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I. INTRODUCTION and Bob only knowsy € ). Communication complexity, as

: : introduced by Yao [15] for functiong : X x )Y — Z
In computer science, often computational problems can o | .
P P P B}%th finite X', Y, Z, turned out to be an important topic in

transformed into communication problems. The most illustrd? ‘ ; allv in the derivati f bounds f
tive example is probably the evaluation of a function via gomputer science, especially in the derivation ot bounads Tor
ea-time tradeoff in VLSI-layout and for depth of circuits,

Boolean formula. The correspondence to an equivalent co ecision trees and branching programs. We refer to the books
munication game is as follows. A Boolean formula computin g prog :

the function valueg(z,...,z,) can be represented by a y Kushilevitz and Nisan [11] or Hromkovic [6] for further

binary tree. The leaves are labeled with variables: {0, 1} details. Connections between communication complexity and

or their negations (the same variable may occur on Sevei{%]‘prmation theory are discussed by Karp [7] and Korner and
litsky [10].

leaves). In each inner vertex the two incoming subtrees a éc icati d ding t tocol hich
combined either via an “and’A) gate or an “or’ {/) gate, ommunication proceeds according to a protocol, on whic

i. e., in these inner nodes the results and g, obtained so the communicat.ors agree in advance. Alice and B.Ob exchange
far, are processed according oA g, of g1V go. The result bits of information over a noiseless channel until they boj[h
g(z1,...,a;) will finally be found at the root of the tree. know the resultf(z,y). The set of messages a person is
So a computation is carried out as a process starting at lowed to send is requw_ed to pe preflx-free_m order to assure
leaves and ending at the root. The depth (minimal length 011 at the second person immediately recognizes the end of the

path from a leaf to a root) of an optimal Boolean formula fomissage. bound on th icati lexity is al
the calculation of a functiory is an important parameter in N upperbound on the communication complexity IS always

theoretical computer science. The equivalent communicatigﬁta'r}eﬁJI via thet fotIIO\évmbg naive ptrotoco{. AI;(;e SSPdSBaILthe
game is as follows. Alice holds an inpdty,...,x;) with tl’lls Ok er Inpua(; 0 (()j husmg a mb(?SftOgl IH | ts. Bo
g(z1,...,2;) = 1 and Bob holds an inputy:, ..., y,) with 1o Knowsz andy and hence 1S able 1o caicu afz, y),

91, ...un) = 0. They exchange bits of information untijWhich he returns to Alice using at moslog | Z|] bits. The
théy7 finé'a component € {1 k} in which z; — y, logarithm throughout this paper is always taken to the base 2.

The minimal number of communication bits exchanged blg,ence (w. 1. 0. g| X[ < [V])
Alice and Bob maximized over all inputs is the communication
complexity of this game. The communication protocol can be C(f) < [log|X]] + [log |2]] @
represented by a binary tree. In this tree the vertices are labelegver bounds forC(f) are obtained from the matrices
with the person whose turn it is to send, further an edge _ ' 10 f(ry) =2

the left successor of a vertex corresponds to alkéind an }\%Z(f) = (day)a,y defined bya, = 0 if flz,y)#2 °
edge to the right successor correspond to a@0bih one—to— In the sequel we need the following rank lower bound

one correspondence to a Boolean formula now is obtained by

assigning thev— gates to Alice and the—gates to Bob (so C(f) > [log > _rankM.(f)]. (2)
it is the respective person’s turn to send in these vertices). z

Hence, we can use the same tree as for the Boolean formula 1Il. V ECTOR-VALUED FUNCTIONS AND DATA

with the difference that communication starts in the root and COMPRESSION

terminates in the leaves. For recent results on this model wgpe are going to study the communication complexity of
refer to [4]. o ~vector-valued functiong”, which are defined on the direct
A similar communication model, based on a decisiogms " " of the sets from the domain of some basic

problem rather than a search problem, is introduced in thgction f : X' x ) — Z. Elements oft™ and)™ are denoted
next section. Methods from data compression are used 49, gnd y", respectively. Hence, e. gi”* = (z1,...,2n)

derive lower bounds. Finally, the application to a computatigg, somez,,. ...z, € X. With this notation
problem will be discussed.

fn('rnayn) = (f(xhyl)a AR f(‘rﬂmyn))
o , ] ] For instance, letsi : {0,1} x {0,1} — {0,1} be the
The communication complexit¢'( /) of a functionf is the logical “and”. If we interpret the vectors™,y" € {0,1}"

number of bits that two persons have to exchange in ordel’ \onresentations of two subsets of mrelementary set
to evaluatef(z,y), when initially Alice only knowsz € X' (. _ 7 exactly if theith element is contained in the subset

U. Tamm is with the Department of Computer Science, University ofCherﬁeprelsemed by:" = -(xl, cee v_fn))' the.n the vector-valued
nitz, 09107 Chemnitz, Germany. E-mail: tamm@informatik.tu-chemnitz.defunction si” (2™, y™) gives the intersection of these two sets.

