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Abstract 

The main focus of this thesis is the development of an AUTOSAR Software Component 

(SWC) to operate an Advanced Driver Assistance System (ADAS) demonstrator's 

engine for executing atomic straight driving patterns. The AUTOSAR classic 

architecture is the most commonly used in the automotive domain and consists of three 

basic layers: Basic Software (BSW), Application, and Runtime Environment (RTE). 

The straight driving pattern software component is developed to ensure adaptability 

within this architecture. The software component is controlled at different distances 

and speeds, and it receives and processes CAN bus messages to control the 

demonstrator’s actuators.  

 

The computer engineering professorship of Chemnitz University of Technology (TU 

Chemnitz) offers extensive opportunities for working with AUTOSAR within its 

Automotive Software Engineering (ASE) Lab, which has different ADAS 

demonstrators. TUCminiCar is the latest ADAS demonstrator within these, developed 

under the AUTOSAR 4.0 version. This ADAS demonstrator has used the Infineon 

AURIX TC387 microcontroller, which supports AUTOSAR and CAN communication. 

The thesis scope is mainly divided into two parts: analyzing AUTOSAR modules within 

this demonstrator and designing and integrating the required software component to 

execute the atomic straight driving pattern functionality. The thesis goal completion 

depends on the successful operation of the atomic straight driving capability of the 

TUCminiCar within the AUTOSAR development framework with higher accuracy.  

 

Since the atomic straight driving pattern is the most fundamental part of ADAS, the 

thesis outcome can be used as a foundation to implement additional autonomous 

driving patterns within the demonstrator by simply updating or adjusting the software 

component.  

 

 

Keywords: Automotive Open System Architecture (AUTOSAR), Advanced Driver 

Assisting System (ADAS), Atomic Straight Driving Pattern, Electronic Control 

Unit (ECU), Software Component (SWC), Controller Area Network (CAN). 
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1 Introduction 

Autonomous vehicles are showing rapid growth in the global market. An international 

standard must be maintained to maintain the functionality of different ECUs and related 

software within different vehicles and ensure standardized implementation across 

different regions. Automotive Open System Architecture (AUTOSAR) classic is the 

most widely used architecture in the automotive domain to develop and maintain 

various types of vehicle software. The classic AUTOSAR architecture has three main 

layers: application, runtime environment (RTE), and basic software (BSW).[1] The 

application layer is hardware-independent, where the application software components 

are placed to control different applications. The RTE layer interfaces this hardware-

independent application layer and hardware-dependent basic software (BSW) 

layers.[1] 

 

AUTOSAR was established in 2003 to save production and development costs and 

create reusable software for different ECUs.[2] Based on this, the TU Chemnitz lab 

also facilitates the latest ADAS demonstrator, “TUCminiCar,” which can be configured 

and tested for different autonomous driving scenarios. The TUCminiCar is designed 

and constructed based on an Infineon evaluation board KIT_A2G_TC387_3V3_TFT, 

which has a tri-core microcontroller (AURIX TC387) that supports AUTOSAR. The eval 

board also facilitates CAN or Ethernet communication to send or receive data from 

a tester. The ASE lab of TU Chemnitz also provides simulation tools like VEOS to test 

the functionality of created software components within virtual ECUs. It is necessary to 

develop and test the target software component (SWC) through a simulation process 

before integrating it into the "TUCminiCar" to test the functionality of atomic straight 

driving patterns. The concept of atomic driving is to divide a straight path into 

the smallest sections and operate the car within these sections without any 

interruption.[3] Throughout this thesis, firstly, AUTOSAR classic architecture will be 

analyzed, a software component for atomic straight driving will be created, and finally, 

one straight path will be broken up into the five smallest segments and tested 

autonomous functionality within these segments, including the whole path segment. In 

addition, one safety critical criterion, obstacle detection and action after detection, will 

also be tested. 

 

This introduction chapter will provide an in-depth overview of the following sections: 

the motivation to work on the thesis topic (sub-section 1.1) and the Problem Statement 

(sub-section 1.2). 

 

 



12 
 

1.1 Motivation 

The number of road accidents is increasing day by day around the world. The report 

in 2023, as presented by the World Health Organization (WHO), stated that more than 

1 million people died from road accidents throughout different regions. It has been 

declared that road safety is a critical global issue, still two people die every 1 minute. 

Traffic accidents continue to be the biggest cause of death for young people aged 

under 30 years. [4] Human error while driving any vehicle remains one of the main 

reasons for these accidents. Technical faults like brake failure and other vehicle parts 

errors are also responsible for accidents, but those are much less so than human error. 

[5]  The GIDAS accident database in the figure below claims that "Human error" 

accounts for 93.5% of traffic accidents.[6]  

 

 
Figure 1.1: Accident Status in Percentage due to Human Error.[6] 

With the transition from human-based driving to autonomous driving, this large 

segment of errors can be mitigated, and thus, future failures due to humans can be 

significantly reduced. The top three human errors that result in vehicle accidents are 

Inattentiveness, Speeding, and Improper lookout.[7] These life-endangered errors can 

be reduced by increasing self-driving cars, which will improve ADAS implementation.  

 

With the advancement of the Advanced Driver Assisting System (ADAS), the 

automotive industry has experienced large market share growth, which will be 

significant soon.  According to the “Fortune Business Insights” forecast, the 

autonomous vehicle market will hit around 13,632.4 billion USD by the year 2030, 

which is a 32.3% growth rate during the forecast period from 2022 to 2030. [8] 
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Figure 1.2: Growth of the Global Autonomous Vehicle Market.[8] 

Considering the importance of autonomous vehicles in the automotive domain, the 

Computer Engineering professorship of TU Chemnitz has been working with ADAS 

demonstrators for a long time to help its students, especially those in Automotive 

Software Engineering, get used to the real-time environment of the automotive 

domain. Yellow Car (2010), Black Pearl (2018), and TUCminiCar (2024) are the 

demonstrators that operate within AUTOSAR architecture.  

 

The atomic straight driving patterns will be implemented and tested on 

the “TUCminiCar” demonstrator in this thesis. Atomic straight driving is the most 

fundamental step, providing the foundation for going towards autonomous vehicles' 

different complex driving patterns. This core driving capacity ensures autonomous 

functionality within a car, which allows vehicle control mechanisms to be tested at 

different speeds and distances. Controller Area Network (CAN) communication is 

the most reliable method for sending or receiving parameters like speed or distance in 

the automotive domain, which is used to send/receive data from or to the ECU and 

tester. With CAN message format, atomic driving parameters, like speed and distance, 

can be sent from the tester to the ADAS demonstrator “TUCminiCar” to actuate the 

actuators of the car.  

 

Maintaining the AUTOSAR development process framework for the desired software 

component will ensure reusability and adaptability for future related development. 

The following sub-section will describe the thesis's problem statement in detail. 
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1.2 Problem Statement 

The thesis aims to create a software component that performs atomic straight drive 

functionality for an ADAS demonstrator within the AUTOSAR framework. The main 

challenges would be ensuring real-time performance and higher accuracy since the 

functionality will be tested within a toy car. Maintaining the standard implementation 

procedure within a miniature created based on a real-world environment where the 

real-world vehicle components will not be present is always difficult. While AUTOSAR 

standards are traditionally applied to full-scale automotive applications, transforming 

these specifications into mini cars demands a detailed problem analysis that accounts 

for more control, precision, and adaptability. 

 

During the implementation of ADAS functionality in a miniaturized environment, it’s 

crucial to ensure that the hardware components, like sensors for detecting obstacles 

(such as ultrasonic sensors) and actuators for controlling speed and steering (DC and 

Servo Motor), are precisely integrated. The software component needs to be highly 

responsive and adapt in real-time. Otherwise, even minor variations can significantly 

impact the vehicle's ability to drive straight due to the reduced scale. In general, this 

thesis aims to deal with the following particular problems: 

 

Integration and Validation: Creating a mechanism by adapting AUTOSAR software 

structures for evaluating the component's straight-driving functionality in a test 

environment replicating a real-world environment. 

 

Precision Control: Ensuring that the software component can accurately process 

actuator and sensor data to make real-time adjustments that maintain straight driving 

despite the limitations of mini-car hardware. 

 

Higher Accuracy: Achieving higher accuracy for the actuator and sensor data 

processing to maintain accurate straight-line driving. 

 

The thesis combines the identified challenges by designing, implementing, and 

validating an AUTOSAR software component supporting atomic straight-driving 

functions. This includes integrating sensor and actuator data for real-time control and 

applying mechanisms to maintain vehicle control. The next chapter will describe the 

Technical Background of the thesis topic. 
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2 Technical Background 

This section will describe the foundation technologies for developing, integrating, and 

testing the AUTOSAR software component. The following sub-sections will briefly 

cover the AUTOSAR Standard Overview (2.1), ADAS Demonstrator under AUTOSAR 

(2.2), Atomic Straight Driving Core Concept (2.3), and Development and Testing 

Environment (2.4). 

 

2.1 AUTOSAR Standard Overview 

AUTomotiveOpen System Architecture (AUTOSAR) is the globally standardized 

automotive software architecture for manufacturers, suppliers, and developers. [9] 

Several manufacturers developed this architecture to produce a uniform software 

architecture that works independently with different electronic control units (ECUs). 

The AUTOSAR standard avoids re-creating software for identical purposes by 

separating hardware-specific layers. Depending on this idea, different companies can 

develop related software for different ECUs, and these can be run together in a car; 

thus, it is called hardware-independent architecture. 

 

 
Figure 2.1: AUTOSAR Hardware-Independent Architecture.[10] 

There are two basic AUTOSAR standards in terms of software architecture: one is 

classic, and the other one is adaptive. The classic AUTOSAR is used for embedded 

systems with hard real-time, whereas ECUs are used for the core components of a 

vehicle. The AUTOSAR classic architecture is mainly built on three software layers: 

Application, Runtime Environment (RTE), and Basic Software (BSW).[10] The main 

concept of the architecture is to separate the hardware-independent application 

software layer from the hardware-oriented basic software (BSW) layer with the help of 

the Runtime Environment (RTE) layer. [1] Due to the separation between different 

components as a layered structure, it is called a layered architecture. Different 

application software components (SWCs) used for different control mechanisms are 

created in the application layer of the architecture. These application software 
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components (SWCs) connect with different components placed in the basic software 

layer (BSW), which is hardware-dependent through the RTE layer. The BSW layer 

then communicates with different hardware devices using different communication 

protocols, e.g., CAN, to send or receive instructions.   

 

Figure 2.2: AUTOSAR Layered Architecture. [10] 

The software component that needs to be created to control the car engine for atomic 

straight drive must be placed in the application layer of the system architecture. 

 

2.2 ADAS Demonstrator under AUTOSAR 

Advanced Driver Assistance Systems (ADAS) have had a huge impact on 

the advancement of modern vehicles. ADAS facilitates many safety features in real-

world autonomous vehicles, like collision avoidance, adaptive cruise control, lane 

change assistance, blind spot detection, and driverless driving functionality. Chemnitz 

University of Technology’s computer engineering professorship has been working for 

a long time to experience the real-time environment opportunity for its students to work 

with different ADAS demonstrators. Apart from different AUTOSAR-based simulation 

tools, the department has a well-developed infrastructure to test and validate 

demonstration cars. The latest inclusion in the department is “TUCminiCar”, based on 

classic AUTOSAR architecture. Different ADAS features can be tested within this 

demonstrator by implementing and integrating required software components and 

modules. 

 

The "TUCminiCar" is developed using an RC racing toy car. This small car uses the 

standardized AUTOSAR method and helps to test and validate features without the 

high cost of a full-scale car. With the implementation of an AUTOSAR-based ECU, 

different sensors from automotive industries, and a custom power supply mechanism, 

it acts as a real-world vehicle. A remote control can control the car, but to test the ECU-
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Tester communication, a CAN communication mechanism is also present within the 

car ECU. The car uses a Brushed DC motor to control its speed, which is responsible 

for the smooth movement of the TUCminiCar, allowing for both acceleration and 

deceleration. The ECU can control the motor’s output power by using pulse-width 

modulation (PWM), which adjusts the car’s speed. PWM signals facilitate smooth 

adjustments for different speeds by varying the duration of voltage supplied to the 

motor.  This signal also increases energy efficiency, which is crucial for battery-

powered systems since it reduces heat generation. [11] The motor-controlling PWM 

signal depends on the duty cycle provided by the ECU, which varies from 0 to 200, 

where 0 to 99 duty cycle acts as reverse speed, 100 is neutral, and 101 to 200 as 

forward speed control. 

 

For steering control of the car, the demonstrator uses a servo motor to control its 

steering angle. Like the DC motor, the servo motor is also controlled by PWM sent 

from the ECU. The servo angle response is read by duty cycle from 0 to 200, where 0 

stands for maximum right direction, 100 is neutral, and 200 is for maximum left 

direction. 

 

The demonstrator has been implemented with an AUTOSAR-supported ECU based 

on the Infineon TC387 TriCore microcontroller to control the actuators of the car. The 

TC387 microcontroller is part of Infineon’s AURIX family and integrated into the eval 

Figure 2.3: TUCminiCar Extract. 

Figure 2.4: TUCminiCar DC Motor. Figure 2.5: TUCminiCar Servo Motor. 
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board.[12] Its tri-core architecture and high processing power are necessary to analyze 

data in real-time for the embedded world. This KIT is designed to support automotive 

applications requiring high computational power. It provides up to 8 MB of flash 

memory for different programs and data flash. It has a high-speed CAN transceiver to 

facilitate a CAN communication interface.[12] There are two 40-pin connectors with the 

input/output signals available within the board, which can be used to operate different 

actuators and sensors. Using AUTOSAR classic architecture within this AURIX board, 

the demonstrator has pre-configured all the basic software components, 

communication channels, and sensors to perform ADAS activity.   

 

TUCminiCar is also integrated with different automotive sensors to facilitate ADAS 

functionality. Six sonar (Sound Navigation 

and Ranging) sensors are implemented 

within the car to check the obstacle status 

in the front, back, and sides. The sonar 

sensor works based on the deflected sound 

wave on the object staying within its path.  

The sensor has a transceiver that sends 

sound wave beams continuously; this sound wave travels within a straight line until it 

gets reflected. After it hits any object, the transceiver will detect the reflected echo of 

the sound wave again. The object's distance 

can then be calculated using the time 

required for the sound wave to travel.[13] The 

sonar sensor used in the demonstrator has a 

2.5-meter detection range coverage. The 

advantage of using sonar in the demonstrator 

is that no matter the light condition during the 

operation, it can detect whether it is bright or 

Figure 2.6: KIT_A2G_TC387_3V3_TFT Eval Board on TUCminiCar. 

Figure 2.7: TUCminiCar Sonar Sensor. 

Figure 2.8: Sonar Working Method.[13] 
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dark. With the straight driving functionality of a car, it is necessary to check the obstacle 

status while driving to maintain a braking mechanism depending on the road condition. 

 

Apart from the safety-critical components used inside the demonstrator, additional 

visual and auditory actuators are also used. For the forward drive, two types of light 

indicators are available: low and high beam. Depending on the requirement, both lights 

can be activated. There are also indicator lights for reverse driving. It also provides 

left—and right-side indication lights, which can be used depending on the steering 

angle configuration. For braking purposes, a pair of red lights are installed on the back 

of the car. This car also provides a beep-controlling mechanism; this beep control can 

be activated depending on the situation, like obstacle detection. All these components, 

already defined within the AUTOSAR architecture’s basic software layer, can be 

controlled from ECU with the developed software component for the atomic straight 

driving application software component. 

2.3 Atomic Straight Driving Core Concept 

“Atomic” originates from the word “Atom,” defined as the smallest unit of a substance. 

In computer science, it can be referred to as the smallest section of operation 

performed without interruptions.[3] For the straight drive concept, atomic is the term 

where the smallest section can be covered by a vehicle without interruption. The wheel 

rotation coverage must be defined first to drive the “TUCminiCar” demonstrator in an 

atomic driving concept. For this purpose, the 

wheel circumferences must be calculated first. 

After observation, it was found that each car 

wheel had a diameter of approx—64mm. 

According to mathematical formulation to 

calculate the circumference of a circle, 

circumference = 𝑝𝑖 ∗ 𝑑, Here, d = 64 mm, and pi 

has a constant value of 3.14. From the 

calculated value, the circumference of the car 

wheel is 200.96 mm, which can be floored to 

200 mm. So, according to the calculation, if the 

wheel rotates once, either forward or backward, the distance coverage for the car 

Figure 2.10: TUCminiCar Wheel Diameter. 

Figure 2.9: TUCminiCar Visual Actuators. 
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should be 200 mm. To verify the result, the car was manually rotated once the cycle of 

wheel rotation was completed, and the result was the same as the calculation.  

 

Based on the wheel circumference calculation and one cycle of wheel rotation, the 

smallest section length of atomic straight driving is 200 mm of path length.  

Therefore, the initial goal of the driving mechanism is to define an automated braking 

mechanism needs to be defined so that the demonstrator car can stop automatically 

after running one of the smallest sections of a straight drive path. This thesis aims to 

test this shortest path distance by one wheel rotation, including five sections of this 

small covered section with different speed values. The figure below represents the 

atomic straight drive concept, where five sections of 200 mm are defined for a straight 

drive path. The total length of the path is one meter. During the straight driving 

operation, the steering angle should be in the neutral position so that the steering servo 

can generate a straight path driving angle for the car. The deviation tolerance is kept 

due to mechanical deficiencies. Deviation tolerance should be maintained ±0.5° to ±3° 

to acquire greater accuracy.[14] However, the angle deviation depends on the car's 

Figure 2.11: TUCminiCar Path Coverage for the One-Wheel Rotation.[15] 

Figure 2.12: Atomic Straight Drive Pattern. 
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speed and the road's type. In addition to straight driving, another safety critical 

parameter, which is obstacle detection and taking necessary action after detection, 

also needs to be tested.  

2.4 Development and Testing Environment 

Developing and testing software components within the AUTOSAR architecture 

requires complex devices and software tools. The computer engineering department 

of TU Chemnitz provides its own AUTOSAR toolchain for standard development 

procedures in the automotive domain. The figure below illustrates the classic 

AUTOSAR toolchain from TU Chemnitz. After that, some brief details for each part of 

the toolchain are described. 

