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Abstract. We investigate generalizations of the No-Three-In-Line prob-
lem in Zd. For several pairs (k, `) of given positive integers we give al-
gorithmic lower, and upper bounds on the largest sizes of subsets S of
points from the d-dimensional T × · · · × T -grid, where no ` points in S
are contained in a k-dimensional affine or linear subspace, respectively.

1 Introduction

The No-Three-in-Line problem, which has been raised originally by Dudeney [7],
asks for the maximum number of points, which can be chosen from the T × T -
grid in Z2, i.e., from the set {0, . . . , T − 1} × {0, . . . , T − 1}, such that no three
points are on a line, see [5, 14]. Erdős [9] observed that this maximum number
is Θ(T ). The lower bound follows by considering for primes T the grid-points
(x, x2 mod T ), x = 0, . . . , T − 1. The upper bound is derived from the fact that
each horizontal line may contain at most two grid-points. For constructions of
(near-)optimal solutions for small values of T see Flammenkamp [10, 11].
Cohen, Eades, Lin and Ruskey [6] investigated compact embeddings of graphs
into Z3 such that distinct edges (represented by segments) do not cross each
other in a point distinct from the endpoints. Compact embeddings minimize the
volume of an axis-aligned bounding box in Z3, which contains the drawing. The
endpoints of crossing edges in a drawing of a graph are coplanar. In connection
with this, it was proved in [6] that there exists a set of Ω(T ) points in the
T × T × T -grid, which does not contain four distinct coplanar points, and up to
a constant factor this lower bound is best possible. Thus, the minimum volume of
an axis-aligned bounding box for a crossing-free drawing of the complete graph
Kn on n vertices in Z3 is equal to Θ(n3), see [6] and compare [15].
Pór and Wood [16] considered embeddings of graphs into Z3, where the line
segments, which represent the edges, do not cross any vertex distinct from its
endpoints. Then, n points in Z3 yield a crossing-free drawing of Kn, if no three
points are on a line. They proved in [16] that there are Θ(T 2) points in the
T ×T ×T -grid with no three collinear points, by considering the set of all triples
(x, y, (x2 + y2) mod T ), x, y ∈ {0, . . . , T − 1}, for T a prime with T ≡ 3 mod 4.
This gives an upper bound of O(n3/2) on the minimum volume of a bounding
box of a drawing of Kn in Z3.

? A preliminary version of this work appeared in Proceedings AAIM 2008.
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For higher dimensions, Pór and Wood [16] raised the question of determining
vol(n, d, k), which is defined as the minimum volume of an axis-aligned bound-
ing box for embeddings of n points in Zd, such that no (k + 2) points are
contained in a k-dimensional affine space. By partitioning of such a bounding
box into vol(n, d, k)(d−k)/d many affine k-dimensional subspaces they observed

vol(n, d, k) ≥ (n/(k + 1))
d/(d−k)

. Known from [6] is vol(n, 3, 2) = Θ(n3), and in
general, vol (n, d, d− 1) = Θ(nd).
For fixed integers d, k, ` ≥ 1 with k < d let fd(`, k, T ) be defined as the max-
imum number of points in the d-dimensional T × · · · × T -grid, such that no `
of these points are contained in a k-dimensional affine subspace. A lower bound
of fd(k + 2, k, T ) = Ω(T β) yields immediately the upper bound vol(n, d, k) =
O(nd/β) on the minimum volume of a bounding box. In the following we fo-
cus on the investigation of the growth of the function fd(`, k, T ) rather than on
vol(n, d, `). In Section 2 we investigate (constructive) lower bounds on fd(`, T ) :=
fd(`, 1, T ), i.e., no ` points are collinear. For fixed integers ` ≤ d we prove
fd(`, T ) = Ω(max {T d−2, T d(`−2)/(`−1) · poly(log T )}). In Section 3 we give new
upper bounds on fd(k+2, k, T ) for integers k ≥ 1, in particular fd(k+2, k, T ) =
O(T 2d/(k+2)) for k even. We also consider distributions of grid-points, where no
` points are contained in a k-dimensional linear subspace and give a counterex-
ample for a suggested order of the corresponding function f lind (k + 1, k, T ), see
[4, 5].
Moreover, in connection with a question of Füredi [12] for fixed integers ` ≥ 3
we show for any finite set S ⊂ R2, |S| = N and N sufficiently large, which
does not contain ` collinear points, a lower bound on the largest size of a subset
S′ ⊆ S, where S′ does not contain k collinear points, 3 ≤ k < `, i.e., |S′| =

Ω(N
k−2
k−1 · poly(logN)). All of our arguments for proving lower bounds are of a

probabilistic nature, however, they easily can be made constructive in polynomial
time by using derandomization arguments.

