s g §, = : 2] (o] 0 >
2 i o
3 S c89 Microcontroller p- o é 8
S o

Figure 4.3: Microcontroller Abstraction Layer. [10]

presented: 1/0O Drivers, Communication Drivers, Memory Drivers, and Microcontroller
Drivers. Two other drivers are also available: crypto drivers and wireless
communication drivers. Since no modules are used in the demonstrator, they are not
illustrated. No module is installed in the demonstrator for memory drivers, and memory
specification is not required; rater memory management is done automatically by the
ECU itself.

I/O Drivers: The input/output driver or I/O driver directly interacts with different types
of hardware by separating the specifications of hardware types. This provides
hardware independence to upper-layer modules. It also manages different signaling
for sensors and actuators. Five 1/O drivers are integrated into TUCminiCar; those are
mentioned below:

i. ADC Driver: An Analog Digital Converter (ADC) driver converts all analog data
to digital forms. This ADC driver works on the ADC channel group, which is
analog pin inputs. [30]

ii. DIO Drivers: Digital Input Output (DIO) driver provides read and write access to
the internal General-Purpose Input Output (GPIO) ports. The read-write
operations are synchronous in general.[31]

iii. PORT Driver: The port driver defines the whole port structure of the

microcontroller port pin. [31] This can be represented by configuring ports for
reading sensor data or managing output data to control actuators.

45

iv. ~ PWM Driver. The Pulse Width Modulation (PWM) driver generates PWM
signals. It enables the duty cycle and signal period time to be selected.[32] The
driver helps control actuators by varying the PWM signal, which provides
different duty cycles.

v. ICU Driver: The input Capture Unit (ICU) driver is used to capture different
events of the input unit, which does the Pulse Width Modulation (PWM)
demodulation, tracking pulses of the signal, measuring frequency, and duty
cycle.[32] This driver is required since the demonstrator uses a DC motor that
generates PWM signals.

Communication Drivers: The communication drivers in the MCAL layer define
communication services with microcontrollers. These drivers separate the upper layer
as hardware independence since it lays into the lower layer and works closely with the
hardware unit.[33] They support different communication protocols, such as Controller
Area Network (CAN), Local Interconnect Network (LIN), FlexRay, Ethernet, etc. The
CAN driver is used only for the thesis topic since the CAN hardware unit is used for
communication. This CAN drive facilitates communication over CAN protocol by
ensuring data transmission and receiving flow.

Microcontroller Drivers: Microcontroller drivers are a foundation for the
microcontroller’'s hardware resources. They are used for internal peripherals with direct
microcontroller access. [10] There are several key microcontroller drivers available in
the AUTOSAR, which include the Microcontroller Unit (MCU), Watchdog Drivers,
General Purpose Driver (GPT), etc. In the TUCminiCar, the Microcontroller Unit (MCU)
driver is used. This driver provides clock and RAM initialization services.[34]

e ECU Abstraction Layer
In parallel with the MCAL layer’s drivers, corresponding abstraction components

Services Layer

Abstraction Abstraction Abstraction Abstraction

wm

@

ECU Abstraction Layer =

]

Onboard Memory Crypto Comm. »
: /0 Hardware @
Device Hardware Hardware Hardware Abstraction E'
o

o

Microcontroller Abstraction Layer

Microcontroller

Figure 4.4: ECU Abstraction Layer's Module.

46

using the ECU Abstraction Layer is also available. This layer acts as an interface
between low-level modules in MCAL and upper-layer modules in the Service layer,
making the upper-layer hardware independent. The main components of this layer are
I/O Hardware Abstraction, Communication Hardware Abstraction, Memory Hardware
Abstraction, Crypto Hardware Abstraction, and Onboard Device Abstraction. [1]

e Services Layers

The services layer is the topmost layer in the BSW layer. It provides different services
to the application layer’s software components. The core components of the service
layers are systems services, memory services, crypto services, off-board
communication services, and communication services.[1] Some services provided by
this layer are listed below-

Services Layer
Off Board Communi-

System Memory Crypto :
" " _ Comm. cation
Services Services Services Services Services

ECU Abstraction Layer

Complex Drlvers

Microcontroller Abstraction Layer

Microcontroller

Figure 4.5: Services Layer's Module.

System Services: This feature of the service layer provides some required system
functionalities, such as startup, shutdown, and mode management. The system
handles state transitions, such as sleep or active modes.

Communication Services: It also provides a standardized interface for network
communication, including protocol handling for different communication protocols like
CAN, LIN, FlexRay, and Ethernet. This confirms continuous data exchange between
Electronic Control Units (ECUs) and other networked devices. For the thesis topic,
CAN communication is used. In the service layer, there is a protocol data router
(PduR), which provides different PDUs (Protocol Data Units) connected with the low-
level module Canlf (CAN Interface) in the ECU abstraction layer for communicating
from upper to lower level.

Diagnostic Services: This service includes modules for onboard diagnostics (OBD)
and fault detection and establishing communication with external diagnostic tools for

maintenance and troubleshooting from a tester to ECU.
47

Memory Services: This service provides Application Programming Interfaces (APIS)
for managing non-volatile memory (NVM), flash memory, and Electrically Erasable
Programmable Read-Only Memory (EEPROM).

Safety and Security Services: Provide features such as watchdog monitoring,
system health monitoring, and secure communication, which are related to functional
safety standards like ISO 26262.

e Complex Drivers
Complex Device Driver (CDD) is the layer that can be accessed outside of AUTOSAR.

This driver is designed so that those functionalities cannot be implemented by the basic
software (BSW) components; complex drivers can do those. This driver can be
accessed by AUTOSAR interfaces and/or the Basic Software module’s API.[35]

For the thesis, it was necessary to analyze each module in the AUTOSAR architecture
to design and integrate SWC for the atomic straight drive while maintaining the
AUTOSAR standard. After analyzing the TUCminiCar, the developed AUTOSAR
architecture overview is found as below picture:

fion Layer
StraightDrive SWC Communication
{Froposed) ' ' Manager
-— -—

Complex Device
Drivers (CDD)

CAN Peripheral

Figure 4.6: Overview of TUCminiCar AUTOSAR Architecture.

The application SWC StraightDriveSWC needs to be developed within the architecture
shown in the proposal. For this purpose, the SWC template will be analyzed in the next
sub-chapter to gather knowledge of the SWC creation process.

48

4.3.2 Software Component (SWC) Template

The software Component (SWC) template describes the procedure for developing
SWCs within different layers of the AUTOSAR architecture.[36] SWCs can be different
depending on the interaction, and their port type also varies depending on how they
interact with other components. In this sub-chapter, the type of SWC in AUTOSAR and
the core components related to SWC creation, like SWC Port Type, Interfaces, Internal
behavior, and Runnable Entities, will be discussed.

PortPrototype characterised by Portinterface

provided PortPrototype, ClientServerinterface

required PortPrototype, ClientServerinterface @

WS

provided PortPrototype. SenderReceiverinterface

SwConnector

AUTOSAR
Software-
Component

required PortPrototype, SenderReceiverinterface !ZI

SwConnector

provided PortPrototype, SenderReceiverinterface

Figure 4.7: Graphical Representation of SWCs in AUTOSAR. [35]

e Type of Software Component

Software component creation depends on which layer and what responsibilities are
assigned to each specific component. SWC needs to be designed based on the
implementation requirement. The software components below are designed and
implemented based on the thesis topic requirements.

ApplicationSwComponentType: These types of Software Components (SWCs) are
hardware-independent and placed on the application layer of AUTOSAR
architecture.[37] For the thesis topic, the required software component,
“StraightDriveSWC,” which maintains atomic straight driving, needs to be an
ApplicationSwComponentType software component. This software component can
interact with different sensors and actuators via the
“SensorActuatorSwComponentType” software component, which is in the BSW layer
of AUTOSAR architecture. For sending data through the CAN bus, there is a
requirement for another application type SWC, which has already been developed in
the TUCminiCar and is named “CommunicationManager.”

SensorActuatorSwComponentType: These types of software components are fully
hardware-dependent. A corresponding “SensorActuatorSwComponentType” Software

49

Component (SWC) is available for each hardware connected to the ECU. Although
these types of SWCs are hardware-specific, they are still located above RTE and
connect with ApplicationSwComponentType SWCs and EcuAbstractionSwC-
omponentType SWCs and link them. For the TUCminiCar, several SensorActuator-
SwComponentType SWCs have already been developed for different sensors and
actuators; there is no requirement to create any new component for the thesis
topic.[36], [38]

EcuAbstractionSwComponentType: These types of SWCs are typically designed to
interact with Basic Software modules, specifically with the ECU Abstraction Layer.
They are also hardware-specific SWCs, which contain references to specific hardware
that interacts with different I/O ports of the ECU to access hardware.[36] Different
EcuAbstractionSwComponentType SWCs have already been developed within
TUCminiCar and, thus, do not need to be configured for the thesis topic.

CompositionSwComponentTypes: CompositionSwComponentTypes SWCs visualize
the different developed SWCs for different layers. They also provide port-type
information and help interconnect different SWCs.[35] These types of SWCs don’t
have any service-type ports but can visualize which internal ports are designed to
connect externally. For the thesis topic, after designing the application SWC,
CompositionSwComponentTypes SWC is required to connect with different SWC
ports.[36], [39]

e SWC Port and Interface Types

Ports provide an interface for connecting

different software components. They use > >

connectors for connectivity. A port in a Required Port | SoftwareComponent | Provided Port
. (RPort) (SWC) (PPort)

software component can be either a

provided port (PPort) or a required port —> >

(RPort). A provided port is a type of port

where the SWC sends data to another Figure 4.8: SWC Port Types.

SWC, while required ports are used to receive data from another SWC. After creating
ports in SWC, there will be a required interface within these ports for connectivity.
These port interfaces can be of two types: sender-receiver and client-server. The
sender-receiver interface is used when periodically data need to be sent and received,
while the client-server is used when request-response data passing is required.[36],
[40]

50

e SWC Internal Behavior

The internal behavior of an SWC defines its internal [Soﬂwa[;m}nonem 1

structure, which is built by combining runnable entities,
implementation, RTE events, and data access _»[

InternalBehaviorSWC]

definitions. An internal behavior should be created for LSl

each SWC. Within this internal behavior, there should N]
be a runnable entity that needs to give data access to g jpLaal)

the created ports for the SWC. After that, it is required

to define the triggering event for the runnable, such as g J

the timing event, which is the most commonly used Figure ‘Eirnir;tgrrlr;ﬁltsehavior
event in the automotive domain. After that, an

implementation needs to be added to the internal behavior directory. This
implementation will contain the “C” code file, where all the logic will be implemented
for the designed SWC.[41][36]

Knowing the process guidelines is a prerequisite for any implementation. Since the
application SWC will be required to control the straight drive for the ADAS
demonstrator, it is necessary to know the standardized procedure for SWC
development. This subchapter will help gather the necessary knowledge. In the next
subchapter, the CAN communication method will be discussed.

4.4 Understanding Controller Area Network (CAN)

Controller Area Network or CAN is a serial FcU(EectronicControluni
communication protocol invented by the German
company Bosch in the year 1986, and later, it was ISO
standardized as ISO 11898 in the year 1993. CAN bus
was introduced in the automotive domain due to the
complexity of wiring within a car due to the increased
ECU numbers. A standard “CAN” can have a data rate
of 1 MBit/s data transfer rate. Two-wired high and low
connectivity methods replaced all the traditional wires.
In each ECU, there is a CAN transceiver that can send and receive data. CAN bus
uses the CAN arbitration method to send or receive data, depending on the priority of
the messages.[42], [43]

CAN High

Figure 4.10: CAN Bus.[42]

4.4.1 Overview of the CAN Protocol
The Controller Area Network (CAN) protocol works based on carrier sense multiple
access protocol with collision detection (CSMA/CD) protocol. Here, every node

51

connected to CAN bus communication needs to check the bus load status and then
send a message. The message arbitration happens based on the priority of the
message; thus, CAN bus communication is reliable in the automotive domain.
Depending on the identifier, the Controller Area Network (CAN) has been standardized
into two types: Standard Frame Format (CAN 2.0A) and Extended Frame Format
(CAN2.0B).[44], [45]

e Standard Frame Format

The identifier's length for the Standard Frame is 11 bits. The format of the standard
frame is mentioned in the below picture, and different terms in the picture are described
afterward.[44], [46]

Message Frame

< -

! E |

i 0

! Arbitration Field Control Field Data Field CRC | ACK F

P | e ';[4 el ol o [|,
5 Rl E |1
O | M-Bit ldentifier | T |D |rDd | DLC Data Byte (0 to 8) CRC | ACK |O|F
F RI|E F| S

Figure 4.11: CAN (2.0A) Standard Frame Format.[43][45]

SOF: Start of Frame (SOF) defines the starting of the data frame, which contains a
single bit that needs to be dominant.

Identifier: The Identifier length for the standard frame is 11 bits; this is the arbitration
field that defines the priority.

RTR: Remote Transmission Request (RTR), which differentiates between data frame
and remote frame. Dominant (0) is for the data frame, and Recessive (1) is for the

remote frame.

IDE: Identifier Extension (IDE) bit defines whether the standard or extended frame
format.

r0: Reserved bit for future uses, need to be dominant (0).

52

DLC: The Data Length Code (DLC) defines the number of bytes in the data field. DLC
is 4 bits wide, as shown in the table below. Where ‘d’ stands for dominant and ‘r’ is for
recessive.

Table 4.1: DLC Define Number of Data Bytes.[43]

Number of Data Length Code (DLC)
Data Bytes DLC3 DLC2 DLC1 DLCO

ON|Oja|lARlWIN|FL|O
s |a|loa|jao|la|joa|laoa|a|la
O ||| |ajlajla|la
O =[]l |||
o=l ||| |2

Data Field: This field indicates that the data is being transferred. The number of data
bytes indicates the payload (data byte) length, which can range from 0 to 8 bytes;
others are not accepted.

CRC: The cyclic redundancy Check (CRC) detects errors in the data field (15 bits of
CRC+1-bit delimiter).

ACK: The Acknowledgement (ACK) field contains 2 bits for providing acknowledgment
status, where the first bit is for acknowledgment status and the second one is a
delimiter.

EOF: End of Frame (EOF) containing seven recessive bits provides end status.

IFS: Interframe Space (IFS) contains 3 bits of an idle period, providing a mandatory
delay between consecutive frames.

e Extended Frame Format

The main difference between the extended CAN (2.0 B) frame format and the standard
one is the extension of the identifier field. In the extended format, another 18 bits are
added for the identifier, for a total of 29 bits. The structure of the extended frame format
is as per the below figure, and the modification from the standard frame format follows
afterward.

53

Message Frame

i E

i . 0

: Arbitration Field Cu_rltrol Data Field CRC | ACK E

. Field wle < .
5 S11 R E|I
0O | 11-Bit Identifier |R (D 18-Bit ldentifier [T (r1 |rDd| DLC Data Byte (0 to 8) CRC | ACK |O|F
F RI|E R F|5§

Figure 4.12: CAN (2.0B) Extended Frame Format.[43][45]

Bit Identifier: 29-bit identifiers in total, which replaced the 11 bits from the standard one.

IDE: IDE = 0, standard frame format (11-bit identifier), IDE = 1: Extended Frame
Format (29-bit identifier)

SRR: Substitute Remote Request (SRS) is added in the extended frame and is always
recessive to ensure the standard frame gets higher priority over the extended one for
the same base identifier (11).

All the other fields remain the same in the Extended Frame as in the Standard frame.

4.4.2 Overview of CAN in TUCminiCar

After analyzing “TUCminiCar,” it is clear that the CAN communication stack modules
have already been integrated within the car for communication purposes. The
integrated modules are shown in the abstract picture below, and details are mentioned
afterward.

System Services Services Layer
Communication Services

Com
Sl CanSM 4

PduR
ECU i
Abstraction Canlf
Layer
Microcontroller I
Abstraction CAMN Driver
Layer

Figure 4.13: TUCminiCar CAN Stack Overview.

54

CAN Driver: This module belongs to the Microcontroller Abstraction layer and interacts
directly with the CAN controller hardware. Standard CANIdType is configured for the
TUCminiCar.

Canlf: The CAN Interface (Canlf) module is placed in the ECU abstraction layer and
acts as an interface between the upper- and lower-layer modules.[47] Transmission
and receiving channels are created in Canlf modules for the demonstrator.

PduR: The Protocol Data Unit Router (PduR) connects all the PDUs created in the
system by routing them in a routing table. This router is placed in the communication
service, which is in the service layer.[48] Different PDUs are created in the
demonstrator to send data for controlling the car, sending distance sensor data, and
knowing the car's status.

