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Abstract Reconfigurable hardware combines the flex-
ibility of software and the efficiency of hardware. Thus,
Embedded Systems can benefit from reconfiguration
techniques. Many special aspects of dynamic and par-
tial reconfiguration have been already analyzed. On the
one hand reconfiguration is mostly used like a hot-plug
mechanism. On the other hand approaches similar to
the overlaying technique, known from the Pascal run-
time library, can be used. The overlaying algorithm
schedules different functions to the same hardware re-
source during runtime.

In this paper, the overlaying concept is adapted to
reconfiguration. The used reconfiguration model is pre-
sented and the costs are optimized and evaluated. The
average reconfiguration time is minimized. These meth-
ods have been integrated into the design flow for recon-
figuration. This approach is best suited for small FP-
GAs, which are crucial in embedded system design.
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1 Introduction

Embedded systems penetrate more and more of every-
day life. The structure size of semiconductors decreases
and as a result more features are implemented. Usually
not all of these functions are used at the same time. Re-
configuration offers the possibility to provide functions
only at the time they are actually needed.

Reconfiguration means that it is possible to change
the behavior of a system after it has been implemented.
In this paper the focus is on partial and run-time re-
configuration. With Xilinx Virtex II Pro FPGAs for
example this kind of reconfiguration is possible.

Using reconfiguration it is possible to get an effi-
cient chip area utilization with the same performance.
This improvement is realized by using more memory,
which is needed to store the non-active system behav-
ior information. However, this memory is cheaper than
logic. In addition to the chip area other resources can be
optimized by reconfiguration, e.g. power consumption.

Lower design and manufacturing costs are another
advantage. It is simple to add new functionality by load-
ing a newly designed and synthesized configuration.

Besides the advantages of reconfiguration, different
conditions are necessary for the implementation of hard-
ware reconfiguration. Reconfiguration is only possible
on configurable hardware like FPGAs. For our applica-
tions Xilinx FPGAs, especially Spartan 2e and Virtex
IT Pro, are used. A memory for inactive reconfigurable
bitstreams is also necessary. The reconfiguration pro-
cess also needs a control unit implemented in software
or hardware.

Reconfiguration technology can be integrated in sys-
tems in mainly two different ways. The first approach
is similar to the plug and play or hot-plug technology.
A uniform socket must be defined for all reconfigurable
modules. The bus structure in such system can vary.



Several fixed constraints for all modules are helpful to
generate bitstreams with the Xilinx design flow.

The second approach is similar to the overlay tech-
nique known from the Pascal runtime library [2]. Pro-
grams written in Pascal could be partitioned into parts
which are loaded only at the time they are actually
needed. The overlay technique was used if there was
not enough memory. If a system is too large for a given
FPGA then partitioning the system and reconfigura-
tion could solve the problem. This paper focuses on the
second approach.

The overlay technique in memory management dif-
fers from a hardware overlay approach. Each program
module can be loaded to almost any memory address.
The only limitation is the memory size. Hardware mod-
ules can similarly be loaded into an FPGA. But there
is the communication between modules which must be
considered when designing a reconfigurable system. The
Xilinx bus macros [8] are used to implement the inter-
module communication. Bus macros are fixed connec-
tion points for modules. Overlayed modules are placed
into the same partition of the FPGA. An approach to
get an optimal set of partitions, which minimizes the
average time for reconfiguration, is detailed in section
5. An important requirement for the optimization al-
gorithms is the definition of different sets of modules.
These sets are necessary for different configurations of
the system. In section 4 the single steps to obtain these
modules sets are explained. The design flow with these
methods for overlaying is shown in section 3. In section
2 we describe existing methods and available tools for
reconfiguration. The test results in section 6 illustrate
some details of the algorithms before we conclude with
section 7.