II. COMMUNICATION COMPLEXITY



THEOREM 1:

C(si"™) = [log 3] 3)

Recently, in [3] the notion of closeness in the above
conjecture was defined more formally. Namely the direct sum

conjecture in [3] was stated as

Proof: For set-intersection the rank bound (2) combined
with the techniques from [1], [13], [14] yields

C(si™) > [n - log(rankMy(si) + rankM (si))]

_[n-ngank( } é >44ﬂ”k< 01 )ﬂ_[n'bg?’W the

0 1
In order to obtain the same upper bound, we shall modify ther

C(f") =n-(C(f) —01))

Based on the results of the previous section, we want
to discuss the application of information theoretic methods
in order to analyze the direct sum conjecture. Observe that

amortized communication complexity is just the limit
n — oo of the communication complexity of the

naive protocol, which would requirgn bits of transmission. vector-valued function divided by the number of compo-

Again, in the first round Alice encodes her inputt €

nents n. Hence, with Theorem 1 the functios™ can be

{0,1}™, now using a code, and sends)(z") to Bob. Bob evaluated much faster considering allcomponents simul-
then knows both values and hence is able to compute fig@eously than by componentwise communication of the re-
result si” (z",y™), which is returned to Alice. However, insults for the basic functiorsi, which would cost2n bits.

knowledge of:” the set of possible function values is reduce8§0 the amortized communication complexity of the function

to the setS(z™) = {y™ : y” C =" }. Hence, only[log S(z™)]
bits have to be reserved for the transmissions&f(x™, y™)

si is +lim,_.. C(si®) = log3. Of course, the difference

C(si) — C(si) = 2 —log3 is too small in order to disprove

such that Alice can assign longer messages to elements vidt direct sum conjecture. However, the data compression tech-
few subsets. So, in contrast to the trivial protocol, the messadégues used in the proof of Theorem 1 might be applied to look

o(z")

: 2™ € {0,1}" are now of variable length. Sincefor candidates/ with a larger gap between communication

the set{¢(z") : z" € {0,1}"} must be a prefix code, complexity C(f) and amortized complexitg’(f).

Kraft's inequality yields a condition, from which the upper
bound can be derived. Specifically, we require that to eac
x™ corresponds a messagg¢z™) of (variable) lengthl(z™)
such that for allz™ € {0,1}™ the sumi(z™) + [log S(z")]
takes a fixed valuel say. Kraft's inequality states that a 2]
prefix code exists, iy .. 27/*") < 1. This is equivalent to 3
3 208 5E@T < 2L |t can be shown that with the choice
L = [log 3™] Kraft’s inequality holds.

]

(4]
IV. AMORTIZED COMMUNICATION COMPLEXITY

Direct sum methods in communication complexity as thos&!
used for the proof of Theorem 1 are useful tools in separating;
complexity classes [14]. Further applications are the compar-
ison of lower bound techniques and the study of their powel!
(how large can be the gap between the lower bound and the
communication complexity). The intuition is that small gapss]
for the basic functionf become large for the vector-valued
function f”. [9

Karchmer, Raz, and Wigderson [9] asked how much better
simultaneous computations are compared to sequential (CCHB]-
ponentwise) evaluation of the functioff” for basic Boolean
functions f : {0,1}™ x {0,1}™ — {0,1}. They conjectured
that theamortized communication complexity (11]
_ 1 [12]
Cf) =, limsup C(f7)
is close toC(f) — the communication complexity of the basic:[13
function f. This direct sum conjecturvas further studied in
[5], [8], and [12] and also randomized and nondeterministié*!
protocols were considered.

As Karchmer, Raz, and Wigderson [9] point out, a proof of
their direct sum conjecture would be a decisive step toward§l
separation of the complexity class@&! and NC? - a long
outstanding open problem in computer science.
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