Com: The Communication (Com) module is placed in the communication service layer,
connecting PduR to RTE and staying between them. This module is used for signaling
purposes by using Interaction Layer Protocol Data Unit (I-PDU).[49] For the
TUCminiCar, the number of PDUs is created, and corresponding I-PDUs are also
created in the Com module for signaling purposes.

CanSM: The CAN State Manager (CanSM) is a module in the communication service
layer that manages the state of the CAN network.[50] For the demonstrator, a single
CAN network has been created, and CarEcu is assigned to that network to control the
state.

ComM: The Communication Manager (ComM) module is placed in the system
services layer and manages the ECU's communication states.[51] For the
demonstrator, a single network channel has been added to this module.

4.5 Analyze “TUCminiCar” System Configuration

This subchapter provides the high- and low-level existing configuration overview for
the “TUCminiCar,” which will be used as the base for implementing the project. The
system configuration can be viewed as follows-

e dSPACE SystemDesk Configuration Overview

After analyzing the current configuration from TUCminiCar, it is found that Basic
Software system designing is already visible in the CompositionSWC of dSPACE
SystemDesk, which is extracted as a high-level overview as below:

55

TUCminiCar Input TUCminiCar Qutput

SensoriActuators ! i Sensor/Actuators
5 . ! ApplicationSWC || _
EcuAhst.I[ac:onSWC SensorA][:tu:torSWC._H StraightDrive H’Sensom]!:tu:torswc EcuAhst][ac;t}lonSWC
yp yp {1 (NeedtoCreate) || yp yp
S S
' :
: |
1 !]
; i !
i
L Application WG TUCminiCar d SPACE

CommunicationManager Composition Diagram

Extracted Overview

Figure 4.14: TUCminiCar dSPACE Composition Overview.

In the above composition overview, only the StraightDrive application SWC is not
present; others are extracted from developed SWCs. For interacting with different
hardware units, different EcuAbstractionSw-ComponetType SWC have already been
designed and integrated within the dSPACE SystemDesk file *.sdp. For the thesis
topic, there is no requirement to go further for the connectivity analysis to control the
sensor or actuators. Since the target Application Software Component will interact with
SensorActuatorSWCType to control the demonstrator, it is necessary to analyze their
interfaces and working logic to deploy the StraightDriveSWC. For analyzing all the
required SWCs and ports, the data from the components are arranged in below the
three tables: one is for the input side, another for communication, and the last one is
from the output side, as below-

e TUCMminiCar Input Sensor/Actuator SWC

The table below provides all the required input sensor/actuator data (speed, steering
angle, and obstacle data) sources from existing SWCs to implement and make
connectivity for the application SWC StraightDrive development.

Table 4.2: TUCminiCar Input Parameter.

SWC Port
SWC Type Name Port Name | Type Interface | Purpose
This port from SWC provides
SensActinp | pp_inSonar | Provided obstacle data from the Sonar
utSonar Values Port sri_sonar | sensor.
SensorActua This port from SWC provides
torSwCompo | SensActinp | pp_inSpee | Provided the current speed from the
nentType utEncoder dvalue Port sri_float DC motor.
This port from SWC provides
SensActinp | pp_inSteeri | Provided the current steering angle
utAnalog ngPot Port sri_float from the servo motor.

56

e TUCminiCar Communication SWC
The table below is for the communication manager SWC. Apart from all other ports for
internal communication, this SWC has eight user input ports available to send data
from the tester’s end. All the ports have the same port type and interface; users can
use these ports to send the required data to the ECU to control the TUCminiCar after
receiving and processing it within the planned application SWC StraightDrive.

Table 4.3: TUCminiCar CommunicationManager Parameter.

SWC Type E\évn?e Port Name .I?%te Interface | Purpose
pp_CanRx_U | Provide Sri uints Send data from the tester
serControll d Port - to ECU through CAN Bus
Communic pp_CanRx_U | Provide Sri uints Send data from the tester
ApplicationSwC : serControl2 d Port - to ECU through CAN Bus
ationManag -
omponentType er Provide Sri uints Send data from the tester
d Port - to ECU through CAN Bus
pp_CanRx_U | Provide Sri uints Send data from the tester
serControl8 d Port - to ECU through CAN Bus

e TUCminiCar Output Sensor/Actuator SWC
Below is the parameter table for the output side of TUCminicar's configuration
parameter in dSPACE. From all the configured ports in the system, only those required
for the thesis topic are analyzed in the table below, which will be used to connect in
the application SWC StraightDrive to control different actuators of the car.

Table 4.4: TUCminiCar Output Parameter.

Port Port Inter
SWC Type SWC Name Name Type face Purpose
rp_outMot | Requir | sri_u | This port receives moto duty
SensActOut | orDuty ed Port | int8 | value to accelerate the car
putChassis | rp_outStee | Requir | sri_u | This port receives steering duty
ringDuty ed Port | int8 | value to fix the steering angle
SensActOut | rp_outBee | Requir | sri_u | This port receives instructions
putBeeper perMode ed Port | int8 | for beeper control
rp_outHigh | Requir | sri_b | This port receives instructions
Beam ed Port | ool for HighBeam control
SensorActuatorSw rp_outLow | Requir | sri_b | This port receives instructions
ComponentType Beam ed Port | ool for LowBeam control
rp_outLeft | Requir | sri_b | This port receives instructions
SensActOut | Signal ed Port | ool for LeftSignal Light Control
putLights rp_outRigh | Requir | sri_b | This port receives instructions
tSignal ed Port | ool for RightSignal Light Control
rp_outRev | Requir | sri_b | This port receives instructions
erselLights | ed Port | ool for Reverse Light Control
rp_outBrak | Requir | sri_b | This port receives instructions
elLights ed Port | ool for Brake Light Control

57

After analyzing the above parameter information, a clear idea was obtained for
developing the SWC application and its connectivity with existing SWCs in the
demonstrator. After developing the application SWC, it needs to be validated and a
new *.arxml file needs to be generated in SystemDesk. This file can then be integrated
into EB Tresos studio. The implementation, testing, and integration steps will be
described in the Implementation chapter.

58

5 Implementation

This chapter presents the practical application of the thesis topic “AUTOSAR Software
Component for Atomic Straight Drive Patterns” to the TUCminiCar demonstrator. The
knowledge and information gathered throughout the paper before this chapter have
formed a base for the project implementation. The following figure illustrates the high-
level overview of the project implementation.

Design StraightDrive SWC
in dSPACE and Test
Simulation —l

Import miniTUCar_

SystemDesc.sdp in
dSPACE —l

Make Connection with
Existing SWC

Validate and Generate

.arxml file and Replace
old file

System Integration in EB
Tresos Studio

Compile and flash HEX

file into target ECU

System Test

Figure 5.1: Implementation Overview.

Based on the project implementation, this chapter has been divided into four sub-
chapters: SWC Development (5.1), Software-In-Loop (5.2), System Integration (5.3),
and System Test (5.4). These sub-chapters will be illustrated in detail throughout this
chapter.

5.1 SWC Development

This chapter will focus on developing the application software component for the
atomic straight driving pattern. dSPACE SystemDesk will be used for design and
logical implementation. The SystemDesk 5.6 version has been used for the
implementation at the dSPACE end. In this sub-chapter, the following sections will be
illustrated: Application SWC Designing (5.1.1), Interface Definition (5.1.2), Logic
Implementation (5.1.3), and RTE Generation (5.1.4).

59

5.1.1 Application SWC Designing
This section will describe the design of the

application software component
“StraightDriveSWC” in dSPACE. First, the existing ,, Srnorsswo
System Description file

‘miniTUCar_SystemDesc.sdp” needs to be
imported into dSPACE. From the existing
configuration, there is a dedicated place for

Figure 5.2: StraightDriveSWC Creation.

application SWC design; the “StraightDriveSWC” application-type software component
needs to be created in that section, which is named the “ApplicationSwComponents”
folder.

This SWC component will handle different elements like engine control, speed control,
and steering control, receive obstacle data from a sonar sensor, and also handle
various light and auditory components. Depending on the compatibility of the existing
basic software (BSW) component and its operation, it is necessary to create the
required and provided port, as discussed already in chapters (4.3.2) and (4.5).

rp_inSpeed pp_outSteering

pp_outLowBeam
rp_inSteering pp_outSpeed
rp_inUsr3peed pp_beeperControl
rp_inllsrSteering StraightDriveSWC pp_outBrakelights
rp_inl=srDistance ApplicationSwComponentType pp_outReverselights
rp_inSonarData pp_outRightSignal
rp_inEngineControl pp_outl eftSignal
rp_inllsr3ectionLength pp_outHighBeam

Figure 5.3: StraightDriveSWC Port Definition

Depending on the requirement, the provided port and required port have been created
within the SWC as per the above picture. The required ports are initiated with “rp_,”
whereas the provided ports are “pp_." All the required ports (rp) are to receive data
from other software components, and SWC will take the necessary steps to process
the received data; after that, those will be transferred to the appropriate areas through
the provided ports (pp). In the next sub-chapter, interfaces will be assigned to the ports.

5.1.2 Interface Definition

This subchapter describes how the application software component interacts with the
other SWCs. It defines how communications are managed within different SWCs. The
interface assigning depends on how each port will interact with others. The connected

60

ports should have a similar interface. Otherwise, there will be compatibility issues and
no communication between them. As knowledge gathered from subchapter (4.3.2)
about SWC interface type and (4.5) about existing interface types, the port assignment
has been executed as per the below figure.

< =] sriboot

e .. 3 ; sri_uintd
sn . Tl .. .b rp_inSpeed pp_outSteering -
- Tl . . pp_outl owBeam et
S ... I inStcerng _outSpeed b |[¥] sri_uinta
Sh_uin e .b- rp_inUsrSpeed i i pp_beeperControl p----"~
e ‘P rp_inUsrSteering StraightDriveSWG pp_outBrakeLights - .. .
ApplicationSwComponentType =] TTTTeel
_____ - nnnun--- PP rp_inUsDistance prication pon e pp_outReverseLights . . =1 bool
sri_uint3 - .'h rp_inSonarData pp_outRightSignal h
e o _ P rp_inEngineControl pp_outleftSignal . N
’ _.b rp_inUsrSectionLength pp_outHighBeam I'\\ sri_bool

("] . . lB _“ .“ '\\\ ta
sri_uintd sri_bool .

Figure 5.4: StraightDriveSWC Interface Definition.

All the interfaces are sender-receiver in type, and the interfaces assigned to each port
that already existed in the SystemDesc file have only been assigned to the ports
depending on the requirement. Ports and assigned interfaces can be categorized into
two sections: Provided Port (PPort) Interfaces and Required Port (RPort) Interfaces.
For each section, the port, interface, and purpose of the ports are arranged in the tables
below.

Required Port Interfaces: The table below lists all the Required Ports and assigned
interfaces along with purposes that have been configured for “StraightDriveSWC.”

Table 5.1: StraightDriveSWC RPort with Interface Definition.

Port Name Port Type Interface | Purpose
rp_inEngineControl RPort sri_uint8 Receive Engine Control from user/tester
rp_inUsrSpeed RPort sri_uint8 Receive Speed data from the user/tester
rp_inSpeed RPort sri_float Receive Speed data from Car
rp_inUsrSteering RPort sri_uint8 Receive Steering data from the user/tester
rp_inSteering RPort sri_float Receive Steering data from Car

Receive object detection data from sonar
rp_inSonarData RPort sri_sonar | sensor

Receive path section data from the user/tester,
rp_inUsrDistance RPort sri_uint8 like how many sections need to travel

Receive each Section Length data from the
rp_inUsrSectionLength | RPort sri_uint8 user/tester

61

Provided Port Interfaces: The table below lists all the Provided Ports and associated
interfaces along with purposes that have been configured for “StraightDriveSWC.”

Table 5.2: StraightDriveSWC PPort with Interface Definition.

Port Name el Interface | Purpose
Type

pp_outSteering PPort sri_uint8 | Provide data to the car for Steering control

pp_outSpeed PPort sri_uint8 | Provide data to the car for Speed control

pp_outLowBeam PPort sri_bool Provide data to the car for low-beam control

pp_outHighBeam PPort sri_bool Provide data to the car for high-beam control
Provide data to the car for Left Signal Light

pp_outLeftSignal PPort sri_bool control

Provide data to the car for the Right Signal
pp_outRightSignal PPort sri_bool Light control

pp_outBrakeLights PPort sri_bool Provide data to the car for Brake Light control
Provide data to the car for Reverse Light

pp_outReverselLights | PPort sri_bool control

pp_beeperControl PPort sri_uint8 | Provide data to the car for Beeper control

5.1.3 Logic Implementation

The StraightDriveSWC controls different driving scenarios, such as distance tracking,
obstacle detection, speed control, and steering control. It reads various sensor inputs
and user input data and, after that, processes the appropriate computations and sends
control signals to the actuators in the vehicle. After assigning ports and interfaces to
the SWC, it is time to implement logic so that these ports can interact with proper data
control. The implementation logic for each key point is discussed below-

Engine Control Logic Flow: SWC reads the engine control status from the user input
and then processes it as follows-

e Condition 1: Engine OFF

“If rp_inEngineControl == 0”, the vehicle is placed in a neutral state:
Speed and steering values are set to the default (neutral) state.

No further processing of inputs is allowed.

e Condition 2: Engine ON
“If rp_inEngineControl == 17, the engine is on, and the car is ready to take new user

inputs, such as speed, steering, and distance.

e Condition 3: Undefined Values
For all other values of “rp_inEngineControl,” no further operations are performed.

62

Distance Calculation Logic Flow: SWC can take speed data from two sources: user
input through a CAN message or from inside the car. To accelerate the car, user input
data “rp_inUsrSpeed” is considered, and for calculating current speed from inside the
car, “rp_inSpeed” is considered for the actual value consideration. The car receives
target distance (in millimeters) data from the multiplication value of “rp_inUsrDistance”
and “rp_inUsrSectionLength” (rp_inUsrSectionLength, each atomic section,
1=200mm, 2 = 400mm, 3 = 600mm, and so on...) from a tester.

e Step 1: System Initialization
Initialize the system and reset speed, cumulative distance, and elapsed time to
zero.

e Step 2: Engine Validation
Check the engine status and be ready to accept user input if the engine is on.

e Step 3: Input Data Processing
Read user and car input data for speed, steering, and target distance and keep
updating in real-time.

e Step 4: Distance Tracking

The SWC calculates the traveled distance based on the current speed (mm/s) and

elapsed time. To track elapsed time, the control loop is executed every 10 ms, and

distance calculations continue until the target distance is reached.

Distance Calculation: distance Increment = speed (mm/s) x time Interval (s);
required iterations = target distance (mm) =+ distance
increment (mm);
cumulative distance = distance increment (mm) x no. of
iterations.

e Step 5 (Control Output): Based on the cumulative distance tracking, once the
distance is reached, write neutral duty cycle (100) to the “pp_outSpeed” port to
activate the brake; before that, keep writing forward (>100) or revere (<100) duty
cycle as per the user input provided. To maintain a straight drive path, keep writing
steering duty cycle neutral (100) to output port pp_outSteering.

Obstacle Detection Logic Flow: SWC will receive obstacle detection data at the port

“rp_inSonarData.” Based on the car's current condition, the brakes will be activated to
stop.

63

Step 1: Read Sonar Data
Read sensor data at the port “rp_inSonarData,” which is the array of sonar sensors
on the front [0,1,2] and back [8,9] sides of the car.

Step 2: Obstacle Detection
Detect any object within 200 mm of the sensors.

Step 3: Braking Mechanism
If the car is running, brake it immediately with neutral duty (100) value, and stop the
distance tracking counter to stop measuring cumulative distance.

Step 4: Obstacle Elimination
If the obstacle is removed, the car keeps moving automatically until the target
distance is reached.

Signaling Logic Flow: Based on the processed data from the SWC, in response to
the car's operation, some visual and auditory actuators within the car also get activated
or deactivated throughout the ports defined in the SWC.

Beeper Control
Whenever the sonar sensor detects an obstacle, the car will continue to beep until
the obstacle is removed from the detectable distance.

Brake Lights Control
When the brake is activated, either during obstacle detection or traveling the target
distance, the brake lights on the back side of the car turn on. In normal conditions,
these are turned off.

Low Beam Control

When the car moves forward direction under the duty cycle of 150 (equivalent to
630 mm/s), the Low Beam lights are on. For the neutral and reverse directions,
these are off.

High Beam Control

High beam lights are on when the forward speed is equal to or greater than that of
duty cycle 150. In other conditions, these are off.