2 No ` Collinear Points

For integers d, `, T with d ≥ 2 and 3 ≤ ` ≤ T let fd(`, T ) denote the largest
size of a subset S of points in the d-dimensional T × · · · × T -grid, such that no
` points of S are collinear. By monotonicity we have fd(` + 1, T ) ≥ fd(`, T ).
Well-known is the following upper bound on fd(`, T ):

Proposition 1. For integers d, `, T with d ≥ 2 and 3 ≤ ` ≤ T , it is

fd(`, T ) ≤ (`− 1) · T d−1. (1)

Proof. Let S be a subset of points in the d-dimensional T × · · · × T -grid, such
that no ` points of S are collinear. Partition the set of points in the T × · · ·×T -
grid into T d−1 lines, where each line is of the form (a1, . . . , ai, x, ai+2, . . . , ad) for
fixed a1, . . . , ai, ai+2, . . . , ad ∈ {0, . . . , T − 1}. Each line contains at most (`− 1)
points from S, hence |S| ≤ (`− 1) · T d−1. ut
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Next we give lower bounds on fd(`, T ) for arbitrary integers ` ≥ 3.

Proposition 2. For fixed integers d ≥ 2, there exists a constant c = c(d) > 0
such that for all integers `, T with 3 ≤ ` ≤ T it is

fd(`, T ) ≥


c · ` · T d−1 if ` ≥ d+ 1

max
{
T d−2, c · T d

`−2
`−1

}
if ` ≤ d.

Notice, that we have T d−2 > T d
`−2
`−1 for ` < (d + 2)/2 and T sufficiently large,

and for d even and for ` = (d + 2)/2 it is T d−2 = T d
`−2
`−1 . The lower bound

on fd(d + 1, T ) in Proposition 2, i.e., ` = d + 1, is by Brass and Knauer [4].
They observed that for fixed primes T and integers q the set of all integer points
(x1, . . . , xd) with x1 +x22 + · · ·+xdd ≡ q mod T in the d-dimensional T ×· · ·×T -
grid contains at most d collinear points, thus fd(d+ 1, T ) = Ω(T d−1). Hence, by
Proposition 1 we have fd(d+ 1, T ) = Θ(T d−1).
As mentioned in the introduction, Pór and Wood [16] obtained f3(3, T ) = Ω(T 2),
which is bigger than the lower bound in Theorem 2. However, Proposition 2 holds
for all pairs (d, `) for fixed d, and the lower bounds match up to constant factors
the upper bounds (1) for every ` ≥ d+ 1.
Before proving Proposition 2, we introduce some useful notation.
For integers a1, . . . , ad, which are not all equal to 0, let gcd (a1, . . . , ad) > 0
denote the greatest common divisor of a1, . . . , ad. Let P = (p1, . . . , pd) and Q =
(q1, . . . , qd) be distinct points in the d-dimensional T×· · ·×T -grid. Let PQ denote
the segment between the points P and Q, including P and Q. The segment PQ
contains exactly (gcd (p1 − q1, . . . , pd − qd) + 1) grid-points.
A hypergraph G is given by a pair (V, E) with V its vertex-set and E ⊆ P(V ) its
edge-set. A subset I ⊆ V of the vertex-set V is called independent, if I does not
contain any edges from E , i.e., E 6⊆ I for each edge E ∈ E . The largest size of an
independent set in G is the independence number α(G). A 2-cycle in G = (V, E) is
a pair {E,E′} of distinct edges E,E′ ∈ E with |E∩E′| ≥ 2. A 2-cycle {E,E′} is
called (2, j)-cycle if |E ∩E′| = j. A hypergraph G without any 2-cycles is called
linear. A hypergraph G = (V, E) is called `-uniform, if each edge E ∈ E contains
exactly ` vertices.
In our arguments we use Túran’s theorem for uniform hypergraphs, see [17]:

