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I. I NTRODUCTION

In computer science, often computational problems can be
transformed into communication problems. The most illustra-
tive example is probably the evaluation of a function via a
Boolean formula. The correspondence to an equivalent com-
munication game is as follows. A Boolean formula computing
the function valueg(x1, . . . , xk) can be represented by a
binary tree. The leaves are labeled with variablesxi ∈ {0, 1}
or their negations (the same variable may occur on several
leaves). In each inner vertex the two incoming subtrees are
combined either via an “and” (∧) gate or an “or” (∨) gate,
i. e., in these inner nodes the resultsg1 and g2 obtained so
far, are processed according tog1 ∧ g2 or g1 ∨ g2. The result
g(x1, . . . , xk) will finally be found at the root of the tree.
So a computation is carried out as a process starting at the
leaves and ending at the root. The depth (minimal length of a
path from a leaf to a root) of an optimal Boolean formula for
the calculation of a functiong is an important parameter in
theoretical computer science. The equivalent communication
game is as follows. Alice holds an input(x1, . . . , xk) with
g(x1, . . . , xk) = 1 and Bob holds an input(y1, . . . , yk) with
g(y1, . . . , yk) = 0. They exchange bits of information until
they find a componenti ∈ {1, . . . , k} in which xi = yi.
The minimal number of communication bits exchanged by
Alice and Bob maximized over all inputs is the communication
complexity of this game. The communication protocol can be
represented by a binary tree. In this tree the vertices are labeled
with the person whose turn it is to send, further an edge to
the left successor of a vertex corresponds to a bit1 and an
edge to the right successor correspond to a bit0. A one–to–
one correspondence to a Boolean formula now is obtained by
assigning the∨– gates to Alice and the∧–gates to Bob (so
it is the respective person’s turn to send in these vertices).
Hence, we can use the same tree as for the Boolean formula
with the difference that communication starts in the root and
terminates in the leaves. For recent results on this model we
refer to [4].

A similar communication model, based on a decision
problem rather than a search problem, is introduced in the
next section. Methods from data compression are used to
derive lower bounds. Finally, the application to a computation
problem will be discussed.

II. COMMUNICATION COMPLEXITY

The communication complexityC(f) of a functionf is the
number of bits that two persons have to exchange in order
to evaluatef(x, y), when initially Alice only knowsx ∈ X
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and Bob only knowsy ∈ Y. Communication complexity, as
introduced by Yao [15] for functionsf : X × Y −→ Z
with finite X ,Y,Z, turned out to be an important topic in
computer science, especially in the derivation of bounds for
area-time tradeoff in VLSI-layout and for depth of circuits,
decision trees and branching programs. We refer to the books
by Kushilevitz and Nisan [11] or Hromkovic [6] for further
details. Connections between communication complexity and
information theory are discussed by Karp [7] and Körner and
Orlitsky [10].

Communication proceeds according to a protocol, on which
the communicators agree in advance. Alice and Bob exchange
bits of information over a noiseless channel until they both
know the resultf(x, y). The set of messages a person is
allowed to send is required to be prefix-free in order to assure
that the second person immediately recognizes the end of the
message.

An upper bound on the communication complexity is always
obtained via the following naive protocol. Alice sends all the
bits of her inputx to Bob using at mostdlog |X |e bits. Bob
then knowsx and y and hence is able to calculatef(x, y),
which he returns to Alice using at mostdlog |Z|e bits. The
logarithm throughout this paper is always taken to the base 2.
Hence (w. l. o. g.|X | ≤ |Y|)

C(f) ≤ dlog |X |e+ dlog |Z|e (1)

Lower bounds forC(f) are obtained from the matrices

Mz(f) = (axy)x,y defined byaxy =
{

1 if f(x, y) = z
0 if f(x, y) 6= z

.

In the sequel we need the following rank lower bound

C(f) ≥ dlog
∑

z

rankMz(f)e. (2)

III. V ECTOR–VALUED FUNCTIONS AND DATA

COMPRESSION

We are going to study the communication complexity of
vector-valued functionsfn, which are defined on the direct
sumsXn,Yn of the sets from the domain of some basic
functionf : X ×Y → Z. Elements ofXn andYn are denoted
as xn and yn, respectively. Hence, e. g.,xn = (x1, . . . , xn)
for somex1, . . . , xn ∈ X . With this notation

fn(xn, yn) =
(
f(x1, y1), . . . , f(xn, yn)

)

For instance, letsi : {0, 1} × {0, 1} → {0, 1} be the
logical “and”. If we interpret the vectorsxn, yn ∈ {0, 1}n

as representations of two subsets of ann–elementary set
(xi = 1 exactly if thei–th element is contained in the subset
represented byxn = (x1, . . . , xn)), then the vector–valued
function sin(xn, yn) gives the intersection of these two sets.