2 Existing Methods and Tools

Generally speaking, three steps are necessary to design
an embedded system. Notable work has been done to
define these three design steps [13,7,7,?]. First, the sys-
tem must be specified. Second, the specified system
must be represented by a hardware description lan-
guage. Third, this description must be transformed to
bitstreams or masks. The approach presented in his pa-
per focuses on the second step.

For partially reconfigurable systems there are ap-
proaches offering a design flow. For example, [11] begins
with descriptions of the design’s hardware in VHDL
and a specially defined reconfiguration information file.
The authors of [5] present a design flow, named Caronte
FLOW. It is used for the step after the System Parti-
tioning and Analysis Phase. We focus on the step that
generates the input information for both design flows.

The design flow PaDReH presented in [1] is similar
to ours but does not describe an approach for module
placement.

There are some methods and tools that handle the
integration of IPs in an embedded system during the
design flow. There are projects [7,?] that deal with TP
utilization. The IPQ Format and the IPQ Toolbox were
introduced by these projects. Details about the results
can be read in [14,7,7,?]. As we want to use IPs in
our reconfigurable system, our design flow uses these
IP tools. The IPs will be the input for our presented
design flow.

Another important aspect is the usage of graphs. In
[4] graphs are used to describe scheduling and parti-
tioning. A problem graph is defined for the design rep-
resentation and a second graph, the architecture graph,
describes the target architecture. Like our approach this
is based on IPs. In contrast to this paper no automated
generation of configurations is addressed.

Another approach is presented in [16]. The authors
propose finding reconfiguration modules by defining con-
figurations and the costs of switching between these
configurations. As control data flow graphs are used
as input it is very complex to design IP based systems
with this work flow.

Ghiasi et al. describe in [12] an optimal algorithm
for minimizing the reconfiguration time named min-
RPR. The algorithm is based on the Least Imminently
Used (LIU) algorithm. There are different restriction
for this algorithm: the application must have a fixed
schedule and there are no parallel operations allowed.

This paper focus on the automation of the genera-
tion of reconfigurable modules using some ideas of these
existing works.

3 Design Flow

The design flow for reconfigurable embedded systems
is divided into two main phases. The first phase takes
the system specification as input and generates the con-
straints and the system description at register transfer
level (RTL) for the synthesis. There are different ap-
proaches to this first phase as presented in section 2.
Therefore, some details of the used design flow for re-
configurable embedded systems based on the overlaying
concept are described in this section. The synthesis of
partial bitstreams is the second phase wich is not sub-
ject of this paper. In section 2 the Xilinx design flow
for partial bitstreams is mentioned.

Figure 1 depicts the design flow. The first phase of
the design flow is detailed in the frame Phase I and the
second phase is summarized in the process Design Flow
of Partial Bitstreams.
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The presented design flow in Figure 1 starts with a
system specification. Functional validation of the sys-
tem as e.g. in PaDReH is here not depicted. After the
system is specified, the designer usually implements the
functionality. The designer should use IPs (Intellectual
Properties) that are available in order to reduce the de-
sign costs of a new product. A System Description is
the result of the Compose System step. This is a set of
chosen IPs and the system graph. The system graph is
a representation of the connected IPs.

The clustering of IPs to reconfigurable modules is
the task of the process Module Generation. Communi-
cation channels between modules are represented in a
module graph. The Module Description is used to gen-
erate the top level RTL description in the process Code
Generation. In in the process Generate Communication
Channels the module graph is analyzed to automati-
cally implement bus macros. Xilinx provides these bus
macros for the placement and the exact routing of inter-
module communication signals [8,7].

Constraint Generation needs the module descrip-
tion to place the module in FPGA partitions. Three
properties of these partitions can be optimized. The
number of partitions should be maximized so that the
whole FPGA is used and number of reconfigurations
is minimized. To maximize the partition number the
size should be minimized. In order to minimize the bus
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Fig. 2 System Graph

macro size the partitions placement should be analyzed.
The constraints are needed to define bounding boxes
in the Design Flow of Partial Bitstreams process. Bus
macros can be placed in the FPGA after the partitions
are defined. These bus macros are necessary commu-
nication channels between different modules as well as
channels between modules and external interfaces. For
the process Code Generation the identifier of generated
bus macros needed.