Theorem 1. Let G = (V, E`) be an `-uniform hypergraph on |V | = N vertices
with average-degree t`−1 := ` · |E`|/N ≥ 1.
Then, the independence number α(G) of G fulfills:

α(G) ≥ `− 1

`
· N
t
. (2)

An independent set I ⊆ V with |I| ≥ ((` − 1)/`) · (N/t) can be found in time
O(N + |E`|).
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Next we prove Proposition 2:

Proof. Due to the results in [4] we only have to consider the case ` 6= d + 1. It
is easy to see that fd(`, T ) ≥ T d−2. Namely, consider for integers r, 0 ≤ r ≤
(T−1)2, in the d-dimensional T×· · ·×T -grid the spheres Sr, which consist of all

grid-points P = (p1, . . . , pd) with
∑d
i=1(pi)

2 = r. Clearly, S0∪· · ·∪S(T−1)2 covers

the d-dimensional T ×· · ·×T -grid, hence for some R we have |SR| ≥ T d−2. Now
any sphere SR does not contain three collinear points. Indeed, for contradiction,
assume that P, P +λ ·V, P +µ ·V ∈ SR, λ 6= µ and λ, µ 6= 0, are collinear, where
P = (p1, . . . , pd) and V = (v1, . . . , vd) 6= (0, . . . , 0). We infer

d∑
i=1

(pi)
2 =

d∑
i=1

(pi + λ · vi)2 =

d∑
i=1

(pi + µ · vi)2 = R,

and therefore,

2 · λ ·
d∑
i=1

pi · vi + λ2 ·
d∑
i=1

(vi)
2 = 2 · µ ·

d∑
i=1

pi · vi + µ2 ·
d∑
i=1

(vi)
2 = 0,

which implies
∑d
i=1(vi)

2 = 0, and this is not possible.
Next we prove the other lower bounds. Form an `-uniform hypergraph G = (V, E`)
with vertex-set V consisting of all T d points in the d-dimensional T × · · · × T -
grid. For distinct grid-points P1, . . . , P` let {P1, . . . , P`} ∈ E` be an edge if and
only if P1, . . . , P` are collinear. We want to find a large independent set I ⊆ V
in G, as I yields a subset of grid-points, where no ` points are on a line.
We upper bound the size |E`| of the edge-set. Let P1, . . . , P` be distinct, collinear
points in the T × · · · × T -grid, where P2, . . . , P`−1 are contained in the segment
P1P`. There are T d choices for the grid-point P1 = (p1,1, . . . , p1,d). Any d-tuple
(s1, . . . , sd) ∈ {−T + 1,−T + 2, . . . , T − 1}d fixes at most one point P` = (p1,1 +
s1, . . . , p1,d+sd) in the T×· · ·×T -grid. By symmetry, which we take into account
by a factor of 2d, we may assume that s1, . . . , sd ≥ 0. Given the grid-points P1

and P` with P` − P1 = (s1, . . . , sd) 6= (0, . . . , 0), on the segment P1P` there are(gcd (s1,...,sd)−1
`−2

)
choices for the (` − 2) grid-points P2, . . . , P`−1 6= P1, P`. By

using
(
N
k

)
≤ ((e ·N)/k)k we obtain

|E`| ≤ 2d · T d ·
T−1∑
s1=0

· · ·
T−1∑
sd=0

(
gcd (s1, . . . , sd)− 1

`− 2

)

≤ 2d · T d ·
T−1∑
s1=0

· · ·
T−1∑
sd=0

(
e · gcd (s1, . . . , sd)

`− 2

)`−2
. (3)

For a given divisor g ∈ {1, . . . , T − 1} there are at most 2 · T/g integers x ∈
{0, . . . , T − 1} which are divisible by g, hence (3) becomes

|E`| ≤ (2 · T )d ·
T∑
g=1

(
2 · T
g

)d
·
(
e · g
`− 2

)`−2
≤ 4d · T 2d ·

(
9

`

)`−2
·
T∑
g=1

g`−d−2.(4)
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The sum
∑T
g=1 g

`−d−2 is O(T `−d−1/`) for ` ≥ d+ 2, and O(log T ) for ` = d+ 1,
and O(1) for ` ≤ d. Thus, by (4) for fixed d ≥ 2 for a constant c = c(d) > 0 we
infer

|El| ≤

 c · 9`−1 · T
`+d−1

``−1 if ` ≥ d+ 2

c · T 2d if ` ≤ d.