64

e Reverse Lights Control
These lights are on whenever the car moves in the reverse direction; in other
conditions, they are off.

e Left Signal Control
When the steering turns in the left direction (duty cycle value 101 to 200), the left
signal light starts blinking and is off in any other situation (0 to 99).

¢ Right Signal Control
The right signal control light starts blinking when the steering turns to the right side
(0 to 99 duty cycle); in other conditions, the light remains off.

To implement the logic mentioned above, “Internal Behaviour” within the SWC needs
to be created, where the implementation of the “C” code will be placed.

5.1.4 SWC Internal Behavior

The internal behavior mainly describes Runnables and the Implementation of SWC.
For this purpose, “IB_StraightDriveSWC” internal behavior has been created within the
application SWC. Inside internal behavior, implementation “Impl_StraightDriveSWC”
and runnable “StraightDriveSWC” were also created.

IF SWC Internal Behavior: |B_StraightDriveSWC [m] >

Port APl Options Per Instance Memory Static Memories Included Data Type Sets Service Needs

Parameters Data Type Mapping Refs System Conditions Special Data Advanced

General Runnables RTE Events Interrunnable Variables Exclusive Areas

Short name: IB_StraightDriveSWC

Desc:

Required Generator Tools Compilers Special Data Advanced
T General Code Descriptors Required Artifacts Generated Artifacts
gory: | —
Short Name Desc l;
Handle termination and restart:
Supports multiple instantiations 4+ (CeElz=Ei
[8 Code: CodeDescriptor O X
General | Artifact Descriptor Special Data Adv. d
Shart Label Category Domain
T
» i StraightDriveSWC.c SWSRC
Help
Help
Add files... ! Delet

Figure 5.5: StraightDriveSWC CodeDescriptor.

65

Inside the “Impl_StraightDriveSWC,” memory resource consumption needs to be
assigned for the “C” file with the logic implemented, named “StraightDriveSWC.c.”
Then, a new “CodeDescriptor” needs to be added, and inside this, the *.c file needs to
be added. In the next subsection, RTE Generation, along with the runnable entity, will
be described.

5.1.5 RTE Generation

The Runnable “StraightDriveSWC” created inside the internal behavior needs to be
assigned a triggering event. This event will trigger the runnable by RTE as per the
mentioned method. For the SWC, the RTE event is defined as a “Timing Event,” and

I Rurnabis Entny: SrsightDmesin

IXE

Figure 5.6: StraightDriveSWC RTE Event and Data Access.

it will be triggered every 10ms. After that, all the ports created within the SWC are
provided data access for the Runnable Entity. Now, these ports are ready to read and
write data from or to the desired SWC ports. The RPorts will read data as per the below
RTE API functions:

/* Read inputs */

uint8 engineControlStatus = Rte_IRead_StraightDriveSWC_rp_inEngineControl_data();
uint8 userSpeedValue = Rte_IRead_StraightDriveSWC_rp_inUsrSpeed_data();

uint8 userSteeringValue = Rte_IRead_StraightDriveSWC_rp_inUsrSteering_data();
float32 globalCarSpeedValue = Rte_IRead_StraightDriveSWC_rp_inSpeed_data();
float32 globalCarSteeringValue = Rte_IRead_StraightDriveSWC_rp_inSteering_data();
uint16* sonarData = Rte_IRead_StraightDriveSWC_rp_inSonarData_sonarValues();
uint8 targetDistanceSections = Rte_IRead_StraightDriveSWC_rp_inUsrDistance_data();
uint8 usrSectionLength = Rte_IRead_StraightDriveSWC_rp_inUsrSectionLength_data();

After SWC processes the input data, PPorts will write data according to the following
Runtime Environment (RTE) API functions:

[* Write Outputs */

Rte_IWrite_StraightDriveSWC_pp_outSpeed_data(motorDutyValue);

Rte_IWrite_StraightDriveSWC_pp_outSteering_data(steeringDutyValue);
66

Rte_IWrite_StraightDriveSWC_pp_beeperControl_data();
Rte_IWrite_StraightDriveSWC_pp_outLeftSignal_data();
Rte_IWrite_StraightDriveSWC_pp_outRightSignal_data();
Rte_IWrite_StraightDriveSWC_pp_outReverseLights_data();
Rte_IWrite_StraightDriveSWC_pp_outHighBeam_data();
Rte_IWrite_StraightDriveSWC_pp_outLowBeam_data();
Rte_[Write_StraightDriveSWC_pp_outBrakeLights_data();

Now, all the ports are ready to be connected with respective ports in other SWCs
named SensorActuatorSWCType and CommunicationManager. After connecting to
the desired ports of those SWCs, the composition diagram extract will be like as below

picture:

Input From

.........................

pp_inSpeedValue

~» SensActinputEncoder
SensorActuatorSwComponeniType

EcuAbstraction SwComponentType

e_s

pp_inSteerngPot H\
SensActinputAnalog

) SensorActuatorSwComponeniType

rp_inSteering
p rp_inUsrSpeed
p rp_inUsrStesring

rp_inUsiDistance

p|:|_in5cnna|‘\v‘alue5[k

[SensActinputSonar
H SensorActuatorSwComponeniType

rp_inSonarData
b rp_inEngineControl

p rp_inUsrSectionLength

; Output To
§ EcuAbstraction SwComponentType

.........................

rp_outSteeringDuty
SensActOutputChassis |
SensorActuatorSwComponeniType
rp_outMotorDuty

SensActOutputBeeper
SensorActuatorSwComponeniType s

rp_outBeeperbode

pp_outSpeed
; ; pp_besperControl
StraightDriveSWC pp_outBrakeLights

ApplicationSwCom ntT:
pplicatio ponentType = Lights &

pp_outRightSignal

rp_outlowBeam

pp_CanRxUserControl1_Engine

pp_CanRxUserControld_Section

pp_CanRxUserControl5_SectionLength

CommunicationManager
ApplicationSwComponentType

pp_CanRxUserControl2_Speed

pp_CanRxUserControl3_Steering

rp_outBrakelights

rp_outReverselights

rp_outRightSignal e
rp_outLeftSignal

rp_outHighBeam

SensActOutputLights
SensorActuatorSwComponeniType

Figure 5.7: TUCminiCar Composition Diagram Extract.

Now, it is nhecessary to do the SWC-to-ECU mapping for the newly added application
SWC, and thus, need to select “CarEcu” for this mapping. Finally, check the project
validation, which will ensure the design procedure after a successful validation. After
successful validation, the SystemDesc file has been updated and is ready to generate
a new *.arxml file to replace the old one.

67

Y Eport AUTOSAR e
New Edit Data Validate

System Mapping System

‘ -JN" . =¥ Add Cluster & Add ECU & New Machine Design 3%, Add Gateway
import Networl
¢ New Physical Channel B Create Preconfigured ECU & Add Machine Design ~8f New Connector ~

System Topology

ie!

Select Context and Restart Validation Do Not Show This Message Again

@ System: CarSystem a X
Data Mappings SWC-to-Impl Mappings SWC-to-Machine Mappings Special Data Advanced
General Network Clusters ECUs Gatew SWC-to-ECU Mappings
mponent In: ECU
3 vl X
v|[X
v|[X
v|[X
v|[X
v|[X
v[[X
v|[X
v|[X
v|[X
[| Save Layout | Restore Default Layout | Updated: 12:07:47
" V[X
v|[X 1 x
v|[X -
3 arcu v|[X
= rEct v|[X
B arfcu
Expand All Clear Al
Help oK Cancel | X

Figure 5.8: CarEcu Mapping and Validation.

The functionality of the developed SWC needs to be checked before integration into
the EB Tresos studio. To do this, a Software-In-Loop test is required, which will be
discussed in the next sub-chapter.

5.2 Software-In-Loop (SIL) Testing

Software-In-Loop (SIL) testing is the most commonly used method in the automotive
industry to check SWCs' functionality. In this sub-chapter, a developed SWC will be
tested in a simulation environment before integration.

5.2.1 StraightDriveSWC Prototype

Since the SWC was developed under the whole system architecture for the
TUCminiCar, it is necessary to separate it and test it in a simulation environment only
to test its functionality. To do so, a prototype, “StraightDriveSWC,” has been
developed, which is similar to the originally developed component. Only basic driving
functionality, along with obstacle detection, will be tested, as these are the main safety-

IEAngleln |------oon... rp_inSteeringAngle pp_outhctivateBrake P - - --------- fActivateBrake
IfDistanceln |-------oooen rp_inUsrDistance: pp_outDriveForward

liSpeedin |----o-oeo p_inSpeed StraightDriveSWC

ApplicationSwComponentType
HObstacleln |« xeueeneee. rp_inObstacle
HEngineStatusin --eoveevnnn. rp_inEngineStatus

Figure 5.9: StraightDrive SWC Prototype.

------------ IfDriveForward

68

critical functionalities within the SWC. Above is the developed prototype SWC, where
all user inputs, SteeringAngle, UsrDistance, Speed, Obstacle, and EngineStatus, are
defined as RPort, and action-taking functionalities, DriveForward and ActivateBrake
from the SWC, are defined as PPorts. All the assigned interfaces are sender-receivers,
and a runnable triggering event is also defined as a timing event 10ms like the main
one. The RPorts are ready to read data from tester as per the below RTE API functions:

/* Read inputs */

Boolean EngineStatus = Rte_IRead_StraightDriveSWC_rp_inEngineStatus_EngineStatusin();
Boolean ObstacleDetected = Rte_IRead_StraightDriveSWC_rp_inObstacle_Obstacleln();
uintl6 SpeedOfCar = Rte_IRead_StraightDriveSWC_rp_inSpeed_SpeedIn();

uint32 DistanceOfCarKm = Rte_IRead_StraightDriveSWC_rp_inUsrDistance_Distanceln();
uint8 AngleOfCar = Rte_IRead_StraightDriveSWC_rp_inSteeringAngle_Anglein();

After processing input data by SWC, PPorts will write data as per the below RTE API
functions:

[* Write Outputs */
Rte_IWrite_StraightDriveSWC_pp_outDriveForward_DriveForward();
Rte_IWrite_StraightDriveSWC_pp_outActivateBrake ActivateBrake();

5.2.2 Simulation Scenarios
Logic implementation for the simulation scenarios is similar to the main SWC. The
below functionalities should be tested for the prototype SWC-

User Input Validation: Validate for all the defined RPorts and ensure that the SWC
reads data properly through those ports.

Engine Status Validation: Check that the engine status setting is working properly.
For this simulation engine status is either “on” or “off”. If the engine is off then no
other parameter should work.

Distance Tracking Validation: Check that distance tracking is working based on
speed and target distance. For the simulation, the target distance parameter is in
kilometers, and the speed is in meter/sec (m/s).

Obstacle Detection Validation: Check that the car is reading obstacle status
properly and taking actions based on detection.

Forward Driving Validation: Check that the car is driving forward for the provided
inputs. Also, for tracking straight drive, the steering angle should be between 0 to
4 degrees.

69

e Braking Mechanism Validation: Check that the braking mechanism is working
properly to achieve the target distance, straight drive, or detect obstacles.

5.2.3 VEOS Simulation

To test on VEOS, need to create a virtual ECU (V-ECU) on SystemDesk, based on the
developed architecture along with SWC. After a successful build, there will be a

Figure 5.10: Virtual ECU Building.

successful build message. Now, the Eculnstance is created to run on the VEOS player.
After that need to import the Eculnstance into the VEOS player. Then, the simulation
environment is ready to test functionality for the developed SWC. The test points will
be created in the VEOS simulation model based on the developed SWC ports that

M do-o-- Application_006.05a" - VEOS Player
Home | Simulston View

914 S 5
woHEE

New Open Save Import Export Autoconnect Add New Communication Add New Model
- - - - Cluster~ Communication Package ~

¥ Port Topology X | &™ Network Topology % | & Model Communication % > |¢]| & Properties

perti
al o+ - ®- Qo+ - =~
4 Ll Eeulnstance 4 [z Eculnstance
4 [TestPaints 4 [Testpaints
b [¥)Pp_StraightDriveSWC_pp_outDriveForward_OutputSenvice_output b B)Rp_StraightDriveSWC_rp_inEngineStatus_InputService_input
b [3) Pp_StraightDriveSWC_pp_outictivateBrake_CutputSenvice_output b B Rp_StraightDrivet
© B IoPoints b) Rp_StraightDrive!

b) Rp_StraightDriveSWC_rp_inUsrDistance_InputService_input
b B)Rp_StraightDriveSWC_rp_inSteeringAngle_InputService_input

b B 1opoints

(===
)

x

A Wessages x
€ 0Errors !\ 0Wamings .1/ 46 Messages
Severity Module Time Message

i)info VeribleDe.. 11:3832745 Parsing MAPX file.

i)info VeriableDe.. 113832773 Extending AZL file

i)info VeriableDe.. 11:3832839 Creating AZL file with addresses.

iinfo Vi 113833143 Copying MAP file...

iinfo V: . 13233148 Creating TRZ fle...

. 11:38:34.436 Creatin
eDe.. 11:32:34.763 Vari

.. 11:38:34.779 Combi
11:38:34.803
1:38:35.194 Perfon

i) Info

i) Info
~ i) Info
iJInfo Syster

i) Info Syster
i)info SystemBuil.. 11:383549 Completed build of simulation system.
i) Info Playerfippl.. 11:38:36.502 Writing the build output to Application 006.Build.lo

Simulation state: Disconnected

Figure 5.11: VEOS Simulation Test Points.

were created in V-ECU. The simulation was tested on seven different test cases, and

the test result is illustrated in the table below.
70

Table 5.3: SWC Simulation Test Cases.

Input Output
Tes inObst
t inEngine | acle inSp | inSteeri | inUsrDi | Activ | Drive Car Message
Cas | Status (yes/no | eed ngAngle | stance | ateBr | Forw
e (on/off)) (m/s) | (deg) (km) ake ard

Engine Status: OFF,
please start the

1| Off n/a n/a n/a n/a n/a n/a engine.

Engine ON, but the
car is not moving,

2| 0n n/a 0 0 0| nla n/a please accelerate
Distance threshold
reached. Activating
3|0n n/a 10 0 0 | yes no Brake

1. Activating drive
forward 2. Distance
threshold reached.
Activating Brake after
1000m/1km and 100
4 10n n/a 10 0 1] vyes yes sec

The angle of the car is
not within 0 to 4
degrees. Activating

5| 0On n/a 10 5 1| vyes no brake

The speed of the Car
exceeds 50 m/s.

6 | On n/a 51 4 1] yes no Activating brake
Obstacle
detected!Activating

710n yes 10 0 1] yes no Brake

The above table shows that all the test cases were passed successfully. Thus, the
SWC prototype was successfully tested in the simulation environment before being
implemented in the real-time environment. The developed SWC integration will take
place in the next sub-chapter.

5.3 System Integration

Since the SIL test has been completed
and passed successfully, the SWC,

which was already validated in sub-
chapter 5.1.5, can now be integrated
into EB Tresos Studio. To do so, need
to export AUTOSAR from dSPACE
SystemDesk, which will generate a
new *.arxml file. The old *.arxml file

0 eors {0 fitese), 0 warnings [fitered)

B Systembesk - AUTOSAR Export o x

Updated: 115526

needs to be replaced by the newly

. . . .) Figure 5.12: AUTOSAR Export from dSPACE.
generated file with StraightDriveSWC in

71

the same directory. Since the *.arxml file is generated, it's time to go for EB Tresos
studio integration, which will be in the next sub-section.

5.3.1 Integration in Tresos Studio

EB Tresos Studio configuration file holds the full AUTOSAR architecture modules
along with newly modified SWCs and RTE. Since the new application SWC
“StraightDriveSWC” was added to the SystemDescription file, therefore need to be
integrated for the regeneration project. For this purpose, need to run an importer from
the im — and exporters manager on “miniTUCar_SystemDesc_Imp.” After successful
importation, there will be a successful message with no error.

Create, manage and run im- and exporters

Create an importer to import data inte your project, or create an exporter to export data to external files,

= X | . Name: miniTUCar_SystemDesc_Imp
= basicTemplate_Imp (System Description Importer (AUTOSAR 2.1/3.0/3.1 (General - All Models | System Model Import | Variants
2 EPC_Import (AUTOSAR Im-/Exporter)

4 System Description Importer
= miniTUCar_SystemDesc_Imp (System Description Importer (AUTOSAR 2

|
Description: Imports files in the AUTOSAR
tem description format.

BBl importer Run Finished

|'6'\ Importer run completed successfully.