THEOREM 1:
C(sin) = dlog 3e (3)

Proof: For set-intersection the rank bound (2) combined
with the techniques from [1], [13], [14] yields

C(sin) ≥ dn · log(rankM0(si) + rankM1(si))e

= dn · log(rank

(
1 1
1 0

)
+ rank

(
0 0
0 1

)
)e = dn · log 3e

In order to obtain the same upper bound, we shall modify the
naive protocol, which would require2n bits of transmission.
Again, in the first round Alice encodes her inputxn ∈
{0, 1}n, now using a codeφ, and sendsφ(xn) to Bob. Bob
then knows both values and hence is able to compute the
result sin(xn, yn), which is returned to Alice. However, in
knowledge ofxn the set of possible function values is reduced
to the setS(xn) = {yn : yn ⊂ xn}. Hence, onlydlog S(xn)e
bits have to be reserved for the transmission ofsin(xn, yn)
such that Alice can assign longer messages to elements with
few subsets. So, in contrast to the trivial protocol, the messages
φ(xn) : xn ∈ {0, 1}n are now of variable length. Since
the set {φ(xn) : xn ∈ {0, 1}n} must be a prefix code,
Kraft’s inequality yields a condition, from which the upper
bound can be derived. Specifically, we require that to each
xn corresponds a messageφ(xn) of (variable) lengthl(xn)
such that for allxn ∈ {0, 1}n the suml(xn) + dlog S(xn)e
takes a fixed value,L say. Kraft’s inequality states that a
prefix code exists, if

∑
xn 2−l(xn) ≤ 1. This is equivalent to∑

xn 2dlog S(xn)e ≤ 2L. It can be shown that with the choice
L = dlog 3ne Kraft’s inequality holds.

IV. A MORTIZED COMMUNICATION COMPLEXITY

Direct sum methods in communication complexity as those
used for the proof of Theorem 1 are useful tools in separating
complexity classes [14]. Further applications are the compar-
ison of lower bound techniques and the study of their power
(how large can be the gap between the lower bound and the
communication complexity). The intuition is that small gaps
for the basic functionf become large for the vector-valued
function fn.

Karchmer, Raz, and Wigderson [9] asked how much better
simultaneous computations are compared to sequential (com-
ponentwise) evaluation of the functionfn for basic Boolean
functionsf : {0, 1}m × {0, 1}m → {0, 1}. They conjectured
that theamortized communication complexity

C(f) =
1
n

lim sup
n→∞

C(fn)

is close toC(f) – the communication complexity of the basic
function f . This direct sum conjecturewas further studied in
[5], [8], and [12] and also randomized and nondeterministic
protocols were considered.

As Karchmer, Raz, and Wigderson [9] point out, a proof of
their direct sum conjecture would be a decisive step towards a
separation of the complexity classesNC1 andNC2 - a long
outstanding open problem in computer science.

Recently, in [3] the notion of closeness in the above
conjecture was defined more formally. Namely the direct sum
conjecture in [3] was stated as

C(fn) = n · (C(f)−O(1))

Based on the results of the previous section, we want
to discuss the application of information theoretic methods
in order to analyze the direct sum conjecture. Observe that
the amortized communication complexity is just the limit
for n −→ ∞ of the communication complexity of the
vector–valued function divided by the number of compo-
nents n. Hence, with Theorem 1 the functionsin can be
evaluated much faster considering alln components simul-
taneously than by componentwise communication of the re-
sults for the basic functionsi, which would cost2n bits.
So the amortized communication complexity of the function
si is 1

n limn→∞ C(sin) = log 3. Of course, the difference
C(si) − C(si) = 2 − log 3 is too small in order to disprove
the direct sum conjecture. However, the data compression tech-
niques used in the proof of Theorem 1 might be applied to look
for candidatesf with a larger gap between communication
complexityC(f) and amortized complexityC(f).
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