 

2.4.1 dSPACE SystemDesk 

SystemDesk from dSPACE provides a platform for creating software components 

(SWC) within the AUTOSAR architecture. These can then be validated and simulated 

within the platform as well. It is the ideal foundation for checking the software-in-loop 

(SIL) process. [15] SystemDesk provides the facility to create virtual ECUs and testing 

environments in virtual simulation (VEOS).[15] It offers several options for working with 

the development process within AUTOSAR architecture. Since it has built-in 

AUTOSAR facilities, the development procedure can be started from scratch or 

Figure 2.13: AUTOSAR Classic Toolchain. 
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modified by any developed system. It can be used for software component creations, 

whether the created component is for the 

basic software (BSW) layer or in the 

application layer. To work with the existing 

system file, the system description *.sdp file 

is required to modify the system. After 

necessary modification from SystemDesk, 

the *.arxml file must be generated again to 

integrate within the system. The Department 

of Computer Engineering of TU Chemnitz provides facilities for its students to access 

SystemDesk tools from the Automotive Software Engineering Laboratory to work with 

the AUTOSAR software components. 

 

2.4.2 EB Tresos Studio 

Elektrobit (EB) tresos studio is the classic AUTOSAR development tooling. EB Tresos 

studio is fully compatible with the AUTOSAR 

workflow and can be integrated into existing 

toolchains.[16] It provides graphical interfaces 

to configure different AUTOSAR modules for 

the AUTOSAR stack, whether the BSW or 

microcontroller abstraction layer (MCAL). It 

also generates an RTE connection to provide 

connectivity facilities from the BSW layer to 

the application layer’s software components. 

It offers an extensive predefined library of configuration modules by which developers 

can configure them in a quick timeline.  It provides different module configuration 

support for the system, from different applications to communication to safety-related 

modules of AUTOSAR architecture. The EB Tresos studio works in many automotive 

applications for different manufacturers. It can manage simple systems with a single 

ECU and more complex systems that utilize multiple ECUs for various ADAS 

functionalities and autonomous driving. The tool offers configurations for automotive 

diagnostics, security, and communication protocols, making it suitable for safety-critical 

automotive applications. The (.arxml) file generated from SystemDesk needs to be 

imported into Tresos Studio, and then the project must be generated after verification 

to compile it. Automotive Software Engineering students of TU Chemnitz also have 

access to this software tool in the lab. 

 

Figure 2.14: dSPACE SystemDesk. [15] 

Figure 2.15: EB Tresos Studio. [16] 
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2.4.3 Infineon Compiler and MemTool 

The “TASKING” compiler from Infineon is 

mostly used by developers worldwide in the 

automotive domain. High-performance tools 

are required for safety-critical embedded 

systems, especially in applications that 

require strict industry standards and 

reliability. TASKING compilers support 

various microcontroller architectures, 

including the Infineon AURIX™ TriCore 

microcontroller TC387 used in the ADAS 

demonstrator TUCminiCar.[17] TASKING is 

known for its excellent code optimization 

skills, allowing it to create effective code that 

uses less memory and power, and these are 

essential requirements in embedded systems. It offers runtime libraries and safety-

critical compilers to meet industry safety standards for automotive functional safety 

(ISO 26262).[18] TASKING compilers support AUTOSAR for automotive applications, 

providing developers with the necessary tools to develop, configure, and test 

applications in frameworks that comply with AUTOSAR. The program generated by EB 

Tresos Studio needs to be compiled to generate a *.hex file. 

 

Like the TASKING compiler, Infineon MemTool is application software for flashing data 

developed by Infineon Technologies. This tool enables users to program, erase, and 

manage memory in Infineon microcontrollers. The MemTool offers a graphical user 

interface to erase memory, flash the generated *.hex file from the compiler, and verify 

it with this tool. 

 

2.4.4 Debugger Hardware and Software 

The Infineon DAP miniWiggler is a debugging 

interface for Infineon microcontrollers. It is used 

for flashing software, reading memory, and 

accessing memory locations. It converts from the 

PC/USB to an Infineon Microcontroller device's 

debug interface (10-pin DAP).[19] This hardware 

is required to connect and flash the *.hex file from 

the mem tool software to the ECU. It is like providing a bridge between the 

microcontroller and a tester (computer), supporting communication protocols like DAP 

(Device Access Port), which are essential for debugging and memory access. For the 

Figure 2.16: TASKING Compiler.[18] 

Figure 2.17: Infineon DAP miniWiggler V3. 
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software side, the AURIX™ command-line debugger tool can be used as a debugger 

software. This is an open-source software that operates to access read memory 

location data. 

 

 

2.4.5 Tiny-CAN Hardware and Software 

Tiny CAN is a USB-to-CAN interface device that connects a tester (PC) to a CAN 

(Controller Area Network) bus system. It allows developers to test different data by 

communicating with the ECU from their 

computer. It is very useful for establishing 

reliable tester-ECU communication in the 

automotive domain. It provides a real-time data 

transfer facility with a transfer rate of up to 1 

MBit/s, and the data log can be saved for later 

analysis. Tiny-CAN complies with the 

ISO11898-2 standard, which is a standardized 

CAN technology. [20]  

 

The Tiny CAN Monitor is a graphical application software tool with Tiny CAN hardware 

interfaces. It enables the monitoring, analysis, and debugging of CAN (Controller Area 

Network) messages. The graphical interface supports different operating systems. This 

allows the data filter to be defined as having specific CAN ID data. By defining the data 

length code (DLC), it is also possible to send data byte by byte. Different data 

parameters, like speed, distance, steering angle, etc., can be sent to the TUCminicar 

from the tester to test the straight drive functionality. 

  

Figure 2.18: Tiny-CAN II-XL Interface 

Figure 2.19: Tiny-CAN Monitor 
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3 State of the Art 

The complexity and additionality of vehicle features are growing fast, leading to a need 

for scalable, reusable software that works across different hardware. This has 

increased the development of automotive software components within a defined 

standard. AUTOSAR, first introduced in 2003, stands at the core of this evolution as 

an initiative toward standardization in software architecture for the automotive domain. 

With the advancement of driverless vehicle technology, it becomes more necessary to 

implement different software components that will assist the vehicles in fulfilling ADAS 

functionality within the AUTOSAR framework. The thesis will try to find answers to the 

following work scopes:  

 

• Analyze AUTOSAR within an ADAS Demonstrator 

• Develop SWC to Maintain Atomic Straight Drive within AUTOSAR 

• Test ADAS functionality 

 

So, reviewing and gathering scientific knowledge from the current development 

processes within these work scopes is necessary. The following review will assess the 

“State of the Art” in developing an AUTOSAR SWC for ADAS functionality. It will 

provide an overview of AUTOSAR's role within automotive systems, including the tools 

and methodologies for development and simulation and how seamless integration 

among classic AUTOSAR software components is achieved. The state-of-the-art 

chapter is divided into five subsections: “Current Trends and Approaches (3.1)”, 

“Comparative Analysis (3.2)”, and “Relevance to the Thesis and Gap Analysis (3.3)”; 

these three sub-chapters will have some valuable insight into ongoing AUTOSAR 

related works, the next one “Adaptive User Interface for Automotive Demonstrator 

(3.4)” will have some discussion over non AUTOSAR development process and finally 

based on all gathered knowledge the last part “Proposed Work (3.5)” to have a clear 

observation step by step. 

  

3.1 Current Trends and Approaches 

This section emphasizes the following three significant related papers, dividing them 

into three sub-sections to provide information on recent advances in AUTOSAR-based 

systems and their applications. 

 

First, "Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink 

Using AUTOSAR System"[21] provides an overview of a MATLAB/Simulink-based 

simulation framework for integrating AUTOSAR and non-AUTOSAR ECUs. This 
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demonstrates the flexibility of modular simulation tools in iterative automotive software 

development. 

 

The second one, "Modeling and Development of AUTOSAR Software Components," 

[2] presents the development of reusable and resource-efficient software components, 

considering the layered AUTOSAR architecture, VFB, and RTE for real-time 

communication. 

 

Finally, "Design and Implementation Procedure for an Advanced Driver Assistance 

System Based on an Open Source AUTOSAR" [22] describes the use of open-source 

tools in implementing ADAS. It outlines how to realize AUTOSAR-compliant 

communication and sensor integration. 

 

In addition, another paper, "Adaptive User Interface for Automotive Demonstrator, " 

from a non-AUTOSAR implementation, was also reviewed. [23] Since it was based on 

the TUC demonstrator’s simulation, which uses CAN-Bus, it can provide some reliable 

data regarding this. This paper will be analyzed separately in the (3.4) chapter since it 

is not fully AUTOSAR-based rather than using non-AUTOSAR. 

 

3.1.1 Dynamic Architectural Simulation Model of YellowCar in MATLAB/ 

Simulink Using AUTOSAR System 

The YellowCar demonstrator at the “Chemnitz University of Technology” is an 

innovative research and educational tool from the computer engineering professorship 

for advanced automotive technologies. It is the first demonstrator built for the 

Automotive Software Engineering lab based on AUTOSAR 2.1 architecture.[24] The 

YellowCar has been designed and integrated with different features, including 3 

AUTOSAR-based ECUs, the CAN bus for communication purposes between ECU-

Figure 3.1: YellowCar Picture.[21] 



27 
 

tester, and ultrasonic sensors for obstacle detection. These features enabled the car 

to create a simulated scenario similar to real-world applications like parking assistance 

and autonomous driving. Based on this setup, the paper "Dynamic Architectural 

Simulation Model of YellowCar in MATLAB/Simulink Using AUTOSAR System"[21] 

elaborates on how principles of AUTOSAR integrate with MATLAB/ Simulink for the 

simulation and testing of YellowCar. The key findings which have been illustrated in 

the thesis are as follows: 

 

• The Purpose of Simulation  

There have been concerns over the requirement for simulation in the automotive 

research area to check compatibility for different SWCs within real-world scenarios. 

For real-world implementation, it is necessary to validate systems and functionalities 

testing without having a real-world hardware setup. YellowCar is an adaptable, 

scalable platform for modeling autonomous and semi-autonomous systems. 

 

• Integration within AUTOSAR  

The AUTOSAR framework defines a modular, scalable, and hardware-independent 

software architecture. This standardization allows developers to implement Software 

Components (SWCs) and simulate their system behavior dynamically. 

 

• MATLAB/Simulink Modeling 

In this paper, MATLAB/Simulink is used as the main simulation environment, where 

the architectural models of the YellowCar are developed. The environment supports 

Model-in-the-Loop (MIL) Simulation of AUTOSAR and non-AUTOSAR components. It 

demonstrates the simulation of components such as ECUs, sensors, actuators, CAN, 

RTE, and Virtual Functional Bus (VFB).  

 

• Advantages of Simulation 

Accuracy: The simulations replicate real-world behavior of simple and complex driving 
patterns, such as straight driving or avoiding obstacles. 
 
Cost-Effectiveness: Saves the need for frequent hardware upgrades since a 
simulation-based validation can be done. 
 
Scalability: Supports integration of additional ECUs, sensors, or software modules 
without re-designing the system. 
 
Standardization: Adapted to the AUTOSAR framework ensures portability and 
interoperability across different platforms and vehicles. 
 
Flexibility: Allows hybrid testing of AUTOSAR and non-AUTOSAR components. 
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• Disadvantages of Simulation 

Simulation Limitations: Some real-world components may not fit well since it is a 

simulation environment. 

Cost of Tools: While cost-effective in the long run, tools like MATLAB/Simulink with 

AUTOSAR support can have high licensing fees. 

 

3.1.2 Modeling and Development of AUTOSAR Software Components 

The paper "Modeling and Development of AUTOSAR Software Components"[2] 

systematically discusses the systematic methodology for designing, configuring, and 

implementing AUTOSAR software components. The implementation starts with 

defining system inputs, known as the System Configuration Input, which includes 

selecting software components and hardware and establishing architectural 

definitions. AUTOSAR facilitates this with architectural templates for validating initial 

designs. 

Next, the Configuration Description maps software components to Electronic Control 

Units (ECUs) while arranging network topologies and bus mappings. The following 

steps extract and refine specific ECU information, generating an ECU Configuration 

Description. This description includes configurations for Basic Software (BSW), task 

scheduling, and the assignment of runnable entities. Finally, this will result in the 

compilation and linking of code into an executable. After having a thorough analysis of 

the paper, the following key points have been identified: 

 

• Purpose 

This paper tries to provide a structured way of developing AUTOSAR software 

components, which considers the overall development process, from modeling to 

source code generation. This shall ease and standardize the development of 

automotive application software in a context where the increased complexity of the 

software and hardware dependencies causes challenges. 

 

Figure 3.2: Overview AUTOSAR Methodology. [2] 
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• Integration of AUTOSAR Software Components 

AUTOSAR has systematic component integration, which is made by defining system 

configurations, defining interface types, mapping software components to ECUs, and 

configuring BSW. The use of standardized templates and tools facilitates smooth 

integration, ensuring modular and reusable components. 

 

• Software Component Template 

Software Component Template describes the main aspects of AUTOSAR component 

development: 

 

Internal Behavior:  Describes the internal behavior of a Software Component that is 

composed of Runnable Entities and their responses to RTE events. 

Runnable Entities are the smallest, schedulable units of code written in a programming 

language, such as C, and triggered by RTE events or BSW schedulers. 

 

Runnable Entities: Code units that can be scheduled, developed in C, and triggered by 

Run Time Environment (RTE) or Basic Software (BSW) schedulers. 

 

RTE Events: Events that perform runnable, including timing, mode switches, etc. 

 

Contract Phase: RTE-specific APIs are generated from component descriptions to 

ensure the software's independence from the communication implementations. 

 

Deliverable: Final products include SWC-type descriptions, internal behavior details, 

and implementations for system generation. 

 

3.1.3 Design and Implementation Procedure for an Advanced Driver Assistance 

System Based on an Open Source AUTOSAR 

 

The paper "Design and Implementation Procedure for Advanced Driver Assistance 

System Based on an Open Source AUTOSAR" [22] describes the integration and 

development procedure for advanced driver-assistance systems based on an open-

source AUTOSAR platform. Open-source tools can be used to design a low-cost, 

flexible platform for ADAS implementation, bringing down the development cost while 

keeping up with the AUTOSAR standard. This paper uses the real-time obstacle 

avoidance experiment to prove this method's capability, mainly in vehicle safety and 
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reliability improvement. Based on the paper review, the following key points have been 

discovered: 

 

• Purpose 

The paper demonstrates how open-source AUTOSAR frameworks might be used to 

design and implement ADAS. Hence, it provides a systematic way of developing 

safety-critical automotive features like collision warning systems. This study uses open 

AUTOSAR, which would reduce dependence on proprietary solutions and make it 

much more cost-efficient. It also shows the possibility of integrating AUTOSAR-

compliant, modular, and scalable software components that ensure interoperability and 

portability to different hardware and software configurations. 

 

• Open Source AUTOSAR 

It focuses on Open AUTOSAR, an alternative open-source to expensive commercial 

software systems. The research highlights that Open AUTOSAR can standardize 

software development while still retaining the possibility of developers creating 

reusable and modular software components. Open-source AUTOSAR also provides 

interoperability features necessary for manufacturers and developers working with 

different vehicle platforms and ECUs. The paper tries to demonstrate how the 

availability of open-source frameworks empowers small developers to adopt industry-

standard technologies, improving innovation within automotive software development. 

 

• ADAS Collision Warning 

This paper presents a collision warning system as an example of how Advanced Driver 

Assistance Systems (ADAS) work within the AUTOSAR framework. This warning 

system processes data from different sensors and predicts possible collisions. It relies 

on Runnable Entities, the smallest schedulable code units in AUTOSAR. These entities 

Figure 3.3: Open source AUTOSAR Procedure. [22] 
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are activated by Runtime Environment events initiated by sensor inputs. The paper 

points out that the system is designed for low latency and high reliability at the center 

of real-time decision-making within collision warning systems. This implementation 

also demonstrates the scalability of open-source AUTOSAR in integrating more ADAS 

functionalities in complex situations. 

 

• CAN Communication 

This paper also provides information about integrating the CAN (Controller Area 

Network) communication protocols in the ADAS framework. CAN communication is 

very useful and widely used for real-time data exchange between different ECUs in the 

system. AUTOSAR simplifies this by providing predefined standardized templates for 

CAN message formats, allowing the ADAS system to respond promptly to various 

driving conditions. Reliability makes CAN communication the number one choice for 

safety-critical applications such as collision avoidance, as it allows the system to 

operate under various conditions without failure. 

 

3.2 Comparative Analysis of Current Trends and Approaches 

The three papers that have been studied contribute to AUTOSAR-based system 

development from clearly different yet interrelated perspectives. Each highlights 

modularity, standardization, and flexibility within automotive software. The first 

addresses dynamic architectural modeling with MATLAB/Simulink; the second outlines 

concepts and methodologies for AUTOSAR; the other one targets advanced driver-

assistance systems (ADAS), especially collision warning, through open-source 

frameworks. Here’s a comparative table based on the three papers in terms of working 

with the thesis topic “AUTOSAR Software Component for Atomic Straight Driving 

Pattern”: 
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Table 3.1: Comparison of Current Trends and Approaches in AUTOSAR. 

              
Research 

 
 
Aspect 

 
  

Dynamic Architectural 
Simulation Model of 
YellowCar in 
MATLAB/Simulink 
Using AUTOSAR 
System 

Modeling and 
Development of 
AUTOSAR Software 
Components 

Design and 
Implementation 
Procedure for an 
Advanced Driver 
Assistance System 
Based on an Open 
Source AUTOSAR 

Purpose 

Simulate automotive 

components in 

MATLAB/Simulink to 

validate AUTOSAR 

integration. 

Standardize the 

development of 

AUTOSAR software 

components, focusing 

on modularity and 

reusability. 

Develop ADAS 

functionalities using an 

open-source AUTOSAR 

framework, addressing the 

collision warning method. 

Common 
Features 

Uses AUTOSAR for 

modularity and 

standardized 

development. 

Adheres to AUTOSAR 

principles for layered 

architecture and 

reusability. 

Employs AUTOSAR-based 

methods for real-time 

communication and system 

efficiency. 