Hence, the average-degree t`−1 = ` · |E`|/T d of G fulfills for a constant c′ =
c′(d) > 0:

t ≤


c′ · T` if ` ≥ d+ 2

c′ · T
d

`−1 if ` ≤ d.

By Theorem 1 we find in time O(T d + |E`|) an independent set I ⊆ V with

|I| ≥


1

2·c′ · ` · T
d−1 if ` ≥ d+ 2

1
2·c′ · T

d `−2
`−1 if ` ≤ d.

The grid-points, which correspond to the vertices of the independent set I, satisfy
that no ` points are collinear. ut

To improve the results from Theorem 2 for fixed d, ` with (d+ 2)/2 ≤ ` ≤ d by a
logarithmic factor, we use the following result of Ajtai, Komlós, Pintz, Spencer
and Szemerédi [1] in a version arising from work in [3] and [8].

Theorem 2. Let ` ≥ 3 be a fixed integer. Let G = (V, E`) be an `-uniform, linear
hypergraph on |V | = N vertices with average-degree t`−1 = ` · |E`|/N .
Then, the independence number α(G) of G satisfies for a constant C = C(`) > 0:

α(G) ≥ C · N
t
· (log t)

1
`−1 . (5)

An independent set I ⊆ V with |I| = Ω((N/t) · (log t)1/(`−1)) can be found in
polynomial time.

Theorem 3. Let d, ` ≥ 2 be fixed integers with (d + 2)/2 ≤ ` ≤ d. Then, there
exists a constant c = c(d) > 0 such that for all integers T ≥ 1:

fd(`, T ) ≥ c · T d
`−2
`−1 · (log T )

1
`−1 . (6)

Proof. We form a non-uniform hypergraph G = (V, E` ∪ E`+1). The vertex-set
consists of all T d points from the d-dimensional T × · · · × T -grid and for m =
`, ` + 1 and distinct grid-points P1, . . . , Pm it is {P1, . . . , Pm} ∈ Em if and only
if P1, . . . , Pm are collinear. By the remarks following (4), for ` ≤ d we have for
constants c1, c2 > 0 that

|E`| ≤ c1 · T 2d and |E`+1| ≤ c2 · T 2d · log T. (7)
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Set ε := d/`2 and select with probability p := T ε/T d/(`−1) uniformly at random
and independently of each other points from the d-dimensional T ×· · ·×T -grid.
Let V ∗ be the random set of chosen grid-points, let E∗m := Em ∩ [V ∗]m, and let
E(|V ∗|), E(|E∗m|), m = `, `+ 1, be their expected sizes. We infer with (7):

E(|V ∗|) = p · T d = T ε+d(`−2)/(`−1)

E(|E∗` |) = p` · |E`| ≤ p` · c1 · T 2d ≤ c1 · T ε`+d(`−2)/(`−1)

E(|E∗`+1|) = p`+1 · |E`+1| ≤ p`+1 · c2 · T 2d · log T ≤ c2 · T ε(`+1)+d(`−3)/(`−1) · log T.

By Markov’s and Chernoff’s inequalities (this argument can be easily derandom-
ized in time polynomial in T by using the method of conditional probabilities)
there exists a subset V ∗ ⊆ V of grid-points such that

|V ∗| = (1− o(1)) · T ε+d(`−2)/(`−1) (8)

|E∗` | ≤ 3 · c1 · T ε`+d(`−2)/(`−1) (9)

|E∗`+1| ≤ 3 · c2 · T ε(`+1)+d(`−3)/(`−1) · log T. (10)

By (8) and (10) with ε = d/`2 we have

|E∗`+1| = o(|V ∗|). (11)