In this paper the appropriate algorithms for Module
Generation and Constraint Generation are described in
the section 4 and 5.

The process Compose System is more detailed in
[15] and the TPQ project as mentioned before. The pro-
cess of reconfiguration during run-time requires a re-
configuration controller. This controller can be gener-
ated automatically from a template. These generation
is not integrated in the presented design flow. More de-
tail about reconfiguration controller are in [9,7].

4 Module Generation

As discussed in section 3, modules and the communi-
cation between them is essential for the design flow. In
this section an approach for the algorithms of the step
Module Generation is explained in detail.

The process Module Generation takes the system
description as input. A system description consists of a
set of IPs or VHDL components and the system graph.
In Figure 2 a system graph is shown. Each vertex is
associated with an IP. The edges represent the com-
munication channels between these IPs. In the process
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Compose System (see Figure 1) the designer developed
the system description.

The result of the Module Generation is a set of clus-
tered IPs called modules. A module graph similar to the
system graph will be generated.

4.1 Configurations

The first step of Module Generation is the definition of
configurations. Configurations are needed to describe
different system setups that are exchanged over time.
These configurations are usually defined by the designer.
The designer extracts system tasks from the specifica-
tion and defines configurations for each task. Config-
urations are defined by grouping subsets of IPs. Each
IP belongs to one or more configurations. This means
that configurations can overlap. This step is similar to
overlaying technique, known from the Pascal runtime
library. In Pascal the programmer must partition the
software.

Automated support for the designer during the match-

ing process is possible but not detailed in this paper.
Necessary conditions can be extracted from the system
graph. For example, if an IP of one configuration ex-
pects data from another IP that is not in the same
configuration then the designer can be warned.

It is also possible to detect these configurations au-
tomatically. This can be done by simulation and analy-
sis of the whole system. During the simulation a moni-
toring of all IPs of the system is done. The simulation
contains all possible tasks of the system. For each task
the analysis shows which IPs are active and which are
not. Monitoring can be implemented for every interface
of each IP to detect the IP’s state.

In Figure 2 one configuration is selected. Four con-
figuration are defined in the example (see Figure 3).
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4.2 Cluster Algorithm

Based on configurations an algorithm is proposed for
automated generation of modules. Modules are defined
because it is inefficient to reconfigure the whole chip.
Further, it is also inefficient to reconfigure any single IP.
Bus macros are necessary for communication between
reconfigurable modules. If all IPs define their own mod-
ules, many bus macros are needed. The clustering of IPs
reduces the number of these communication channels.
Communication between IPs clustered to modules is
routed automatically by standard tools. In contrast to
this fact the bus macros between modules have to be
implemented manually.

Another disadvantage of whole chip reconfiguration
is the time needed for the reconfiguration process. Many
reconfigurations accumulate to significant delays. There-
fore, an optimal clustering is desirable. In this section
an approach is provided to solve this problem.

Mainly the difference between two configurations
should be reconfigured. This is the lower bound for
module size. To optimize the reconfiguration process
it is possible to combine several modules. Therefore,
the communication between the modules is minimized
and, in respect to time-critical processes, interruptions
due to reconfiguration can be eliminated. The optimiza-
tion can lead to parallely existing configurations on the
chip. To change between such configurations no recon-
figuration process is needed. This optimization step is
detailed in section 5.