Knowledge 
Acquired 

Simulation of AUTOSAR 

components  

AUTOSAR Software 

Components (SWC) 

creation process 

Implementation of ADAS 

feature in ECU 

Limitations 

Limited to simulation; 

requires further work for 

real-world deployment. 

High complexity and 

resource-intensive due 

to detailed 

configurations and 

template management. 

Lacks the robustness and 

support of proprietary 

AUTOSAR tools for 

commercial scalability. 

Main 
Undisclosed 
Area 

Worked with simulation 

only, no concrete idea to 

deploy in real-world 

systems 

No practical 

applications have been 

demonstrated. 

Due to the open-source 

AUTOSAR platform used, 

no proper information to 

migrate to the classic 

AUTOSAR 

 

3.3 Relevancy to the Thesis Topic and Gap Analysis 

The presented research papers provide all the necessary knowledge for a foundational 

and practical understanding of developing an AUTOSAR software component that 

realizes the atomic straight driving pattern. The following section shows the relevance 

and gap in the deployment of the software component for atomic straight driving. 

 

3.3.1 Relevancy 

The findings from the papers put together projects on modularity, simulation, and 

resource-efficient design in the development of AUTOSAR software components. 

Structured development and reusability of software components ensure the efficient 

handling of straight-driving tasks with consistency in communication and interaction 



33 
 

across system components. Relevancy information for each of the paper analyses is 

provided below. 

 

Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink 

Using AUTOSAR System[21]: This paper is directly relevant since it presents how 

AUTOSAR can integrate with simulation tools, like MATLAB/Simulink, to provide 

insights into architectural modeling and validation. The methods used for the simulation 

of vehicle dynamics can be instructive for modeling and testing atomic straight driving 

patterns in a controlled environment. 

 

Modeling and Development of AUTOSAR Software Components[2]: 

This paper provides a detailed explanation of the AUTOSAR methodology, which 

emphasizes modular development of software components. The software logic 

necessary for handling straight-driving tasks efficiently with reduced resource 

allocation is developed by focusing on strong reusability and well-structured 

communication via the Runtime Environment (RTE). 

 

Design and Implementation Procedure for an Advanced Driver Assistance 

System Based on Open Source AUTOSAR[22]: Although this paper is not directly 

relevant due to the use of open-source AUTOSAR platforms, ideas are still gathered 

for reducing development costs and experimenting with different driving patterns. The 

methodology of integrating sensors and visual actuators into AUTOSAR-based 

systems is also helpful in detecting and maintaining ADAS functionality. 

 

3.3.2 Gap Analysis 

While these papers offer a strong basis for understanding AUTOSAR software 

components and their applications, specific gaps related to the thesis topic can be 

identified: 

 

Dynamic Architectural Simulation Model of YellowCar in MATLAB/Simulink 

Using AUTOSAR System[21]: 

Influence: Research highlights the dynamic simulation of AUTOSAR systems, which is 

relevant for testing software components (SWC) of atomic driving patterns in 

simulation. 

 

Gap: Emphasizes architectural modeling but does not apply it to specific driving 

scenarios such as atomic straight driving. 
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Modeling and Development of AUTOSAR Software Components[2]: 

Influence: Research focuses on comprehensive coverage of AUTOSAR 

methodologies, software templates, and RTE communication, which are essential to 

designing atomic driving patterns within AUTOSAR architecture. 

 

Gap: It does not address specific driving tasks or patterns and only provides generic 

guidelines for software component development. 

 

Design and Implementation Procedure for an Advanced Driver Assistance 

System Based on Open Source AUTOSAR[22]: 

Influence: Research demonstrates practical applications of AUTOSAR in ADAS, real-

world integration of sensors, and control mechanisms. 

 

Gap: This research is mainly focused on the ADAS and collision avoidance 

functionality with the open-source AUTOSAR platform and does not provide any idea 

regarding the deployment strategies of an atomic driving pattern. 

 

To summarize, the above analysis of research papers proves their relevance in 

understanding the AUTOSAR software components in automotive systems. However, 

they missed the atomic driving pattern focus using AUTOSAR, which creates an 

opportunity to bridge the gap in this thesis. In the next section, another paper’s review 

is conducted, which is non-AUTOSAR-based and thus analyzed separately in a 

separate sub-chapter (3.4). 

3.4 Adaptive User Interface for Automotive Demonstrator 

The main goal of the research work “Adaptive User Interface for Automotive 

Demonstrator”[23] was to make an adaptive system where users can interact with the 

Application Programming Interface (API) instead of going through source code. The 

Adaptive User Interface (AUI) enhances the functionality of platforms like the 

BlackPearl demonstrator at TU Chemnitz by enabling dynamic interactions, such as 

touch, voice commands, and remote access. This paper provides valuable ideas on 

ongoing research works with the ADAS demonstrator in TU Chemnitz. In this research 

work, CAN-Bus is used as a crucial part of the communication network within the 

demonstrator BlackPearl. This is a system to provide valid data interchange in real-

time between the interfacing units. It provides a way for the CE-Box and the different 

Raspberry Pi boards to exchange important information concerning sensor and 

actuator data. CAN-Bus communication supports scalability, which makes it easy for 

different hardware servers to join the network easily. It ensures minimal latency and 
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high performance, even with various input components like cameras, streaming 

dashboards, and remote commands. 

 

Specific rules for reading or writing CAN-Bus messages ensure their reliability. This 

research explains how the CAN bus is integrated among different sensors within a 

demonstrator. Since CAN communication will be used in the thesis topic, “AUTOSAR 

Software Component for Atomic Straight Driving Patterns,” the idea of the CAN 

message format within the existing research will provide a better understanding of this. 

 

3.5 Proposed Work: “AUTOSAR Software Component for Atomic Straight 

Driving Pattern  

This thesis work aims to design an AUTOSAR-compliant software component that 

realizes the atomic straight driving pattern—a core fundamental building block used in 

more complex navigation tasks. The dSPACE simulation tool will model the atomic 

straight driving pattern through incremental movements and interaction simulations. It 

will then be integrated into the vehicle's ECU to comply with hardware competency 

validation. It has an obstacle-detection feature for testing ADAS functionalities, 

ensuring a vehicle can operate safely and efficiently. All this ensures compatibility on 

AUTOSAR platforms and the ability to perform in real-world scenarios. 

Figure 3.4: Modules of the BlackPearl Demonstrator. [23] 
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4 Methodology 

This chapter provides ideas about developing an AUTOSAR software component for 

the atomic straight driving pattern. It starts with a detailed analysis of the software's 

requirements to understand the functionality. Then, it describes the implementation of 

the AUTOSAR Classic to the ADAS demonstrator, showing its importance to the 

overall system architecture. 

 

This chapter also covers the CAN protocol, developed to communicate from tester to 

ECU. It also looks at the configuration processes of key development tools such as 

dSPACE SystemDesk and EB Tresos to understand how to deploy SWC for atomic 

straight driving. Finally, it provides the development model information for developing 

software components within AUTOSAR Classic. These are some of the basic building 

blocks of the software component, which must be accomplished with complete 

functionality within the system for its integration to be accomplished. This chapter is 

divided into five basic sub-sections: Development Model: The V-Model (4.1), 

Requirement Analysis (4.2), Understanding AUTOSAR Classic and Modules (4.3), 

Understanding Controller Area Network (CAN) (4.4), and Analyze “TUCminiCar” 

System Configuration (4.5) which will be reviewed in details in the following sections. 

 

4.1 Development Model: The V-Model 

The V-Model development process is the most widely used embedded software 

development, especially when the AUTOSAR framework is involved. It can be 

described as a software development methodology highlighting sequential, structured 

approaches to software development. It extends the waterfall model by linking each 

phase in the development from requirements through design to implementation, 

correspondingly with unit testing, integration testing, and system testing.[25] Each 

phase of this model represents ongoing validation and verification to ensure quality 

and traceability. In other words, it is especially suitable for safety-critical systems. 

 

4.1.1 Overview of the V-Model 

The V-Model is known as the Verification and Validation Model.[26] This software 

development framework focuses on a structured and traceable approach toward 

designing, implementing, and testing systems. Its defining characteristic is its "V" 

shape, where the left-hand side of the "V" represents requirement analysis and 

designing of high and low-level systems while the right-hand side is used for different 

integration and testing purposes. With every development phase, there is also a testing 

phase to cross-check. The steps of a model can be planned according to software 
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development requirements. This V-Model is very much applicable to the thesis 

"AUTOSAR Software Component for Atomic Straight Driving Patterns," as this model 

is used in bringing the entire process of developing atomic straight driving pattern 

functionality properly and giving it extensive testing in combination with other system 

components like CAN communication and ADAS features. 

 

4.1.2 Mapping V-Model to AUTOSAR Development 

In AUTOSAR development, the V-model supports traceability, modular design, and 

validation throughout the entire software life cycle. Mapping the V-model phases into 

AUTOSAR development improves the quality and productivity of automotive software. 

Since the thesis is based on implementing SWC within the AUTOSAR framework, a V-

model is necessary to maintain the work process in a standard manner. Below is the 

designed V-model for this research project’s development life cycle. 

 

The left side of the V will unveil all the requirements and design procedures. The right 

side represents all testing and acceptance, with implementation placed in between. 

The below steps have been illustrated in the developed model: 

 

Requirement Analysis: The V-Model begins with the Requirement Analysis step in 

AUTOSAR development. This involves defining the functional and non-functional 

Figure 4.1: V-Model Development for Atomic Straight Drive SWC. 
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requirements of the atomic straight driving pattern. The methodology chapter will 

discuss this level of explanation in detail. 

 

High-Level Design: This level defines the overall system, including architecture and 

communication methodology. It requires a System Architecture Overview since the 

TUCminiCar is already within classic AUTOSAR architecture, which needs to be 

reviewed for further development within this demonstrator. Understanding AUTOSAR 

classic and CAN will also be discussed in detail within this methodology chapter. 

 

Low-Level Design: The leftmost lower step in the V-Model is the Low-level design. 

This step focuses on SWC Design and Obstacle Detection logic design. Since SWC 

will be developed during the implementation phase, the existing design in dSPACE 

SystemDesk for the TUCminiCar and module configuration in EB Tresos studio need 

to be analyzed first in this step. This analysis will be done within the methodology 

chapter. 

 

Implementation: This phase works as a bridge for the left side of the model with the 

right side where testing is placed. In terms of the thesis project, this is the coding of 

the StraightDriveSWC that will meet the functional and non-functional requirements 

defined before. Development of the StraightDriveSWC logic in AUTOSAR using 

dSPACE SystemDesk, importing configuration from dSPACE to EB Tresos Studio, 

obstacle detection logic, and handling of CAN messages for the system should be 

defined. A separate chapter is placed after the methodology for the Implementation 

process. 

 

Unit Test: The rightmost side of the model starts with the Unit test. In this phase, the 

developed SWC will be tested within the simulation environment (SIL) by creating a 

virtual ECU in dSPACE and also in the hardware. Different logic developed within the 

SWC will be tested at this phase. 

 

Integration Test: In this phase, the developed SWC and codes will be integrated into 

EB Tresos Studio. RTE generation will be verified so that different SWCs' interactions 

can be tested. After that, hardware setup and CAN communication will be ensured.  

 

Acceptance Test: This final step validates the Atomic Straight Driving. Acceptance 

tests will be performed by operating a complete system test in the TUCminiCar, where 

StraightDriveSWC runs to perform various ECU functionalities. Scenarios include 

straight driving under different conditions, facing obstacles during driving, and 

sending/responding to CAN messages.  
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4.1.3 Benefits of Using V-Model:  

The V-Model has many benefits for the development life cycles, which make it a 

suitable model for developing and validating the AUTOSAR Software Component for 

Atomic Straight Driving Patterns. The main advantages are listed below: 

 

Traceable and structured: The V-Model is a structured development process in which 

all phases are separated. Every design-related task on the model's left side has a 

corresponding testing phase on the right side, ensuring traceability of the requirements 

from start to finish. 

 

Early Detection: Aligning the development stages with specific test activities helps to 

detect errors early during requirements verification and design validation, which 

reduces the cost and complexity. 

 

Modularity and Reusability: This model supports modular design and complies with 

AUTOSAR's principles of reusability software components. This approach makes 

development easier and supports scalability for future projects for the SWC 

development. 

 

Safety and Reliability: The structured testing phases of the V-Model are very 

important for safety-critical systems such as automotive software development. For 

this project, the integration and acceptance test conducted in the model for AUTOSAR 

SWC for atomic straight drive ensures that the required driving functionality works 

correctly within the system. 

 

Adaptability for Embedded Systems: V-Model, focusing on verification and 

validation, is especially helpful for embedded systems where software and hardware 

integration are crucial. This project makes the StraightDriveSWC easily interact with 

other components, like CAN communication or ADAS functions. Following the V-Model 

allows a systematic and reliable development process, which ensures operational 

efficiency, safety, and compliance with automotive standards. 

4.2 Requirement Analysis 

Requirement analysis is the primary task for any software development process. In this 

project, it this analysis focuses on understanding and documenting the functional and 

non-functional requirements of the AUTOSAR software component for atomic straight 

driving. Atomic straight driving is a small but fundamental driving operation that forms 

a basis for broader vehicle control, such as the consistent straight driving capability, 

representing one of the ADAS functionalities. Requirement analysis demands two 
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major analyses: Functional Analysis and Non-Functional Analysis,[27] described in the 

subsections below. 

 

4.2.1 Functional Requirements 

Functional requirements can be defined as essential requirements of developed 

systems.[27] A project implementation cannot succeed without fulfilling these 

requirements, so these are the minimum requirements of a system that must be 

accomplished. For the thesis topic, atomic straight drive patterns, functional 

requirements can be defined as below: 

 

Atomic Straight Driving: This requirement is the core of the thesis project. The 

developed software component (SWC) should control the car's actuators to maintain 

the atomic straight driving at different speeds and distances. 

 

Obstacle Detection: The SWC should implement obstacle detection logic so that it 

can read data from detection sensors and process it to control the car after detecting 

an obstacle. 

 

CAN Communication: The SWC should have a mechanism to ensure CAN 

communication. It should ensure the tester-ECU communication, taking input from the 

CAN message and sending it to the corresponding components to operate accordingly. 

 

Runtime Environment (RTE) Integration: The developed SWC must be integrated 

with the AUTOSAR runtime environment (RTE) to handle the triggered events within 

AUTOSAR and provide output to corresponding components for further processing.  

 

Testability and Modularity: The system should support simulation-based testing 

(SIL) and modular updates to advance future extensions of ADAS features. 

 

 

4.2.2 Non-Functional Requirements:  

Non-functional requirement analysis is the minimum requirements that the project 

needs to achieve.[27] It can be described as a developed project's performance and 

quality standards. For the thesis topic, non-functional requirements can be defined as 

below: 

 

Performance: Since it is a safety-critical system, it must show low latency. The 

response should be real-time for parameters like acceleration, braking, obstacle 

detection, and all other input-output responses handled by this SWC. 
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Scalability: The developed SWC must support future extensions for applying more 

complex ADAS features. This scalable system should be aligned with the AUTOSAR 

framework. 

 

Reliability: Since the advanced driver assistance system deals with safety-critical 

operations, the developed system must be reliable to its users. The system should 

have a backup mechanism that can be activated if the primary method fails. 

 

Resource Optimization: Embedded systems always require optimized resources. 

This will avoid overloading the ECU based on priority uses. Resource optimization 

needs to be ensured for the thesis project.  

 

Compliance: Although the project is based on a miniature real-world application, it 

should still comply with AUTOSAR safety standards, like ISO 26262 functional safety. 

Which will provide the benefit of adhering to real-world industry requirements. 

 

This analysis ensures that the SWC for the atomic straight driving pattern will be robust 

and reliable by implementing and complying with functional and non-functional 

requirements. This will not only meet the project's needs but also those of the industry 

guidelines. These requirements will also guide the subsequent design, implementation, 

and testing phases. 

 

4.3 Understanding AUTOSAR Classic 

The Technical Background chapter already discusses an overview of the AUTOSAR 

standard. Since the application software component (SWC) needs to be maintained in 

the AUTOSAR classic framework, it is necessary to analyze the AUTOSAR classic 

layer by layer to understand its functionality. The AUTOSAR architecture is mainly built 

on three software layers: Application, Runtime Environment (RTE), and Basic Software 

(BSW). The basic software layer can be divided into four layers: Services Layer, ECU 

Abstraction, Microcontroller Abstraction Layer (MCAL), and Complex Drivers. [10] 

Different layers serve different purposes. Implementing application software 

components within an AUTOSAR architecture, built in a demonstrator, must be 

analyzed first. This will provide a clear idea of how to incorporate it according to 

requirements. Since the TUCminiCar already provides AUTOSAR Basic Software 

(BSW) modules integrated within ECU, they must be analyzed for application software 

component deployment. In the following sub-section, an overview of different layers 

will be discussed in terms of project requirements. 
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4.3.1 Overview of AUTOSAR Layers 

This subchapter analyzes some details about the AUTOSAR layers. It starts with the 

topmost layer of the architecture, the application, then the runtime environment (RTE), 

and finally, the basic software layer (BSW).  

 

4.3.1.1 Application layer 

The application layer is the topmost layer in the AUTOSAR architecture.[10] It is where 

the application software component “StraightDriveSWC” for an atomic straight drive for 

the thesis project should be implemented. Since it will have the SWC, which will 

implement different control logic, it is the most critical part of the project. Some key 

features and components belong to the application layer discussed below:  

 

Application Software Components: These are the components that are the building 

blocks of the application layer. There will be ports for communicating to or from these 

software components. These ports can use either sender-receiver or client-server 

interfaces. These ports will control different actuators, such as sensors and motors. 

These software components will implement the control logic to control those actuators. 

There will be a runnable within this software component, which will define the 

component's behavior. It can be triggered by different events, like time triggering, one 

of which will be used to trigger the “StraightDriveSWC.” 

 

Platform Independence: SWCs in the application layer of the AUTOSAR architecture 

are platform-independent. That means the application logic implemented within these 

SWCs is hardware-independent and should work in another hardware platform. 