Results Details
~ Errors During Importer Run errors: 0 warnings: 0 infos: 22
& Errors errors: 0
& Warnings warnings: 0
~) Infos infos: 22

[}
(SVSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supparted within

(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(5¥SDI_207) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supperted within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supperted within
(5YSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(5YSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_207) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supperted within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(5¥5DI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(SYSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
(5YSDI_201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within
Run Importer Run Exg . (S¥YSDI 201) The XML tag VENDOR-SPECIFIC-MODULE-DEF-REFS is not supported within

a

eQededededededededededadedededela

T T ECUTD:

Figure 5.13: Run Importer in EB Tresos Studio.

After successful importation, need to map the unmapped RTE events from the Rte
Editor. Since a new timing event was created for the application SWC,
“StraightDriveSWC,” therefore there will be an unmapped event. This timing event
needs to be mapped into the appropriate timing event list. After that, from the project-
>unattended wizard directory, need to execute MultiTask RunFullimport to import
supporting elements within Tresos Studio. This will complete the importation process.

72

& "Re Ecitor 3

General I

o

=i}
i, Rte Editor 1 waminals
Selec | P, 0 Event M Data M Exclusive Areas| Measurement & Calib| NVRAM Allocation| s
~ Unmapped RTE and BSW events ~
Display RTE and events with required mappingonly X 4
Unmapped RTE snd BSW events]
Event Event type Executable entity Instance
TimingEvent RteTimingE: ! StraightDriveSV /EcuE [ToplLevelC i o0

B e Bt 01

£ Rte Editor

~ Unmapped RTE and ESW events

GeneralImplementation Selection | Pattioning | Optimizations Event Mepging

[nd Baw events with recuived mappingonty @ 2
| <
A u nd BSW events
Eventtype Executsble entty Instance Categ.. @] Requr
~ Mapped RTE and BSW ef
Task /0s/0s/Car.
¥ % vl i} wih
& 3 TimingEver| | - Mapped RTE and BSW events
Il 4 TimingEver| | .. oouceTme Tk o 5
M Mispped RTE And BSW everes
e bt Evert type Executabie ety Instance Categ

TimingEvent_Outpuatights PraTimingEvent Runkights fEeubarscy/TopleviComporiton/SensactOuputights || CATIA
TimingEvent Beeper FeaTimingfvert 1 Rundeeper JEeubatract ToplevelCempositon/SensactOupuBecper || CATIA
TimingEvent Sonse FeeTimingEvent RunSanar FEcufstract ToplevelCompositionSensActOutputSener | CATIA
TimingEvent_Enceder FeTimingEvent Runéncoder FEcuaract/TopLeveiCompositanfiottwabsicu cania
TimingEvent Encoder PraTimingEvent RunEncoder fEeubtract/TopleveiCompositon/SensactinputEnceder || CATIA
TimingEvent Remese FesTimingfvent 1 Runfiemote JEeubatract/ToplevelCempositan/othulksics [eamia
TimingEvent Remote FeeTimingEvent Runfemote FEcufstract ToplevelComposiionSensactinputBemote | CATIA
Timingbvent_Analog FieTimingkvent Rundnalog FEcuatract/ToplevelCempositonioHubside camA
TumingEvent Lidar BieTimingEvent Runkidar FEcubtract/ToplevelCompositonfioHwAkeliar cama
TimingEvent . cama

Data Mapping Exclusive Aress Messurement & Calibrstion NVRAM ASocation | VFE Tracing 85w Trgger Connestions Bsw Made Mapping Sow Required SR Conmections | Trigger Quewe Length

==
[Perod [§ Offset
B Requr. [Peiod [] Offset (3 RreintiskiestonRunnabiegetch Modem
)= B ihms 3 ooms
[B woms B ooms
& soms [0oms
) 0oms 5 00ms
f)= O toms [0 ooms
[B toms B ooms
& Woms { 0oms
& ¥ woms [coms
= O meoms [0 soms
[& B omoms @ noms
>

Figure 5.14: RTE Event Mapping.

After RTE event mapping is done, need to check that the
mapped into the connection editor in Tresos Studio.

newly created ports are all

¢ “Commection Edcr |

[[& @

|
|

ey

T SensActOutputlights.

[SewhciOuputions

LGhTDEWE |

31 P bepeConaol
B v ounkeighs
B prsuthieam
5 o outSignal
1 prowtontuam
] pr.outtevereliohts
B protbghigea

Intertace

sriuint
sr_bosl
sr_boal
sr_bosl
s boal
s boal
sr_bosl

z‘ Show Mok

=

Entity

Figure 5.15:

@ “Connection Editor £

.b;pefilterta(f

Target
> o] pp_outSteering
5[4 rp_inEngineControl
>[4 rp_inSonarData
>[4 rp_inSpeed
5[4 rp_inSteering
>[4 rp_inUstDistance
> [rp_inUsiSectionLength
> [rp_inUstSpeed
>[4 rp_inUsrSteering

BREIXER

Interface
sri_uintd
sti_uintd
sfi_sonar
<fi_float

sri_float

shi_uintd
shi_uintd
sfi_uintd
sri_uinté

73

Port Mapping in Connection Editor.

5.3.2 System Validation
After completing the integration task in Tresos Studio, need to validate the system. For
this, need to verify and generate the project. After successful verification, there should

not be any errors in the project error log.

[BET £6 treses 28,00 workspace: CAEB\iresos\werkspace - imstall CAEB\resos [ER
File Edi Search Project Window Help
=R R P # vica - - l-
& @ Emorleg 2 Problems View tg Results =] ol =
(£ Last 20 entries (up to 100) warnings, errors fltered out: infos) %
Message Error Code
© o TS TI6D: ALD Pcfg.cis24] The option “MCU_K3_DIV_FACTOR_BYPASSED_SEL1 shal mot be used for MeuPIlZDivSelect in devices w 2003
i The require part prototype rp_Can_UserDiags of software component nstance /EcuExiract/Topl evelC amposiiion/Communicationhanageris ot cannected. Uncoriected redquire part prototypes are nof allowed according fo the Rt specification. Connect all require por RIEST1
The require pert prototype rp_ CanTx UserDisg? of software companent instance /EcuExtract/TopLevelC ompasition’ < not connected, require port protatypes are not sllowed sccording o the Rte specification. Connect il require por RIE 511
D Therequire port protatype 1p. CanT UserDiags of software companent instance /Ecubxract/TopLevelComposition/CommunicationManager s not connected, Unconnected require port prototypes are not allowed according to the Re specification, Connect al require por RTE 511 -
i The require port protatype rp_CanTx_UserDiagS of saftware component instance /Ecubxtract/TopLevelComporition! iz not connected require port prototypes are o allowed according 1o the fite specifcation. Comnect il require por RES
. The e prt prottype 1. Canl UsDiagd of sftwre component nsance/Ecubac TopeveCompostion Communifinblanage i o conmectd.Unéonnected e por prolotypes e o llowed according o the e speclicton.Comnect al e por RTE511
The require part pratatype rp_CanTs_ UserDiag3 af saftware companent instance /Ecustract/TopLevel y < not connected, equire part prototypes are not allowed according to the Rte specification. Connect all equire par RTE511
B Therequireport pototype fo-ConT UserDig2 of sfummr component ance/EcuExtac TopkevelCompention/Communlcponansget ot conmecte, Unconmectd eqir prt protetypes e ot llowed sccrding o the e speicpin.Comnect ol equre por RTE 511
i) The require port protatype rp_CanTx_UserDiag of software component instance /Ecubxtact/TopLevelComporition/C iz not connected equire port prototypes are not allowed according o the fite specification. Connect all require por RTE 511
. The e por prottype p_PrkIghtsSttu of stwars componetrstance EcubtroctTopl v CamposkloCommunistonanager ot connete. Unconnectd el pot prtotypesre ot alloues o o the e specliato.Connecta e o RTE511
The reqire port protatype rp_ReverseLightsStatus of software compan c is not connected. equire port prototypes are not allowed accarding to the Rte cpecification. Connect allrequire. RTELS11
 The-emire port et ok ghiStes o v ormpomen rtane fEcubAray TopLavacompor o/ is not connected. require pert prototypes are not sllowed according to the Rte specification, Connect ol require p RTE 511
8 Thw i part rteypa . ghoeas ofsfars camponetInanc e/ Top vl ommricaorbanagar s ot sonnctd Uncamnactd el prprottypas e vt alowadscordn o e i spaiino,Connactal e RTE 511
) The require port prototype rp_LowBeamStatus o software component instance /EcuEstract/TopLevelC is not connected equire port prototypes are not allowed according o the Rte specification, Connect ol require ports RTE511
1 The equireper protatye o Fightignalsatos of software companent indtance/EcubtactTapLevelCompositon/Cammuni<atontnager net conected.Unconnectd reire pors prototypes are ot sflowed according 1 the Rt speciiation. Connet al redure s RIEST1
The require port prototype p.LeftSignalstatus of zoftware component instance /Ecubstract/ TopLevelC iz not connected equire port prototypes are not allowed according to the Rte specification. Connect al reguire po RIE 511
11 The fequie port prototype 1p_Enginestatus ofsoftware companentnstance /ECUESact TopLevelComposition/ CommunicationMansger 1ot connected. Unconnected requie port prototypes e not llowed according tothe e speifcation, Connect l requre pots RTE$11
i The require port prototype rp_SteeringStatus of software component instance /Ecubtract/TopLevelC s not connected, U ted require port prototypes are not llewed sccording to the Rte specification. Connect ll require port RTES11
i The require port profotype rp_outSonarC hsel of software component instance /Ecufxtract/ Topl evelComposition/SensAciOutputSonar s not connected. Unconnected require port prototypes are not allowed according to the Rte spec fication, Connect all require pars o RIES11
The require port prototype rp_outParkLights of saftware companent inztance /Ecubxtract/ TopLevelCampasition/ SensAct OutputLghts iz not cannected, Unconnected require port protatypes are not alowed accarding to the Rte specification, Connect all require portz RTE 511

Figure 5.16: Project Generation Error Log.

After verification and generation, the error log shows no error. Only a few warnings are
present, those not related to the newly added application SWC. So, the project is ready
to compile and generate a *.hex file.

tresos/plugins,
tresos/plugin:

conversion from unsi

£8/tresos/ demos/Aut.

BUILD mm:
puilding m

Figure 5.17: Project Compilation.

The project has been successfully compiled by the Tasking compiler, and the build was
done without any errors. The “TRICORE_TC38XQ_AtomicStraightDrive.hex” file,
which needs to be flashed in the ECU, has been generated into the following directory
of the project folder: “AtomicStraightDrive\output\bin\

74

5.3.3 Setting Up the Test Environment

Since the *.hex file is ready to be flashed, now need to prepare the hardware and
software setup to perform an ECU flash. First, need to power on the ECU used for the
car, Infenion KIT_A2G_TC387_3V3_TFT. An Infineon DAP miniWiggler is already
connected to the ECU through a DAP connector. Then, a connection between the
tester (PC) and the ECU was established. From the tester’s end, need to connect from
Infineon Memtool software to access the ECU. After connecting, the existing
configuration was erased from MemTool. Now, the newly generated *.hex file has been
imported, which was generated to the project directory:
“AtomicStraightDrive\output\bin\ .”

=

Fia FLASH/OTP - Mancey Device

]I'. \EB\esos\demos \AusoCore\3 8 2T C3M0 \autoam Diw

OxE0000000 - DEI00002 Open Fie
040002000 - uEI004TEF R
00005000 - 002535 Uneeloct AB
Asd Sel

Save As

Read

Operaton

success

Progress
OONADREANIANDRNENNRNOOONEARAD

Est | Help

Figure 5.18: Flashing Project into ECU.

After that, need to “Add Select” the components to be flashed into the ECU and
program those files. After the program is successful, then need to verify the flashing.
There will be a success message on successful verification in the result section. All
AUTOSAR components have been integrated into the target ECU of TUCminicar and
are now ready to test the functionalities. The CAN bus will be used to send messages
from the tester side. For this purpose, the Tiny-CAN II-XL Interface is connected to the
ECU by using a 9-pin connector on the ECU side and a USB connector to the tester
side (PC). For testing from the tester, the CAN message format below will be used for

the project testing:
Table 5.4: CAN Message Format.

Data
Can D
Id L | rp_inEngine| rp_inUs | rp_inUsr | rp_inUsr | rp_inUsrSect | Unu | Unu | Unu
- C | Control rSpeed Steering Distance | ionLength sed |sed | sed
20| 8 do d1 d2 d3 d4 ds | de | d7

75

CAN Message Details:

rp_inEngineControl (d0): Send engine control for car, O — engine off, 1 — engine one,
other value -invalid.

rp_inUsrSpeed (d1): Duty value for speed, 101 — 200: Forward, 100: Neutral, 00-99:
Reverse.

rp_inUsrSteering (d2): Duty value for steering angle, 200 - 101: Left direction, 100:
Neutral, 00 - 99: Right direction.

rp_inUsrDistance (d3): Number of sections the car wants to travel, 1,2, 3,....and so on.
rp_inUsrSectionLength (d4): Section length, each one atomic section, 1=200mm,
2=400mm, 3=600mm, ...and so on.

(d5-d7): Unused.

Two different batteries power the car: one for the control board and the other for the
motors. Now, the full hardware and software side is ready to test the car's functionality.

Figure 5.19: TUCminiCar Connected to the Tester.

5.4 System Test

System testing ensures that the components work smoothly and interact with each
other according to the developed logic. This is the main section for verifying the whole
developed system. The system test processes have been divided into three major
sections, which will be discussed in the following subsections: Unit Testing (5.4.1),
Integration Testing (5.4.2), and End-to-End Testing (5.4.3). In this chapter, test
processes will be described, and then there will be a chapter on the outcome results,
where the outcome results will be illustrated.

76

5.4.1 Unit Testing

The unit section focuses on validating each method implemented, that is, each
component within the SWC testing. The unit testing is basically for the different RPort
defined in the SWC, where need to check that the SWC is taking input for each defined
port. The functionality of the prototype SWC was already tested on the SIL in Chapter
(5.2) and now needs to be checked on the hardware. For unit testing, the criteria need
to be tested as per the below-

Engine Test: For engine testing, whether the input for controlling the engine is working
or not needs to be tested on three different test cases, and the criteria are mentioned

in the table below.
Table 5.5: Engine Unit Test Criteria.

Test Case

CAN Msg (uint8)

Expected Operation

1

0

Engine Off, Car is in neutral state, no other input should work

2

1

Engine On: Car is in neutral state, ready to take new inputs

3

any other (e.qg., 2)

Invalid engine control input, no operation

To test the engine status functionality, the below CAN messages are sent to the ECU
from the tester, and the output status result is presented in the result section (6.1.1).

T Tioy CAN Morit

o Oaton.
. d110 4100 ¢1 45 x00 x00 x00

500 kBit/s | CAN: Ok | RUN | Tiny-CAN connected

Message
o e o Oaten

500 kBt/s | CAN: Ok | RUN | Tiny-CAN connected

L ano 4100 41 45 x

Figure 5.20: CAN Message for the Engine Status Test.

Speed Test: For speed testing, the car needs to perform the three basic operations
mentioned in the table below. The duty cycle reference value for the speed is defined
in the “miniTUCar_BSW_v0.29 Project Documentation” document. [52]

Table 5.6: Speed Unit Test Criteria.

Test Case | CAN Msg (Duty Value) | Expected Operation
1 200 | Car should operate at full speed in forward direction
2 100 | Car should be in the Neutral state
3 000 | Car should operate at full speed in the reverse direction

77

To check speed tests within the car, Tiny CAN Monitor sends three different CAN
messages, as shown below. The test result is disclosed in the result section (6.1.1).

& & &
fle CAN Mscro Fiter Plugins Yiew Gptions Help Ble CAN Macro Fiter Plugine Yiew Options Help fle CAN Moo filer Plugn: View Options Help
= o L] 7 7] 4 ? =] a o @
Ir Losd Sove it Stat CANpeset | Setup New Load Save et St ChMreset | Setup New Ll Sme it @ CaNmer | Sewp
Macres Time Stamp Msg.-Type I Didod Macros Time-Stamp Msg-Type ld DLCDeta (4] Macros Time-Stamp Mg Type 1d DLG Dot per)
- Macre nam Macto name
Filter message] Fiter massages Hiter messages
indec | Time-Stamp MegType 1a <@ Index | Time-Stamp MsgType 1d nder Teme-Stamp Msg-Type 4 DLCDate (He
cs1 - - - cs - - - cs1
Messagy b Message:
b o o Dsten e W oo o oaten v . ovimn :
OOxoa |8 5 a1 unn d20 |lg10 [x00 |[x00 |[xo0 [0 Olwosa |z 5041 mn 420 10 |x00 x00 %00 5 olar .,mn 420 410 x00 <00 |x00 £
500 kEit/s | CAN: Ok | STOP | Tiny-CAN connectes d 500 Bt/ | CAPE Ok | STOP | Tiny-CAN connected 508 kB | CAE Ok [ST08 | Tiny-CAN conected

Figure 5.21: CAN Message for the Speed Test.