The following algorithm clusters IPs to minimal mod-
ules. Based on the possibility of overlapping configura-
tions the algorithm determined all IPs which belong to
the same configurations. The input for the algorithm is
a set of configurations C' and a set of IPs I. M is the
set of modules.



for all i € I do
IP_i_is_added «+— false
for all m € M do
7 « IP, where IP € m
i_tn_m «— true
for all c € C' do
if i € ¢ xor j € ¢ then
iin_m « false
end if
end for
if i_in_m = true then
m «— mU{IP i}
IP_iis_added < true
end if
end for
if IP_i_is_added = false then
M — M U {new module m}
m — mU{IP i}
end if
end for
Output: M
For the example system in Figure 2 the algorithm
defines seven modules. After defining the modules the
connection between the modules will be analyzed and
the module graph generated. In Figure 4 the module
graph for the example system is shown. This optimal
result of the algorithm leads to a minimal FPGA uti-
lization and to reconfigurations that only change the
differing modules. The configuration 3 is highlighted in
both Figures 2 and 4. The module 5 for example con-
sists of the IPs 10 and 11. Both IPs are in configuration
3 and 4 but not in configuration 1 or 2.
After the system is partitioned into modules, the
mapping of modules to the hardware follows. This prob-
lem is detailed below.

5 Constraint Generation

The main goal of all considerations is a good partition-
ing of the hardware, here an FPGA. An optimal par-
titioning cannot be determined in an acceptable time,
because this problem is NP-equivalent. A partition is
called optimal, when the system with all configurations
can be placed with minimal costs of reconfiguration
time.

Searching for a good solution becomes easier by con-
centrating the algorithms on the most-used modules
and most-occurring reconfigurations. The Markov chain
[10] is just the right concept for this problem.

The input for optimization is a full system descrip-
tion (modules, configurations, reconfigurations), the tar-
get FPGA, a set of constraints and a set of estimation

functions for reconfiguration time, for the CLB (config-
urable logic block) requirement of communication, and
for buffer size.

5.1 Model

The configurations and reconfigurations are described
as a Markov chain. A reconfiguration is a change from
one configuration to another with specific probability.
A reconfiguration is a tuple of three elements:

ks source configuration
k; target configuration
p probability

5.2 Optimize Function

The object of optimization is to minimize the average
reconfiguration time while keeping all constraints. Both
facts can comprised to the function (1). ¢, is the func-
tion for reconfiguration time.

f(C) ’ Z tr(r) : P(ks) P (1)
r=(ks,k¢,p)ER

The sum is the average reconfiguration time. f(C)

is function, which describes, how many constraints are

valid. For example: % is a useful definition for f(C),

where n is the number of constraints, and & is the num-

ber of valid constraints.

5.3 Phases of Optimization

Figure 5 shows the three phases of the optimization.
In the first phases, the start phase, the probabilities
for all configurations and modules are computed and a
minimal partitioning (a system with a minimal number
of slots with minimal slot sizes) is implemented.

The actual optimization consists of different algo-
rithms. The first step is a heuristic, which sorts all
modules along size and probability. In this sequence
the heuristic tries to assign a module in every configu-
ration to one slot. The second step is a randomized op-
timization procedure called treshold accepting (TA)[3,
6]. TA varies the assignment from configurations to the
slots. If TA does not find a better solution, the next
phase is InsertSlot(IS). IS analyses the free space and
inserts a new slot. If IS cannot inserts a new slot, Ex-
pandSlot(ES) is trying to expand one of the slots. If
ES cannot expand any slot, then all slots become the
minimum size (ReduceSlots) and IS is trying.

The end phase determines the slot widths, the slot
order, and both implicates the slot offsets. The out-
put is a full described system (2), consisting of a set
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of modules, a set of configurations, of reconfigurations
and of slots, and the FPGA. The configurations and
the reconfigurations have now a function 6 : M — S.

S = (M,C,R, S, FPGA) (2)

5.8.1 MinSlot Algorithm

The procedure that generates a minimal slot set with
minimal sizes is an optimal algorithm.