 

Figure 4.2: AUTOSAR Layered Architecture. 
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Integration with RTE: The runtime environment (RTE) provides communication 

services for the SWCs implemented in the application layer. Successful integration will 

facilitate the application layer's communication with lower-layer modules, like in the 

basic software (BSW) layer. 

 

Functional Logic: The application layer deals with functional logic deployment and 

maintenance. For the thesis topic, functional logic must be implemented to control 

actuators to maintain atomic straight drive and sensor data control to comply with 

ADAS functionality. 

 

Extensibility for Future Features: The SWCs in the application layer are designed 

the way these should be applicable to be extensible. If any safety feature is added to 

the application layer, the currently developed SWC should welcome be connected with 

the future one. 

 

For the thesis topic, the SWC for the atomic straight drive can be implemented easily 

within the AUTOSAR framework by adapting to the characteristics of the application 

layer. In the next sub-section, the RTE layer of AUTOSAR will be discussed. 

 

4.3.1.2 Runtime Environment (RTE) Layer 

The RTE layer is the core of AUTOSAR architecture. It is designed to communicate 

between the hardware-independent layer, “Application,” and the hardware-dependent 

layer, “Basic Software.”[28] So, the main task of the RTE layer is to make the 

application layer independent from the specific ECU configuration in the lower layers. 

This characteristic of RTE allows it to provide the required communication and 

infrastructure services needed for system operations. Some main features of the RTE 

layer are provided below: 

 

SWC Communication: RTE provides a real-time communication ability for the 

developed SWC within the architecture. As for the thesis, it ensures real-time 

communication between the atomic straight driving software component placed in the 

application layer and other system components, like the actuator, CAN communication, 

and ADAS sensors. There are two types of RTE communication modes: explicit and 

implicit.[29] For example, information from motor speed and obstacle detectors is 

directed through the RTE for proper response management. 
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Scheduling SWC: This part is major for scheduling tasks or events. Task scheduling 

can be done within RTE based on priority.[28] Task scheduling confirms that the 

operations are synchronized. For atomic straight driving, it is necessary to arrange the 

task scheduling based on the critical level. 

 

Mapping Flexibility: The RTE ensures that SWCs are deployable to any ECU within 

the system defined during the configuration process and dynamically manages the 

communication approaches to maintain system integrity. This dynamic RTE facility 

ensures mapping flexibility. 

 

Integration with Basic Software: The RTE controls the interaction between the 

application-level logic and the BSW level, ensuring that straight-driving functionality 

utilizes essential services like actuator control and communication protocols. 

 

System Validation: During the software in loop test (SIL) or integration time, RTE 

confirms to validate the software component's compatibility with the system. 

 

Overall, the Runtime Environment (RTE) is an important part of the AUTOSAR 

framework, connecting application-level software and hardware-specific details. The 

RTE will ensure that the atomic straight driving pattern SWC can be easily integrated 

within the system, communicate effectively with other components, and operate in a 

safety-critical automotive domain for the thesis.  

 

4.3.1.3 Basic Software (BSW) Layer 

The Basic Software (BSW) layer is the foundation of AUTOSAR architecture, which 

works closely with the hardware. This layer contains multiple sub-layers: the 

Microcontroller Abstraction Layer (MCAL), the ECU Abstraction Layer, Complex 

Drivers, and Services Layers. [10] This layer’s software components (SWC) have 

already been designed and integrated into the TUCminiCar. In this section, an analysis 

will be conducted to get a clear idea of how basic software components function so 

that the application software component can work with this layer’s components. In this 

sub-chapter, sub-sections from the BSW layer will be discussed in detail. 

 

• Microcontroller Abstraction Layer (MCAL) 

MCAL is the lowest sub-layer in the BSW layer.[10] This layer directly communicates 

with the related hardware within the microcontroller through the driver software 

available in MCAL. The MCAL consists of the following module groups, which are 

present in the picture mentioned below. Depending on the requirements, the blue-
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marked groups are analyzed as installed within the TUC demonstrator TUCminiCar. 

Inside MCAL, four basic modules are  

presented: I/O Drivers, Communication Drivers, Memory Drivers, and Microcontroller 

Drivers. Two other drivers are also available: crypto drivers and wireless 

communication drivers. Since no modules are used in the demonstrator, they are not 

illustrated. No module is installed in the demonstrator for memory drivers, and memory 

specification is not required; rater memory management is done automatically by the 

ECU itself. 

 

I/O Drivers: The input/output driver or I/O driver directly interacts with different types 

of hardware by separating the specifications of hardware types. This provides 

hardware independence to upper-layer modules. It also manages different signaling 

for sensors and actuators. Five I/O drivers are integrated into TUCminiCar; those are 

mentioned below: 

 

i. ADC Driver: An Analog Digital Converter (ADC) driver converts all analog data 

to digital forms. This ADC driver works on the ADC channel group, which is 

analog pin inputs. [30] 

 

ii. DIO Drivers: Digital Input Output (DIO) driver provides read and write access to 

the internal General-Purpose Input Output (GPIO) ports. The read-write 

operations are synchronous in general.[31] 

 

iii. PORT Driver: The port driver defines the whole port structure of the 

microcontroller port pin. [31] This can be represented by configuring ports for 

reading sensor data or managing output data to control actuators. 

 

Figure 4.3: Microcontroller Abstraction Layer. [10] 
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iv. PWM Driver: The Pulse Width Modulation (PWM) driver generates PWM 

signals. It enables the duty cycle and signal period time to be selected.[32] The 

driver helps control actuators by varying the PWM signal, which provides 

different duty cycles.  

 

v. ICU Driver: The input Capture Unit (ICU) driver is used to capture different 

events of the input unit, which does the Pulse Width Modulation (PWM) 

demodulation, tracking pulses of the signal, measuring frequency, and duty 

cycle.[32] This driver is required since the demonstrator uses a DC motor that 

generates PWM signals. 

 

Communication Drivers: The communication drivers in the MCAL layer define 

communication services with microcontrollers. These drivers separate the upper layer 

as hardware independence since it lays into the lower layer and works closely with the 

hardware unit.[33] They support different communication protocols, such as Controller 

Area Network (CAN), Local Interconnect Network (LIN), FlexRay, Ethernet, etc. The 

CAN driver is used only for the thesis topic since the CAN hardware unit is used for 

communication. This CAN drive facilitates communication over CAN protocol by 

ensuring data transmission and receiving flow.  

 

Microcontroller Drivers: Microcontroller drivers are a foundation for the 

microcontroller’s hardware resources. They are used for internal peripherals with direct 

microcontroller access. [10] There are several key microcontroller drivers available in 

the AUTOSAR, which include the Microcontroller Unit (MCU), Watchdog Drivers, 

General Purpose Driver (GPT), etc. In the TUCminiCar, the Microcontroller Unit (MCU) 

driver is used. This driver provides clock and RAM initialization services.[34] 

 

• ECU Abstraction Layer 

In parallel with the MCAL layer’s drivers, corresponding abstraction components  

Figure 4.4: ECU Abstraction Layer's Module. 
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using the ECU Abstraction Layer is also available. This layer acts as an interface 

between low-level modules in MCAL and upper-layer modules in the Service layer, 

making the upper-layer hardware independent. The main components of this layer are 

I/O Hardware Abstraction, Communication Hardware Abstraction, Memory Hardware 

Abstraction, Crypto Hardware Abstraction, and Onboard Device Abstraction. [1] 

 

• Services Layers 

The services layer is the topmost layer in the BSW layer. It provides different services 

to the application layer’s software components. The core components of the service 

layers are systems services, memory services, crypto services, off-board 

communication services, and communication services.[1] Some services provided by 

this layer are listed below- 

 

 

System Services: This feature of the service layer provides some required system 

functionalities, such as startup, shutdown, and mode management. The system 

handles state transitions, such as sleep or active modes. 

 

Communication Services: It also provides a standardized interface for network 

communication, including protocol handling for different communication protocols like 

CAN, LIN, FlexRay, and Ethernet. This confirms continuous data exchange between 

Electronic Control Units (ECUs) and other networked devices. For the thesis topic, 

CAN communication is used. In the service layer, there is a protocol data router 

(PduR), which provides different PDUs (Protocol Data Units) connected with the low-

level module CanIf (CAN Interface) in the ECU abstraction layer for communicating 

from upper to lower level. 

 

Diagnostic Services: This service includes modules for onboard diagnostics (OBD) 

and fault detection and establishing communication with external diagnostic tools for 

maintenance and troubleshooting from a tester to ECU. 

Figure 4.5: Services Layer's Module. 
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Memory Services: This service provides Application Programming Interfaces (APIs) 

for managing non-volatile memory (NVM), flash memory, and Electrically Erasable 

Programmable Read-Only Memory (EEPROM). 

 

Safety and Security Services: Provide features such as watchdog monitoring, 

system health monitoring, and secure communication, which are related to functional 

safety standards like ISO 26262. 

 

• Complex Drivers 

Complex Device Driver (CDD) is the layer that can be accessed outside of AUTOSAR. 

This driver is designed so that those functionalities cannot be implemented by the basic 

software (BSW) components; complex drivers can do those. This driver can be 

accessed by AUTOSAR interfaces and/or the Basic Software module’s API.[35] 

 

For the thesis, it was necessary to analyze each module in the AUTOSAR architecture 

to design and integrate SWC for the atomic straight drive while maintaining the 

AUTOSAR standard. After analyzing the TUCminiCar, the developed AUTOSAR 

architecture overview is found as below picture: 

 

The application SWC StraightDriveSWC needs to be developed within the architecture 

shown in the proposal. For this purpose, the SWC template will be analyzed in the next 

sub-chapter to gather knowledge of the SWC creation process. 

 

 

Figure 4.6: Overview of TUCminiCar AUTOSAR Architecture. 
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4.3.2 Software Component (SWC) Template 

The software Component (SWC) template describes the procedure for developing 

SWCs within different layers of the AUTOSAR architecture.[36] SWCs can be different 

depending on the interaction, and their port type also varies depending on how they 

interact with other components. In this sub-chapter, the type of SWC in AUTOSAR and 

the core components related to SWC creation, like SWC Port Type, Interfaces, Internal 

behavior, and Runnable Entities, will be discussed. 

• Type of Software Component 

Software component creation depends on which layer and what responsibilities are 

assigned to each specific component. SWC needs to be designed based on the 

implementation requirement. The software components below are designed and 

implemented based on the thesis topic requirements. 

 

ApplicationSwComponentType: These types of Software Components (SWCs) are 

hardware-independent and placed on the application layer of AUTOSAR 

architecture.[37] For the thesis topic, the required software component, 

“StraightDriveSWC,” which maintains atomic straight driving, needs to be an 

ApplicationSwComponentType software component. This software component can 

interact with different sensors and actuators via the 

“SensorActuatorSwComponentType” software component, which is in the BSW layer 

of AUTOSAR architecture. For sending data through the CAN bus, there is a 

requirement for another application type SWC, which has already been developed in 

the TUCminiCar and is named “CommunicationManager.”  

 

SensorActuatorSwComponentType: These types of software components are fully 

hardware-dependent. A corresponding “SensorActuatorSwComponentType” Software 

Figure 4.7: Graphical Representation of SWCs in AUTOSAR. [35] 
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Component (SWC) is available for each hardware connected to the ECU. Although 

these types of SWCs are hardware-specific, they are still located above RTE and 

connect with ApplicationSwComponentType SWCs and EcuAbstractionSwC-

omponentType SWCs and link them. For the TUCminiCar, several SensorActuator-

SwComponentType SWCs have already been developed for different sensors and 

actuators; there is no requirement to create any new component for the thesis 

topic.[36], [38]  

 

EcuAbstractionSwComponentType: These types of SWCs are typically designed to 

interact with Basic Software modules, specifically with the ECU Abstraction Layer. 

They are also hardware-specific SWCs, which contain references to specific hardware 

that interacts with different I/O ports of the ECU to access hardware.[36] Different 

EcuAbstractionSwComponentType SWCs have already been developed within 

TUCminiCar and, thus, do not need to be configured for the thesis topic. 

 

CompositionSwComponentTypes: CompositionSwComponentTypes SWCs visualize 

the different developed SWCs for different layers. They also provide port-type 

information and help interconnect different SWCs.[35] These types of SWCs don’t 

have any service-type ports but can visualize which internal ports are designed to 

connect externally. For the thesis topic, after designing the application SWC, 

CompositionSwComponentTypes SWC is required to connect with different SWC 

ports.[36], [39] 

 

• SWC Port and Interface Types 

Ports provide an interface for connecting 

different software components. They use 

connectors for connectivity. A port in a 

software component can be either a 

provided port (PPort) or a required port 

(RPort). A provided port is a type of port 

where the SWC sends data to another 

SWC, while required ports are used to receive data from another SWC. After creating 

ports in SWC, there will be a required interface within these ports for connectivity. 

These port interfaces can be of two types: sender-receiver and client-server. The 

sender-receiver interface is used when periodically data need to be sent and received, 

while the client-server is used when request-response data passing is required.[36], 

[40] 

 

Figure 4.8: SWC Port Types. 
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• SWC Internal Behavior 

The internal behavior of an SWC defines its internal 

structure, which is built by combining runnable entities, 

implementation, RTE events, and data access 

definitions. An internal behavior should be created for 

each SWC. Within this internal behavior, there should 

be a runnable entity that needs to give data access to 

the created ports for the SWC. After that, it is required 

to define the triggering event for the runnable, such as 

the timing event, which is the most commonly used 

event in the automotive domain. After that, an 

implementation needs to be added to the internal behavior directory. This 

implementation will contain the “C” code file, where all the logic will be implemented 

for the designed SWC.[41][36] 

 

Knowing the process guidelines is a prerequisite for any implementation. Since the 

application SWC will be required to control the straight drive for the ADAS 

demonstrator, it is necessary to know the standardized procedure for SWC 

development. This subchapter will help gather the necessary knowledge. In the next 

subchapter, the CAN communication method will be discussed. 

 

4.4 Understanding Controller Area Network (CAN) 

Controller Area Network or CAN is a serial 

communication protocol invented by the German 

company Bosch in the year 1986, and later, it was ISO 

standardized as ISO 11898 in the year 1993. CAN bus 

was introduced in the automotive domain due to the 

complexity of wiring within a car due to the increased 

ECU numbers. A standard “CAN” can have a data rate 

of 1 MBit/s data transfer rate. Two-wired high and low 

connectivity methods replaced all the traditional wires. 

In each ECU, there is a CAN transceiver that can send and receive data. CAN bus 

uses the CAN arbitration method to send or receive data, depending on the priority of 

the messages.[42], [43] 

 

4.4.1 Overview of the CAN Protocol 

The Controller Area Network (CAN) protocol works based on carrier sense multiple 

access protocol with collision detection (CSMA/CD) protocol. Here, every node 

Figure 4.9: Internal Behavior 

Components. 

Figure 4.10: CAN Bus.[42] 
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connected to CAN bus communication needs to check the bus load status and then 

send a message. The message arbitration happens based on the priority of the 

message; thus, CAN bus communication is reliable in the automotive domain.  

Depending on the identifier, the Controller Area Network (CAN) has been standardized 

into two types: Standard Frame Format (CAN 2.0A) and Extended Frame Format 

(CAN2.0B).[44], [45] 

 

• Standard Frame Format 

The identifier’s length for the Standard Frame is 11 bits. The format of the standard 

frame is mentioned in the below picture, and different terms in the picture are described 

afterward.[44], [46] 

 

SOF: Start of Frame (SOF) defines the starting of the data frame, which contains a 

single bit that needs to be dominant. 

 

Identifier: The Identifier length for the standard frame is 11 bits; this is the arbitration 

field that defines the priority. 

 

RTR: Remote Transmission Request (RTR), which differentiates between data frame 

and remote frame.  Dominant (0) is for the data frame, and Recessive (1) is for the 

remote frame. 

 

IDE: Identifier Extension (IDE) bit defines whether the standard or extended frame 

format. 

 

r0: Reserved bit for future uses, need to be dominant (0).  

 

Figure 4.11: CAN (2.0A) Standard Frame Format.[43][45] 
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DLC: The Data Length Code (DLC) defines the number of bytes in the data field. DLC 

is 4 bits wide, as shown in the table below. Where ‘d’ stands for dominant and ‘r’ is for 

recessive.  

 

Table 4.1: DLC Define Number of Data Bytes.[43] 

 

  

 

 

 

 

 

 

 

 

 

Data Field: This field indicates that the data is being transferred. The number of data 

bytes indicates the payload (data byte) length, which can range from 0 to 8 bytes; 

others are not accepted. 

 

CRC: The cyclic redundancy Check (CRC) detects errors in the data field (15 bits of 

CRC+1-bit delimiter). 

 

ACK: The Acknowledgement (ACK) field contains 2 bits for providing acknowledgment 

status, where the first bit is for acknowledgment status and the second one is a 

delimiter. 

 

EOF: End of Frame (EOF) containing seven recessive bits provides end status. 

 

IFS: Interframe Space (IFS) contains 3 bits of an idle period, providing a mandatory 

delay between consecutive frames. 

 

• Extended Frame Format 

The main difference between the extended CAN (2.0 B) frame format and the standard 

one is the extension of the identifier field. In the extended format, another 18 bits are 

added for the identifier, for a total of 29 bits. The structure of the extended frame format 

is as per the below figure, and the modification from the standard frame format follows 

afterward. 

Number of 
Data Bytes 

Data Length Code (DLC) 

DLC3 DLC2 DLC1 DLC0 

0 d d d d 

1 d d d r 

2 d d r d 

3 d d r r 

4 d r d d 

5 d r d r 

6 d r r d 

7 d r r r 

8 r d d d 
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Bit Identifier: 29-bit identifiers in total, which replaced the 11 bits from the standard one. 

 

IDE: IDE = 0, standard frame format (11-bit identifier), IDE = 1: Extended Frame 

Format (29-bit identifier) 

 

SRR: Substitute Remote Request (SRS) is added in the extended frame and is always 

recessive to ensure the standard frame gets higher priority over the extended one for 

the same base identifier (11).  

 

All the other fields remain the same in the Extended Frame as in the Standard frame. 

 

4.4.2 Overview of CAN in TUCminiCar 

After analyzing “TUCminiCar,” it is clear that the CAN communication stack modules 

have already been integrated within the car for communication purposes. The 

integrated modules are shown in the abstract picture below, and details are mentioned 

afterward. 