Let G∗ = (V ∗, E∗` ∪ E∗`+1) be the on the vertex-set V ∗ induced subhypergraph of
G. We delete one vertex from each edge E ∈ E∗`+1. For distinct edges E,E′ ∈ E
with |E ∩ E′| ≥ 2, all points in E ∪ E′ are collinear, as two distinct points
determine a line. Thus, we have destroyed all 2-cycles in G∗. Let V ∗∗ ⊆ V ∗ be
the set of remaining vertices, where |V ∗∗| = (1 − o(1)) · |V ∗| ≥ |V ∗|/2 by (11).
The on the vertex-set V ∗∗ induced, uniform subhypergraph G∗∗ = (V ∗∗, E∗∗` ) of
G with E∗∗` := E∗∗` ∩ [V ∗∗]` is linear, and with (8) and (9) its average-degree t`−1

satisfies

t`−1 =
` · |E∗∗` |
|V ∗∗|

≤ 6 · c1 · ` · T ε(`−1) := t`−10 . (12)

Since G∗∗ is linear, we may apply Thereom 2 and we infer with (12) for the
independence number α(G) for constants C`, C

′
` > 0:

α(G) ≥ α(G∗∗) ≥ C` ·
|V ∗∗|
t
· (log t)1/(`−1) ≥ C` ·

|V ∗∗|
t0
· (log t0)1/(`−1) ≥

≥ C` ·
(1/2) · T ε+d(`−2)/(`−1)

(6 · c1 · `)1/(`−1) · T ε
·
(

log
(

(6 · c1 · `)1/(`−1) · T ε
))1/(`−1)

≥ C ′` · T d(`−2)/(`−1) · (log T )1/(`−1),

and by Theorem 2 such an independent set can be constructed in time polynomial
in T . This shows fd(`, T ) = Ω(T d(`−2)/(`−1) · (log T )1/(`−1)). ut

Related here is a problem, which has been investigated by Füredi [12]. He con-
sidered finite sets S ⊂ R2 of points, which for fixed ` ≥ 3 do not contain `
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collinear points. He investigated the largest size α`k(S) of a subset of S, which
does not contain any k points on a line, where k < `, and proved in [12] that
α`k(S) = Ω(|S|(k−2)/(k−1)). Moreover, for ` = 4 and k = 3 Füredi showed the

lower bound α`k(S) = Ω(
√
|S| · log |S|), while on the other hand by using the

density-result of Hales-Jewett’s theorem from [13] he obtained α`k(S) = o(|S|).
As asked for in [12], the lower bound on α`k(S) given above can be improved by
a polylogarithmic factor as the following considerations show.

Theorem 4. Let d, k, ` ≥ 2 be fixed integers with 3 ≤ k < `. Let S ⊂ Rd be a
finite set with |S| = N , where S does not contain ` collinear points.
Then, one can find in time polynomial in N a subset S′ ⊆ S, such that S′ does
not contain k collinear points, with

|S′| = Ω
(
N

k−2
k−1 · (logN)

1
k−1

)
. (13)

Proof. We construct a k-uniform hypergraph G = (S, Ek) with vertex-set S.
For any k distinct points P1, . . . , Pk ∈ S let {P1, . . . , Pk} ∈ Ek if and only if
P1, . . . , Pk are collinear. We want to find a large independent set in G. The set
S with |S| = N generates at most

(
N
2

)
lines. Each line contains at most (`− 1)

points from S, hence on each line the number of k-element sets of collinear points
is at most

(
`−1
k

)
, and we infer for a constant c = c(`) > 0:

|Ek| ≤
(
N

2

)
·
(
`− 1

k

)
≤ c ·N2. (14)

Next we give upper bounds on the numbers s2,j(G) of (2, j)-cycles in G, j =
2, . . . , k − 1. For a (2, j)-cycle {E,E′} in G all points in E ∪ E′ are collinear.
Thus we have s2,j(G) = 0 for j ≤ 2·k−`, as the set S does not contain ` collinear
points. For j > 2 · k − ` we obtain as in (14) for some constant c′ = c′(`) > 0:

s2,j(G) ≤
(
N

2

)
·
(

`− 1

2 · k − j

)
≤ c′ ·N2. (15)