Input: C, configuration set
S0
for allc = (M,E) € C do
sort(M, size, descending)
delete all marks Vs € S
for all m € M do
b,l « nil
b < the smallest slot with b.size > m.size and b
is unmarked
[ < the greatest slot with l.size < m.size and |
is unmarked
if b=nil and 1=nil then
S «— SU{newSlot(m.size)}
mark the new slot
else if b=nil then
l.size < m.size
mark 1
else
mark b
end if
end for
end for

Output: S

The MinSlot algorithm leads to the minimal number
of slots. The algorithm inserts only a new slot when
all slots are marked. The configuration with the most
modules determines the number of slots. Deleting a slot
and this configuration doesn’t fit in the slot set.

The algorithm expands one slot, when all slots, which
greater or equal than this module, are marked. The
modules are sorted from the smallest to the largest
module, so that no slot is expand unnecessary. The size
of one slot is max{m,.size, ..., my.size}. Decrement-
ing the slot size by 1, the module with the biggest size
doesn’t fit into this slot and at least one configuration
doesn’t fit in the slot set.

5.4 Heuristic

The central heuristic of the optimization procedure is
that the average reconfiguration time develops to a lower
value if every module, especially the largest and the
most frequented modules, is as often as possible as-
signed to the same slot.

This heuristic is the base for optimization phase
Heuristic and for Threshold Accepting. The phase Heuris-
tic sorts all modules according to the product of size
and probability and optimizes every module to the slot
with the best quality for fit in this module. In Threshold
Accepting a non-static module and a non-static slot are
determined randomized and the heuristic tries as often
as possible to assign this module to this slot.

6 Example

In this section the optimization results of the example
system given in section 4 are shown. The process Mod-
ule Generation determined seven modules (see Figure
4). This is the optimal result for a minimal FPGA uti-
lization which leads to 4 slots and maximal 490 CLBs
(IP size 70 CLBs) on an FPGA. If there is unused
FPGA area, an optimization is possible. The target
FPGA has 32 rows and 20 columns of CLBs (3 640
CLBs). All possible reconfigurations have the same prob-
ability. The required CLBs for connections between mod-
ules are not considered in this example. Table 1 shows
the optimization results. If the IP size is 70 CLBs then
the average number of reconfigured CLBs is 134.17 (20.96%
of 640 CLBs) and the FPGA is partitioned into 5 slots.
If the size of IPs decreases, the number of modules that
can be placed simultaneously increases and the aver-
age number of reconfigured CLBs decreases. This can
be seen in the last two columns. An additional effect



IP size in CLBs 70 60 55
System size in CLBs 910 780 715
change rate in CLBs 134.17 115.00 68.75
change rate in percent | 20.96% | 17.96% | 10.74%
number of slots 5 5 6

Table 1 Test results for the example

of the optimization is that some modules are placed as
static ones in the FPGA.

7 Conclusion

In this paper, a design flow for reconfigurable systems
based on the overlaying concept, in contrast to the hot-
plug technology, is presented. The overlaying concept in
the Pascal runtime library was used to handle large pro-
grams if there was not enough memory. Similar to this
the reconfiguration is used in the context of embedded
systems. The main problems in reconfigurable systems
are the communication between reconfigurable modules
and the reconfiguration overhead. The presented pro-
posal facilitates moving from a definition of configura-
tions to the automated creation of reconfigurable mod-
ules. After the designer has defined all reconfiguration
parameters, our approach offers the automated gener-
ation of optimized reconfiguration partitions. The pre-
sented algorithms generate modules in a way that min-
imizes the number of internal interfaces (bus macros)
and minimize the average time for reconfiguration.

The example illustrates the applicability of the pro-
posed methods and highlights major advantages in de-
sign automation. A change in the system specification
necessitates changes to the system implementation. Be-
cause of the encapsulation to configuration, the pro-
posed design steps can run automatically without adap-
tion. The process of generating an updated system im-
plementation becomes simpler and more straightfor-
ward. This approach to the design process, then, facili-
tates the efficient and effective prototyping of IP based
dynamic reconfigurable systems.
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