Datensicherheit und Kryptografie

9. Übung

Abgabe: Lösen Sie die Aufgabe 4. Ihre Lösungen geben Sie bitte entweder

- bis zum 22.06.2022 um 20:00 Uhr per Mail an julian.pape-lange@informatik.tu-chemnitz.de mit *Betreff:* DuK Hausaufgaben oder
- nach der Vorlesung am 21.06.2022

ab.

1. Aufgabe:

Vergleichen Sie die Funktionswerte der Funktionen $\log_2(\log_2(x))$, $\log_2(x)$, $\log_2(x)^2$, $\log_2(x)^3$, $\log_2(x)^4$, $\log_2(x)^5$, $\log_2(x)^6$, x und $x \log(x)$ für die Funktionswerte x = 10, $x = 10^3$, $x = 10^6$, $x = 10^9$ und $x = 10^{12}$.

2. Aufgabe:

- (a) Zeigen Sie, dass aus ggT(a, m) > 1 folgt, dass $a^{m-1} \not\equiv 1 \pmod{m}$ gilt.
- (b) Zeigen Sie, dass für gerade m die Ungleichung $(m-1)^{m-1} \not\equiv 1 \pmod{m}$ gilt.
- (c) Zeigen Sie, dass für ungerade a die Äquivalenz $a^2 \equiv 1 \pmod{8}$ gilt.

3. Aufgabe:

Wir betrachten Untergruppen.

(a) In der Vorlesung haben wir die Untergruppen

$$U_m = \{a | a \in \mathbb{Z}_m^*, \quad a^{m-1} \equiv 1 \pmod{m}\}$$

von \mathbb{Z}_m^* eingeführt. Berechnen Sie U_m für m=8, m=15 und m=561 und zeigen Sie, dass U_m wirklich eine Untergruppe von \mathbb{Z}_m^* ist.

- (b) Zeigen Sie, dass eine multiplikativ abgeschlossene Teilmenge einer endlichen Gruppe auch unter Inversen abgeschlossen ist.
- (c) Sei G eine Gruppe mit Untergruppe U. Zeigen Sie, dass für $b \in G \setminus U$ und $u, u' \in U$ mit $u \neq u'$ gilt, dass bu und bu' auch verschieden sind.

4. Aufgabe: (1+1+2+2+2+2)P

Wir betrachten Carmichael-Zahlen. Das sind Zahlen m für die gilt:

$$ggT(a, m) = 1 \Rightarrow a^{m-1} \equiv 1 \pmod{m}$$

- (a) $1729 = 7 \cdot 13 \cdot 19$ ist eine Carmichael-Zahl.
- (b) $1547 = 7 \cdot 13 \cdot 17$ ist keine Carmichael-Zahl.
- (c) Zeigen Sie, dass echte Potenzen von Primzahlen keine Carmichael-Zahlen sind.
- (d) Zeigen Sie, dass Zahlen der Form p^2k mit $p\geq 2$ keine Carmichael-Zahlen sind.
- (e) Zeigen Sie, dass eine Zahl m genau dann Carmichael-Zahl ist, wenn für alle Primteiler p von m auch p-1 ein Teiler von m-1 ist.
- (f) Zeigen Sie, dass Carmichael-Zahlen mindestens drei Primfaktoren haben.