For ε := 1/(2 · k2), we select uniformly at random and independently of each
other points from S with probability p := Nε/N1/(k−1). Let S∗ ⊆ S be the
random set of chosen points, and let G∗ = (S∗, E∗k ) with E∗k := Ek ∩ [S∗]k be the
on the vertex-set S∗ induced subhypergraph of G. The expected numbers satisfy
E[|S∗|] = p · |S| = p ·N , and E[|E∗k |] = pk · |Ek|, and E[s2,j(G∗)] = p2k−j · s2,j(G),
j = 2, . . . , k−1. By Markov’s and Chernoff’s inequality with (14) and (15) there
exists an induced subhypergraph G∗ = (S∗, E∗k ) of G such that

|S∗| ≥ p ·N/2 = N
k−2
k−1+ε/2 (16)

|E∗k | ≤ 3 · pk · |Ek| ≤ 3 · c ·N
k−2
k−1+εk (17)

s2,j(G∗) ≤ 3 · p2k−j · s2,j(G) ≤ 3 · c′ ·N
j−2
k−1+ε(2k−j). (18)

For j = 2, . . . , k − 1, and 0 < ε ≤ 1/(2 · k2), by (16) and (18) we have

s2,j(G∗) = o(|S∗|). (19)
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Discard one vertex from each (2, j)-cycle in G∗, j = 2, . . . , k−1. The set S∗∗ ⊆ S∗
of all remaining vertices satisfies by (19) that |S∗∗| = (1− o(1)) · |S∗| ≥ |S∗|/2.
The on the vertex-set S∗∗ induced subhypergraph G∗∗ = (S∗∗, E∗∗k ) of G∗ with
E∗∗k := E∗k ∩ [S∗∗]k is linear. With |E∗∗k | ≤ |E∗k | and (17) we obtain for the average-
degree (t∗∗)k−1 of G∗∗:

(t∗∗)k−1 :=
k · |E∗∗k |
|S∗∗|

≤ 12 · k · c ·Nε(k−1) =: (t∗∗0 )k−1. (20)

By Theorem 2 with (20) one can find in time polynomial in N an independent
set I ⊆ S∗∗, such that, as ε > 0 is fixed, for constants Ck, C

′
k > 0 we have

|I| ≥ Ck ·
|S∗∗|
t∗∗

· (log t∗∗)
1

k−1 ≥ Ck ·
|S∗∗|
t∗∗0

· (log t∗∗0 )
1

k−1 ≥

≥ Ck ·
(1/2) ·N

k−2
k−1+ε

(12 · k · c)
1

k−1 ·Nε
·
(

log
(

(6 · k · c)
1

k−1 ·Nε
)) 1

k−1

≥ C ′k ·N
k−2
k−1 · (logN)

1
k−1 .

The set I does not contain k distinct collinear points. ut

3 No (k + 2) Points in Affine k-Space or Linear
(k + 1)-Space

Here we consider higher dimensional versions of Theorem 2. For fixed positive
integers k, ` with ` ≥ k+2, let fd(`, k, T ) denote the maximum number of points
in the d-dimensional T × · · · × T -grid, such that no ` points are contained in a
k-dimensional affine subspace of Rd. We have by monotonicity fd(`+ 1, k, T ) ≥
fd(`, k, T ).
The d-dimensional T × · · · × T -grid can be partitioned into T d−k many k-
dimensional affine spaces, namely for fixed a1, . . . , ad−k ∈ {0, . . . , T − 1}, into
the k-dimensional affine spaces given by all points (a1, . . . , ad−k, xd−k+1, . . . , xd),
hence it follows

fd(`, k, T ) ≤ (`− 1) · T d−k. (21)

For k = d − 1 and fixed ` ≥ d + 1 the upper bound (21) is asymptotically
sharp, namely for primes T the set of points (x mod T, x2 mod T, . . . , xd mod T ),
x = 0, . . . , T −1, on the modular moment-curve meets every (d−1)-dimensional
affine space in at most d points, compare [5, 18], thus

fd(`, d− 1, T ) = Θ(T ). (22)

We can improve on the upper bound (21) for pairs (` = k + 2, k) as follows.