 

Figure 4.12: CAN (2.0B) Extended Frame Format.[43][45] 

Figure 4.13: TUCminiCar CAN Stack Overview. 
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CAN Driver: This module belongs to the Microcontroller Abstraction layer and interacts 

directly with the CAN controller hardware. Standard CANIdType is configured for the 

TUCminiCar.  

 

CanIf: The CAN Interface (CanIf) module is placed in the ECU abstraction layer and 

acts as an interface between the upper- and lower-layer modules.[47] Transmission 

and receiving channels are created in CanIf modules for the demonstrator.  

 

PduR: The Protocol Data Unit Router (PduR) connects all the PDUs created in the 

system by routing them in a routing table. This router is placed in the communication 

service, which is in the service layer.[48] Different PDUs are created in the 

demonstrator to send data for controlling the car, sending distance sensor data, and 

knowing the car's status. 

 

Com: The Communication (Com) module is placed in the communication service layer, 

connecting PduR to RTE and staying between them. This module is used for signaling 

purposes by using Interaction Layer Protocol Data Unit (I-PDU).[49] For the 

TUCminiCar, the number of PDUs is created, and corresponding I-PDUs are also 

created in the Com module for signaling purposes. 

 

CanSM: The CAN State Manager (CanSM) is a module in the communication service 

layer that manages the state of the CAN network.[50] For the demonstrator, a single 

CAN network has been created, and CarEcu is assigned to that network to control the 

state. 

 

ComM: The Communication Manager (ComM) module is placed in the system 

services layer and manages the ECU's communication states.[51] For the 

demonstrator, a single network channel has been added to this module. 

4.5 Analyze “TUCminiCar” System Configuration 

This subchapter provides the high- and low-level existing configuration overview for 

the “TUCminiCar,” which will be used as the base for implementing the project. The 

system configuration can be viewed as follows- 

 

• dSPACE SystemDesk Configuration Overview 

After analyzing the current configuration from TUCminiCar, it is found that Basic 

Software system designing is already visible in the CompositionSWC of dSPACE 

SystemDesk, which is extracted as a high-level overview as below: 
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In the above composition overview, only the StraightDrive application SWC is not 

present; others are extracted from developed SWCs. For interacting with different 

hardware units, different EcuAbstractionSw-ComponetType SWC have already been 

designed and integrated within the dSPACE SystemDesk file *.sdp. For the thesis 

topic, there is no requirement to go further for the connectivity analysis to control the 

sensor or actuators. Since the target Application Software Component will interact with 

SensorActuatorSWCType to control the demonstrator, it is necessary to analyze their 

interfaces and working logic to deploy the StraightDriveSWC. For analyzing all the 

required SWCs and ports, the data from the components are arranged in below the 

three tables: one is for the input side, another for communication, and the last one is 

from the output side, as below- 

 

• TUCminiCar Input Sensor/Actuator SWC 

The table below provides all the required input sensor/actuator data (speed, steering 

angle, and obstacle data) sources from existing SWCs to implement and make 

connectivity for the application SWC StraightDrive development. 

 

Table 4.2: TUCminiCar Input Parameter. 

SWC Type 
SWC 
Name Port Name 

Port 
Type Interface Purpose 

SensorActua
torSwCompo

nentType 

SensActInp
utSonar 

pp_inSonar
Values 

Provided 
Port  sri_sonar 

This port from SWC provides 
obstacle data from the Sonar 
sensor. 

SensActInp
utEncoder 

pp_inSpee
dValue 

Provided 
Port  sri_float 

This port from SWC provides 
the current speed from the 
DC motor. 

SensActInp
utAnalog 

pp_inSteeri
ngPot 

Provided 
Port  sri_float 

This port from SWC provides 
the current steering angle 
from the servo motor. 

Figure 4.14: TUCminiCar dSPACE Composition Overview. 
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• TUCminiCar Communication SWC 

The table below is for the communication manager SWC. Apart from all other ports for 

internal communication, this SWC has eight user input ports available to send data 

from the tester’s end. All the ports have the same port type and interface; users can 

use these ports to send the required data to the ECU to control the TUCminiCar after 

receiving and processing it within the planned application SWC StraightDrive. 

 

Table 4.3: TUCminiCar CommunicationManager Parameter. 

SWC Type 
SWC 
Name 

Port Name 
Port 
Type 

Interface Purpose 

ApplicationSwC
omponentType 

Communic
ationManag

er 

pp_CanRx_U
serControl1 

Provide
d Port  

sri_uint8 
Send data from the tester 
to ECU through CAN Bus 

pp_CanRx_U
serControl2 

Provide
d Port  

sri_uint8 
Send data from the tester 
to ECU through CAN Bus 

….. 
Provide
d Port  

sri_uint8 
Send data from the tester 
to ECU through CAN Bus 

pp_CanRx_U
serControl8 

Provide
d Port  

sri_uint8 
Send data from the tester 
to ECU through CAN Bus 

 

• TUCminiCar Output Sensor/Actuator SWC 

Below is the parameter table for the output side of TUCminicar’s configuration 

parameter in dSPACE. From all the configured ports in the system, only those required 

for the thesis topic are analyzed in the table below, which will be used to connect in 

the application SWC StraightDrive to control different actuators of the car. 

 

Table 4.4: TUCminiCar Output Parameter. 

SWC Type SWC Name 
Port 
Name 

Port 
Type 

Inter
face 

Purpose 

SensorActuatorSw
ComponentType 

SensActOut
putChassis 

rp_outMot
orDuty 

Requir
ed Port  

sri_u
int8 

This port receives moto duty 
value to accelerate the car 

rp_outStee
ringDuty 

Requir
ed Port  

sri_u
int8 

This port receives steering duty 
value to fix the steering angle 

SensActOut
putBeeper 

rp_outBee
perMode 

Requir
ed Port  

sri_u
int8 

This port receives instructions 
for beeper control 

SensActOut
putLights 

rp_outHigh
Beam 

Requir
ed Port  

sri_b
ool 

This port receives instructions 
for HighBeam control 

rp_outLow
Beam 

Requir
ed Port  

sri_b
ool 

This port receives instructions 
for LowBeam control 

rp_outLeft
Signal 

Requir
ed Port  

sri_b
ool 

This port receives instructions 
for LeftSignal Light Control 

rp_outRigh
tSignal 

Requir
ed Port  

sri_b
ool 

This port receives instructions 
for RightSignal Light Control 

rp_outRev
erseLights 

Requir
ed Port  

sri_b
ool 

This port receives instructions 
for Reverse Light Control 

rp_outBrak
eLights 

Requir
ed Port  

sri_b
ool 

This port receives instructions 
for Brake Light Control 
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After analyzing the above parameter information, a clear idea was obtained for 

developing the SWC application and its connectivity with existing SWCs in the 

demonstrator. After developing the application SWC, it needs to be validated and a 

new *.arxml file needs to be generated in SystemDesk. This file can then be integrated 

into EB Tresos studio. The implementation, testing, and integration steps will be 

described in the Implementation chapter. 
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5 Implementation 

This chapter presents the practical application of the thesis topic “AUTOSAR Software 

Component for Atomic Straight Drive Patterns” to the TUCminiCar demonstrator. The 

knowledge and information gathered throughout the paper before this chapter have 

formed a base for the project implementation. The following figure illustrates the high-

level overview of the project implementation.  

 

 
Figure 5.1: Implementation Overview. 

 

Based on the project implementation, this chapter has been divided into four sub-

chapters: SWC Development (5.1), Software-In-Loop (5.2), System Integration (5.3), 

and System Test (5.4). These sub-chapters will be illustrated in detail throughout this 

chapter. 

    

5.1 SWC Development 

This chapter will focus on developing the application software component for the 

atomic straight driving pattern. dSPACE SystemDesk will be used for design and 

logical implementation. The SystemDesk 5.6 version has been used for the 

implementation at the dSPACE end. In this sub-chapter, the following sections will be 

illustrated: Application SWC Designing (5.1.1), Interface Definition (5.1.2), Logic 

Implementation (5.1.3), and RTE Generation (5.1.4). 
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5.1.1 Application SWC Designing 

This section will describe the design of the 

application software component 

“StraightDriveSWC” in dSPACE. First, the existing 

System Description file 

“miniTUCar_SystemDesc.sdp” needs to be 

imported into dSPACE. From the existing 

configuration, there is a dedicated place for 

application SWC design; the “StraightDriveSWC” application-type software component 

needs to be created in that section, which is named the “ApplicationSwComponents” 

folder. 

 

This SWC component will handle different elements like engine control, speed control, 

and steering control, receive obstacle data from a sonar sensor, and also handle 

various light and auditory components. Depending on the compatibility of the existing 

basic software (BSW) component and its operation, it is necessary to create the 

required and provided port, as discussed already in chapters (4.3.2) and (4.5). 

Depending on the requirement, the provided port and required port have been created 

within the SWC as per the above picture. The required ports are initiated with “rp_,” 

whereas the provided ports are “pp_.” All the required ports (rp) are to receive data 

from other software components, and SWC will take the necessary steps to process 

the received data; after that, those will be transferred to the appropriate areas through 

the provided ports (pp). In the next sub-chapter, interfaces will be assigned to the ports. 

 

5.1.2 Interface Definition 

This subchapter describes how the application software component interacts with the 

other SWCs. It defines how communications are managed within different SWCs. The 

interface assigning depends on how each port will interact with others. The connected 

Figure 5.2: StraightDriveSWC Creation. 

Figure 5.3: StraightDriveSWC Port Definition 
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ports should have a similar interface. Otherwise, there will be compatibility issues and 

no communication between them. As knowledge gathered from subchapter (4.3.2) 

about SWC interface type and (4.5) about existing interface types, the port assignment 

has been executed as per the below figure.  

All the interfaces are sender-receiver in type, and the interfaces assigned to each port 

that already existed in the SystemDesc file have only been assigned to the ports 

depending on the requirement. Ports and assigned interfaces can be categorized into 

two sections: Provided Port (PPort) Interfaces and Required Port (RPort) Interfaces. 

For each section, the port, interface, and purpose of the ports are arranged in the tables 

below. 

 

Required Port Interfaces: The table below lists all the Required Ports and assigned 

interfaces along with purposes that have been configured for “StraightDriveSWC.” 

 

Table 5.1: StraightDriveSWC RPort with Interface Definition. 

Port Name Port Type Interface Purpose 

rp_inEngineControl RPort sri_uint8 Receive Engine Control from user/tester 

rp_inUsrSpeed RPort sri_uint8 Receive Speed data from the user/tester 

rp_inSpeed RPort sri_float Receive Speed data from Car 

rp_inUsrSteering RPort sri_uint8 Receive Steering data from the user/tester 

rp_inSteering RPort sri_float Receive Steering data from Car 

rp_inSonarData RPort sri_sonar 

Receive object detection data from sonar 

sensor 

rp_inUsrDistance RPort sri_uint8 

Receive path section data from the user/tester, 

like how many sections need to travel 

rp_inUsrSectionLength RPort sri_uint8 

Receive each Section Length data from the 

user/tester 

Figure 5.4: StraightDriveSWC Interface Definition. 
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Provided Port Interfaces: The table below lists all the Provided Ports and associated 

interfaces along with purposes that have been configured for “StraightDriveSWC.” 

 

Table 5.2: StraightDriveSWC PPort with Interface Definition. 

Port Name 
Port 
Type 

Interface Purpose 

pp_outSteering PPort sri_uint8 Provide data to the car for Steering control 

pp_outSpeed PPort sri_uint8 Provide data to the car for Speed control 

pp_outLowBeam PPort sri_bool Provide data to the car for low-beam control 

pp_outHighBeam PPort sri_bool Provide data to the car for high-beam control 

pp_outLeftSignal PPort sri_bool 
Provide data to the car for Left Signal Light 
control 

pp_outRightSignal PPort sri_bool 
Provide data to the car for the Right Signal 
Light control 

pp_outBrakeLights PPort sri_bool Provide data to the car for Brake Light control 

pp_outReverseLights PPort sri_bool 
Provide data to the car for Reverse Light 
control 

pp_beeperControl PPort sri_uint8 Provide data to the car for Beeper control 

 

5.1.3 Logic Implementation 

The StraightDriveSWC controls different driving scenarios, such as distance tracking, 

obstacle detection, speed control, and steering control. It reads various sensor inputs 

and user input data and, after that, processes the appropriate computations and sends 

control signals to the actuators in the vehicle. After assigning ports and interfaces to 

the SWC, it is time to implement logic so that these ports can interact with proper data 

control. The implementation logic for each key point is discussed below- 

 

Engine Control Logic Flow: SWC reads the engine control status from the user input 

and then processes it as follows- 

 

• Condition 1: Engine OFF 

“If rp_inEngineControl == 0”, the vehicle is placed in a neutral state: 

Speed and steering values are set to the default (neutral) state. 

No further processing of inputs is allowed. 

 

• Condition 2: Engine ON 

“If rp_inEngineControl == 1”, the engine is on, and the car is ready to take new user 

inputs, such as speed, steering, and distance. 

 

• Condition 3: Undefined Values 

For all other values of “rp_inEngineControl,” no further operations are performed.  
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Distance Calculation Logic Flow: SWC can take speed data from two sources: user 

input through a CAN message or from inside the car. To accelerate the car, user input 

data “rp_inUsrSpeed” is considered, and for calculating current speed from inside the 

car, “rp_inSpeed” is considered for the actual value consideration. The car receives 

target distance (in millimeters) data from the multiplication value of “rp_inUsrDistance” 

and “rp_inUsrSectionLength” (rp_inUsrSectionLength, each atomic section, 

1=200mm, 2 = 400mm, 3 = 600mm, and so on…) from a tester. 

 

• Step 1: System Initialization 

Initialize the system and reset speed, cumulative distance, and elapsed time to 

zero. 

 

• Step 2: Engine Validation 

Check the engine status and be ready to accept user input if the engine is on. 

 

• Step 3: Input Data Processing 

Read user and car input data for speed, steering, and target distance and keep 

updating in real-time. 

 

• Step 4: Distance Tracking 

The SWC calculates the traveled distance based on the current speed (mm/s) and 

elapsed time. To track elapsed time, the control loop is executed every 10 ms, and 

distance calculations continue until the target distance is reached.  

Distance Calculation: distance Increment = speed (mm/s) × time Interval (s); 

required iterations = target distance (mm) ÷ distance 

increment (mm); 

cumulative distance = distance increment (mm) × no. of    

iterations. 

 

• Step 5 (Control Output): Based on the cumulative distance tracking, once the 

distance is reached, write neutral duty cycle (100) to the “pp_outSpeed” port to 

activate the brake; before that, keep writing forward (>100) or revere (<100) duty 

cycle as per the user input provided. To maintain a straight drive path, keep writing 

steering duty cycle neutral (100) to output port pp_outSteering. 

 

Obstacle Detection Logic Flow: SWC will receive obstacle detection data at the port 

“rp_inSonarData.” Based on the car's current condition, the brakes will be activated to 

stop. 
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• Step 1: Read Sonar Data 

Read sensor data at the port “rp_inSonarData,” which is the array of sonar sensors 

on the front [0,1,2] and back [8,9] sides of the car. 

 

• Step 2: Obstacle Detection 

Detect any object within 200 mm of the sensors. 

 

• Step 3: Braking Mechanism 

If the car is running, brake it immediately with neutral duty (100) value, and stop the 

distance tracking counter to stop measuring cumulative distance. 

 

• Step 4: Obstacle Elimination  

If the obstacle is removed, the car keeps moving automatically until the target 

distance is reached. 

 

Signaling Logic Flow: Based on the processed data from the SWC, in response to 

the car's operation, some visual and auditory actuators within the car also get activated 

or deactivated throughout the ports defined in the SWC. 

 

• Beeper Control 

Whenever the sonar sensor detects an obstacle, the car will continue to beep until 

the obstacle is removed from the detectable distance. 

 

• Brake Lights Control 

When the brake is activated, either during obstacle detection or traveling the target 

distance, the brake lights on the back side of the car turn on. In normal conditions, 

these are turned off. 

 

• Low Beam Control 

When the car moves forward direction under the duty cycle of 150 (equivalent to 

630 mm/s), the Low Beam lights are on. For the neutral and reverse directions, 

these are off. 

 

• High Beam Control 

High beam lights are on when the forward speed is equal to or greater than that of 

duty cycle 150. In other conditions, these are off. 
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• Reverse Lights Control 

These lights are on whenever the car moves in the reverse direction; in other 

conditions, they are off. 

 

• Left Signal Control 

When the steering turns in the left direction (duty cycle value 101 to 200), the left 

signal light starts blinking and is off in any other situation (0 to 99). 

 

• Right Signal Control 

The right signal control light starts blinking when the steering turns to the right side 

(0 to 99 duty cycle); in other conditions, the light remains off. 

 

To implement the logic mentioned above, “Internal Behaviour” within the SWC needs 

to be created, where the implementation of the “C” code will be placed. 

 

5.1.4 SWC Internal Behavior 

The internal behavior mainly describes Runnables and the Implementation of SWC. 

For this purpose, “IB_StraightDriveSWC” internal behavior has been created within the 

application SWC. Inside internal behavior, implementation “Impl_StraightDriveSWC” 

and runnable “StraightDriveSWC” were also created. 

 

Figure 5.5: StraightDriveSWC CodeDescriptor. 
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Inside the “Impl_StraightDriveSWC,” memory resource consumption needs to be 

assigned for the “C” file with the logic implemented, named “StraightDriveSWC.c.” 

Then, a new “CodeDescriptor” needs to be added, and inside this, the *.c file needs to 

be added. In the next subsection, RTE Generation, along with the runnable entity, will 

be described. 

