Theorie der Programmiersprachen

5. Übung

- 1. Aufgabe: Wiederholen Sie die Begriffe der Prädikatenlogik! Bestimmen Sie dazu von folgenden Formeln alle
 - Teilformeln
 - Terme
 - atomaren Formeln
 - alle frei vorkommenden Variablen (welche Variablen sind wo gebunden?)
 - die Matrix.

$$F_1 = (\exists x_3 P_1^3(x_1, f_1^2(x_2, x_3), f_2^1(x_1))) \lor (\forall x_2 P_2^1(f_3^2(x_2, x_1))) \lor (\exists x_2 \neg P_3^2(x_3, f_4^1(x_2)))$$

2. Aufgabe: Gegeben sei die Formel

$$F = \forall x \exists y P(x, y, f(z)).$$

Man gebe eine Struktur \mathcal{A} an, die Modell für F ist und eine Struktur \mathcal{B} , die kein Modell für F ist.

3. Aufgabe: Welche der folgenden Strukturen sind Modelle für die Formel

$$F = \exists x \exists y \exists z (P(x,y) \land P(z,y) \land P(x,z) \land \neg P(z,x))?$$

- (a) $U_{\mathcal{A}} = \mathbb{N}, P^{\mathcal{A}} = \{(m, n) : m, n \in \mathbb{N}, m < n\}$
- (b) $U_{\mathcal{A}} = \mathbb{N}, P^{\mathcal{A}} = \{(m, m+1) : m \in \mathbb{N}\}$
- (c) $U_{\mathcal{A}} = \mathcal{P}^{\mathbb{N}}, P^{\mathcal{A}} = \{(A, B) : A, B \subseteq \mathbb{N}, A \subseteq B\}$
- **4. Aufgabe:** In der *Prädikatenlogik mit Identität* ist auch das Symbol = zugelassen, das Gleichheit zwischen Termen bedeuten soll. Wie muss die Syntax und Semantik de Prädikatenlogik erweitert werden, um die Prädikatenlogik mit Identität zu erhalten?
- **5. Aufgabe:** Man gebe eine erfüllbare prädikatenlogische Aussage F mit Identität an, so dass für jedes Modell \mathcal{A} von F gilt $|U_{\mathcal{A}}| \leq 2$.

- **6. Aufgabe:** Man formuliere pradikatenlogische Aussagen mit Identität, in denen das zweistellige Prädikatsymbol P bzw. das einstellige Funktionssymbol f vorkommen, die besagen:
 - (a) P ist eine antisymmetrische Relation,
 - (b) f ist eine injektive / surjektive / bijektive Funktion.
- 7. Aufgabe: Zeigen Sie, dass $(\forall xF \lor \forall xG)$ nicht äquivalent zu $\forall x(F \lor G)$ ist.
- 8. Aufgabe: Man zeige, dass $F = (\exists x P(x) \to P(y))$ äquivalent ist zu $G = \forall x (P(x) \to P(y))$.
- **9. Aufgabe:** Man beweise, dass $\forall x \exists y P(x,y)$ eine Folgerung von $\exists y \forall x P(x,y)$ ist, aber nicht umgekehrt.