Lemma 1. Let d, k ≥ 1 with k ≤ d−1 be fixed integers. Then, for some constant
c = c(k) > 0 it is:

fd(k + 2, k, T ) ≤ c · T
d

d(k+1)/2e (23)
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For even k ≥ 2, the upper bound (23) on fd(k + 2, k, T ) is smaller than (21)
for k < d − 2, and for k = d − 2 in both bounds the exponents of T are equal,
and (21) is less than (23) only for k = d − 1. For odd k ≥ 1, the upper bound
(23) is smaller than (21) for the range (d − 1)/2 −

√
(d− 1)2/4− d ≤ k ≤

(d− 1)/2 +
√

(d− 1)2/4− d.

Proof. Let k ≥ 2 be even and set g := k/2. Let S be a subset of points from the
d-dimensional T × · · · × T -grid, where no (k + 2) points in S are contained in a
k-dimensional affine subspace, w.l.o.g. |S| ≥ k + 2. Consider the set Sg+1 of all
(g+1)-term sums of pairwise distinct elements from S with addition component-
wise:

Sg+1 := {s1 + · · ·+ sg+1 | s1, . . . , sg+1 ∈ S are pairwise distinct}.

We claim that for distinct points s1, . . . , sg+1 ∈ S and distinct t1, . . . , tg+1 ∈ S
with {s1, . . . , sg+1} 6= {t1, . . . , tg+1} it is

s1 + · · ·+ sg+1 6= t1 + · · ·+ tg+1. (24)

Otherwise, we have s1 + · · · + sg+1 = t1 + · · · + tg+1 for some distinct points
s1, . . . , sg+1 ∈ S and distinct t1, . . . , tg+1 ∈ S. Assume that for some integer
j ≥ 1 it is si = ti, i = 0, . . . , j−1, and that sj , . . . , sg+1, tj , . . . , tg+1 are pairwise
distinct points. Then, it is sj + · · ·+ sg+1 = tj + · · ·+ tg+1, hence we have found
2 · (g + 2 − j) = k + 4 − 2 · j distinct points in S, which are contained in a
(k + 2− 2 · j)-dimensional affine space. Adding 2 · j further distinct grid-points
from S to sj , . . . , sg+1, tj , . . . , tg+1 yields (k + 2) grid-points in the set S, which
are contained in a k-dimensional affine space, a contradiction.
By (24) we infer |Sg+1| =

( |S|
g+1

)
, and all points in Sg+1 are contained in a

((g + 1) · T )× · · · × ((g + 1) · T )-grid, thus we obtain(
|S|
g + 1

)
= |Sg+1| ≤ ((g + 1) · T )d,

and with k = 2 · g for a constant c = c(k) > 0 we have |Sg+1| ≤ c · T 2d/(k+2),
hence fd(k + 2, k, T ) ≤ c · T 2d/(k+2).
Let k ≥ 1 be odd. If a subset S of points from the d-dimensional T ×· · ·×T -grid
does not contain (k + 2) points, which are contained in a k-dimensional affine
subspace, then S also does not contain (k + 1) points, which are contained in a
(k − 1)-dimensional affine subspace. With the already proved upper bound for
even values we infer for k ≥ 1 odd that fd(k + 2, k, T ) ≤ fd(k + 1, k − 1, T ) ≤
c · T 2d/(k+1). ut

Concerning lower bounds, Brass and Knauer proved in [4] for fixed integers
d, k, ` ≥ 2 by a random selection of points from the T × · · · × T -grid that

fd(`, k, T ) = Ω(T d−k−(d(k+1)/(`−1))). (25)

Then (25) guarantees fd(`, k, T ) = Ω(T ) for ` − 1 ≥ d(k + 1)/(d − k − 1) and
k ≤ d−2. One can improve (25) a little by using a (slightly) different argument:
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Lemma 2. For fixed integers d, k, ` ≥ 1 with k ≤ d − 1 and ` ≥ k + 2 and
integers T ≥ 1 it is:

fd(`, k, T ) = Ω(T d−k−(k(d+1)/(`−1))). (26)

Notice that (26) is bigger than (25) for k < d. However, (26) as well as (25) are
close to the lower bound (21) for ` large.