 

5.1.5 RTE Generation 

The Runnable “StraightDriveSWC” created inside the internal behavior needs to be 

assigned a triggering event. This event will trigger the runnable by RTE as per the 

mentioned method. For the SWC, the RTE event is defined as a “Timing Event,” and 

it will be triggered every 10ms. After that, all the ports created within the SWC are 

provided data access for the Runnable Entity. Now, these ports are ready to read and 

write data from or to the desired SWC ports. The RPorts will read data as per the below 

RTE API functions: 

 

/* Read inputs */ 

uint8 engineControlStatus = Rte_IRead_StraightDriveSWC_rp_inEngineControl_data(); 

uint8 userSpeedValue = Rte_IRead_StraightDriveSWC_rp_inUsrSpeed_data(); 

uint8 userSteeringValue = Rte_IRead_StraightDriveSWC_rp_inUsrSteering_data(); 

float32 globalCarSpeedValue = Rte_IRead_StraightDriveSWC_rp_inSpeed_data(); 

float32 globalCarSteeringValue = Rte_IRead_StraightDriveSWC_rp_inSteering_data(); 

uint16* sonarData = Rte_IRead_StraightDriveSWC_rp_inSonarData_sonarValues(); 

uint8 targetDistanceSections = Rte_IRead_StraightDriveSWC_rp_inUsrDistance_data(); 

uint8 usrSectionLength = Rte_IRead_StraightDriveSWC_rp_inUsrSectionLength_data(); 

 

After SWC processes the input data, PPorts will write data according to the following 

Runtime Environment (RTE) API functions: 

 

/* Write Outputs */ 

Rte_IWrite_StraightDriveSWC_pp_outSpeed_data(motorDutyValue); 

Rte_IWrite_StraightDriveSWC_pp_outSteering_data(steeringDutyValue); 

Figure 5.6: StraightDriveSWC RTE Event and Data Access. 



67 
 

Rte_IWrite_StraightDriveSWC_pp_beeperControl_data(); 

Rte_IWrite_StraightDriveSWC_pp_outLeftSignal_data(); 

Rte_IWrite_StraightDriveSWC_pp_outRightSignal_data(); 

Rte_IWrite_StraightDriveSWC_pp_outReverseLights_data(); 

Rte_IWrite_StraightDriveSWC_pp_outHighBeam_data(); 

Rte_IWrite_StraightDriveSWC_pp_outLowBeam_data(); 

Rte_IWrite_StraightDriveSWC_pp_outBrakeLights_data(); 

 

Now, all the ports are ready to be connected with respective ports in other SWCs 

named SensorActuatorSWCType and CommunicationManager. After connecting to 

the desired ports of those SWCs, the composition diagram extract will be like as below 

picture: 

 

Now, it is necessary to do the SWC-to-ECU mapping for the newly added application 

SWC, and thus, need to select “CarEcu” for this mapping. Finally, check the project 

validation, which will ensure the design procedure after a successful validation. After 

successful validation, the SystemDesc file has been updated and is ready to generate 

a new *.arxml file to replace the old one.  

 

 

 

Figure 5.7: TUCminiCar Composition Diagram Extract. 
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The functionality of the developed SWC needs to be checked before integration into 

the EB Tresos studio. To do this, a Software-In-Loop test is required, which will be 

discussed in the next sub-chapter. 

5.2 Software-In-Loop (SIL) Testing 

Software-In-Loop (SIL) testing is the most commonly used method in the automotive 

industry to check SWCs' functionality. In this sub-chapter, a developed SWC will be 

tested in a simulation environment before integration. 

 

5.2.1 StraightDriveSWC Prototype 

Since the SWC was developed under the whole system architecture for the 

TUCminiCar, it is necessary to separate it and test it in a simulation environment only 

to test its functionality. To do so, a prototype, “StraightDriveSWC,” has been 

developed, which is similar to the originally developed component. Only basic driving 

functionality, along with obstacle detection, will be tested, as these are the main safety-

Figure 5.9: StraightDrive SWC Prototype. 

Figure 5.8: CarEcu Mapping and Validation. 
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critical functionalities within the SWC. Above is the developed prototype SWC, where 

all user inputs, SteeringAngle, UsrDistance, Speed, Obstacle, and EngineStatus, are 

defined as RPort, and action-taking functionalities, DriveForward and ActivateBrake 

from the SWC, are defined as PPorts. All the assigned interfaces are sender-receivers, 

and a runnable triggering event is also defined as a timing event 10ms like the main 

one. The RPorts are ready to read data from tester as per the below RTE API functions: 

 

/* Read inputs */ 

Boolean EngineStatus = Rte_IRead_StraightDriveSWC_rp_inEngineStatus_EngineStatusIn(); 

Boolean ObstacleDetected = Rte_IRead_StraightDriveSWC_rp_inObstacle_ObstacleIn(); 

uint16 SpeedOfCar = Rte_IRead_StraightDriveSWC_rp_inSpeed_SpeedIn(); 

uint32 DistanceOfCarKm = Rte_IRead_StraightDriveSWC_rp_inUsrDistance_DistanceIn(); 

uint8 AngleOfCar = Rte_IRead_StraightDriveSWC_rp_inSteeringAngle_AngleIn(); 

 

After processing input data by SWC, PPorts will write data as per the below RTE API 

functions: 

 

/* Write Outputs */ 

Rte_IWrite_StraightDriveSWC_pp_outDriveForward_DriveForward(); 

Rte_IWrite_StraightDriveSWC_pp_outActivateBrake_ActivateBrake(); 

 

5.2.2 Simulation Scenarios 

Logic implementation for the simulation scenarios is similar to the main SWC. The 

below functionalities should be tested for the prototype SWC- 

• User Input Validation: Validate for all the defined RPorts and ensure that the SWC 

reads data properly through those ports.  

 

• Engine Status Validation: Check that the engine status setting is working properly. 

For this simulation engine status is either “on” or “off”. If the engine is off then no 

other parameter should work. 

 

• Distance Tracking Validation: Check that distance tracking is working based on 

speed and target distance. For the simulation, the target distance parameter is in 

kilometers, and the speed is in meter/sec (m/s). 

 

• Obstacle Detection Validation: Check that the car is reading obstacle status 

properly and taking actions based on detection. 

 

• Forward Driving Validation: Check that the car is driving forward for the provided 

inputs. Also, for tracking straight drive, the steering angle should be between 0 to 

4 degrees. 
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• Braking Mechanism Validation: Check that the braking mechanism is working 

properly to achieve the target distance, straight drive, or detect obstacles. 

 

5.2.3 VEOS Simulation 

To test on VEOS, need to create a virtual ECU (V-ECU) on SystemDesk, based on the 

developed architecture along with SWC. After a successful build, there will be a 

successful build message. Now, the EcuInstance is created to run on the VEOS player. 

After that need to import the EcuInstance into the VEOS player. Then, the simulation 

environment is ready to test functionality for the developed SWC. The test points will 

be created in the VEOS simulation model based on the developed SWC ports that 

were created in V-ECU. The simulation was tested on seven different test cases, and 

the test result is illustrated in the table below. 

Figure 5.11: VEOS Simulation Test Points. 

Figure 5.10: Virtual ECU Building. 
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Table 5.3: SWC Simulation Test Cases. 

  Input Output 

Car Message 
Tes
t 
Cas
e 

inEngine
Status 
(on/off) 

inObst
acle 
(yes/no
) 

inSp
eed 
(m/s) 

inSteeri
ngAngle 
(deg) 

inUsrDi
stance 
(km) 

Activ
ateBr
ake 

Drive
Forw
ard 

1 Off n/a n/a n/a n/a n/a n/a 

Engine Status: OFF, 
please start the 
engine. 

2 On n/a 0 0 0 n/a n/a 

Engine ON, but the 
car is not moving, 
please accelerate 

3 On n/a 10 0 0 yes no 

Distance threshold 
reached. Activating 
Brake 

4 On n/a 10 0 1 yes yes 

1. Activating drive 
forward 2. Distance 
threshold reached. 
Activating Brake after 
1000m/1km and 100 
sec 

5 On n/a 10 5 1 yes no 

The angle of the car is 
not within 0 to 4 
degrees. Activating 
brake 

6 On n/a 51 4 1 yes no 

The speed of the Car 
exceeds 50 m/s. 
Activating brake 

7 On yes 10 0 1 yes no 

Obstacle 
detected!Activating 
Brake 

 

The above table shows that all the test cases were passed successfully. Thus, the 

SWC prototype was successfully tested in the simulation environment before being 

implemented in the real-time environment. The developed SWC integration will take 

place in the next sub-chapter. 

5.3 System Integration 

Since the SIL test has been completed 

and passed successfully, the SWC, 

which was already validated in sub-

chapter 5.1.5, can now be integrated 

into EB Tresos Studio. To do so, need 

to export AUTOSAR from dSPACE 

SystemDesk, which will generate a 

new *.arxml file. The old *.arxml file 

needs to be replaced by the newly 

generated file with StraightDriveSWC in 
Figure 5.12: AUTOSAR Export from dSPACE. 
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the same directory. Since the  *.arxml file is generated, it’s time to go for EB Tresos 

studio integration, which will be in the next sub-section. 

 

5.3.1 Integration in Tresos Studio 

EB Tresos Studio configuration file holds the full AUTOSAR architecture modules 

along with newly modified SWCs and RTE. Since the new application SWC 

“StraightDriveSWC” was added to the SystemDescription file, therefore need to be 

integrated for the regeneration project. For this purpose, need to run an importer from 

the im – and exporters manager on “miniTUCar_SystemDesc_Imp.” After successful 

importation, there will be a successful message with no error. 

 

After successful importation, need to map the unmapped RTE events from the Rte 

Editor. Since a new timing event was created for the application SWC, 

“StraightDriveSWC,” therefore there will be an unmapped event. This timing event 

needs to be mapped into the appropriate timing event list. After that, from the project-

>unattended wizard directory, need to execute MultiTask_RunFullimport to import 

supporting elements within Tresos Studio. This will complete the importation process.  

 

 

 

Figure 5.13: Run Importer in EB Tresos Studio. 
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After RTE event mapping is done, need to check that the newly created ports are all 

mapped into the connection editor in Tresos Studio. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14: RTE Event Mapping. 

Figure 5.15: Port Mapping in Connection Editor. 
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5.3.2 System Validation  

After completing the integration task in Tresos Studio, need to validate the system. For 

this, need to verify and generate the project. After successful verification, there should 

not be any errors in the project error log. 

After verification and generation, the error log shows no error. Only a few warnings are 

present, those not related to the newly added application SWC. So, the project is ready 

to compile and generate a *.hex file. 

The project has been successfully compiled by the Tasking compiler, and the build was 

done without any errors. The “TRICORE_TC38XQ_AtomicStraightDrive.hex” file, 

which needs to be flashed in the ECU, has been generated into the following directory 

of the project folder: “AtomicStraightDrive\output\bin\ .” 

 

 

 

Figure 5.17: Project Compilation. 

Figure 5.16: Project Generation Error Log. 
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5.3.3 Setting Up the Test Environment 

Since the *.hex file is ready to be flashed, now need to prepare the hardware and 

software setup to perform an ECU flash. First, need to power on the ECU used for the 

car, Infenion KIT_A2G_TC387_3V3_TFT. An Infineon DAP miniWiggler is already 

connected to the ECU through a DAP connector. Then, a connection between the 

tester (PC) and the ECU was established. From the tester’s end, need to connect from 

Infineon Memtool software to access the ECU. After connecting, the existing 

configuration was erased from MemTool. Now, the newly generated *.hex file has been 

imported, which was generated to the project directory: 

“AtomicStraightDrive\output\bin\ .” 

After that, need to “Add Select” the components to be flashed into the ECU and 

program those files. After the program is successful, then need to verify the flashing. 

There will be a success message on successful verification in the result section. All 

AUTOSAR components have been integrated into the target ECU of TUCminicar and 

are now ready to test the functionalities. The CAN bus will be used to send messages 

from the tester side. For this purpose, the Tiny-CAN II-XL Interface is connected to the 

ECU by using a 9-pin connector on the ECU side and a USB connector to the tester 

side (PC). For testing from the tester, the CAN message format below will be used for 

the project testing: 

Table 5.4: CAN Message Format. 

Can
_Id 

D
L
C 

Data 

rp_inEngine
Control  

rp_inUs
rSpeed  

rp_inUsr
Steering  

rp_inUsr
Distance  

rp_inUsrSect
ionLength  

Unu
sed 

Unu
sed 

Unu
sed 

0x0
5A 

8 d0 d1 d2 d3 d4 d5 d6 d7 

 

 

Figure 5.18: Flashing Project into ECU. 
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CAN Message Details: 

rp_inEngineControl (d0): Send engine control for car, 0 – engine off, 1 – engine one, 

other value -invalid. 

rp_inUsrSpeed (d1): Duty value for speed, 101 – 200: Forward, 100: Neutral, 00-99: 

Reverse. 

rp_inUsrSteering (d2): Duty value for steering angle, 200 - 101: Left direction, 100: 

Neutral, 00 - 99: Right direction. 

rp_inUsrDistance (d3): Number of sections the car wants to travel, 1,2, 3,….and so on. 

rp_inUsrSectionLength (d4): Section length, each one atomic section, 1=200mm, 

2=400mm, 3=600mm, …and so on. 

(d5-d7): Unused. 

 

Two different batteries power the car: one for the control board and the other for the 

motors. Now, the full hardware and software side is ready to test the car's functionality. 

5.4 System Test 

System testing ensures that the components work smoothly and interact with each 

other according to the developed logic. This is the main section for verifying the whole 

developed system. The system test processes have been divided into three major 

sections, which will be discussed in the following subsections: Unit Testing (5.4.1), 

Integration Testing (5.4.2), and End-to-End Testing (5.4.3). In this chapter, test 

processes will be described, and then there will be a chapter on the outcome results, 

where the outcome results will be illustrated.  

Figure 5.19: TUCminiCar Connected to the Tester. 
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5.4.1 Unit Testing 

The unit section focuses on validating each method implemented, that is, each 

component within the SWC testing. The unit testing is basically for the different RPort 

defined in the SWC, where need to check that the SWC is taking input for each defined 

port. The functionality of the prototype SWC was already tested on the SIL in Chapter 

(5.2) and now needs to be checked on the hardware. For unit testing, the criteria need 

to be tested as per the below- 

 

Engine Test: For engine testing, whether the input for controlling the engine is working 

or not needs to be tested on three different test cases, and the criteria are mentioned 

in the table below. 

Table 5.5: Engine Unit Test Criteria. 

 

To test the engine status functionality, the below CAN messages are sent to the ECU 

from the tester, and the output status result is presented in the result section (6.1.1). 

 

Speed Test: For speed testing, the car needs to perform the three basic operations 

mentioned in the table below. The duty cycle reference value for the speed is defined 

in the “miniTUCar_BSW_v0.29 Project Documentation” document. [52] 

 

Table 5.6: Speed Unit Test Criteria. 

Test Case CAN Msg (Duty Value) Expected Operation 

1 200 Car should operate at full speed in forward direction 

2 100 Car should be in the Neutral state 

3 000 Car should operate at full speed in the reverse direction 

 

Test Case CAN Msg (uint8) Expected Operation 

1 0 Engine Off, Car is in neutral state, no other input should work 

2 1 Engine On: Car is in neutral state, ready to take new inputs 

3 any other (e.g., 2) Invalid engine control input, no operation 

Figure 5.20: CAN Message for the Engine Status Test. 
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To check speed tests within the car, Tiny CAN Monitor sends three different CAN 

messages, as shown below. The test result is disclosed in the result section (6.1.1). 

Steering Angle Test: For Steering Angle testing, the car needs to perform the three 

basic operations mentioned in the table below. The duty cycle reference value for the 

steering angle is defined in the “miniTUCar_BSW_v0.29 Project Documentation” 

document.[52] 

Table 5.7: Steering Angle Unit Test Criteria. 

Test Case CAN Msg (Duty Value) Expected Operation 

1 200 The steering Angle should rotate Max-left position 

2 100 Steering should be in a Neutral position 

3 0 The steering Angle should rotate Max-right position 

 

For the steering angle tests within the car, Tiny CAN Monitor sends three different CAN 

messages, as shown below. The test result is presented in the result section (6.1.1). 

Obstacle Detection Test: For obstacle detection unit test, need to check whether the 

sensor data is being read by the SWC successfully. It is also need to test the range of 

the sensor area, which is currently set to 200mm in both the forward and reverse 

directions. 

 

Target Distance Input Test: For the distance input test, it is required to take both 

input-related distances, rp_inUsrDistance defines how many atomic sections want to 

Figure 5.21: CAN Message for the Speed Test. 

Figure 5.22: CAN Message for the Steering Angle. 
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drive, and rp_inUsrSectionLength provides data about section length. Each atomic 

section length is 200mm, which is calculated in chapter (2.3). For driving one section 

of 1000mm (1 meter), need to input rp_inUsrSectionLength as 5, which provides 

200mm×5 = 1000mm. Or it can be done as five sections from rp_inUsrDistance, want 

to drive one atomic section (200mm) in each section. 

 

5.4.2 Integration Test 

After completing the unit test, it is time to begin the integration test. This test is an 

enhanced method to verify the system since it focuses on the integration between 

different software components (SWCs) and RTE. For the thesis topic, need to check 

how the other SWCs are interacting with the application SWC developed within the 

architecture. For the integration test, the following criteria need to be tested: 

 

Travel Distance Test: In the unit test section, the input for distance input data was 

measured and found to be accurate as per input data validation. Now, it is necessary 

to test how the SWC named “SensActOutputChassis,” which controls the DC motor 

unit, reacts. For this test, have to check the cumulative distance covered by the 

TUCminiCar in response to the target distance. The travel distance is checked for 

Figure 5.23: Target Distance Input CAN Message. 

Figure 5.24: CAN Message and Memory Read for Travel Distance Test. 
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having five atomic sections (5 × 200mm = 1000mm) and two sections of road (2 × 

1000mm), so in total, 2 meters of path length. For this purpose, a corresponding CAN 

message was sent, and distance was read from the memory address assigned as the 

global variable “float32 cumulativeDistance”. Test results will be analyzed later in the 

result section (6.1.2). 

 

Straight Driving Test: To verify the car's straight-driving capabilities, the steering 

angle needs to be neutral for the traveled distances. Like the DC motor, the servo 

motor for steering control is also part of the “SensActOutputChassis” SWC, which 

needs to test how it reacts with the interacting “StraightDriveSWC” application SWC. 

To test this, a CAN message was sent to operate the car for 40 meters, with a speed 

duty cycle of 110, and keeping the steering angle in a neutral position as per the CAN 

message pictured below. After traveling the whole distance, steering angle data was 

read from the memory address, and the result will be analyzed in the result section 

(6.1.2). 

