Theorie der Programmiersprachen

6. Übung

- 1. Aufgabe: Wiederholen Sie die Begriffe der Prädikatenlogik! Bestimmen Sie dazu von Formel ${\cal F}$ alle
 - Teilformeln,
 - Terme,
 - atomaren Formeln,
 - sowie alle frei vorkommenden Variablen, (Welche Variablen sind wo gebunden?).

$$F = \left(\left(\exists x_3 P_1^3 (x_1, f_1^2(x_2, x_3), f_2^1(x_1)) \right) \vee \left(\forall x_2 P_2^1 (f_3^2(x_2, x_1)) \right) \right) \vee \left(\exists x_2 \neg P_3^2 (x_3, f_4^1(x_2)) \right)$$

2. Aufgabe: Gegeben sei die Formel

$$F = \forall x \exists y P(x, y, f(z)).$$

Geben Sie eine Interpretation \mathcal{A} an, die Modell für F ist und eine Interpretation \mathcal{B} , die kein Modell für F ist.

3. Aufgabe: Welche der folgenden Interpretationen sind Modelle für die folgende Formel?

$$F = \exists x \exists y \exists z \Big(P(x,y) \land P(z,y) \land P(x,z) \land \neg P(z,x) \Big)$$

- (a) Grundmenge $U = \mathbb{N}$ P wird interpretiert als $\{(m, n) \mid m, n \in \mathbb{N}, m < n\}$ (Also ist P(m, n) wahr, genau dann wenn m < n)
- (b) $U = \mathbb{N}, P = \{(m, m+1) \mid m \in \mathbb{N}\}\$
- (c) $U = \mathcal{P}(\mathbb{N})$ (die Potenzmenge von \mathbb{N}), $P = \{(A, B) \mid A, B \subseteq \mathbb{N}, A \subseteq B\}$

- **4. Aufgabe:** Zeigen Sie, dass $(\exists x F \land \exists x G)$ nicht äquivalent zu $\exists x (F \land G)$ ist.
- **5. Aufgabe:** Beweisen Sie, dass $\forall x \exists y P(x, y)$ eine Folgerung von $\exists y \forall x P(x, y)$ ist, aber nicht umgekehrt.

6. Aufgabe:

Sei F eine erfüllbare Formel und sei \mathcal{A} ein Modell für F mit $|U_{\mathcal{A}}| = n$. Zeigen Sie, dass es ein Modell \mathcal{B} für F gibt, sodass $|U_{\mathcal{B}}| = n + 1$.

- 7. Aufgabe: In der Prädikatenlogik mit Identität ist auch das Symbol "=" zugelassen, das Gleichheit zwischen Termen bedeuten soll. Formulieren Sie prädikatenlogische Aussagen mit Identität, in denen das zweistellige Prädikatsymbol P bzw. das einstellige Funktionssymbol f vorkommen, die besagen:
 - (a) P ist eine antisymmetrische Relation,
 - (b) f ist eine injektive / surjektive / bijektive Funktion.
- **8. Aufgabe:** Geben Sie eine erfüllbare prädikatenlogische Aussage F mit Identität an, so dass für jedes Modell \mathcal{A} von F gilt $|U_{\mathcal{A}}| \leq 2$.