Steering Angle Test: For Steering Angle testing, the car needs to perform the three
basic operations mentioned in the table below. The duty cycle reference value for the

steering angle is defined in the “miniTUCar_BSW _v0.29 Project Documentation”
document.[52]

Table 5.7: Steering Angle Unit Test Criteria.

Test Case | CAN Msg (Duty Value) | Expected Operation
1 200 | The steering Angle should rotate Max-left position
2 100 | Steering should be in a Neutral position
3 0 | The steering Angle should rotate Max-right position

For the steering angle tests within the car, Tiny CAN Monitor sends three different CAN
messages, as shown below. The test result is presented in the result section (6.1.1).

& & &
Fle CAN Moco fiter Plugins ¥ Fle CAN Mscro Fiter Blugins Yiew Options Help Ele CAN Msco Fiter Plugine Vew Options Help
= =] =] 4 a9 7 =] a i
Ne Lo Sove less Sae Exit St CAMreet | Setup Mew loesd Sme = St CaNreset | Sewp
Macr Time-stamp Msg-Type id DLCDs] - Macros Tame-Stamp Msg.-Type 14 DLCDets (Hes)
Macro name Macro name
Fiter message] Fiter message] Filler messages
% Index Time-Stamp. Msg.-Type Id @ Index. Time-Stamp Msg.-Type |id Index Time-Stamp Mg Type id DLCDats (Hex)
s 732720281.38% STD = i = = - DS
Message: Message Message:
o e o o Outen T pmw e b o Outen v e e ome e oum v
O Oxosa |18 5llat |d110 zn d10 x00 (x00 (x00 |01 Oljxosa |8 3lla1 4110 dlﬁ 410 |x00 |x00 woo ||O Olxosa |18 Zlla1 |am0 azn d10 <00 |x00 %00 =
500 kBi/s | CAN: Ervor warning | RUN | Tiny-CAN connected 500 ks | CAM: Erer warming | STOP | Tiny-CAN connected 500 kBi/s | CAN: Emor waming | STOP | iy

Figure 5.22: CAN Message for the Steering Angle.

Obstacle Detection Test: For obstacle detection unit test, need to check whether the
sensor data is being read by the SWC successfully. It is also need to test the range of

the sensor area, which is currently set to 200mm in both the forward and reverse
directions.

Target Distance Input Test: For the distance input test, it is required to take both
input-related distances, rp_inUsrDistance defines how many atomic sections want to

78

drive, and rp_inUsrSectionLength provides data about section length. Each atomic
section length is 200mm, which is calculated in chapter (2.3). For driving one section
of 1000mm (1 meter), need to input rp_inUsrSectionLength as 5, which provides
200mmx5 = 1000mm. Or it can be done as five sections from rp_inUsrDistance, want
to drive one atomic section (200mm) in each section.

&
File CAN Mscro Filter Plugins View Options Help
O =] = ! al @ 7]
New Load Sav Exit Stop | CAMreset | Setup
Macros Time-Stamp Msg.-Type |Id DLC Dsta (Hex) 4
Macro name 936.309 SID 072 & FEF FF FF FF FF FF FF FF
936.308 STD 073 & FF FF FF FF FF FF FF FF
936.309 5TD 074 & FF FF FF FF FF FF FF FF
936.310 STD 075 & FF FF FF FF FF FF FF FF
936.408 STD 0€B 8 64 4B €4 00 00 249 00 03
936.408 STD 060 8 31 34 SC FF 04 FF FF FF
936.408 STD 061 8 20 36 FF FF FF FF FF FF
936.408 STD o&cC 8 00 00 00 00 00 00 00 00
936.409 5TD 071 & FF FF FF FF FF FF FF FF
936.409% STD a72 8 FF FF FF FF FF FF FF FF
936.409 5TD 073 & FF FF FF FF FF FF FF FF
936.409% STD a74 8 FF FF FF FF FF FF FF FF
936.410 STD 075 & FF FF FF FF FF FF FF FF
Filter messages
& L] Index Time-Stamp Msg.-Type Id DL Data (Hex)
Transmit Past
b Message
kTR e e e 0 Daten 7
O Ofxosa |[|e 5 [a1 |[a=00 ||a100 xum 00 |00 P Senden
500 kBit/s | CAM: Error warnin 9 | RUN | Tiny-CAN connected

Figure 5.23: Target Distance Input CAN Message.

5.4.2 Integration Test

After completing the unit test, it is time to begin the integration test. This test is an
enhanced method to verify the system since it focuses on the integration between
different software components (SWCs) and RTE. For the thesis topic, need to check
how the other SWCs are interacting with the application SWC developed within the
architecture. For the integration test, the following criteria need to be tested:

Travel Distance Test: In the unit test section, the input for distance input data was
measured and found to be accurate as per input data validation. Now, it is necessary
to test how the SWC named “SensActOutputChassis,” which controls the DC motor
unit, reacts. For this test, have to check the cumulative distance covered by the
TUCminiCar in response to the target distance. The travel distance is checked for

DLC Dats (Hex

Filter messages.
Index Time-Stamp Msg.-Type Id DLCData (Hex)
Message
kTR BF W DG o Osten 7
O Oxosa [//8 5/la1 da110 a200 a2 a5 |Ix00 |x00 |lx00 e

+ I/500 kBit/s | CAN: Ok | RUN | Tiny-CAN connected

Figure 5.24: CAN Message and Memory Read for Travel Distance Test.

79

having five atomic sections (5 x 200mm = 1000mm) and two sections of road (2 x
1000mm), so in total, 2 meters of path length. For this purpose, a corresponding CAN
message was sent, and distance was read from the memory address assigned as the
global variable “float32 cumulativeDistance”. Test results will be analyzed later in the
result section (6.1.2).

Straight Driving Test: To verify the car's straight-driving capabilities, the steering
angle needs to be neutral for the traveled distances. Like the DC motor, the servo
motor for steering control is also part of the “SensActOutputChassis” SWC, which
needs to test how it reacts with the interacting “StraightDriveSWC” application SWC.
To test this, a CAN message was sent to operate the car for 40 meters, with a speed
duty cycle of 110, and keeping the steering angle in a neutral position as per the CAN
message pictured below. After traveling the whole distance, steering angle data was

File CAN Macro Fiiter Plugins View Options Help

=] !] [Fa

New Load Save Exit Start CANreset | Setup

Macros Time-Stamp Msg.-Type 1d DLCData (Hex)

Filter messages
& ® Index |Time-Stamp Msg.-Type|Id DLC Data (Hex)
Transmit ~ Paste cs1 - - - -

b Message:
RTR EF oLc: o Daten 7
O OhxosA |18 5lja1 4110 4100 (420 ||d10 |00 |x00 ||x00

~ /500 kBit/s | CAN: Error waming | STOP | Tiny-CAN connected

Figure 5.25: CAN Message and Memory Read for Straight Drive Test.

read from the memory address, and the result will be analyzed in the result section
(6.1.2).

Braking Mechanism Test: The braking mechanism should work for the two main
arguments: Travel Distance Reached and Obstacle Detected. The both cases are
described below-

e Braking due to Target Distance Reached
The automatic braking should work when the target distance is reached in both forward
and reverse directions. The Can messages were sent to test both directions as per
below, and the result has been analyzed in the result section (6.1.2).

Forward Direction: In the forward direction, the braking mechanism was tested for five
sections with five atomic lengths, which is 5000 mm (5 meters) in total distance. The
speed duty value was 105, which is equivalent to 180mm/s. After the car reached the
travel distance, then the cumulative distance data was read from the memory address.

80

11 CAUsersiAse-Lab\DesktophAurbDebugger.exe

x W&

Fle CAN Macro Fiter Plugins View Options Help

g5
957.010 STD

500 kBit/s | CAMN: Error waming | STOP | Tiny-CAN connected

B Lol 7
New Load Save Exit Start CAN reset Setup
Macros Time-Stamp Msg.-Type |1d DLOData (Hex) Q
Macro name 956.909 STD 072 8 FF FF FF FF FF FF FF FF
956.909 STD 073 8 FF FF FF FF FF FF FF FF
95, 110 STD 074 8 FF FF FF FF EF FF FF FF
7% FF FF FF FF FF FF FF FF
06B 64 4B 64 00 00 22 00 03
060 32 34 9C FF 02 FF FF FF

Filter messages
& ™ Index |Time-Stamp Msg-Type Id DLAData (Hex)

Transmit Paste

b Message:

T T Daten 7

O Oxosa |8 5lat @105 100 [a5 a5 ko0 [xo0 |e00 E=rfe

8 37 34 FF FF EF FF FF FF
06C § 00 00 00 00 00 00 00 00
071 8 FEF FF FF FF FF FF FF FF

072 8 FEF FE FF FF FF FF FF FF
073 8 FEF FF FF FF FF FF FF FF
07¢ 8 FEF FE FF FF FF FF FF FF

075 8 FEF FF FF FF FF FF FF FF

Figure 5.26: CAN Message and Memory Read for Forward Drive Braking.

Reverse Direction: In the reverse direction, the braking mechanism was also tested for
five sections with five atomic lengths, which is 5000 mm (5 meters) in total distance.
The speed duty value was 99, which is equivalent to 140mm/s. After braking was
activated, traveled distance data was checked from ECU memory.

command: read Ox

File CAN Macro Filter Plugins View Options Help
(=] =] L @ 7S
New Laad Save Exit Start CANreset | Setup
Macras Time-Stamp Msg.-Type 1d DLCData (Hex) "
Macro name 5 072 FF FF FF FF FF FF
073 FF FF FF FF FF FF
074 FF FF FE FF FF FE
FF FF FF FF FF FF

Index Time:Stamp Msg
Transmit Paste
b Meszage:

RIR O i oG o Daten

[Cljxosa |[|8 lld1 |d99 [d100 |45 ||d5 |[x00

500 kBit/s | CAN: Error warning | STOP | Tiny-CAN connected

&4

FF FF FF FF FF FF
FF FF FF FF FF FF

073 8 " FF FF FF FF FF FF
074 8 FF FF FF FF FF FF FF FF
075 8 EF FF FF FF FF FE FE FE

Filter messages
Type |1d DLC Data (Hex)

Senden

Figure 5.27: CAN Message and Memory Read for Reverse Drive Braking.

e Braking due to Obstacle Detected
For obstacle detection, the braking mechanism also needs to be validated for both
forward and reverse directions since both side sonar sensors are activated.

Forward Direction: In the forward direction, the braking mechanism was tested for a
speed duty value of 150, which is equivalent to 630mm/s. The CAN message was sent

7 CAUsers\Ase-LabA\Desktop\AuriDebugger.exe

X &
Fle CAN Macro Fiter Plugine View Options Help
B a 7

New load Save Bit St CANreset | Setup

Macros Time-Stamp Msg-Type1d DLC Data (Hex

Macro name

Fiter messages

& @ Index | Time-Stamp Msg-Type1d DLA Data (Hed
Transmit Paste cs1 - - - - -

b Message:
MR e D o Daten :
O Ojxosa |12 5 a1 |a1s0 |a100 |20 [la10 |x00 [x00 |x00 Senden
500 kEit/s | CAN: Error passiv | STOP | Tiny-CAN connected

Figure 5.28: CAN Message for Forward Braking Obstacle Detection.

81

accordingly, and the memory read value was checked to confirm speed during obstacle
detection. The result analysis is in the result chapter (6.1.2).

Reverse Direction: In the reverse direction, the obstacle detection and braking
mechanism was tested for 64 duty cycles of speed, which is equivalent to 490 mm/s,
and the following CAN message was sent accordingly. After the obstacle is detected

Macro Fiter Plugins View Options Help

=] a 7
Load Save Exit Start CAN reset Setup

aaaaa Time-Stamp

aaaaaaaa

Msg.-Type |Id DL Data (Hex)

Filter messages
Index Time-Stamp Msg.-Type |Id

DL Data (Hex)
ransmit Paste cs1 - -

Dater

e s 0 n 7
x054 |||& j/ldl |d64 |d100 d20 |d10 |x00 |x00 |x00

~ Jll[500 kBit/s | CAN: Error waming | STOP | Tiny-CAN connected

Figure 5.29: CAN Message for Forward Reverse Obstacle Detection.

in the car's reverse direction, speed data is checked in memory to verify. The result
has been discussed in the result section (6.1.2).

Auditory Actuator Test: The Beeper is installed in the TUCminiCar, an auditory
actuator that is part of the “SensActOutputBeeper” SWC. The Beeper is integrated into
the application SWC “StraightDriveSWC” for obstacle detection. Now, need to verify
whether the Beeper is activated after detecting an object. For this purpose, CAN
messages are sent to drive forward and backward and tested by placing an object in
front of the car. The result has been disclosed in the result chapter (6.1.2).

o

Macro Filter Plugins View Options Help File CAN Macro

B a % =]

New Load Save Exit Start CAN reset Setup New Load

Fiter Plugins View Options Help

Ll &

Exit Stat CANreset | Seiup

‘m

Time-Stamp Msg.-Type Id DLOData (Hex) Macros Time-Stamp Msg.-Type Id DLC Data (Hex)

& 4 Index
Transmit Paste C51
9 Message:
TR B la: bice 0
0 Cjx0sa |8 5llal
500 kBit/s | CAN: Error waming | STOP | Tiny-CAN connected

Time-Stamp

Daten
d110 4100 410 | 410 |x00

Msg.-Type Id

Filter messages
DLC Data (Hex)

7
%00 ||x 00

eIl O jxosa |18 5lla1

& Y Index

Transmit Paste cs1

b Message:
TR EFF I oic:
d90 |d100 |d

500 kBit/s | CAN: Ok | STOP | Tiny-CAN connec ted

Time-Stamp

Filter messages
Msg-Type|Id

Daten 7
20 |d10 |x00 |[x00 |00

DLQ Data (Hex)

Figure 5.30: CAN Message to Test Beeper.

Visual Actuator Test: Different visual actuators are integrated within the
TUCminiCar. All the lights are controlled by the “SensorActuatorSwComponentType”
SWC “SensActOutputLights.” All the required lights are integrated into the application
SWC “StraightDriveSWC.” To check the functionalities of these lights, different CAN

82

messages are sent as below, and the test result has been analyzed in the result
section (6.1.2)

Table 5.8: CAN Message for Visual Actuator Test.

Criteria Test Case Effecting CAN Msg Input CAN Msg (uint8)
1 rp_inUsrSteering (d2) 200
LeftSignal 2 rp_inUsrSteering (d2) 100
3 rp_inUsrSteering (d2) 0
1 rp_inUsrSteering (d2) 200
RightSignal 2 rp_inUsrSteering (d2) 100
3 rp_inUsrSteering (d2) 0
i 1 rp_inUsrSpeed (d1) 100
ReverseLights -
2 rp_inUsrSpeed (d1) 99
i 1 rp_inUsrSpeed (d1) 150
HighBeam -
2 rp_inUsrSpeed (d1) 140
1 rp_inUsrSpeed (d1) 100
LowBeam -
2 rp_inUsrSpeed (d1) 110
1 inUsrSpeed (d1 110
BrakeLights rp—!n srSpeed (d1) ,
2 rp_inUsrSpeed (d1) Brake Activated

The above CAN message table is based on the CAN message format already
explained (Table 5.4) in the chapter (5.3.3). The engine status must be on (1), and
other fields are subject to change for each visual actuator testing. The result analysis
has been placed in the result section (6.1.2).

5.4.3 End-to-End (E2E) Testing

The End-to-End (E2E) testing is the overall testing or the acceptance test for the
project. The main project goal needs to be validated in this test, which is validation for
different atomic straight-driving scenarios. Depending on different speeds, distances,
and obstacle detection, for each criterion, this test was conducted for five test cases,
and those are described below-

Scenario 1: Forward Drive - Fixed Speed with Varying Distance Coverage

Five different CAN messages were sent for fixed-speed duty cycle 105, with target
distances of 1m, 2m, 3m, 4m, and 5m. The CAN message format is as per the defined
standard mentioned in chapter (5.3.3), where dO position for engineControl, d1 is for
Speed, d2 is for steeringControl, d3 is for numberOfSection, d4 is for sectionLength,
and d5-7 are unused. Engine status is always “On” here, and the steering duty cycle
is kept at “100” to maintain a straight line. The target distance was fixed as five atomic
lengths (5 x 200mm = 1000 mm) by varying the number of sections (1/2/3/4/5), and
CAN messages were sent as per the table below. (Note: All the sent messages are in
decimal format)

83

Table 5.9: CAN Message for Fixed Speed, Target Distance Change.