 

Braking Mechanism Test: The braking mechanism should work for the two main 

arguments: Travel Distance Reached and Obstacle Detected. The both cases are 

described below- 

 

• Braking due to Target Distance Reached 

The automatic braking should work when the target distance is reached in both forward 

and reverse directions. The Can messages were sent to test both directions as per 

below, and the result has been analyzed in the result section (6.1.2). 

 

Forward Direction: In the forward direction, the braking mechanism was tested for five 

sections with five atomic lengths, which is 5000 mm (5 meters) in total distance. The 

speed duty value was 105, which is equivalent to 180mm/s. After the car reached the 

travel distance, then the cumulative distance data was read from the memory address. 

 

Figure 5.25: CAN Message and Memory Read for Straight Drive Test. 
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Reverse Direction: In the reverse direction, the braking mechanism was also tested for 
five sections with five atomic lengths, which is 5000 mm (5 meters) in total distance. 
The speed duty value was 99, which is equivalent to 140mm/s. After braking was 
activated, traveled distance data was checked from ECU memory. 

• Braking due to Obstacle Detected 

For obstacle detection, the braking mechanism also needs to be validated for both 

forward and reverse directions since both side sonar sensors are activated.  

 

Forward Direction: In the forward direction, the braking mechanism was tested for a 

speed duty value of 150, which is equivalent to 630mm/s. The CAN message was sent 

Figure 5.27: CAN Message and Memory Read for Reverse Drive Braking. 

Figure 5.26: CAN Message and Memory Read for Forward Drive Braking. 

Figure 5.28: CAN Message for Forward Braking Obstacle Detection. 
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accordingly, and the memory read value was checked to confirm speed during obstacle 

detection. The result analysis is in the result chapter (6.1.2). 

 

Reverse Direction: In the reverse direction, the obstacle detection and braking 

mechanism was tested for 64 duty cycles of speed, which is equivalent to 490 mm/s, 

and the following CAN message was sent accordingly. After the obstacle is detected 

in the car's reverse direction, speed data is checked in memory to verify. The result 

has been discussed in the result section (6.1.2). 

 

Auditory Actuator Test: The Beeper is installed in the TUCminiCar, an auditory 

actuator that is part of the “SensActOutputBeeper” SWC. The Beeper is integrated into 

the application SWC “StraightDriveSWC” for obstacle detection. Now, need to verify 

whether the Beeper is activated after detecting an object. For this purpose, CAN 

messages are sent to drive forward and backward and tested by placing an object in 

front of the car. The result has been disclosed in the result chapter (6.1.2).  

Visual Actuator Test: Different visual actuators are integrated within the 
TUCminiCar. All the lights are controlled by the “SensorActuatorSwComponentType”  
SWC “SensActOutputLights.” All the required lights are integrated into the application 
SWC “StraightDriveSWC.” To check the functionalities of these lights, different CAN 

Figure 5.29: CAN Message for Forward Reverse Obstacle Detection. 

Figure 5.30: CAN Message to Test Beeper. 
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messages are sent as below, and the test result has been analyzed in the result 
section (6.1.2) 
 

Table 5.8: CAN Message for Visual Actuator Test. 

Criteria Test Case Effecting CAN Msg Input CAN Msg (uint8) 

LeftSignal 

1 rp_inUsrSteering (d2) 200 

2 rp_inUsrSteering (d2) 100 

3 rp_inUsrSteering (d2) 0 

RightSignal 

1 rp_inUsrSteering (d2) 200 

2 rp_inUsrSteering (d2) 100 

3 rp_inUsrSteering (d2) 0 

ReverseLights 
1 rp_inUsrSpeed (d1)  100 

2 rp_inUsrSpeed (d1)  99 

HighBeam 
1 rp_inUsrSpeed (d1)  150 

2 rp_inUsrSpeed (d1)  140 

LowBeam 
1 rp_inUsrSpeed (d1)  100 

2 rp_inUsrSpeed (d1)  110 

BrakeLights 
1 rp_inUsrSpeed (d1)  110 

2 rp_inUsrSpeed (d1)  Brake Activated 

 

The above CAN message table is based on the CAN message format already 

explained (Table 5.4) in the chapter (5.3.3). The engine status must be on (1), and 

other fields are subject to change for each visual actuator testing. The result analysis 

has been placed in the result section (6.1.2). 

 

5.4.3 End-to-End (E2E) Testing 

The End-to-End (E2E) testing is the overall testing or the acceptance test for the 

project. The main project goal needs to be validated in this test, which is validation for 

different atomic straight-driving scenarios. Depending on different speeds, distances, 

and obstacle detection, for each criterion, this test was conducted for five test cases, 

and those are described below- 

 

Scenario 1: Forward Drive - Fixed Speed with Varying Distance Coverage 

Five different CAN messages were sent for fixed-speed duty cycle 105, with target 

distances of 1m, 2m, 3m, 4m, and 5m. The CAN message format is as per the defined 

standard mentioned in chapter (5.3.3), where d0 position for engineControl, d1 is for 

Speed, d2 is for steeringControl, d3 is for numberOfSection, d4 is for sectionLength, 

and d5-7 are unused. Engine status is always “On” here, and the steering duty cycle 

is kept at “100” to maintain a straight line. The target distance was fixed as five atomic 

lengths (5 × 200mm = 1000 mm) by varying the number of sections (1/2/3/4/5), and 

CAN messages were sent as per the table below. (Note: All the sent messages are in 

decimal format) 
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Table 5.9: CAN Message for Fixed Speed, Target Distance Change. 

Test Case Can Id DLC d0 d1 d2 d3 d4 d5 d6 d7 

1 x05A 8 1 105 100 1 5 0 0 0 

2 x05A 8 1 105 100 2 5 0 0 0 

3 x05A 8 1 105 100 3 5 0 0 0 

4 x05A 8 1 105 100 4 5 0 0 0 

5 x05A 8 1 105 100 5 5 0 0 0 

 

The test result observation has been made after checking the memory address value 

for the cumulative distance covered for each test case, which is presented in the result 

section (6.1.3). 

 

Scenario 2: Forward Drive - Fixed Speed, Different Atomic Sections 

In the previous test scenario (1), it was observed that as the target distance decreases, 

accuracy also decreases. To analyze this further, path length decreases more in this 

test section, keeping the speed duty cycle the same (105) as before. CAN messages 

were sent for having the same speed but different atomic sections. Engine status 

remains “On” here always, and the steering duty cycle is kept at “100” to maintain a 

straight line. The target distance was varied as one atomic path length each (1 × 

200mm = 200 mm, 2 × 200mm = 400 mm, 3 × 200mm = 600 mm, 4 × 200mm = 800 

mm, 5 × 200mm = 1000 mm,) by keeping the of sections fixed (1), and CAN messages 

were sent as per the table below. 

 

Table 5.10: CAN Message for Fixed Speed, Atomic Section Length. 

Test Case Can Id DLC d0 d1 d2 d3 d4 d5 d6 d7 

1 x05A 8 1 105 100 1 1 0 0 0 

2 x05A 8 1 105 100 1 2 0 0 0 

3 x05A 8 1 105 100 1 3 0 0 0 

4 x05A 8 1 105 100 1 4 0 0 0 

5 x05A 8 1 105 100 1 5 0 0 0 

 

The test result is observed in the result section (6.1.3) 

 

Scenario 3: Reverse Drive - Fixed Target Distance, Different Speed 

Likewise, for the forward speed, need to analyze the reverse direction as well. For this 

purpose, CAN messages were sent for a fixed atomic target distance, but this time, 

they were checked for different speed values. The target distance was fixed as five 

atomic path lengths (5 × 200mm = 1000 mm) and the number of sections was fixed 

(1), and CAN messages were sent as per the table below. 
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Table 5.11: CAN Message for Fixed Atomic Distance, Different Speed in Reverse. 

Test Case Can Id DLC d0 d1 d2 d3 d4 d5 d6 d7 

1 x05A 8 1 90 100 1 5 0 0 0 

2 x05A 8 1 80 100 1 5 0 0 0 

3 x05A 8 1 70 100 1 5 0 0 0 

4 x05A 8 1 60 100 1 5 0 0 0 

5 x05A 8 1 50 100 1 5 0 0 0 
 

The test result is presented in the result section (6.1.3) 

 

Scenario 4: Expected speed Vs. Actual Speed 

From the last test, it is observed that as speed increases, accuracy is lower. To analyze 

this further, three different speed data were selected (duty cycle—110, 150, 200), and 

a memory read was performed ten different times to check fluctuation in actual speed. 

The sample CAN message was sent to test the car's speed for three different duty 

cycles, as shown below. Since the observation was made with respect to speed, 

distance was not counted this time. 

 

Table 5.12: CAN Message for Different Speed. 

Test Case Can Id DLC d0 d1 d2 d3 d4 d5 d6 d7 Remarks 

1 x05A 8 1 110 100 10 10 0 0 0 10 Times memory read 

2 x05A 8 1 150 100 20 10 0 0 0 10 Times memory read 

3 x05A 8 1 200 100 20 10 0 0 0 10 Times memory read 

 

The memory read was done ten times for each CAN message, and the test result is 

presented in the result section (6.1.3) 
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6 Results and Evaluation 

This chapter presents the overall research project outcome by presenting the results 

of different test cases and evaluating them. The chapter is divided into two main sub-

chapters: one is for the Result (6.1), and the other is for the Evaluation (6.2) of the 

outcome results.  

6.1 Result 

The result section presents all the result outcomes from the different test scenarios. 

Based on the System Test (5.4) subchapter, this chapter reflects all the results from 

those test cases. Like the test section, the result section is also divided into three main 

sub-sections: Unit Test Result (6.1.1), Integration Test Result (6.1.2), and End-to-End 

(E2E) Test result (6.1.3). 

 

6.1.1 Unit Test Result 

In this result section, the results from the sub-section (5.4.1) are described. Different 

functionalities were tested for unit tests, like Engine, Speed, Steering Angle, Obstacle 

Detection, and Target Distance Input. The result for all the combined sections is 

illustrated in the below table- 

Table 6.1: Unit Test Result. 

Criteria 
Test 
Case 

CAN Msg 
(uint8) 

Status Validation Result 

Engine Test 

1 0 Engine Off Passed 

2 1 Engine On Passed 

3 2 No Effect on Car Passed 

Speed Test 

1 200 Car traveled forward direction Passed 

2 100 Car Stopped/No Movement Passed 

3 0 Car traveled reverse direction Passed 

Steering Angle 
Testing 

1 200 Steering Angle Rotate full left Passed 

2 100 Car directed straight Passed 

3 0 Steering Angle Rotate full right Passed 

Obstacle 
Detection Testing 

1 n/a 
Obstacle detected within 200mm 

distance 
Passed 

Target Distance 
Input Test 

1 d3:001, d4:005 
Target distance read from memory, 

1000mm verified 
Passed 

 

Unit Test Result Summary: All other values, except target distance input, are 

checked by visual inspection from the car, and for the target distance, input data 

verified from the memory address (0x70002f0c) and found as below: 

 

“IP 0x80005184 State Running Enter command: read 0x70002f0c “(memory address)”  

Read value: 0x447A0000” 
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Here, in the memory location, the HEX value is written, Hex (0x447A0000) = Float 

value (1000.0), which is a 1000mm target distance. 

 

6.1.2 Integration Test Result 

Integration test results are the representation of different test cases in the sub-chapter 

(5.4.2). Different functionalities that are dependent on other SWCs were tested, and 

the results are illustrated below- 

 

Travel Distance Test Result: For the travel distance test, a CAN message was sent 

for traveling 2 meters (2000 mm) distance. After analyzing, below data found from 

memory location: 

 

Variable for checking target distance: float32 targetDistance, 

Variable for checking traveled distance: float32 cumulativeDistance, 

Memory Address for targetDistance: 0x70002f0c, read value Hex (0x44FA0000), 

Memory Address for cumulativeDistance: 0x70002efc, read value Hex (0x44FC39C1). 

Table 6.2: Travel Distance Test Result. 

Speed 
Duty 
Value 

Expected 
Speed in 

mm/s 

Target 
Distance mm 
(Converted 
Float Value) 

Traveled 
Distance in mm 

(Converted 
Float Value 
from Hex) 

Test 
Result 

Travel 
Deviation 

(mm) 

Accuracy 
Obtained 

(%) 

110 230 mm/s 2000 mm 2017.8 mm Passed 17.8 mm 99.11 

 

The result above shows that the car traveled 17.8 mm more than the target distance. 

The accuracy of the travel distance test result is pretty much higher, but still need to 

check further data to analyze it more during the E2E test. 

 

Straight Driving Test: For the straight driving test, a CAN message was sent for 

traveling 40 meters (40000 mm) distance straight path. After analyzing, the below data 

was found for the steering angle from the memory location: 

 

Variable for checking steering angle: float32 globalCarSteeringValue, 

Memory Address for globalCarSteeringValue: 0x70002f08, read value Hex 

(0x3FC19400). 

Table 6.3: Straight Drive Test Result. 

CAN Msg 
(Steering 

Duty 
Value) 

Expected 
Steering 

Angle 

SteeringPot 
value for 

Neutral (in 
mV) 

Actual SteeringPot in 
mV (Converted Float 

Value from Hex) 

Test 
Result 

Voltage 
Deviation 

(mV) 

Accuracy 
Obtained 

(%) 

100 0 deg 1500 mV 1.5123 V = 1512.3 mV Passed 12.3 mV 99.18 
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The result above shows that, after traveling 40 meters of distance, the steering 

potentiometer voltage was found to be 12.3 mV more than the required voltage. The 

accuracy (99.18 %) for the steering angle of the straight drive test result is pretty much 

higher, but it still needs to be analyzed further during the E2E test. (The standard for 

the steering angle to maintain a neutral position is to have 1.5 volts or 1500 mV of 

SteeringPot value, which is found in the miniTUCar_BSW_v0.29 Project 

Documentation). [52] 

 

Braking Mechanism Test Result: The braking mechanism was tested for two main 

criteria, and the results are illustrated below- 

 

• Braking due to Target Distance Reached Result 

CAN messages were sent in both the forward and reverse directions to travel 5000 

mm at 105 and 099 duty cycles value of speed, respectively. The car was stopped after 

braking was activated when the target distance was covered. The more detailed data 

has been represented below- 

 

Variable for checking target distance: float32 targetDistance, 

Variable for checking traveled distance: float32 cumulativeDistance, 

Memory Address for targetDistance: 0x70002f0c, read value Hex (0x459C4000), 

Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Forward: 

0x459D04A8, Reverse: 0x459DF5A1). 

 

Table 6.4: Braking on Target Distance Covered Result. 

CAN Msg 
(Speed Duty 

Value) 

Expected 
Speed in 

mm/s 

Target 
Distance mm 
(Converted 
Float Value 
from Hex) 

Traveled 
Distance in 

mm 
(Converted 
Float Value 
from Hex) 

Test 
Result 

Travel 
Deviation 

(mm) 

Accuracy 
Obtained 

(%) 

105 (Forward) 180 mm/s 5000 mm 5024.58 mm Passed 24.58 mm 99.5084 

099 (Reverse) 140 mm/s 5000 mm 5054.70 mm Passed 54.70 mm 98.906 

 

The above result table shows that the car stopped automatically after reaching the 

target distance in both forward and reverse directions. In both cases, accuracy is high, 

but for comparison, the reverse direction has less accuracy (98.9%) compared to the 

forward direction (99.5%). In the E2E test, more data will be analyzed for further 

analysis. 

 

 

 



89 
 

• Braking due to Obstacle Detected 

For obstacle detection, both forward and reverse directions were checked. CAN 

messages were sent in both the forward and reverse directions to travel at 150 and 

064 duty cycles value of speed, which is equivalent to 630 mm/s and 490 mm/s, 

respectively. The car was stopped after braking was activated when the obstacle was 

detected, and speed was neutralized. The more detailed data has been represented 

below- 

 

Variable for checking travel speed: float32 globalCarSpeedValue, 

Memory Address for globalCarSpeedValue: 0x70002f04, read value Hex initial 

(Forward: 0x441B58BD, Reverse: 0x43F3BA8E), read value Hex after Obstacle 

detection (Forward: 0x00000000, Reverse: 0x00000000)  

 

Table 6.5: Braking on Obstacle Detection Result. 

CAN Msg 
(Speed Duty 

Value) 

Expected 
Speed in 

mm/s 

Initial Speed 
mm/s (Converted 
Float Value from 

Hex) 

Speed after 
Obstacle 
Detection 

(Converted Float 
Value from Hex) 

Test 
Result 

Accuracy 
Obtained 

(%) 

150 (Forward) 630 mm/s 621.38 mm/s 0 mm/s Passed 100 

064 (Reverse) 490 mm/s 487.45 mm/s 0 mm/s Passed 100 

 

The above data, which reads from the memory address for speed after the obstacle 

detection, shows that the speed is zero both in the forward and reverse direction, which 

means the car stopped at obstacle detection. Although the obstacle detection test 

result accuracy is 100%, there is some deviation in actual car speed, which needs to 

be analyzed with more data in the E2E test. 

 

Auditory Actuator Test Result: To test the beeper, the car was accelerated in both 

forward and reverse directions. Then, an obstacle was placed in both directions, and 

the result is illustrated in the table below. 

 

Table 6.6: Auditory Actuator Test Result. 

Test 
Case 

CAN Msg 
(Speed Duty 

Value) 

Expected 
Speed in 

mm/s 

Expected Beep 
Sound (Car to 

Obstacle 
Distance, mm) 

Beeper 
Status 

Test 
Result 

Accuracy 
Obtained 

(%) 

1 110 (Forward) 230 mm/s 200mm Yes Passed 100 

2 090 (Reverse) 230 mm/s 200mm Yes Passed 100 

 

The above table shows that the obstacle was detected during both forward and reverse 

driving, and in both cases, the beeper was activated. 
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Visual Actuator Test Result: For visual actuators testing, in response to different 

CAN messages, below visual actuators activated pictures are illustrated. Later on, the 

result table will also include the following: 

The result table is below based on the test conducted on all the above visual actuators. 