Proof. Form a `-uniform hypergraph G = (V, E`) with vertex-set V consisting of
all T d points from the d-dimensional T×· · ·×T -grid. For grid-points P1, . . . , P` ∈
V let {P1, . . . , P`} ∈ E` if and only if P1, . . . , P` are contained in a k-dimensional
affine subspace. We want to guarantee a large independent set in G. Each k-
dimensional affine subspace contains at most T k points from the d-dimensional
T × · · · × T -grid. The number of k-dimensional affine subspaces, which intersect

the d-dimensional T × · · · × T -grid in at least (k + 1) points, is at most
(
Td

k+1

)
.

We infer for a constant c > 0

|E`| ≤
(
T k

`

)
·
(
T d

k + 1

)
≤ c · T k`+d(k+1),

hence the average-degree t`−1 of G fulfills for some constant c′ > 0:

t`−1 =
` · |E`|
|V |

≤ ` · c · T k`+d(k+1)

T d
≤ c′ · T k(d+`). (27)

By Theorem 1 and (27) we can find in time polynomial in T an independent set
I ⊆ V in G, such that for a constant c′′ > 0 it is

|I| ≥ `− 1

`
· T d

c′1/(`−1) · T k(d+`)/(`−1)
≥ c′′ · T d−k−(k(d+1)/(`−1)).

ut

Next we consider linear subspaces. Let f lind (`, k, T ) denote the maximum number
of points in the d-dimensional T×· · ·×T -grid, such that no ` points are contained
in a k-dimensional linear subspace. From number theory it is known [5] that for
fixed d ≥ 2 it is f lind (2, 1, T ) = Θ(T d). Bárány, Harcos, Pach and Tardos proved
in [2] that f lind (d, d − 1, T ) = Θ(T d/(d−1)) for fixed d ≥ 2. Based on this, Brass
and Krauer [4] conjectured (stated as a problem in [5]) that

f lind (k + 1, k, T ) = Θ(T
(d−k)d
d−1 ). (?) (28)

However, we can show the following:

Lemma 3. For fixed integers d, k with 1 ≤ k ≤ d − 1 there exists a constant
c > 0, such that for every integer T ≥ 1 it is

f lind (k + 1, k, T ) ≤ c · T
d

dk/2e . (29)
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For odd k the upper bound (29) is asymptotically smaller than the suggested
growth of f lind (k + 1, k, T ) in (28) for 1 < k < d− 2 with equality for k = d− 2.
Similarly, for even k the upper bound (29) is smaller than in (28) for the range
d/2 −

√
d2/4− 2d+ 2 < k < d/2 +

√
d2/4− 2d+ 2. Hence, (28) does not hold

for several values of k, d.

Proof. The proof is similar to that of Lemma 1, therefore we only sketch it. Let
k ≥ 1 be an odd integer and set g := (k+ 1)/2. Let S be a subset of points from
the d-dimensional T × · · · × T -grid, where no (k + 1) distinct points from S are
contained in a k-dimensional linear subspace, w.l.o.g. |S| ≥ k + 1. Let

Sg := {s1 + · · ·+ sg | s1, . . . , sg ∈ S are pairwise distinct}.

As in the proof of Lemma 1, for distinct grid-points s1, . . . , sg ∈ S and distinct
t1, . . . , tg ∈ S with {s1, . . . , sg} 6= {t1, . . . , tg} it is s1 + · · ·+ sg 6= t1 + · · ·+ tg, as
otherwise we can find (k + 1) distinct grid-points in S, which are contained in

a k-dimensional linear subspace, a contradiction, hence |Sg| =
(|S|
g

)
≤ (g · T )d,

and we infer f lind (k + 1, k, T ) = O(T 2d/(k+1)) for odd k ≥ 1.
For even k ≥ 2 we conclude as in the proof of Lemma 1 that for a constant c > 0
it is f lind (k + 1, k, T ) ≤ f lind (k, k − 1, T ) ≤ c · T 2d/k. ut
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12. Z. Füredi, Maximal Independent Subsets in Steiner Systems and in Planar Sets,
SIAM J. Disc. Math. 4, 1991, 196–199.

11



13. H. Fürstenberg and Y. Katznelson, A Density Version of the Hales–Jewett The-
orem, Discrete Mathematics 25, 1989, 227-241.

14. R. Guy, Unsolved Problems in Number Theory, 2nd ed., Springer, 1994.
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