Test Case Can Id DLC do dl d2 d3 d4 d5 deé d7
1 Xx05A 8 1 105 100 1 5 0 0 0
2 X05A 8 1 105 100 2 5 0 0 0
3 X05A 8 1 105 100 3 5 0 0 0
4 X05A 8 1 105 100 4 5 0 0 0
5 Xx05A 8 1 105 100 5 5 0 0 0

The test result observation has been made after checking the memory address value
for the cumulative distance covered for each test case, which is presented in the result
section (6.1.3).

Scenario 2: Forward Drive - Fixed Speed, Different Atomic Sections

In the previous test scenario (1), it was observed that as the target distance decreases,
accuracy also decreases. To analyze this further, path length decreases more in this
test section, keeping the speed duty cycle the same (105) as before. CAN messages
were sent for having the same speed but different atomic sections. Engine status
remains “On” here always, and the steering duty cycle is kept at “100” to maintain a
straight line. The target distance was varied as one atomic path length each (1 x
200mm = 200 mm, 2 x 200mm = 400 mm, 3 x 200mm = 600 mm, 4 x 200mm = 800
mm, 5 x 200mm = 1000 mm,) by keeping the of sections fixed (1), and CAN messages
were sent as per the table below.

Table 5.10: CAN Message for Fixed Speed, Atomic Section Length.

Test Case Can Id DLC do dl d2 d3 d4 d5 de6 d7
1 x05A 8 1 105 100 1 1 0 0 0
2 x05A 8 1 105 100 1 2 0 0 0
3 X05A 8 1 105 100 1 3 0 0 0
4 X05A 8 1 105 100 1 4 0 0 0
5 x05A 8 1 105 100 1 5 0 0 0

The test result is observed in the result section (6.1.3)

Scenario 3: Reverse Drive - Fixed Target Distance, Different Speed

Likewise, for the forward speed, need to analyze the reverse direction as well. For this
purpose, CAN messages were sent for a fixed atomic target distance, but this time,
they were checked for different speed values. The target distance was fixed as five
atomic path lengths (5 x 200mm = 1000 mm) and the number of sections was fixed
(1), and CAN messages were sent as per the table below.

84

Table 5.11: CAN Message for Fixed Atomic Distance, Different Speed in Reverse.

Test Case Can Id DLC do dl d2 d3 d4 d5 deé d7
1 X05A 8 1 90 100 1 5 0 0 0
2 X05A 8 1 80 100 1 5 0 0 0
3 X05A 8 1 70 100 1 5 0 0 0
4 X05A 8 1 60 100 1 5 0 0 0
5 X05A 8 1 50 100 1 5 0 0 0

The test result is presented in the result section (6.1.3)

Scenario 4: Expected speed Vs. Actual Speed

From the last test, it is observed that as speed increases, accuracy is lower. To analyze
this further, three different speed data were selected (duty cycle—110, 150, 200), and
a memory read was performed ten different times to check fluctuation in actual speed.
The sample CAN message was sent to test the car's speed for three different duty
cycles, as shown below. Since the observation was made with respect to speed,
distance was not counted this time.

Table 5.12: CAN Message for Different Speed.

Test Case | Canlid | DLC |dO | d1 | d2 | d3 | d4 | d5 | d6 | d7 Remarks
1 X05A 8 1 |110(100 10|10 | O 0 0 | 10 Times memory read
2 X05A 8 1 150|100 20|10 | O 0 0 | 10 Times memory read
3 X05A 8 1 /200 (1002010 | O 0 0 | 10 Times memory read

The memory read was done ten times for each CAN message, and the test result is
presented in the result section (6.1.3)

85

6 Results and Evaluation

This chapter presents the overall research project outcome by presenting the results
of different test cases and evaluating them. The chapter is divided into two main sub-
chapters: one is for the Result (6.1), and the other is for the Evaluation (6.2) of the
outcome results.

6.1 Result

The result section presents all the result outcomes from the different test scenarios.
Based on the System Test (5.4) subchapter, this chapter reflects all the results from
those test cases. Like the test section, the result section is also divided into three main
sub-sections: Unit Test Result (6.1.1), Integration Test Result (6.1.2), and End-to-End
(E2E) Test result (6.1.3).

6.1.1 Unit Test Result

In this result section, the results from the sub-section (5.4.1) are described. Different
functionalities were tested for unit tests, like Engine, Speed, Steering Angle, Obstacle
Detection, and Target Distance Input. The result for all the combined sections is

illustrated in the below table-
Table 6.1: Unit Test Result.

Criteria JE= CA'.\I i Status Validation Result
Case (uint8)

1 0 Engine Off Passed

Engine Test 2 1 Engine On Passed

3 2 No Effect on Car Passed

1 200 Car traveled forward direction Passed

Speed Test 2 100 Car Stopped/No Movement Passed

3 0 Car traveled reverse direction Passed

) 1 200 Steering Angle Rotate full left Passed

Ste?rrér;%%ngle 2 100 Car directed straight Passed

3 0 Steering Angle Rotate full right Passed

Obstacle 1 n/a Obstacle detected within 200mm Passed

Detection Testing distance

Target Distance 1 d3:001. d4:005 Target distance read from memory, Passed

Input Test U 1000mm verified

Unit Test Result Summary: All other values, except target distance input, are
checked by visual inspection from the car, and for the target distance, input data
verified from the memory address (0x70002f0c) and found as below:

“IP 0x80005184 State Running Enter command: read 0x70002f0c “(memory address)”

Read value: 0x447A0000”

86

Here, in the memory location, the HEX value is written, Hex (0x447A0000) = Float
value (1000.0), which is a 1000mm target distance.

6.1.2 Integration Test Result
Integration test results are the representation of different test cases in the sub-chapter
(5.4.2). Different functionalities that are dependent on other SWCs were tested, and
the results are illustrated below-

Travel Distance Test Result: For the travel distance test, a CAN message was sent
for traveling 2 meters (2000 mm) distance. After analyzing, below data found from
memory location:

Variable for checking target distance: float32 targetDistance,

Variable for checking traveled distance: float32 cumulativeDistance,

Memory Address for targetDistance: 0x70002f0c, read value Hex (0x44FA0000),
Memory Address for cumulativeDistance: 0x70002efc, read value Hex (0x44FC39C1).

Table 6.2: Travel Distance Test Result.

Target Traveled
Speed Expected : g Distance in mm Travel Accuracy
; Distance mm Test o .
Duty Speed in (Converted Deviation Obtained
(Converted Result
Value mm/s Float Value (mm) (%)
Float Value)
from Hex)
110 230 mm/s 2000 mm 2017.8 mm Passed 17.8 mm 99.11

The result above shows that the car traveled 17.8 mm more than the target distance.
The accuracy of the travel distance test result is pretty much higher, but still need to
check further data to analyze it more during the E2E test.

Straight Driving Test: For the straight driving test, a CAN message was sent for
traveling 40 meters (40000 mm) distance straight path. After analyzing, the below data

was found for the steering angle from the memory location:

Variable for checking steering angle: float32 globalCarSteeringValue,

Memory Address for globalCarSteeringValue: 0x70002f08, read value Hex
(Ox3FC19400).
Table 6.3: Straight Drive Test Result.
CAN Msg Expected S PO Actual SteeringPot in Voltage | Accuracy
(Steering . value for Test - :
D Steering . mV (Converted Float Deviation | Obtained
uty Angle NETED (i Value from Hex) Resf (mV) (%)
Value) 9 mV)
100 0 deg 1500 mV 1.5123 vV =1512.3 mV | Passed 12.3 mVv 99.18

87

The result above shows that, after traveling 40 meters of distance, the steering
potentiometer voltage was found to be 12.3 mV more than the required voltage. The
accuracy (99.18 %) for the steering angle of the straight drive test result is pretty much
higher, but it still needs to be analyzed further during the E2E test. (The standard for
the steering angle to maintain a neutral position is to have 1.5 volts or 1500 mV of
SteeringPot value, which is found in the miniTUCar_ BSW_v0.29 Project
Documentation). [52]

Braking Mechanism Test Result: The braking mechanism was tested for two main
criteria, and the results are illustrated below-

e Braking due to Target Distance Reached Result
CAN messages were sent in both the forward and reverse directions to travel 5000
mm at 105 and 099 duty cycles value of speed, respectively. The car was stopped after
braking was activated when the target distance was covered. The more detailed data
has been represented below-

Variable for checking target distance: float32 targetDistance,

Variable for checking traveled distance: float32 cumulativeDistance,

Memory Address for targetDistance: 0x70002f0c, read value Hex (0x459C4000),
Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Forward:
0x459D04A8, Reverse: 0x459DF5A1).

Table 6.4: Braking on Target Distance Covered Result.

Traveled
Ll Distance in
CAN Msg Expected | Distance mm mm Test Travel Accuracy
(Speed Duty Speed in (Converted Deviation | Obtained
(Converted Result
Value) mm/s Float Value (mm) (%)
Float Value
from Hex)
from Hex)
105 (Forward) | 180 mm/s 5000 mm 5024.58 mm | Passed | 24.58 mm 99.5084
099 (Reverse) | 140 mm/s 5000 mm 5054.70 mm | Passed | 54.70 mm 98.906

The above result table shows that the car stopped automatically after reaching the
target distance in both forward and reverse directions. In both cases, accuracy is high,
but for comparison, the reverse direction has less accuracy (98.9%) compared to the
forward direction (99.5%). In the E2E test, more data will be analyzed for further
analysis.

88

e Braking due to Obstacle Detected
For obstacle detection, both forward and reverse directions were checked. CAN
messages were sent in both the forward and reverse directions to travel at 150 and
064 duty cycles value of speed, which is equivalent to 630 mm/s and 490 mm/s,
respectively. The car was stopped after braking was activated when the obstacle was
detected, and speed was neutralized. The more detailed data has been represented
below-

Variable for checking travel speed: float32 globalCarSpeedValue,

Memory Address for globalCarSpeedValue: 0x70002f04, read value Hex initial
(Forward: 0x441B58BD, Reverse: 0x43F3BA8E), read value Hex after Obstacle
detection (Forward: 0x00000000, Reverse: 0x00000000)

Table 6.5: Braking on Obstacle Detection Result.

Initial Speed Speed after
CAN Msg Expected P Obstacle Accuracy
; mm/s (Converted ; Test .
(Speed Duty Speed in Detection Obtained
Float Value from Result
Value) mm/s H (Converted Float (%)
ex)
Value from Hex)
150 (Forward) 630 mm/s 621.38 mm/s 0 mm/s Passed 100
064 (Reverse) 490 mm/s 487.45 mm/s 0 mm/s Passed 100

The above data, which reads from the memory address for speed after the obstacle
detection, shows that the speed is zero both in the forward and reverse direction, which
means the car stopped at obstacle detection. Although the obstacle detection test
result accuracy is 100%, there is some deviation in actual car speed, which needs to
be analyzed with more data in the E2E test.

Auditory Actuator Test Result: To test the beeper, the car was accelerated in both
forward and reverse directions. Then, an obstacle was placed in both directions, and
the result is illustrated in the table below.

Table 6.6: Auditory Actuator Test Result.

Expected Beep
Test SR Ikt Expect(_ed Sound (Car to Beeper Test Accu.racy
(Speed Duty Speed in Obtained
Case Obstacle Status Result
Value) mm/s . (%)
Distance, mm)
1 110 (Forward) 230 mm/s 200mm Yes Passed 100
2 090 (Reverse) 230 mm/s 200mm Yes Passed 100

The above table shows that the obstacle was detected during both forward and reverse
driving, and in both cases, the beeper was activated.

89

Visual Actuator Test Result: For visual actuators testing, in response to different
CAN messages, below visual actuators activated pictures are illustrated. Later on, the
result table will also include the following:

Figure 6.2: Brake Light, Reverse Light, High Beam and Low Beam.

The result table is below based on the test conducted on all the above visual actuators.

Table 6.7: Visual Actuator Test Result.

. Accuracy
Criteria Test | Effecting CAN Msg CAI_\I Msg Expected Result | Obtained

Case Input (uint8) Output (%)

1 rp_inUsrSteering (d2) 200 Turned on | Passed 100

LeftSignal 2 rp_inUsrSteering (d2) 100 Off Passed 100

3 rp_inUsrSteering (d2) 0 Off Passed 100

1 rp_inUsrSteering (d2) 200 Off Passed 100

RightSignal 2 rp_inUsrSteering (d2) 100 Off Passed 100

3 rp_inUsrSteering (d2) 0 Turned on | Passed 100

) 1 rp_inUsrSpeed (d1) 100 Off Passed 100
ReverseLights X

2 rp_inUsrSpeed (d1) 99 Turned on | Passed 100

) 1 rp_inUsrSpeed (d1) 150 Turned on | Passed 100
HighBeam X

2 rp_inUsrSpeed (d1) 140 Off Passed 100

1 rp_inUsrSpeed (d1) 100 Off Passed 100
LowBeam X

2 rp_inUsrSpeed (d1) 110 Turned on | Passed 100

_ 1 rp_inUsrSpeed (d1) 110 Off Passed 100

BrakeLights - -
2 rp_inUsrSpeed (d1) | Braking (100) | Turned on | Passed 100

As per the above result table, all the criteria for light testing are fulfilled. There is no
CAN message for the brake lights; these lights will be activated once braking is
activated, either for an obstacle or for the target distance traveled, and the duty cycle

is set to 100 automatically.
90

6.1.3 End-to-End (E2E) Test Result
End-to-end (E2E) test results represent the overall test, which was done in the sub-
chapter (5.4.3). Results for different test cases are presented below-

Scenario 1: Forward Drive - Fixed Speed with Varying Distance Coverage
(Result)

For the different CAN messages, different data are extracted from the ECU's memory
address and represented below.

Memory Address for targetDistance: 0x70002f0c, read value Hex (Test case: one -
0x447A0000, two - O0x44FA0000, three - 0x453B8000, four - 0x457A0000, five -
0x459C4000),

Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Test case: one
- 0x44809DCF, two - Ox44FDFE7A, three - 0x453D4314, four - 0x457B6445, five -

0x459D04A8).
Table 6.8: Test Result for Fixed Speed, Different Target Distance.

Target Traveled
CAN Expected | Distance mm Distance in Travel Accuracy
Test Msg : mm Test o .
Speed in (Converted Deviation | Obtained
Case | (Speed (Converted Result
D mm/s Float Value (mm) (%)
uty) Float Value
from Hex)
from Hex)
1 105 180 1000 1028.93 Passed 28.93 97.1
2 105 180 2000 2031.95 Passed 31.95 98.4
3 105 180 3000 3028.19 Passed 28.19 99.06
4 105 180 4000 4022.26 Passed 22.26 99.44
5 105 180 5000 5024.58 Passed 24.58 99.5

After analyzing different target distances for the same speed, it is found that accuracy
is still very good, but more car travels have more accuracy than less distance covered.

Scenario 2: Forward Drive - Fixed Speed, Different Atomic Sections (Result)
For testing the different atomic sections, different CAN messages were sent, and
different data were extracted from the ECU's memory address, which is represented
below.

Memory Address for targetDistance: 0x70002f0c, read value Hex (Test case: one -
0x43480000, two - 0x43C80000, three - 0x44160000, four - 0x44480000, five -
0x447A0000),
Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Test case: one
- 0x4366C390, two - 0x43D3B284, three - 0x441E8185, four - 0x444EF54B, five -
0x44809DCF).

91

Table 6.9: Test Result for Fixed Speed, Different Atomic Section Length.

Target Traveled
CAN . 9 Distance in
Expected | Distance mm Travel Accuracy
Test Msg ; mm Test M X
Speed in (Converted Deviation | Obtained
Case | (Speed (Converted Result
mm/s Float Value (mm) (%)
Duty) from Hex) Float Value
from Hex)
1 105 180 200 230.76 Passed 30.76 84.62
2 105 180 400 423.39 Passed 23.39 94.15
3 105 180 600 634.02 Passed 34.02 94.33
4 105 180 800 827.83 Passed 27.83 96.52
5 105 180 1000 1028.93 Passed 28.93 97.1

After analyzing the above table, it is clear that the less distance the car needs to travel
for each message, the less accuracy is. However, it is observed that the amount of
deviation added to each test case is almost the same since the smaller amount has a
bigger effect on the percentage calculation, thus having less accuracy for the smallest
atomic section length (200 mm), which is a really small amount of traveling distance
but still having 84.62% of accuracy.