 

Table 6.7: Visual Actuator Test Result. 

Criteria 
Test 
Case 

Effecting CAN Msg 
Input 

CAN Msg 
(uint8) 

Expected 
Output 

Result 
Accuracy 
Obtained 

(%) 

LeftSignal 

1 rp_inUsrSteering (d2) 200 Turned on Passed 100 

2 rp_inUsrSteering (d2) 100 Off Passed 100 

3 rp_inUsrSteering (d2) 0 Off Passed 100 

RightSignal 

1 rp_inUsrSteering (d2) 200 Off Passed 100 

2 rp_inUsrSteering (d2) 100 Off Passed 100 

3 rp_inUsrSteering (d2) 0 Turned on Passed 100 

ReverseLights 
1 rp_inUsrSpeed (d1)  100 Off Passed 100 

2 rp_inUsrSpeed (d1)  99 Turned on Passed 100 

HighBeam 
1 rp_inUsrSpeed (d1)  150 Turned on Passed 100 

2 rp_inUsrSpeed (d1)  140 Off Passed 100 

LowBeam 
1 rp_inUsrSpeed (d1)  100 Off Passed 100 

2 rp_inUsrSpeed (d1)  110 Turned on Passed 100 

BrakeLights 
1 rp_inUsrSpeed (d1)  110 Off Passed 100 

2 rp_inUsrSpeed (d1)  Braking (100) Turned on Passed 100 
 

As per the above result table, all the criteria for light testing are fulfilled. There is no 

CAN message for the brake lights; these lights will be activated once braking is 

activated, either for an obstacle or for the target distance traveled, and the duty cycle 

is set to 100 automatically. 

Figure 6.1: Left and Right Signal Light Blinking. 

Figure 6.2: Brake Light, Reverse Light, High Beam and Low Beam. 
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6.1.3 End-to-End (E2E) Test Result 

End-to-end (E2E) test results represent the overall test, which was done in the sub-

chapter (5.4.3). Results for different test cases are presented below- 

 

Scenario 1: Forward Drive - Fixed Speed with Varying Distance Coverage 

(Result) 

For the different CAN messages, different data are extracted from the ECU's memory 

address and represented below. 

 

Memory Address for targetDistance: 0x70002f0c, read value Hex (Test case: one -

0x447A0000, two - 0x44FA0000, three - 0x453B8000, four - 0x457A0000, five - 

0x459C4000), 

Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Test case: one 

- 0x44809DCF, two - 0x44FDFE7A, three - 0x453D4314, four - 0x457B6445, five - 

0x459D04A8). 

Table 6.8: Test Result for Fixed Speed, Different Target Distance. 

Test 
Case 

CAN 
Msg 

(Speed 
Duty) 

Expected 
Speed in 

mm/s 

Target 
Distance mm 
(Converted 
Float Value 
from Hex) 

Traveled 
Distance in 

mm 
(Converted 
Float Value 
from Hex) 

Test 
Result 

Travel 
Deviation 

(mm) 

Accuracy 
Obtained 

(%) 

1 105 180 1000 1028.93 Passed 28.93 97.1 

2 105 180 2000 2031.95 Passed 31.95 98.4 

3 105 180 3000 3028.19 Passed 28.19 99.06 

4 105 180 4000 4022.26 Passed 22.26 99.44 

5 105 180 5000 5024.58 Passed 24.58 99.5 

 

After analyzing different target distances for the same speed, it is found that accuracy 

is still very good, but more car travels have more accuracy than less distance covered. 

 

Scenario 2: Forward Drive - Fixed Speed, Different Atomic Sections (Result) 

For testing the different atomic sections, different CAN messages were sent, and 

different data were extracted from the ECU's memory address, which is represented 

below. 

 

Memory Address for targetDistance: 0x70002f0c, read value Hex (Test case: one - 

0x43480000, two - 0x43C80000, three - 0x44160000, four - 0x44480000, five - 

0x447A0000), 

Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Test case: one 

- 0x4366C390, two - 0x43D3B284, three - 0x441E8185, four - 0x444EF54B, five - 

0x44809DCF). 
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Table 6.9: Test Result for Fixed Speed, Different Atomic Section Length. 

Test 
Case 

CAN 
Msg 

(Speed 
Duty) 

Expected 
Speed in 

mm/s 

Target 
Distance mm 
(Converted 
Float Value 
from Hex) 

Traveled 
Distance in 

mm 
(Converted 
Float Value 
from Hex) 

Test 
Result 

Travel 
Deviation 

(mm) 

Accuracy 
Obtained 

(%) 

1 105 180 200 230.76 Passed 30.76 84.62 

2 105 180 400 423.39 Passed 23.39 94.15 

3 105 180 600 634.02 Passed 34.02 94.33 

4 105 180 800 827.83 Passed 27.83 96.52 

5 105 180 1000 1028.93 Passed 28.93 97.1 

 

After analyzing the above table, it is clear that the less distance the car needs to travel 

for each message, the less accuracy is. However, it is observed that the amount of 

deviation added to each test case is almost the same since the smaller amount has a 

bigger effect on the percentage calculation, thus having less accuracy for the smallest 

atomic section length (200 mm), which is a really small amount of traveling distance 

but still having 84.62% of accuracy. 

 

Scenario 3: Reverse Drive - Fixed Target Distance, Different Speed (Result) 

As for forward travel, different CAN messages were also sent for reverse travel, and 

the corresponding data are extracted from the ECU's memory address and 

represented below. 

 

Memory Address for targetDistance: 0x70002f0c, read value Hex (Test case: one - 

0x447A0000, two - 0x447A0000, three - 0x447A0000, four - 0x447A0000, five - 

0x447A0000), 

Memory Address for cumulativeDistance: 0x70002efc, read value Hex (Test case: one 

- 0x44878C12, two - 0x4484820B, three - 0x4487CC74, four - 0x44902C0A, five - 

0x449F68B6). 

 

Table 6.10: Test Result for Fixed Atomic Distance, Different Speed in Reverse. 

Test 
Case 

CAN 
Msg 

(Speed 
Duty) 

Expected 
Speed in 

mm/s 

Target 
Distance mm 
(Converted 
Float Value 
from Hex) 

Traveled 
Distance in 

mm 
(Converted 
Float Value 
from Hex) 

Test 
Result 

Travel 
Deviation 

(mm) 

Accuracy 
Obtained 

(%) 

1 90 230 1000 1084.37 Passed 84.37 91.563 

2 80 330 1000 1060.06 Passed 60.06 93.994 

3 70 430 1000 1086.38 Passed 86.38 91.362 

4 60 530 1000 1153.37 Passed 153.37 84.663 

5 50 630 1000 1275.27 Passed 275.27 72.473 
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From the last result table, it is observed that, due to the increase in speed, the deviation 

is much higher, so the accuracy. It can be pointed out that the faster the car's travel 

speed, the more motion force will be added to the travel direction. Thus, accuracy for 

lower speeds will have the advantage over higher speeds. To analyze the speed 

change more, need to check the expected speed as per the guideline and the actual 

speed. 

 

Scenario 4: Expected speed Vs. Actual Speed (Result) 

Since it is already observed, an increase in the speed has a lower accuracy. So, in this 

result section, different speed data will be analyzed based on the speed mapping data 

used for algorithm implementation. “The speed mapping data was stated in the 

TUCminiCar documentation.” [52] The CAN messages were sent to test for three 

different speeds, and memory reading was performed 10 times each. After that, data 

were extracted from the ECU's memory address, which is represented below. 

 

For the speed, there is a global variable declared, float32 globalCarSpeedValue 

Memory Address for globalCarSpeedValue: 0x70002f04; read the value in Hex format.  

 

110 Duty Cycle (230 mm/s): 

 

Table 6.11: Memory Read for 110 Duty Cycle Speed. 

Test 
Case 

CAN 
Msg 

(Speed 
Duty) 

Expected 
Speed in 

mm/s 

Memory Read 
Value, Speed 

(Hex) 

ActualSpeed in 
mm/s (Converted 
Float Value from 

Hex) 

Speed 
Difference 

(mm/s) 

Average 
Deviation 

1 110 230 0x436BFF94 235.998352 5.998352 

5.3805306 

2 110 230 0x436EAE0E 238.6799 8.6799 

3 110 230 0x436AEC7B 234.923752 4.923752 

4 110 230 0x4368319C 232.193787 2.193787 

5 110 230 0x436B81FA 235.507721 5.507721 

6 110 230 0x436E51B1 238.3191 8.3191 

7 110 230 0x43678AD0 231.542236 1.542236 

8 110 230 0x436AF209 234.94545 4.94545 

9 110 230 0x436C56BA 236.338776 6.338776 

10 110 230 0x436B5B32 235.356232 5.356232 
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150 Duty Cycle (630 mm/s): 

Table 6.12: Memory Read for 150 Duty Cycle Speed. 

Test 
Case 

CAN 
Msg 

(Speed 
Duty) 

Expected 
Speed in 

mm/s 

Memory Read 
Value, Speed 

(Hex) 

ActualSpeed 
in mm/s 

(Converted 
Float Value 
from Hex) 

Speed 
Difference 

(mm/s) 

Average 
Deviation 

1 150 630 0x441F19B9 636.4019 6.4019 

8.466777 

2 150 630 0x441D2B78 628.6792 1.3208 

3 150 630 0x441CF942 627.8947 2.105347 

4 150 630 0x44222CCB 648.6999 18.6999 

5 150 630 0x441AD84F 619.3798 10.6202 

6 150 630 0x441DB8D6 630.8881 0.888062 

7 150 630 0x441A4674 617.1008 12.8992 

8 150 630 0x441DB296 630.7904 0.7904 

9 150 630 0x442184ED 646.077 16.07697 

10 150 630 0x4419C8A4 615.135 14.865 

 

200 Duty Cycle (1130 mm/s): 

Table 6.13: Memory Read for 200 Duty Cycle Speed. 

Test 
Case 

CAN 
Msg 

(Speed 
Duty) 

Expected 
Speed in 

mm/s 

Memory Read 
Value, Speed 

(Hex) 

Actual Speed 
in mm/s 

(Converted 
Float Value 
from Hex) 

Speed 
Difference 

(mm/s) 

Average 
Deviation 

1 200 1130 0x4488657A 1091.17114 38.82886 

21.562415 

2 200 1130 0x448986CC 1100.2124 29.7876 

3 200 1130 0x448997BB 1100.74158 29.25842 

4 200 1130 0x4489865D 1100.19885 29.80115 

5 200 1130 0x4489EBEE 1103.3728 26.6272 

6 200 1130 0x448B1249 1112.57141 17.42859 

7 200 1130 0x448B42B3 1114.08435 15.91565 

8 200 1130 0x448C06EE 1120.21655 9.78345 

9 200 1130 0x448C26D3 1121.21326 8.78674 

10 200 1130 0x448C12FE 1120.59351 9.40649 

 

From the above three data tables, it is clear that the faster a car travels, the more 

fluctuating its actual speed. This fluctuation affects the distance calculation, and 

accuracy is more affected by the higher speed. In the next sub-chapter, an evaluation 

of the obtained results will be presented. 
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6.2 Evaluation 

The evaluation chapter analyzes the results obtained during the whole system test. It 

is divided into two main sections: Performance Analysis (6.2.1) and Improvement 

Areas (6.2.2). These will be described in the following sections. 

 

6.2.1 Performance Analysis 

This section summarizes all the test results obtained during the whole project 

implementation. Since testing was done for the three main units, evaluation also needs 

to be wise. 

 

• Unit Test Performance Analysis 

In the unit test sections, all the logic implemented within the implementation was tested. 

In addition, input data acceptance was also checked for the developed application 

SWC. In this section, data were tested in terms of capabilities rather than accuracy. As 

all the test cases, including the simulation test, were successful, thus the unit test 

section can be declared 100% accurate.  

 

• Integration Test Performance Analysis 

In the integration test section, the interaction between different SWCs and different 

components was tested. While all the SWC interactions were successful during testing, 

a few were less accurate in terms of achieving the target 100% accurately. All of those 

were related to traveling the target distance as per the distance needed to travel. There 

were a small number of deviations observed, for which it was not 100% accurate. The 

summary of the test section is presented in the following graph. 
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Figure 6.3: Unit Test Performance. 
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• End-to-End (E2E) Test Performance Analysis 

The E2E test was conducted to check the car's overall straight-drive accuracy at 

different distances and speeds. After observing the different test cases, it was stated 

that the accuracy decreased when the target distance was reduced, and the parallel 

speed increased. In the graph below, the average percentage values for each criterion 

are presented for the five test cases. 

 

It is cautiously observed that the more varying the speed, the less accurate the 

accuracy. So, to confirm this, another test was conducted on three different speed data 

sets (230mm/s equivalent to 110 duty cycles, 630mm/s equivalent to 150 duty cycles, 

and 1130mm/s equivalent to 200 duty cycles), reading at ten different times to check 

the status of speed fluctuations, which is represented below. 

Figure 6.4: Integration Test Performance. 
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Figure 6.5: End-to-End (E2E) Test Performance. 
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The three graphs mentioned above were constructed for ten different test cases, which 

are mentioned in the horizontal axes. After analyzing these graphs, it is clearly visible 

that the increase in speed fluctuates more in terms of actual vs. expected speed. Since 

speed data is counted every 10ms as per the designed runnable, this affects 

calculating distances since distance calculation depends on speed, which is already 

mentioned in the distance calculation logic in the chapter (5.1.3). In summary, it can 

be declared that, for less speed, the system is more stable than the higher speed, and 

the bottleneck is identified as the constant speed fluctuations. 

6.2.2 Improvement Areas 

As the bottleneck was already identified in the evaluation section, it is clearly visible 

that the problem remains at the hardware level. The DC motor, which is actually a 

racing car motor, fluctuates more in providing speed to the system for the higher speed 

range, especially in the reverse direction. It also has a mechanism to run every 20 ms, 

which is higher than the designed runnable, and a speed control mechanism, which is 

10 ms. There is also some additional motion force for higher speed acceleration in 

natural. Since, within the current setup, distance calculation fully depends on the speed 

of the car, the accuracy differences cannot be minimized, especially for the higher 

speed range. These can be minimized if an installed motor provides an accurate 

constant speed value or a rotation sensor is installed. Then, the distance calculation 

mechanism can be modified to match the rotation count. 
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Figure 6.6: Speed Fluctuation Analysis for 230 mm/s and 630 mm/s. 

Figure 6.7: Speed Fluctuation Analysis for 1130 mm/s. 
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7 Conclusion 

This chapter summarizes the whole research work. The thesis goal was to maintain an 

atomic straight driving pattern by implementing an AUTOSAR SWC. The goal was 

successfully and accurately obtained. The only bottleneck for the thesis was identified 

as fluctuation in speed, especially for higher speed. For this reason, automatic braking 

due to target distance coverage has slight deviation, especially when the path length 

is short and the speed is higher in the reverse direction. This chapter is divided into 

two sub-chapters, Conclusion (7.1) and Future Work (7.2), and described in the 

following. 

7.1 Conclusion 

This thesis identified the challenges of implementing an atomic straight drive pattern 

to an Advanced Driver Assistance System (ADAS) demonstrator within the standard 

of the AUTOSAR framework since the demonstrator was an RC car, which is a replica 

of real-world cars. The research successfully achieved its objective of designing, 

implementing, and validating an AUTOSAR software component that ensures real-time 

control and high precision for atomic straight driving. The key outcomes of the thesis 

are mentioned below: 

 

Analyzing AUTOSAR in the Demonstrator: The AUTOSAR architecture within the 

demonstrator TUCminiCar was extensively analyzed. Knowing the whole structure is 

mandatory before developing an SWC within an existing architecture. The 

methodology chapter describes the analyzed architecture overview in detail. 

 

Development Model: The necessity of using a development model was disclosed for 

the thesis implementation. The V-Model development process was described and 

followed throughout the whole research for designing, implementation, and testing 

procedures. 

 

Designing AUTOSAR SWC: An application SWC component was created within the 

existing dSPACE SystemDescription file, and then the necessary implementation was 

also conducted within the file. After creating the application SWC, a simulation was 

performed to test its functionality and logic validation. The SIL test was successful, 

allowing the SWC to carry on the system integration. 

 

Integration and Validation: Integration took place in the EB Tresos Studio, with the 

modified *.arxml file generated from the dSPACE. After the integration process was 

completed, the system was validated to generate the project. From the newly 
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generated project, new *.hex file was flashed into the ECU to prepare the test 

environment. During the entire integration and testing time, the AUTOSAR toolchain 

was followed for the development procedure. 

 

Communication Protocol: CAN communication was used to communicate from the 

tester to the ECU. During the setup process, extensive ideas for working with the CAN 

protocol were gathered. 

 

Precision and Accuracy: The atomic straight diving pattern with the developed SWC 

showed precision control and higher accuracy both for driving straight and automatic 

braking. An issue at the hardware level has been identified, which is affecting accuracy 

for the higher speed range. 

 

Real-time Responsiveness: For different actuators, including auditory and visual, 

real-time response was observed, which is essential for the automotive domain.  

 

In summary, the research was fruitful because it produced a fundamental component 

for ADAS functionality that can be used on a larger scale. Since the straight-driving 

functionality was developed for the smallest section of the car, it is easier to use on a 

bigger scale. In addition, obstacle detection was also implemented and tested, which 

provided other functionalities of ADAS. An automatic braking mechanism was 

established for both target distance coverage and obstacle detection, which provided 

more ideas for the driverless car’s implementation process. The thesis's motivation 

was to move towards driverless vehicles, as human errors are the main cause of 

numerous accidents all over the world. So, in a single word, the thesis topic’s 

“AUTOSAR Software Component for Atomic Straight Driving Patterns” main goal has 

been successfully achieved. 

7.2 Future Work 

There is always room for improvement in any work. The current straight drive 

functionality fully depends on true ground-level position since there is no mechanism 

to track the lane. It would be a great idea to have a grayscale sensor to track the lane, 

which would make straight driving more reliable. There is a great scope to work with 

the security mechanism, especially for controlling cars with CAN messages, as anyone 

can access the car and control it. To avoid this, any user verification can prevent taking 

control of the car. 

 

For now, the thesis research has been completed successfully by considering every 

aspect of current availability and compatibility. 
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