Scenario 3: Reverse Drive - Fixed Target Distance, Different Speed (Result)

As for forward travel, different CAN messages were also sent for reverse travel, and
the corresponding data are extracted from the ECU's memory address and
represented below.

Memory Address for targetDistance: 0x70002f0c, read value Hex (Test case: one -
0x447A0000, two - 0x447A0000, three - 0x447A0000, four - 0x447A0000, five -
0x447A0000),
Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Test case: one
- 0x44878C12, two - 0x4484820B, three - 0x4487CC74, four - 0x44902CO0A, five -
0x449F68B6).

Table 6.10: Test Result for Fixed Atomic Distance, Different Speed in Reverse.

Target Traveled
CAN . 9 Distance in
Expected | Distance mm Travel Accuracy
Test Msg " mm Test - .
Speed in (Converted Deviation | Obtained
Case | (Speed (Converted Result
mm/s Float Value (mm) (%)
Duty) Float Value
from Hex)
from Hex)
1 90 230 1000 1084.37 Passed 84.37 91.563
2 80 330 1000 1060.06 Passed 60.06 93.994
3 70 430 1000 1086.38 Passed 86.38 91.362
4 60 530 1000 1153.37 Passed 153.37 84.663
5 50 630 1000 1275.27 Passed 275.27 72.473

92

From the last result table, it is observed that, due to the increase in speed, the deviation
is much higher, so the accuracy. It can be pointed out that the faster the car's travel
speed, the more motion force will be added to the travel direction. Thus, accuracy for
lower speeds will have the advantage over higher speeds. To analyze the speed
change more, need to check the expected speed as per the guideline and the actual
speed.

Scenario 4: Expected speed Vs. Actual Speed (Result)

Since it is already observed, an increase in the speed has a lower accuracy. So, in this
result section, different speed data will be analyzed based on the speed mapping data
used for algorithm implementation. “The speed mapping data was stated in the
TUCminiCar documentation.” [52] The CAN messages were sent to test for three
different speeds, and memory reading was performed 10 times each. After that, data

were extracted from the ECU's memory address, which is represented below.

For the speed, there is a global variable declared, float32 globalCarSpeedValue
Memory Address for globalCarSpeedValue: 0x70002f04; read the value in Hex format.

110 Duty Cycle (230 mm/s):

Table 6.11: Memory Read for 110 Duty Cycle Speed.

CAN ActualSpeed in
Test Msg Expectgd Memory Read mm/s (Converted _Speed Average
Speed in | Value, Speed Difference S
Case (Speed Float Value from Deviation
mm/s (Hex) (mm/s)
Duty) Hex)
1 110 230 | Ox436BFF94 235.998352 5.998352
2 110 230 | Ox436EAEQE 238.6799 8.6799
3 110 230 | Ox436AEC7B 234.923752 4.923752
4 110 230 | 0x4368319C 232.193787 2.193787
5 110 230 | Ox436B81FA 235.507721 5.507721 5 3805306
6 110 230 | Ox436E51B1 238.3191 8.3191
7 110 230 | 0x43678ADO0O 231.542236 1.542236
8 110 230 | Ox436AF209 234.94545 4.94545
9 110 230 | Ox436C56BA 236.338776 6.338776
10 110 230 | Ox436B5B32 235.356232 5.356232

93

150 Duty Cycle (630 mm/s):
Table 6.12: Memory Read for 150 Duty Cycle Speed.

CAN ActualSpeed
Test Ms Expected | Memory Read in mm/s Speed Average
9 Speed in Value, Speed (Converted Difference rag
Case (Speed Deviation
mm/s (Hex) Float Value (mm/s)
Duty)
from Hex)
1 150 630 | Ox441F19B9 636.4019 6.4019
2 150 630 | 0x441D2B78 628.6792 1.3208
3 150 630 | 0x441CF942 627.8947 2.105347
4 150 630 | 0x44222CCB 648.6999 18.6999
5 150 630 | Ox441AD8AF 619.3798 10.6202 8.466777
6 150 630 | 0x441DB8D6 630.8881 0.888062 '
7 150 630 | Ox441A4674 617.1008 12.8992
8 150 630 | 0x441DB296 630.7904 0.7904
9 150 630 | Ox442184ED 646.077 16.07697
10 150 630 | Ox4419C8A4 615.135 14.865
200 Duty Cycle (1130 mm/s):
Table 6.13: Memory Read for 200 Duty Cycle Speed.
CAN Actual Speed
Test Ms Expected Memory Read in mm/s Speed Average
g Speed in Value, Speed (Converted Difference -rag
Case | (Speed Deviation
D mm/s (Hex) Float Value (mm/s)
uty)
from Hex)
1 200 1130 | 0x4488657A 1091.17114 38.82886
2 200 1130 | 0x448986CC 1100.2124 29.7876
3 200 1130 | 0x448997BB 1100.74158 29.25842
4 200 1130 | 0x4489865D 1100.19885 29.80115
5 200 1130 | Ox4489EBEE 1103.3728 26.6272 51562415
6 200 1130 | 0x448B1249 1112.57141 17.42859
7 200 1130 | 0x448B42B3 1114.08435 15.91565
8 200 1130 | Ox448CO6EE 1120.21655 9.78345
9 200 1130 | 0x448C26D3 1121.21326 8.78674
10 200 1130 | Ox448C12FE 1120.59351 9.40649

From the above three data tables, it is clear that the faster a car travels, the more
fluctuating its actual speed. This fluctuation affects the distance calculation, and
accuracy is more affected by the higher speed. In the next sub-chapter, an evaluation
of the obtained results will be presented.

94

6.2 Evaluation

The evaluation chapter analyzes the results obtained during the whole system test. It
is divided into two main sections: Performance Analysis (6.2.1) and Improvement
Areas (6.2.2). These will be described in the following sections.

6.2.1 Performance Analysis

This section summarizes all the test results obtained during the whole project
implementation. Since testing was done for the three main units, evaluation also needs
to be wise.

e Unit Test Performance Analysis

In the unit test sections, all the logic implemented within the implementation was tested.
In addition, input data acceptance was also checked for the developed application
SWC. In this section, data were tested in terms of capabilities rather than accuracy. As
all the test cases, including the simulation test, were successful, thus the unit test
section can be declared 100% accurate.

Unit Test Result Accuracy (%)

120%

100%
80%
60%
40%
20%

0

Engine Speed Steering Obstacle Target Logic Test
Test Test Angle Detection Distance
Testing Testing Input Test

X

Figure 6.3: Unit Test Performance.

e Integration Test Performance Analysis

In the integration test section, the interaction between different SWCs and different
components was tested. While all the SWC interactions were successful during testing,
a few were less accurate in terms of achieving the target 100% accurately. All of those
were related to traveling the target distance as per the distance needed to travel. There
were a small number of deviations observed, for which it was not 100% accurate. The
summary of the test section is presented in the following graph.

95

Integration Test Result Accuracy (%)

100.20%
100% 100% 100% 100% 100% 100% 100% 100% 100%

100.00%
99.80%
99.60% 99.50%
99.40% 99119 99.18%
99.20%
99.00% 98.90%
98.80%
98.60%
98.40%
98.20%

N < < < > 5 5 >

<@ 'z> z«" ’b Q} 60 & g & & i o
<L e N 3 N NG Y SN N R
& & <° N <° o N @ <@ % N NG
* L & © ¥ ¥ Q o® o 2 Q>Q"b ‘be”b &°
(& & * N N é}v’b & R < W Q &
Q > & 3 2 A0 AZ ¥ & oo S
& N Q Q P o b NS S
& & & X &
A o8 o A Ol
& Q & <

Figure 6.4: Integration Test Performance.

e End-to-End (E2E) Test Performance Analysis

The E2E test was conducted to check the car's overall straight-drive accuracy at
different distances and speeds. After observing the different test cases, it was stated
that the accuracy decreased when the target distance was reduced, and the parallel
speed increased. In the graph below, the average percentage values for each criterion
are presented for the five test cases.

Average E2E Test Result Accuracy (%)

100.00% 98.70%
98.00%
96.00%
94.00%
92.00%
90.00%
88.00%
86.00%
84.00%
82.00%
80.00%

93.34%

86.81%

Different Distance for Different Atomic Fixed Atomic Section
Same Forward Speed Section for Same for Different Reverse
Forward Speed Speed

Figure 6.5: End-to-End (E2E) Test Performance.

It is cautiously observed that the more varying the speed, the less accurate the
accuracy. So, to confirm this, another test was conducted on three different speed data
sets (230mm/s equivalent to 110 duty cycles, 630mm/s equivalent to 150 duty cycles,
and 1130mm/s equivalent to 200 duty cycles), reading at ten different times to check
the status of speed fluctuations, which is represented below.

96

Speed Test 230 mm/s Speed Test 630 mm/s

250 650
240 640
230 630
220 620
210 610
200 600

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

M Expected Speed in mm/s ™ ActualSpeed in mm/s M Expected Speed in mm/s ® ActualSpeed in mm/s

Figure 6.6: Speed Fluctuation Analysis for 230 mm/s and 630 mm/s.

Speed Test 1130 mm/s

1140

1120
1100
1080
1060
1 2 3 4 5 6 7 8 9 10

M Expected Speed in mm/s ActualSpeed in mm/s

Figure 6.7: Speed Fluctuation Analysis for 1130 mm/s.

The three graphs mentioned above were constructed for ten different test cases, which
are mentioned in the horizontal axes. After analyzing these graphs, it is clearly visible
that the increase in speed fluctuates more in terms of actual vs. expected speed. Since
speed data is counted every 10ms as per the designed runnable, this affects
calculating distances since distance calculation depends on speed, which is already
mentioned in the distance calculation logic in the chapter (5.1.3). In summary, it can
be declared that, for less speed, the system is more stable than the higher speed, and
the bottleneck is identified as the constant speed fluctuations.

6.2.2 Improvement Areas

As the bottleneck was already identified in the evaluation section, it is clearly visible
that the problem remains at the hardware level. The DC motor, which is actually a
racing car motor, fluctuates more in providing speed to the system for the higher speed
range, especially in the reverse direction. It also has a mechanism to run every 20 ms,
which is higher than the designed runnable, and a speed control mechanism, which is
10 ms. There is also some additional motion force for higher speed acceleration in
natural. Since, within the current setup, distance calculation fully depends on the speed
of the car, the accuracy differences cannot be minimized, especially for the higher
speed range. These can be minimized if an installed motor provides an accurate
constant speed value or a rotation sensor is installed. Then, the distance calculation
mechanism can be modified to match the rotation count.

97

7 Conclusion

This chapter summarizes the whole research work. The thesis goal was to maintain an
atomic straight driving pattern by implementing an AUTOSAR SWC. The goal was
successfully and accurately obtained. The only bottleneck for the thesis was identified
as fluctuation in speed, especially for higher speed. For this reason, automatic braking
due to target distance coverage has slight deviation, especially when the path length
is short and the speed is higher in the reverse direction. This chapter is divided into
two sub-chapters, Conclusion (7.1) and Future Work (7.2), and described in the
following.

7.1 Conclusion

This thesis identified the challenges of implementing an atomic straight drive pattern
to an Advanced Driver Assistance System (ADAS) demonstrator within the standard
of the AUTOSAR framework since the demonstrator was an RC car, which is a replica
of real-world cars. The research successfully achieved its objective of designing,
implementing, and validating an AUTOSAR software component that ensures real-time
control and high precision for atomic straight driving. The key outcomes of the thesis
are mentioned below:

Analyzing AUTOSAR in the Demonstrator: The AUTOSAR architecture within the
demonstrator TUCminiCar was extensively analyzed. Knowing the whole structure is
mandatory before developing an SWC within an existing architecture. The
methodology chapter describes the analyzed architecture overview in detail.

Development Model: The necessity of using a development model was disclosed for
the thesis implementation. The V-Model development process was described and
followed throughout the whole research for designing, implementation, and testing
procedures.

Designing AUTOSAR SWC: An application SWC component was created within the
existing dSPACE SystemDescription file, and then the necessary implementation was
also conducted within the file. After creating the application SWC, a simulation was
performed to test its functionality and logic validation. The SIL test was successful,
allowing the SWC to carry on the system integration.

Integration and Validation: Integration took place in the EB Tresos Studio, with the
modified *.arxml file generated from the dSPACE. After the integration process was
completed, the system was validated to generate the project. From the newly

98

generated project, new *.hex file was flashed into the ECU to prepare the test
environment. During the entire integration and testing time, the AUTOSAR toolchain
was followed for the development procedure.

Communication Protocol: CAN communication was used to communicate from the
tester to the ECU. During the setup process, extensive ideas for working with the CAN
protocol were gathered.

Precision and Accuracy: The atomic straight diving pattern with the developed SWC
showed precision control and higher accuracy both for driving straight and automatic
braking. An issue at the hardware level has been identified, which is affecting accuracy
for the higher speed range.

Real-time Responsiveness: For different actuators, including auditory and visual,
real-time response was observed, which is essential for the automotive domain.

In summary, the research was fruitful because it produced a fundamental component
for ADAS functionality that can be used on a larger scale. Since the straight-driving
functionality was developed for the smallest section of the car, it is easier to use on a
bigger scale. In addition, obstacle detection was also implemented and tested, which
provided other functionalities of ADAS. An automatic braking mechanism was
established for both target distance coverage and obstacle detection, which provided
more ideas for the driverless car’s implementation process. The thesis's motivation
was to move towards driverless vehicles, as human errors are the main cause of
numerous accidents all over the world. So, in a single word, the thesis topic’s
‘“AUTOSAR Software Component for Atomic Straight Driving Patterns” main goal has
been successfully achieved.

7.2 Future Work

There is always room for improvement in any work. The current straight drive
functionality fully depends on true ground-level position since there is no mechanism
to track the lane. It would be a great idea to have a grayscale sensor to track the lane,
which would make straight driving more reliable. There is a great scope to work with
the security mechanism, especially for controlling cars with CAN messages, as anyone
can access the car and control it. To avoid this, any user verification can prevent taking
control of the car.

For now, the thesis research has been completed successfully by considering every
aspect of current availability and compatibility.

99

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

‘AUTOSAR Classic Platform.” Accessed: Jun. 23, 2024. [Online]. Available:
https://www.autosar.org/standards/classic-platform

V. T. Popovi¢, M. Vuli¢, A. Davidovi¢, and |. Kastelan, “Modeling and
Development of AUTOSAR Software Components,” 2019 IEEE 23rd Int. Symp.
Consum. Technol. ISCT 2019, pp. 313-316, Jun. 2019, doi:
10.1109/ISCE.2019.8901035.

P. Barry and P. Crowley, “Embedded Linux,” Mod. Embed. Comput., pp. 227—-
268, 2012, doi: 10.1016/B978-0-12-391490-3.00008-4.

“‘Despite notable progress, road safety remains urgent global issue.” Accessed:
Nov. 01, 2024. [Online]. Available: https://www.who.int/news/item/13-12-2023-
despite-notable-progress-road-safety-remains-urgent-global-issue

“Autonomous Vehicle Market Size to Hit USD 2,752.80 BN by 2033.” Accessed:
Nov. 01, 2024. [Online]. Available:
https://www.precedenceresearch.com/autonomous-vehicle-market

T. Winkle, “Safety benefits of automated vehicles: Extended findings from
accident research for development, validation and testing,” Auton. Driv. Tech.
Leg. Soc. Asp., pp. 335-364, Jan. 2016, doi: 10.1007/978-3-662-48847-8_17.

“Car Accidents Are Caused by Human Error | Morris, King & Hodge.” Accessed:
Nov. 02, 2024. [Online]. Available: https://www.mkhlawyers.com/blog/what-
percentage-of-car-accidents-is-caused-by-human-error/

“‘Autonomous Vehicle Market Size, Share, Trends | Report [2030].” Accessed:
Nov. 03, 2024. [Online]. Available:
https://www.fortunebusinessinsights.com/autonomous-vehicle-market-109045

B. Huang, H. Dong, D. Wang, and G. Zhao, “Basic concepts on AUTOSAR
development,” 2010 Int. Conf. Intell. Comput. Technol. Autom. ICICTA 2010, vol.
1, pp. 871-873, 2010, doi: 10.1109/ICICTA.2010.571.

“Layered Software Architecture.” Accessed: Nov. 03, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R22-
11/CP/AUTOSAR_EXP_LayeredSoftwareArchitecture.pdf

A. R. Paul and M. George, “Brushless DC motor control using digital PWM
techniques,” 2011 - Int. Conf. Signal Process. Commun. Comput. Netw. Technol.
ICSCCN-2011, pp. 733-738, 2011, doi: 10.1109/ICSCCN.2011.6024647.

‘KIT_A2G_TC387_3V3_TFT - Infineon Technologies.” Accessed: Nov. 10,
2024. [Online]. Available: https://www.infineon.com/cms/en/product/evaluation-
boards/kit_a2g tc387_ 3v3_tft/

M. E. Rahmani, A. Amine, and R. M. Hamou, “Sonar Data Classification Using a
New Algorithm Inspired from Black Holes Phenomenon,” Int. J. Inf. Retr. Res.,

100

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

vol. 8, no. 2, pp. 25-39, Feb. 2018, doi: 10.4018/IJIRR.2018040102.

M. A. Butt et al., “Micro-electromechanical system based optimized steering
angle estimation mechanism for customized self-driving vehicles,” Meas. Control
(United Kingdom), vol. 54, no. 3-4, pp. 429-438, Mar. 2021, doi:
10.1177/00202940211000076.

“SystemDesk - dSPACE.” Accessed: Nov. 12, 2024. [Online]. Available:
https://www.dspace.com/en/pub/home/products/sw/system_architecture_softw
are/systemdesk.cfm

“Classic AUTOSAR tooling EB tresos Studio — Elektrobit.” Accessed: Nov. 12,
2024. [Online]. Available: https://www.elektrobit.com/products/ecu/eb-
tresos/studio/

“TASKING - Infineon Technologies.” Accessed: Nov. 12, 2024. [Online].
Available: https://www.infineon.com/cms/en/tools/aurix-
tools/Compilers/ TASKING/

“TASKING-Compiler Qualification Kit.” Accessed: Nov. 12, 2024. [Online].
Available: https://resources.tasking.com/sites/default/files/2021-03/TASKING-
Compiler Qualification Kit. WEB. pdf

‘KIT_DAP_MINIWIGGLER_USB | Empower Your Debugging and Flash
Programming with miniWiggler - Infineon’s Future-Ready Solution for High
Performance Debugging and Flash Programming - Infineon Technologies.”
Accessed: Nov. 13, 2024. [Online]. Available:
https://www.infineon.com/cms/en/product/evaluation-
boards/kit_dap_miniwiggler_usb/

‘I MHS Online-Shop.” Accessed: Nov. 13, 2024. [Online]. Available:
https://www.mhs-elektronik.de/index.php?module=artikel&action=artikel&id=3

‘Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink
Using AUTOSAR System.” Accessed: Nov. 16, 2024. [Online]. Available:
https://monarch.qucosa.de/api/qucosa%3A20580/attachment/ATT-0/

J. Park and B. W. Choi, “Design and implementation procedure for an advanced
driver assistance system based on an open source AUTOSAR,” Electron., vol.
8, no. 9, Sep. 2019, doi: 10.3390/ELECTRONICS8091025.

“‘Adaptive User Interface for Automotive Demonstrator.” Accessed: Dec. 02,
2024. [Online]. Available:
https://monarch.qucosa.de/api/qucosa%3A78220/attachment/ATT-0/

“Technische Informatik | Fakultat fir Informatik | TU Chemnitz.” Accessed: Nov.
16, 2024. [Online]. Available: https://www.tu-
chemnitz.de/informatik/ce/research/yellowcar.php

B. Liu, H. Zhang, and S. Zhu, “An incremental V-model process for automotive
development,” Proc. - Asia-Pacific Softw. Eng. Conf. APSEC, vol. 0, pp. 225—-
232, Jul. 2016, doi: 10.1109/APSEC.2016.040.

101

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

“Validation and Verification for System Development.” Accessed: Nov. 17, 2024.
[Online]. Available: https://de.mathworks.com/help/ecoder/gs/v-model-for-
system-development.htmi

S. Saroja and S. Haseena, “Functional and Non-Functional Requirements in
Agile Software Development,” Agil. Softw. Dev. Trends, Challenges Appl., pp.
71-86, Jan. 2023, doi: 10.1002/9781119896838.CH5.

“‘Requirements on Runtime Environment.” Accessed: Nov. 20, 2024. [Online].
Available: https://www.autosar.org/fileadmin/standards/R22-
11/CP/AUTOSAR_SRS_RTE.pdf

“Specification of RTE Software.” Accessed: Nov. 20, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR_CP_SWS_RTE.pdf

“Specification of ADC Driver.” Accessed: Nov. 21, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR_CP_SWS_ADCDriver.pdf

“Specification of DIO Driver.” Accessed: Nov. 21, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR_CP_SWS_DIODriver.pdf

“Specification of ICU Driver.” Accessed: Nov. 21, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR_CP_SWS_ICUDriver.pdf

“Specification of CAN Driver.” Accessed: Nov. 21, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR_CP_SWS_CANDriver.pdf

“Specification of MCU Driver.” Accessed: Nov. 21, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R23-
11/CP/AUTOSAR_CP_SWS_MCUDriver.pdf

“Complex Driver design and integration guideline.” Accessed: Nov. 21, 2024.
[Online]. Available: https://www.autosar.org/fileadmin/standards/R22-
11/CP/AUTOSAR_EXP_CDDDesignAndIntegrationGuideline.pdf

“Software Component Template.” Accessed: Nov. 22, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R20-
11/CP/AUTOSAR_TPS_SoftwareComponentTemplate.pdf

“‘ApplicationSwComponentType — automotive wiki.” Accessed: Nov. 23, 2024.
[Online]. Available:
https://automotive.wiki/index.php/ApplicationSwComponentType

“SensorActuatorSwComponentType — automotive wiki.” Accessed: Nov. 23,

2024. [Online]. Available:
https://automotive.wiki/index.php/SensorActuatorSwComponentType

102

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

“CompositionSwComponentType — automotive wiki.” Accessed: Nov. 23, 2024.
[Online]. Available:
https://automotive.wiki/index.php/CompositionSwComponentType

“‘Port — automotive wiki.” Accessed: Nov. 23, 2024. [Online]. Available:
https://automotive.wiki/index.php/Port

“Software Component Internal behavior — automotive wiki.” Accessed: Nov. 23,
2024. [Online]. Available:
https://automotive.wiki/index.php/Software_Component_Internal_behavior

C. Hanxing and T. Jun, “Research on the controller area network,” Proc. - 2009
Int. Conf. Netw. Digit. Soc. ICNDS 2009, vol. 2, pp. 251-254, 2009, doi:
10.1109/ICNDS.2009.142.

“CAN Bus Explained - A Simple Intro [2024] — CSS Electronics.” Accessed: Nov.
23, 2024. [Online]. Available: https://lwww.csselectronics.com/pages/can-bus-
simple-intro-tutorial

“‘BOSCH, CAN Specification, Version 2.0.” Accessed: Nov. 23, 2024. [Online].
Available: http://esd.cs.ucr.edu/webres/can20.pdf

“Controller Area Network (CAN) Basics.” Accessed: Nov. 23, 2024. [Online].
Available: https://ww1.microchip.com/downloads/en/Appnotes/00713a.pdf

“(PDF) Low-cost USB2.0 to CAN2.0 bridge design for Automotive Electronic
Circuit.” Accessed: Nov. 23, 2024. [Online]. Available:
https://www.researchgate.net/publication/210264476_Low-

cost_USB20_to CAN20_bridge_design_for_Automotive_Electronic_Circuit

“Specification of CAN Interface.” Accessed: Nov. 24, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R21-
11/CP/AUTOSAR_SWS_CANInterface.pdf

“Specification of PDU Router.” Accessed: Nov. 24, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/fileadmin/standards/classic/2-
O/AUTOSAR_SWS_PDU_Router.pdf

“Specification of Communication.” Accessed: Nov. 24, 2024. [Online]. Available:
https://www.autosar.org/fileadmin/standards/R21-
11/CP/AUTOSAR_SWS_COM.pdf

“Specification of CAN State Manager.” Accessed: Nov. 24, 2024. [Online].
Available: https://www.autosar.org/fileadmin/standards/R22-
11/CP/AUTOSAR_SWS_CANStateManager.pdf

“Specification of Communication Manager.” Accessed: Nov. 24, 2024. [Online].
Available: https://www.autosar.org/fileadmin/standards/R21-
11/CP/AUTOSAR_SWS_COMManager.pdf

M.Sc. H. Aljzaere and M. Sevil, “miniTUCar_ BSW v0.29 Project
Documentation,” TU Chemnitz, Germany, 2024.

103

This report - except logo Chemnitz University of Technology - is licensed under a Creative
Commons Attribution 4.0 International License, which permits use, sharing, adaptation, dis-
tribution and reproduction in any medium or format, as long as you give appropriate credit
to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The images or other third party material in this report are
included in the report’s Creative Commons license, unless indicated otherwise in a credit
line to the material. If material is not included in the report’s Creative Commons license and
your intended use is not permitted by statutory regulation or exceeds the permitted use, you
will need to obtain permission directly from the copyright holder. To view a copy of this
license, visit http://creativecommons.org/licenses/by/4.0/.

Chemnitzer Informatik-Berichte

In der Reihe der Chemnitzer Informatik-Berichte sind folgende Berichte erschienen:

CSR-21-01

CSR-21-02

CSR-21-03

CSR-21-04

CSR-22-01

CSR-23-01

CSR-23-02

CSR-23-03

CSR-23-04

CSR-23-05

CSR-24-01

Marco Stephan, Batbayar Battseren, Wolfram Hardt, UAV Flight using
a Monocular Camera, Mérz 2021, Chemnitz

Hasan Aljzaere, Owes Khan, Wolfram Hardt, Adaptive User Interface
for Automotive Demonstrator, Juli 2021, Chemnitz

Chibundu Ogbonnia, René Bergelt, Wolfram Hardt, Embedded System
Optimization of Radar Post-processing in an ARM CPU Core, Dezem-
ber 2021, Chemnitz

Julius Lochbaum, René Bergelt, Wolfram Hardt, Entwicklung und Be-
wertung von Algorithmen zur Umfeldmodellierung mithilfe von Radar-
sensoren im Automotive Umfeld, Dezember 2021, Chemnitz

Henrik Zant, Reda Harradi, Wolfram Hardt, Expert System-based Em-
bedded Software Module and Ruleset for Adaptive Flight Missions,
September 2022, Chemnitz

Stephan Lede, René Schmidt, Wolfram Hardt, Analyse des Ressourcen-
verbrauchs von Deep Learning Methoden zur Einschlagslokalisierung
auf eingebetteten Systemen, Januar 2023, Chemnitz

André Bohle, René Schmidt, Wolfram Hardt, Schnittstelle zur Daten-
akquise von Daten des Lernmanagementsystems unter Beriicksichti-
gung bestehender Datenschutzrichtlinien, Januar 2023, Chemnitz

Falk Zaumseil, Sabrina, Briauer, Thomas L. Milani, Guido Brunnett,
Gender Dissimilarities in Body Gait Kinematics at Different Speeds,
Mairz 2023, Chemnitz

Tom Uhlmann, Sabrina Brauer, Falk Zaumseil, Guido Brunnett, A
Novel Inexpensive Camera-based Photoelectric Barrier System for Ac-
curate Flying Sprint Time Measurement, Mirz 2023, Chemnitz

Samer Salamah, Guido Brunnett, Sabrina Brauer, Tom Uhlmann, Oli-
ver Rehren, Katharina Jahn, Thomas L. Milani, Giiunter Daniel Rey,
NaturalWalk: An Anatomy-based Synthesizer for Human Walking Mo-
tions, Marz 2023, Chemnitz

Seyhmus Akaslan, Ariane Heller, Wolfram Hardt, Hardware-Supported
Test Environment Analysis for CAN Message Communication, Juni
2024, Chemnitz

Chemnitzer Informatik-Berichte

CSR-24-02

CSR-24-03

CSR-24-04

CSR-24-05

CSR-24-06

CSR-24-07

CSR-24-08

CSR-25-01

S. M. Rizwanur Rahman, Wolfram Hardt, Image Classification for
Drone Propeller Inspection using Deep Learning, August 2024, Chem-
nitz

Sebastian Pettke, Wolfram Hardt, Ariane Heller, Comparison of maxi-
mum weight clique algorithms, August 2024, Chemnitz

Md Shoriful Islam, Ummay Ubaida Shegupta, Wolfram Hardt, Design
and Development of a Predictive Learning Analytics System, August
2024, Chemnitz

Sopuluchukwu Divine Obi, Ummay Ubaida Shegupta, Wolfram
Hardt, Development of a Frontend for Agents in a Virtual Tutoring
System, August 2024, Chemnitz

Saddaf Afrin Khan, Ummay Ubaida Shegupta, Wolfram Hardt, De-
sign and Development of a Diagnostic Learning Analytics System,
August 2024, Chemnitz

Talio Gomes Pereira, Wolfram Hardt, Ariane Heller, Development of
a Material Classification Model for Multispectral LIDAR Data, Au-
gust 2024, Chemnitz

Sumanth Anugandula, Ummay Ubaida Shegupta, Wolfram Hardt, De-
sign and Development of a Virtual Agent for Interactive Learning
Scenarios, September 2024, Chemnitz

Md. Ali Awlad, Hasan Saadi Jaber Aljzaere, Wolfram Hardt, AUTO-
SAR Software Component for Atomic Straight Driving Patterns, Mérz
2025, Chemnitz

Chemnitzer Informatik-Berichte
ISSN 0947-5125

Herausgeber: Fakultét fiir Informatik, TU Chemnitz
Strafle der Nationen 62, D-09111 Chemnitz

	AUTOSAR Software Component for Atomic Straight Driving Patterns_Md.Ali_Awlad_635459.pdf
	Abstract
	Acknowledgement
	Content
	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Problem Statement

	2 Technical Background
	2.1 AUTOSAR Standard Overview
	2.2 ADAS Demonstrator under AUTOSAR
	2.3 Atomic Straight Driving Core Concept
	2.4 Development and Testing Environment
	2.4.1 dSPACE SystemDesk
	2.4.2 EB Tresos Studio
	2.4.3 Infineon Compiler and MemTool
	2.4.4 Debugger Hardware and Software
	2.4.5 Tiny-CAN Hardware and Software

	3 State of the Art
	3.1 Current Trends and Approaches
	3.1.1 Dynamic Architectural Simulation Model of YellowCar in MATLAB/ Simulink Using AUTOSAR System
	3.1.2 Modeling and Development of AUTOSAR Software Components
	3.1.3 Design and Implementation Procedure for an Advanced Driver Assistance System Based on an Open Source AUTOSAR

	3.2 Comparative Analysis of Current Trends and Approaches
	3.3 Relevancy to the Thesis Topic and Gap Analysis
	3.3.1 Relevancy
	3.3.2 Gap Analysis

	3.4 Adaptive User Interface for Automotive Demonstrator
	3.5 Proposed Work: “AUTOSAR Software Component for Atomic Straight Driving Pattern

	4 Methodology
	4.1 Development Model: The V-Model
	4.1.1 Overview of the V-Model
	4.1.2 Mapping V-Model to AUTOSAR Development
	4.1.3 Benefits of Using V-Model:

	4.2 Requirement Analysis
	4.2.1 Functional Requirements
	4.2.2 Non-Functional Requirements:

	4.3 Understanding AUTOSAR Classic
	4.3.1 Overview of AUTOSAR Layers
	4.3.1.1 Application layer
	4.3.1.2 Runtime Environment (RTE) Layer
	4.3.1.3 Basic Software (BSW) Layer

	4.3.2 Software Component (SWC) Template

	4.4 Understanding Controller Area Network (CAN)
	4.4.1 Overview of the CAN Protocol
	4.4.2 Overview of CAN in TUCminiCar

	4.5 Analyze “TUCminiCar” System Configuration

	5 Implementation
	5.1 SWC Development
	5.1.1 Application SWC Designing
	5.1.2 Interface Definition
	5.1.3 Logic Implementation
	5.1.4 SWC Internal Behavior
	5.1.5 RTE Generation

	5.2 Software-In-Loop (SIL) Testing
	5.2.1 StraightDriveSWC Prototype
	5.2.2 Simulation Scenarios
	5.2.3 VEOS Simulation

	5.3 System Integration
	5.3.1 Integration in Tresos Studio
	5.3.2 System Validation
	5.3.3 Setting Up the Test Environment

	5.4 System Test
	5.4.1 Unit Testing
	5.4.2 Integration Test
	5.4.3 End-to-End (E2E) Testing

	6 Results and Evaluation
	6.1 Result
	6.1.1 Unit Test Result
	6.1.2 Integration Test Result
	6.1.3 End-to-End (E2E) Test Result

	6.2 Evaluation
	6.2.1 Performance Analysis
	6.2.2 Improvement Areas

	7 Conclusion
	7.1 Conclusion
	7.2 Future Work

	Bibliography

